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1 Introduction

Despite the impressive predictability of the Standard Model (SM), it is a well-known fact that
it does not account for all known phenomena and is plagued with a number of aesthetic issues.
As such, the search for new, fundamental interactions is a central goal of particle physics
across virtually every experiment. However, given that there is an uncountable number of
new physics models, we simply do not have the bandwidth to test all possibilities, and it is
certain that there are alternative hypotheses that we have not yet considered.

For this reason, a new paradigm has emerged to complement traditional, model-specific
approaches. The new anomaly detection protocols seek to explore data with as little bias
as possible in order to be broadly sensitive to many scenarios. Such protocols have been
significantly advanced by modern machine learning (see [1–4] for a selection of machine
learning reviews and anomaly detection challenges, and [5–102] for specific techniques). One
powerful anomaly detection strategy (“weak supervision”) is to isolate a region of phase space
and compare data to a background-only reference. Signal model-agnostic evidence for new
physics emerges when the data is not statistically consistent with the reference.

The core task of weakly supervised anomaly detection strategies is to construct the
reference sample of background-only events. Existing strategies follow one of two approaches:
(1) the reference sample is from (background-only) simulation and (2) the reference sample
is learned from sidebands. The advantage of the simulation approach is that it puts few
assumptions on the form of the signal. In particular, this approach can accommodate signals
that are non-resonant, either due to the new physics being very massive or consisting of
non-reconstructable (e.g. invisible) particles. The challenge with a simulation-based reference
is that the simulation accuracy limits the anomaly detection sensitivity. In contrast, sideband
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methods posit that the signal, if it exists, is localized in at least one known dimension
m. Focusing on a particular interval in m, a signal-sensitive region of phase space is then
constructed using other features x, and regions in m away from the posited resonance are used
to estimate the background pbackground(x|m). The benefit of sideband methods is that the
reference is estimated directly from data, while the challenge is that not all signals are resonant.

We propose an approach to merge the advantages of the simulation-based and sideband-
based cases to form a strategy that learns the reference from data without requiring a resonance.
This method extends and modifies existing resonance approaches [19, 20, 34, 57, 85, 92, 103]
to allow for extrapolation in m, as opposed to interpolation. Instead of the signal region
being defined by an interval in a one-dimensional m, we now have a multidimensional m

for which the signal region is defined by thresholds1 m0 > c0, m1 > c1, . . . , mn > cn for
m, c ∈ Rn. The conditional reference pbackground(x|m) is learned (directly or indirectly) from
the complement of the signal region and then extrapolated to the signal region. If the
machine learning models are smooth and the background remains qualitatively the same in
the signal region (e.g. the functional form of the background distribution, particularly the
dependence on the context variables, is continuous across the CR-SR boundary), there is
reason to believe that the extrapolation can be accurate.2 A new feature of the non-resonant
case is that we need to additionally estimate pbackground(m). This is also needed in the
resonant case, but it is less important (since p(m) is relatively constant in the signal region)
and thus approximate or simplified methods have been considered so far. We propose to
estimate pbackground(x|m) using a likelihood-ratio method [19] and then combine this estimate
with three proposals for estimating pbackground(m) based on reweighting [19], generative
models [57], and template morphing [103].

The growing anomaly detection for fundamental interactions literature includes a number
of proposals that can accommodate non-resonant new physics. In the weakly supervised case,
simulation-based background estimates do not require resonant new physics [6, 8, 67, 77].
Nearly all data-based weakly supervised methods include non-resonant x features [19, 20, 34,
57, 85, 92, 99, 103]. In special cases, symmetries can be used to define the reference directly
in data without requiring m to be resonant [63, 64, 75, 79]. Extrapolation of generative
models has been considered for background estimation, but combined with classical model-
specific search strategies [105]. Unsupervised methods like those based on autoencoders (e.g.
refs. [9, 10, 14] and many others) do not require resonances for achieving signal sensitivity in
general. However, except in special cases, they often lack background estimation strategy [65],
or any guarantees of optimality. Our approach is unique because it combines signal sensitivity
with background estimation3 and is asymptotically optimal [20] in the limit of large datasets
and effective machine learning.

