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1 Introduction

Observables in cosmological spacetimes are far less understood than their counterparts in
asymptotically flat or anti-de Sitter spaces. A central challenge in cosmology is the lack of a
non-dynamical boundary on which to anchor nonperturbative observables [1, 2]. Furthermore,
even on a fixed background, cosmological correlators of quantum fields lack an explicit time
variable in which causality and unitarity are usually defined. As a result, it is an open
challenge to define the nonperturbative characteristics of well-behaved cosmic observables [3].

For quantum field theory on a pure de Sitter (dS) background, the isometries act on
fields as if they were operators in a Euclidean conformal field theory (CFT) on the future
boundary of the spacetime [4]. Late-time correlators are therefore subject to a familiar set of
Ward identities that strongly constrain their functional form. Yet, for theories containing
sufficiently massive (principal series) fields, the scaling dimensions of operators are necessarily
complex and thus will not obey that same constraints as in a conventional unitary CFT [5].
Defining the allowed space of operators is not only conceptually important, but the dimensions
and OPE coefficients of the operators also appear directly in the observable properties of
the primordial density fluctuations [6–15].

A common strategy for constraining the form of physical theories in cosmology is to
study their dynamics on small scales where cosmological backgrounds are well-described
by their flat-space limit. Microcausality and scattering experiments in this limit are well
defined and constrain the microscopic Lagrangian [16, 17]. The implications for inflationary
observables can then be derived by direct computations [18–23]. This strategy has been
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taken further in the “cosmological boostrap” [24], where the cosmological correlators can
be determined from the scattering amplitudes and analyticity.

The focus on scattering experiments, however, does have its limitations in at least two
regards. First, it doesn’t constrain the cosmological dynamics directly. Instead, we have to
extrapolate the cosmological consequences from the Lagrangian or amplitudes. This limits
our ability to infer the outcome of perturbative calculations in cosmology, which have been
the source of much confusion in their own right [25, 26]. Second, inflationary backgrounds
break Lorentz boosts and/or the dS isometries [18, 27]. We therefore lose the symmetries
that play a crucial role in most AdS and flat-space examples (although there has been some
recent progress without these assumptions [28–32]). Naturally, we would like to know if
there are alternative strategies for understanding the constraints from causality and unitarity
directly on cosmological observables.

One general feature of cosmological correlators is that they are described by classical
statistics [33–37]. This is intuitively clear as the measurement of macroscopic objects like
galaxies should not depend on quantum mechanics. At a technical level, it is also a consequence
of the freeze-out of any light field [38, 39], as quantum effects are proportional to the decaying
mode. Given that classical probabilities are manifestly positive, these observations imply
some basic statistical constraints such as the Cauchy-Schwartz inequality and positivity1

of the Fisher information matrix.
Statistical constraints of this kind have been derived for the amplitudes of the three-

and four-point functions in the squeezed and collapsed limits, in the form of the Suyama-
Yamaguchi (SY) inequality [40]. The bounds require that the trispectrum amplitude exceeds
the square of the bispectrum amplitude, which arises at tree level from the form of exchange
diagrams involving light fields [41–43]. Yet, it remains unclear to what extent these inequalities
actually carry information about inflationary models2—after all, the bounds are true of any
random process regardless of its dynamical origin.

Not all inflationary four-point functions are manifestly positive. Oscillatory behavior is
known to occur in many situations of interest including the exchange of massive fields [14],
rapid mixing between fields [46], chemical potentials [47], and time-dependent interactions [48].
Statistical bounds typically require four-point functions to be positive, at least in specific
limits, which is not obviously the case in these examples. We therefore expect that these
models are subject to more subtle constraints to avoid obvious pathologies. It is for this
reason that there is non-trivial content in the classical statistical bounds, as it provides a
minimum requirement of positivity for these correlators. Ultimately, we expect that these
results are a reflection of yet to be derived fundamental constraints on the dynamics of
fields in inflationary backgrounds.