Non-resonant signals can arise from many new physics models. For example, models of a
strongly interacting dark sector can produce jets which contain both stable and unstable dark

1A non-rectangular signal region is also possible, but makes the accounting more difficult.
2We leave additional studies to impose minimalism in the extrapolation to future work via e.g.

monotonicity [104].
3The reference does not need to be used directly to estimate the background after making a cut on the

anomaly score. One could use any classical non-resonant background estimation strategy like the ABCD
method, possibly also with machine learning [106].
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hadrons, predicting signatures of jets containing significant missing energy. Non-resonant
signals are also characteristic of effective field theories, which can model new physics with
masses beyond those accessible through on-shell production. ML-based anomaly detection
can offer additional sensitivity to explore the vast signature space of non-resonant signals.

This paper is organized as follows. In section 2, we introduce the methodology we
follow for our tail-based non-resonant anomaly detection procedure, providing details on the
background extrapolation task. In section 3, we show a realistic physics example, considering
jets emerging from a complex dark sector as our non-resonant signal. We conclude in section 4.

2 Methodology

2.1 Locating overdensities

The goal of a weakly-supervised anomaly search is to identify regions of phase space that are
more represented by data (forming overdensities) than they are by the reference dataset. The
search is performed in a signal region (SR) and the reference is estimated using information
from a neighboring region.

In the resonant case, the SR is defined by an interval around a posited new particle
mass m ∈ [m0 − δ, m0 + δ]. The neighboring region (called sideband or SB) is the region
(or a subset of the region) outside of this interval. If the signal exists and is at mass m0,
we expect that most of the signal is in the SR with little contamination in the SB. The
reference background template is estimated using information from the SB. Since we expect
the phase space to be smoothly varying with m and since δ is expected to be small relative
to regions over which large changes occur in pbackground(x|m), we expect the background to
be well-estimated by interpolating from the SB (see further details in section 2.2). Given
samples from the background dataset,4 overdensities are identified with the Classification
WithOut LAbels procedure (CWoLa) [5, 7, 107]. Events in data are all assigned the label
“signal” and all events from the background template are labeled “background”. An optimal
classifier trained to distinguish these datasets will implicitly learn a function monotonically
related to the signal-over-background likelihood ratio. Thresholding the classifier will then
isolate an anomaly-like region of phase space.

In the non-resonant case, the setup is slightly different. Instead of having SB that
surround the SR, the neighboring region is only on one side and is now called a control region
or CR. However, we allow for m to be multidimensional — the more dimensions available
to constrain pbackground(x|m), the better accuracy we might expect for reconstruction in the
SR.5 Resonances are in fact nearly a special case of this setup, since one could define e.g.
m′ = 1/|m − m0|. As in the resonant case, we start by constructing background templates in
the CR, and we expect most of the signal to be in the SR so that the CR can be used to
estimate pbackground without bias. A schematic diagram of the non-resonant setup is presented
in figure 1. The challenge now is to extrapolate into the SR instead of interpolating as in
the resonant case. Given the background template, the actual anomaly detection proceeds

4There are variations on this where the density is used directly without samples [20], but the overall idea is
the same.

5We validated this with simplified Gaussian samples.
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Figure 1. A schematic of the setup for non-resonant anomaly detection. The signal region (SR) is
defined by a one-sided cut on a context variable m > c. While the figure shows a one-dimensional
context variable, in practice the context can be multidimensional. A number of other features x are
used for the CWoLa anomaly detection classifier. It is also possible to include m in the classifier.

using the same CWoLa procedure described above. The main aspect that distinguishes
different approaches is how the background templates are generated.

2.2 Constructing background templates

To construct samples of background-only events in the SR, we take the following steps:

1. Estimate pdata(x|m) in the CR. We first learn the distribution of the chosen
features for background-only events, conditioned on the context variables, in the CR. It
is assumed that the conditioning on the context will allow the learned distribution to be
extrapolated into the SR. For the interpolation case (i.e resonant anomaly detection),
the analogous first step would be to learn pdata(x|m) in the SB. Since we assume that
the signal is mostly absent from the CR, pdata ≈ pbackground.

2. Estimate pbackground(m) in the SR. In order to sample from pbackground(x|m) in
the SR, we need to be able to generate SR-like context m. In the interpolation case,
this might be done by performing a parametric fit to a histogram of m in the SB and
interpolating to the SR. This could also work in the extrapolation case, but (1) the
shape may be non-trivial in the tails of m and (2) this approach does not scale well to
more than one dimension.
To circumvent these challenges, we estimate pbackground(m) in the SR by reweighting
context in the CR, psimulation(m), to match data and then extrapolating this function
into the SR. A binary classifier parameterized in m [108, 109] is trained to distinguish
simulated context from data context in the CR. The classifier output is then interpreted
as a likelihood ratio w(m) for estimating the background [19]. As in step 1, we
assume that conditioning the network on the context will enable the learned weights to
extrapolate into the SR.

3. Sample pbackground(x|m) in the SR. We first estimate pbackground(x|m) from the
learned model in the CR, drawing context from psimulation(m), in the CR. The resulting
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events are then weighted by w(m) to arrive at our estimate of pbackground(x, m) in the
SR, following eq. (2.1).

pbackground(x, m) = pbackground(x|m)pbackground(m)

= pbackground(x|m)psimulation(m)pbackground(m)
psimulation(m)

= pbackground(x|m)psimulation(m)w(m)

(2.1)

We consider three approaches for approximating pdata(x|m) in the CR, based on three
techniques previously developed for the resonance case: Simulation-Assisted Likelihood-Free
Anomaly Detection (SALAD) [19], Classifying Anomalies through Outer Density Estimation
(CATHODE) [57], and Flow-Enhanced Transportation for Anomaly detection (FETA) [103].
Our proposed methods are:

1. Reweight (SALAD-inspired). The parameterized, binary classifier used to approximate
pbackground(m) is extended to include also x so that the likelihood ratio in both x and
m is estimated at the same time.

2. Generate (CATHODE-inspired). A generative neural network (normalizing flow [110])
is trained to model data in the CR, conditioned on the context m. Given values of m,
one can sample features x from the normalizing flow.

3. Morph (FETA-inspired). A normalizing flow-based model is trained to map samples
in the CR from MC to data, conditioned on the context m. Like SALAD, FETA starts
from a simulation, but instead of reweighting, it morphs the features directly [111, 112].

Note that w(m) is estimated with SALAD in all three cases, so our new approaches are
SALAD-{SALAD, CATHODE, FETA} hybrid methods.

We evaluate the performance of the Reweight, Generate, and Morph-constructed back-
ground samples against two benchmarks: (1) a fully supervised classifier trained to discriminate
pure background from pure signal, and (2) an “idealized” classifier trained to discriminate
pure background from true background + signal. The idealized classifier represents the actual
best performance to which our background estimation methods should asymptote.

2.3 Network architectures and training specifications

All networks are implemented in PyTorch [113] and optimized with Adam [114]. For the
Generate and Morph methods, we construct normalizing flow networks with the nflows
package [115]. All models are trained with a train-validation split of 2/3–1/3 and are evaluated
at the epoch of lowest validation loss. For the Reweighting, Generate, and Morph methods,
architectures and hyperparameters were optimized through manual tuning such that in the
case of zero signal injection, a binary classifier could not distinguish reconstructed background
in the CR from data in the CR. This was necessary in order to keep the SR blinded.