In this paper, we will explore information-theoretical constraints on models generating
oscillatory bispectra and trispectra. While the approach is a generalization of the proof of
the SY inequality [49], the implications for the early universe are remarkably different. For

1In this paper, the use of “positivity bound” will refer to any quantity that is bounded to be positive. For
the Fisher matrix, this is equivalent to the absence of negative norm states / negative probability, which might
also be interpreted as a consequence of unitarity.

2While the bounds hold in all examples, they may appear to be violated in uncontrolled limits of specific
models [44] or in individual loop diagrams [45].
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massive (principal series) fields in de Sitter space, positivity of the Fisher matrix forbids
negative (real) anomalous dimensions. There are only a few direct calculations of these
anomalous dimensions [50, 51] and the constraint on the sign is hardly apparent from Feynman
diagrams. Importantly, the Fisher information is positive without any assumptions about
symmetries and the same bounds therefore apply to models of inflation without the conformal-
like symmetries of de Sitter space. There one finds that any enhanced oscillatory signal must
come together with a larger non-oscillatory contribution that breaks conformal invariance.

The results derived in this paper arise directly at the level of cosmological observables,
including the galaxy power spectra. We show how most of our bounds can be derived within
the consistency of the matter and galaxy two-point statistics. Additionally, consistency of
the edge cases implies an interesting upper bound on the number density of galaxies.

Outline. This paper is organized as follows: in section 2, we derive positivity bounds on
the soft limits of inflationary correlators. In section 3, we apply these bounds to fields in de
Sitter space and inflation. In section 4, we show how the same bounds arise in the statistics
of galaxies. We conclude in section 5. Two appendices describe the connection between our
classical bounds and quantum-mechanical correlators.

2 Positivity in cosmological correlators

Throughout this paper, we will examine the space of allowed cosmological correlators in the
limit where they follow from classical statistics. Specifically, bounds on the early universe are
derived from constraints on observable adiabatic fluctuations, ζ (⃗k ), in the superhorizon limit,
k ≪ aH. In this regime, their statistics are necessarily classical and time-independent. As a
result, ζ and any derived quantity3 (“operator”) P(⃗k ) will obey the Cauchy-Schwartz inequality

⟨ζ (⃗k )ζ(−k⃗ )⟩′ ⟨P(⃗k )P(−k⃗ )⟩′ ≥ |⟨ζ (⃗k )P(−k⃗ )⟩′|2 , (2.1)

where the prime on the expectation value means that a delta-function has been dropped. Of
course, this inequality easily generalizes to any number of operators Pi.

At first sight, the positivity constraint derived from the Cauchy-Schwartz inequality
might seem trivial. After all, this must hold for any statistical quantity and appears to be
independent of the dynamics of the early universe. However, the fact that cosmic observables
freeze out and become classical is a nontrivial statement about the evolution of the universe,
which is often not manifest in the perturbative expressions for cosmological correlators. For
example, the all-orders proof of the conservation of ζ [52, 53] is highly technical within
the usual in-in framework [54, 55]. By using these all-orders results, we will find simple
constraints on the physics of the early universe that are surprisingly challenging to see directly
(see appendix A for additional details).

In this section, we will review how classical statistics constrain the form of inflationary
correlators. We will re-derive constraints on non-Gaussianity induced by light fields (the SY
inequality) and then generalize the technique to more general types of non-Gaussian statistics.
We will apply these general bounds to specific models in section 3.