The Reweighting method is implemented with a binary classifier, consisting of a dense
neural network with 3 layers of 100 nodes each. We use a batch size of 512, a learning rate
of 10−3, and train for up to 50 epochs with an early stopping patience of 5. The classifier
that generates the context weights w(m) is exactly the same as that for the Reweighting
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method. The Generate method is implemented with 4 layers of (Masked Affine Autoregressive
Transform block of 128 hidden features, Reverse Permutation), where the transform block is
built from a Masked Autoencoder for Distribution Estimation (MADE) architecture. Training
is with a batch size of 216, a learning rate of 10−3, and is carried out for up to 20 epochs
with an early stopping patience of 5 epochs. For the Morph method, the base density flow
uses the same architecture as the Generate method. The transfer flow is similar, but layers
have only 64 hidden features, the batch size is reduced to 128, and the learning rate to 10−4.

For the anomaly detection classifier networks, as well as the networks used for the closure
tests (see section 3.2.1), we use a fully-connected architecture with 3 layers of 64 nodes each.
We use a batch size of 512, a learning rate of 10−3, and train for up to 50 epochs with an
early stopping patience of 5 epochs. Networks are only trained on the non-context features.
In order to ensure training stability, for a given set of generated samples, we crop the weights
w(m) by dropping all weights that are greater than 3 standard deviations above the mean.
This has the effect of removing a very small number (usually on the order of a few tens, or
∼ 0.1%) of samples whose weights severely bias the resulting pbackground(x, m) distributions.

For the dataset, we consider a two-dimensional context m and a five-dimensional feature
space x (to be explained in detail in section 3.1). The values of all seven variables are minmax-
scaled to the range (−2.5, 2.5) based on the minimum and maximum of the simulation (pure
background) dataset before any network training is carried out. This was found to give
more reliable flow training. When the number of signal events is small, the exact events
that are injected into the “data” is important. Therefore, we rerun the procedures with
10 random signal injections and report the median and a 68-percentile spread. For each
signal injection, we retrain the models with a different random initialization 20 times and
average over these models. We found (as in previous studies) that this ensembling helps
with sensitivity and stability.

3 Application with dark QCD jets

This section illustrates the use of the above background extrapolation method in the case of
finding Beyond the Standard Model (BSM) physics at the LHC. The physics model we are
interested in is jets that contain both stable and unstable hadrons from a strongly interacting
dark sector, or dark QCD. This type of signal comes from e.g. Hidden Valley models [116–119].
In particular, we assume there exist some new massive quarks charged under dark QCD
that are promptly produced and go through QCD-like showering and hadronization to form
“dark hadrons”. It is possible that a fraction of these dark hadrons decay back to the SM
hadrons, and the rest remain invisible. This results in the type of dark QCD signature called
semi-visible jets [120–125]. Semi-visible jets are challenging to distinguish from SM QCD
jets, but the unique signature from certain dark hadron mass scales and missing energy
may be used for identification.

We assume that the dark quarks are produced through a mediator such as a massive
gauge boson Z ′. When the mediator is produced on-shell, we can reconstruct the invariant
mass of the mediator from the semi-visible jets. However, when the invisible fraction of the
jet is large, there will be a large amount of missing energy, resulting in a poor invariant mass
resolution so that the reconstructed signal is no longer resonant. The invisible fraction of
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Z ′ jj, rinv = 0
Z ′ jj, rinv = 1/3
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QCD dijet (data)

Figure 2. A histogram of mjj , corresponding to the reconstructed mass of the 4 TeV Z ′ particle,
for a selection of choices within the Hidden Valley model with parameter rinv. In this study, we set
rinv = 1/3, at which point the Z ′ signal is no longer clearly resonant.

dark hadron decays is defined using the parameter, rinv, the ratio of the number of stable
dark hadrons over number of total dark hadrons.

For this study, we choose a 4 TeV Z ′ decay into a pair of dark quarks. There are 3
flavours of dark quarks, all with the same mass of mqD = 250 GeV. There are two types
of dark hadrons, the dark pion and dark rho meson, whose masses are set to be the same
as the confinement scale of the dark sector, mπD = mρD = ΛD = 500 GeV. Note that this
choice of ΛD results in a small number of dark mesons in the shower, and since the dark
mesons are relatively heavy, the jet substructure comes from the dark meson decays and is
less dependent on the hadronization process in the dark sector. A study of the effects from
different mass parameters is presented in appendix A. The AD procedure is insensitive to
the simulation modeling, and therefore is complementary to methods that minimizes the
hadronization uncertainties [126, 127].

3.1 Dataset specifications

Signal events are generated using the Hidden Valley module from Pythia 8.310 [128]. Back-
ground (“data” and “simulation”) events are generated using MadGraph5 aMC@NLO [129]
and showered using Pythia 8.310. All events use Delphes [130] for detector simulation
with the CMS card, and jets are clustered using the anti-kt [131] algorithm with R = 1.0
using FastJet [132]. For the background samples, the data and simulation events differ in
the choices of renormalization and factorization scales (1 vs. 2, respectively) as well as the
tuning (14 vs. 25). We show results using a different background simulation in appendix B to
validate the robustness of the anomaly detection (AD) methods against larger discrepancies
in data and simulation. A minimum of 200 GeV transverse momentum is required for the
leading jet in the event. In figure 2, we show the mjj distribution for a few selections of rinv
values. To ensure the non-resonance of the signal, we set rinv = 1/3 in this study.
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(a) Two-dimensional context variables. The SR is defined
by the cuts HT > 800 GeV, and MET > 75 GeV, which are
shown on the plot.
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Sub-leading jet 3/ 2 

(b) Five-dimensional feature variables.

Figure 3. Histograms of the observables used in the Hidden Valley non-resonant anomaly detection
task, for background (“data” and “simulation”) and signal events).

We use the scalar sum of jet transverse momenta (HT) and missing transverse momentum
(MET) as the context variables to define a two-dimensional SR.6 For a five-dimensional
feature space, we use the dijet invariant mass mjj, and the two-pronged and three-pronged
N-subjetiness [133, 134] for both the leading and subleading jets. Distributions of context and
feature variables for signal and background is shown in figure 3. The SR is defined by the cuts
HT > 800 GeV, and MET > 75 GeV, which ensures the signal-over-background ratio is much
lower in the CR than that of the SR.7 We summarize the number of generated events in table 1.

3.2 Results

3.2.1 Closure tests

As a first test of extrapolation, we check that we are able to generate realistic background
samples in both the CR and SR under zero-signal injection. In figure 4, we show the five
feature distributions as constructed by the Ideal, Reweight, Generate, and Morph methods
in relation to truth, the zero-signal data. Feature reconstruction is excellent in the CR,

6These were chosen since they are nearly independent. This is not strictly necessary for the method to
work, but we found that it improves the extrapolation quality and the same features can be used for a classical
matrix method / ABCD background estimate.

7In addition to the selection of features, the definition of CR and SR will introduce some model dependence.
We expect that these regions will work well for a wide range of physics model parameters, especially when the
Z′ mass is higher.
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Purpose Dataset Number CR events Number SR events

Training for
generative models

Simulation (bkg.) 9,983k 126k
Data (bkg.) 9,247k 72k
Data (sig.) 14k 50k

Generated samples
Reweight
Generate N/A 126k
Morph

Evaluation
Ideal AD samples N/A 68k

Fully supervised set N/A 13k bkg., 30k sig.
Test set N/A 150k bkg., 20k sig.

Table 1. Breakdown of events generated for the Hidden Valley model. We found that large training
sets in the CR were necessary for good performances of the Generate and Morph (the flow-based)
methods, while the Reweight method worked well even with a smaller set. We did not explore
oversampling in the SR, which may improve performance [57].

and the ratios of the marginals to the truth are consistent with unity across virtually all
of the domains of the observables. Reconstruction is good overall in the SR, although the
reconstructed distributions (particularly for the Morph method) deviate visibly. We calculated
the one-dimensional Wasserstein distances as a quantitative measurement of the closure test,
characterizing how well the observables are reconstructed in the signal region and control
region by Reweight, Generate and Morph methods. The average Wasserstein distances of
Ideal, Reweight, Generate, and Morph across five feature variables are 0.0048, 0.0073, 0.0237,
0.0116 in CR, and 0.0058, 0.0130, 0.0293, 0.0202 in SR, respectively. Note that in order to
avoid premature unblinding, we withhold a set of 10k simulation and 10k data events in the
CR from network training and use this set to evaluate CR closure.