3To avoid confusion later, we will use P for statistical quantities defined in terms of the late-time observable ζ,
while reserving O for quantum-mechanical operators related to fields during inflation.
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2.1 Suyama-Yamaguchi and its generalizations

In the presence of multiple massless fields, the adiabatic scalar fluctuations ζ are a local
nonlinear function of these additional fields [56–58]. The associated non-Gaussianity is of
the “local type” [59, 60]:

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)⟩′ =
6
5f

local
NL (P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)) , (2.2)

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)ζ (⃗k4)⟩′ = τ local
NL

(
P (k1)P (k3)P (|⃗k1 + k⃗2|) + perms

)
, (2.3)

where P (k) ≡ ⟨ζ (⃗k )ζ(−k⃗ )⟩′ is the power spectrum, k ≡ |⃗k |, and ⟨. . .⟩ = ⟨. . .⟩′(2π)3δD(
∑
k⃗i).

The trispectrum contains a sum over 12 terms. The amplitudes of the bispectrum and
trispectrum obey the SY inequality, τ local

NL > (6
5f

local
NL )2 [40].

A proof of the SY inequality [49] (see also [8, 43]) follows directly from the Cauchy-
Schwartz inequality (2.1). First, we define the operator

P(⃗k ) ≡ 6π2

p3
max

∫ d3p

(2π)3
ζ(p⃗)ζ (⃗k − p⃗)

P (p) , (2.4)

where the integration runs over p ∈ [0, pmax]. The correlations between ζ and P can then
be written as

⟨ζ (⃗k )P(−k⃗ )⟩′ = 6π2

p3
max

∫ d3p

(2π)3
⟨ζ (⃗k )ζ(p⃗)ζ(−k⃗ − p⃗)⟩′

P (p) , (2.5)

⟨P(⃗k )P(−k⃗ )⟩′ = 36π4

p6
max

∫ d3p d3p′

(2π)6
⟨ζ(p⃗)ζ (⃗k − p⃗)ζ(p⃗ ′)ζ(−k⃗ − p⃗ ′)⟩′

P (p)P (p′) . (2.6)

We see that the integrands are given by the bispectrum and trispectrum of ζ. Assuming local
non-Gaussianity, and taking pmax ≫ k, we can perform the integrals to get

⟨ζ (⃗k )P(−k⃗ )⟩′ → 12
5 f

local
NL P (k) , (2.7)

⟨P(⃗k )P(−k⃗ )⟩′ → 4τ local
NL P (k) + 12π2

p3
max

, (2.8)

where the second term in (2.8) arises from the Gaussian four-point function. The Cauchy-
Schwartz inequality (2.1) then implies

P (k)
(
4τ local

NL P (k) + 12π2

p3
max

)
≥
(12

5 f
local
NL P (k)

)2
. (2.9)

Given that k ≪ pmax, we can neglect the Gaussian term on the left-hand side to find the
well-known result [40]

τ local
NL ≥

(6
5f

local
NL

)2
. (2.10)

This tells us that the power spectrum of P is positive and bounded from below by its
cross-correlation with ζ.
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The SY inequality is easily generalized to non-Gaussian correlators arising from the
exchange of light fields during inflation, with masses in the range 0 < m2 < 9

4H
2 (comple-

mentary series). These models, often called quasi-single-field inflation (QSFI) [41], yield
complicated shapes of non-Gaussianity that simplify in the soft limits. Specifically, the
squeezed limit of the bispectrum and the collapsed limit of the trispectrum are

lim
k1→0

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)⟩′

P (k1)P (k2)
= 12

5 fNL

(
k1
k2

)∆
, (2.11)

lim
|k⃗1+k⃗2|→0

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)ζ (⃗k4)⟩′

P (k1)P (k3)P (|⃗k1 + k⃗2|)
= 4τNL

(
|⃗k1 + k⃗2|2

k1k3

)∆

, (2.12)

where the scaling parameter ∆ is determined by the mass of the light field

∆ ≡ 3
2 −

√
9
4 − m2

H2 . (2.13)

Using the operator P defined in (2.4), the Cauchy-Schwartz inequality (2.1) then implies

P (k)
(

36τNL
(3−∆)2

(
k

pmax

)2∆
P (k) + 12π2

p3
max

)
≥
(

36fNL
5(3−∆)

(
k

pmax

)∆
P (k)

)2

. (2.14)

For ∆ < 3/2, we can again take pmax ≫ k to find

τNL ≥
(6
5fNL

)2
. (2.15)

It is important to note that we cannot extend this bound to ∆ ≥ 3/2, because we then
can no longer neglect the Gaussian term.