In figure 5(a), we show a more rigorous test by training a binary classifier to discriminate
between the constructed samples and background-only data. We show the spread of ROC
AUCs (receiver operating characteristic area-under-curves) across 10 binary classifier runs;
for a classifier trained on two identical datasets, the ROC AUC is expected to be 0.5 for
a perfect classifier, in the limit of infinite statistics and training time. Again, we see that
there is generally excellent reconstruction in the CR and slightly worse reconstruction in
the SR. In figure 5(b), we show the classifier rejection (1/false positive rate) curves for the
discrimination task in the SR. For all of the methods, the rejection found in the zero-signal
case is compatible (to within errorbars) with that of a random classifier.

As stated in section 2.3, architectures and hyperparameters for the extrapolation networks
were selected so as to make the spread of ROC AUCs in the CR consistent with random.
There is a (seemingly unavoidable) systematic error associated with the extrapolation, such
that Reweight, Morph, and Generate methods show a drop in similarity to true background
in the SR. We believe that most of this drop can be attributed to the more general challenge
of extrapolation for neural networks.
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(a) Control region distributions.
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(b) Signal region distributions.

Figure 4. Feature distributions as constructed by the Reweight, Generate, and Morph methods in
the absence of signal. Errorbars in the ratio plots reflect Poisson statistics. Note that the values of
the context and features have all been minmax-scaled to the range (-2.5, 2.5).
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Figure 5. Results for a classifier tasked with discriminating extrapolated background samples from true
background. The “Ideal” corresponds to an idealized classifier, which has been trained to discriminate
two statistically identical sets of background, and thus represents a realistic random classifier. Errorbars
and uncertainty bands show a 68-percentile spread across 20 independent classifier runs.
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3.2.2 Signal detection tests

In this section, we carry out an anomaly detection test for the dark QCD physics model. The
test is done by generating a signal-background discriminator using a weekly-supervised binary
classifier following the CWoLa procedure, as explained in section 2. The classifier is trained
to discriminate the background reference against data that consists of SR background with a
known amount of signal injection. For the simulation, we scan over seven signal injections of
signal (S) over background (B) of S/B ∈ {0, 3.1, 6.5, 9.3, 12, 15, 18} × 10−3, corresponding to
significances S/

√
B ∈ {0, 0.84, 1.75, 2.52, 3.32, 4.07, 4.99}, respectively.8 In this section, we

provide a number of metrics derived from this binary classifier.
We focus on metrics derived from the classifier SIC curves for the discrimination task

in the SR. The SIC, defined as the true positive rate/
√

false positive rate, gauges the factor
by which a signal’s significance would improve by making a cut on the classifier score. We
expect SIC ≫ 1 for a well-performing classifier, while in the zero-signal case, the classifier
would perform poorly.

In figure 6(a), we show the maximum SICs across all signal efficiencies, corresponding
to the largest achievable significance improvements. In figure 6(b), we show SICs evaluated
at a fixed rejection (given by 1/false positive rate) of 103. The results are encouraging,
demonstrating comparable performance to the idealized anomaly detector for all three
methods. The Reweight method enhances a signal significance from below 1(∼ 0.84)σ to
the 5σ “discovery” threshold. The Generate and Morph methods perform less optimally
with respect to the metric of SIC at a rejection of 103, but there is good evidence that the
Generate and Morph methods could enhance a signal significance originally between 1–2σ to
the discovery threshold. At zero signal injection, the higher SIC values for Reight is likely
due to randomness, since there is nothing for the network to learn. What we see is that
the mismodeling happens to be in a signal-like direction. It would be interesting for future
studies to explore how these findings change for different signal and background models.9

4 Conclusions

In this paper, we have extended background interpolation methods to the extrapolation
case to enable weakly supervised, non-resonant anomaly detection (AD). Our strategy is
based on the construction of a realistic set of background events through extrapolation from
a background enriched control region (CR) into a signal region (SR). We proposed three
extrapolation approaches based on reweighting, generation, and morphing which parallel
the SALAD, CATHODE, and FETA methods, respectively. Studies in the resonant case
have shown complementarity between these methods [94] which may be especially important
in the extrapolation case.

The proposed methods are tested on a realistic BSM signal consisting of dark QCD jets.
We found that in the zero-signal case, there was good closure between the reconstructed

8Note that with our chosen context region bounds, there is a small amount of signal contamination in the
CR. For the largest signal injection, the contamination is 4.3×10−3%, from 384 events.

9See appendix A, where we show how the detection task changes when using a different set of signal
parameters.
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Figure 6. Metrics for an anomaly detection classifier tasked with discriminating extrapolated
background samples from data in the SR. Uncertainty bands represent the 68-percentile spread over 10
different signal injections, all of which have been score-averaged over 20 independent classifier runs.

samples and the background data, showing that our background templates were well-modeled
and unbiased. The agreement between predicted background and the true background in CR
implies our methods are optimized for interpolation, and deviation in the SR might come
from the intrinsic difficulty of extrapolation. Finally, we have also shown the performances of
all the methods in a realistic AD task, demonstrating their abilities to elevate non-significant
signal injection to the threshold of possible detection. While we only showed the performance
for a single physics signal model, we stress that the protocol was optimized on only the
background, and the sensitivity should extend to a broad class of new physics scenarios.

Our study, while encouraging, brings to light some of the many challenges associated
with non-resonant AD. Future work is necessary in order to develop more robust non-resonant
AD. Possible avenues may involve using networks or data preprocessing techniques that are
especially well-suited for extrapolation. It is also worth testing the learning of w(m) function
given multiple different simulation sets that are qualitatively different from the data, in order
to verify the effectiveness of the Reweight method.10

With background extrapolation methods, the range of possible signals that could be
detected using an overdensity analysis would be greatly expanded. Not only are we able
to explore a larger parameter phase space of known resonance signals that was previously
not reconstructable, but we are also able to access non-resonant off-shell effects from heavy
particles. It is likely that no one method will achieve the best sensitivity to all scenarios,
so a set of techniques are required to achieve broad coverage.

Data and code availability. The physics datasets and parameter cards used for all
simulations have been made available on Zenodo at https://zenodo.org/records/10154213. The
analysis code is available at https://github.com/hep-lbdl/non-resonant-AD-extrapolation.

10See appendix B for an example of a modified simulation set.
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A Comparing different signal parameters

In this section, we compare the performance of three proposed non-resonant AD methods
(Reweight, Generate, and Morph) on different signal parameters of the dark QCD model.
We choose the following two sets of parameters, both with rinv = 1/3 in addition to the
4 TeV Z ′ signal used in section 3:

• mZ′ = 2 TeV, mπD = mρD = ΛD = 200 GeV, and mqD = 100 GeV.

• mZ′ = 3 TeV, mπD = mρD = ΛD = 300 GeV, and mqD = 150 GeV.

These two sets of parameters, denoted as the 2 TeV and 3 TeV signal, respectively, are
chosen to have different mjj and HT distributions from the 4 TeV signal, with more signal
located towards the bulk of the background. The choice of mπD , mρD , ΛD and mqD values gives
a similar two-pronged and three-pronged jet substructures as the 4 TeV signal in section 3.

Figure 7 shows the distributions of context and feature variables of three sets of signal
parameters used in this study. We apply the same SR definition with HT > 800 GeV and
MET > 75 GeV. Note that the distributions of the context variable HT and the feature
variables mjj for the 2 TeV signal look much more similar to those of background, so we
expect the discrimination task to be harder for lower signal masses.

In figures 8 and 9, we show the results for an anomaly detection classifier working on
a range of signal detections for the 2 TeV and 3 TeV signals, respectively. (These plots are
analogous to figure 6 for the 4 TeV signal.) As expected, the performances of all AD methods
show low sensitivity to the 2 TeV signal, with Reweight achieving a similar significance
improvement as the idealized classifier. Performance is better across the board for the 3 TeV
signal, although the qualitative features are the same as for the 2 TeV signal.