For particles with larger masses, m2 > 9
4H

2 (principal series), the scaling dimensions
are complex

∆± = 3
2 ± i

√
m2

H2 − 9
4 ≡ 3

2 ± iν . (2.16)

The two scaling parameters are complex conjugates, as needed to achieve real solutions
for the correlations of ζ. However, the resulting contribution to the trispectrum does not
come with a fixed sign. For example, ref. [14] found the following trispectrum from the
exchange of a massive scalar:

lim
|k⃗1+k⃗2|→0

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)ζ (⃗k4)⟩′

P (k1)3/2P (k3)3/2 = 4τNL

κ(ν)( |⃗k1 + k⃗2|2

k1k3

)iν
+ c.c.

 , (2.17)

where κ(ν) is a complex-valued function of ν. While this trispectrum is not positive, it does
not violate the Cauchy-Schwartz inequality because Re(∆) ≥ 3/2 and the Gaussian term
in (2.14) is dominant. However, this example nevertheless points to a potential issue when
Re(∆) < 3/2 and Im(∆) ̸= 0, that we will explore in detail in section 3.
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2.2 Orthogonal bispectra decomposition

Inflationary models produce bispectra of many possible forms. These are typically defined
in terms of an amplitude and a shape function:

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)⟩ = fNLB(k1, k2, k3) (2π)3δD (⃗k1 + k⃗2 + k⃗3) , (2.18)

where we assumed invariance under rotations and spatial translations, and fixed the overall
normalization as B(k∗, k∗, k∗) ≡ 1 at an arbitrary reference scale k∗. Momentum conservation
implies k3 = |⃗k1 − k⃗2|, so we will use B(k1, k2, k3) and B(⃗k1, k⃗2) interchangeably. Often the
space of possible bispectra is parameterized in terms of orthogonal basis functions Bi(k1, k2, k3)
(e.g. [61]), with orthogonality defined by the following inner product

Bi ·Bj =
∫ d3k1 d3k2 d3k3

(2π)9
Bi(k1, k2, k3)Bj(k1, k2, k3)

P (k1)P (k2)P (k3)
(2π)3δD (⃗k1 + k⃗2 + k⃗3) . (2.19)

This is a physically meaningful definition [60], as the Fisher matrix for the amplitudes f (i)
NL

and f
(j)
NL is determined by the same inner product, Fij ∝ Bi · Bj .

We will make use of the template decomposition by defining a basis of bispectrum-
weighted operators

Pi(⃗k ) ≡
6π2

p3
max

∫ d3p

(2π)3
Bi(p⃗, k⃗ − p⃗)ζ(p⃗)ζ (⃗k − p⃗)
P (p)P (k)P (|⃗k − p⃗ |)

. (2.20)

The correlators of Pi and ζ are then determined by direct substitution. It is important to recall
that the two-point functions of Pi contain both Gaussian and non-Gaussian contributions

⟨Pi(⃗k )Pj(−k⃗ )⟩′=
36π4

p6
max

(∫ d3p

(2π)3
2Bi(p⃗, k⃗−p⃗)Bj(−p⃗,−k⃗+p⃗)

P (k)2P (p)P (|⃗k−p⃗ |)
(2.21)

+
∫ d3pd3p′

(2π)6
Bi(p⃗, k⃗−p⃗)Bj(p⃗ ′,−k⃗−p⃗ ′)⟨ζ(p⃗)ζ (⃗k−p⃗)ζ(p⃗ ′)ζ(−k⃗−p⃗ ′)⟩′c

P (k)2P (p)P (p′)P (|⃗k−p⃗ |)P (|⃗k+p⃗ ′|)