For both 2 TeV and 3 TeV signals, the gap in performance between the idealized classifier
and the fully supervised classifier is much larger than it is for the 4 TeV signal. This difference
might be ascribed to the fact that the lower-mass signals have a greater resemblance to the
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(b) Five-dimensional feature variables.

Figure 7. Histograms of the observables used in the Hidden Valley non-resonant anomaly detection
task, for background (“data” and “simulation”) and signal events).
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Figure 8. Metrics for an anomaly detection classifier tasked with discriminating extrapolated
background samples from data in the SR. The background is QCD dijet events. The signal is a
2 TeV Z ′ producing two dark QCD jets with 2mqD = mπD = mρD = ΛD = 200 GeV. Uncertainty
bands represent the 68-percentile spread over 10 different signal injections, all of which have been
score-averaged over 20 independent classifier runs.
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Figure 9. Metrics for an anomaly detection classifier tasked with discriminating extrapolated
background samples from data in the SR. The background is QCD dijet events. The signal is a
3 TeV Z ′ producing two dark QCD jets with 2mqD = mπD = mρD = ΛD = 300 GeV. Uncertainty
bands represent the 68-percentile spread over 10 different signal injections, all of which have been
score-averaged over 20 independent classifier runs.

background process in variables such as HT and mjj . Additionally, the amount of signal
contamination in the CR is higher for the lower mass Z ′ signals: for the 2 TeV Z ′, the highest
signal injection has a CR contamination of 0.01% (1257 events), and for the 3 TeV Z ′, the
highest contamination is 0.005% (551 events). A significant contamination could bias the
extrapolated background distributions.

However, there is still sufficient evidence that the Reweight method could reliably enhance
the signal significance from 1σ to the discovery threshold for all considered signal parameters.
In contrast, the Generate and Morph methods appear to be more sensitive to the signal
model, while still effective at picking up on moderate signal significances originating at ∼ 3σ.
It is worth exploring in which scenario the Reweight method becomes less effective than
Generate and Morph in the future.

B Modifying the simulation

In the main text of this work, the distributions of simulated background are similar to
the data distributions in most variables. This feature could decrease the difficulty of the
reweighting procedure in all three methods. In this section, we investigate the effects of using
a “morphed” simulation set that might better represent the expected discrepancy between
simulation and actual collider data.

We introduce a hand-tuned modification to the simulation, both to the features and
context, defined in eq. (B.1):

HT : x → x

MET : x → x

(
1 + x

500

)
mjj : x → x

(
1 + x

6000

)
τi : x → x1.1.

(B.1)
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(b) Five-dimensional feature variables.

Figure 10. Histograms of the observables used in the Hidden Valley non-resonant anomaly detection
task, for background (“data” and “simulation”) and signal events). The QCD dijet simulation has
been modified to appear different from QCD dijet data.

Through this modification, the distributions of simulation are slightly morphed to be different
from data, as shown in figure 10.

In figure 11, we compare the results for an anomaly detection classifier working on a
range of signal detections for the modified simulation, using the same 4 TeV signal as was done
in the main text. We make the comparison on the basis of the SIC at a rejection of 103; in
figure 11(a), we show the results for the unmodified simulation, and in figure 11(b), we show
the results from modified simulation. The performances are compatible, both quantitatively
and qualitatively. In particular, the signal injections at which each method reaches the
detection threshold are almost equal. The main difference is that the uncertainty bands
are wider for the morphed simulation. This is logical given that when the simulation is
more different from the “truth” background, the networks must learn a less trivial function
to map from signal to background.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Figure 11. SIC at a rejection of 103 for an anomaly detection classifier tasked with discriminating
extrapolated background samples from data in the SR. Uncertainty bands represent the 68-percentile
spread over 10 different signal injections, all of which have been score-averaged over 20 independent
classifier runs.
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