)
,

where ⟨· · · ⟩c denotes the connected correlator.
At this stage, it may seem that there is no particular advantage to use the bispectrum-

weighted operator. The utility is that it allows us to decompose the bispectrum and trispec-
trum into a basis of functions, each of which must be positive, much like the Källén-Lehmann
spectral representation. Specifically, with N templates, we have an (N +1)× (N +1) matrix,

F ≡



〈
ζ (⃗k )ζ(−k⃗ )

〉′ 〈
ζ (⃗k )P1(−k⃗ )

〉′
. . .

〈
ζ (⃗k )PN (−k⃗ )

〉′〈
P1(⃗k )ζ(−k⃗ )

〉′ 〈P1(⃗k )P1(−k⃗ )
〉′
. . .

〈
P1(⃗k )PN (−k⃗ )

〉′
. . . . . . . . . . . .〈

PN (⃗k )ζ(−k⃗ )
〉′ 〈PN (⃗k )P1(−k⃗ )

〉′
. . .

〈
PN (⃗k )PN (−k⃗ )

〉′

 , (2.22)

which is positive definite. This construction is qualitatively similar to bounds on EFTs [62, 63]
and CFTs [64]. We denoted this matrix by F because it plays the role of the Fisher information
matrix for the amplitudes of these operators in the underlying map, at least in the limit
where cosmic variance is the dominant source of noise [65].
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As a concrete illustration, suppose we want to isolate the contributions to the soft limits
of cosmological correlators with a specific scaling behavior (mass) and angular dependence
(spin). Expanding around the squeezed limit of the bispectrum and the collapsed limit of
the trispectrum, we have

lim
k1→0

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)⟩′

P (k1)P (k2)
= fNL

∑
ℓ

cℓ

(
k1
k2

)∆ℓ

Pℓ(k̂1 · k̂2) , (2.23)

lim
kI→0

⟨ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)ζ (⃗k4)⟩′c
P (k1)P (k3)P (kI)

= τNL
∑
ℓ,ℓ′

dℓ,ℓ′
Pℓ(k̂1 · k̂I)Pℓ′(k̂3 · k̂I)

k∆ℓ
1 k

∆′
ℓ′

3 k
−∆ℓ−∆′

ℓ′
I

+ · · · , (2.24)

where Pℓ(cos θ) is the ℓ-th Legendre polynomial4 and kI ≡ |⃗k1 + k⃗2|. For simplicity, we have
assumed that a single ∆ℓ dominates for each ℓ.

It is useful to introduce a basis of bispectrum templates

Bℓ(p⃗, k⃗ − p⃗) =
(
k

p

)∆ℓ

P (p)P (k)Pℓ(k̂ · p̂) , (2.25)

to define the operators Pℓ(⃗k ) using (2.20). Since the integrals will be dominated by p≫ k,
we are only sensitive to the bispectrum template in the soft limit. It is then straightforward
to calculate the elements of the matrix F in this basis

⟨ζ (⃗k )Pℓ(−k⃗ )⟩′ =
fNL

2ℓ+ 1P (k)
3cℓ

3− 2∆ℓ

(
k

pmax

)2∆ℓ

, (2.26)

⟨Pℓ(⃗k )Pℓ′(−k⃗ )⟩′ =
6π2

p3
max

3
3− 2∆ℓ

(
k

pmax

)2∆ℓ δℓ,ℓ′

2ℓ+ 1

+ τNLP (k)
(2ℓ+ 1)(2ℓ′ + 1)

(
k

pmax

)2∆ℓ+2∆′
ℓ′ 9dℓ,ℓ′
(3− 2∆ℓ)(3− 2∆′

ℓ′)
.

(2.27)

For ∆ℓ < 3/2, we can drop the Gaussian term and conclude that dℓ,ℓ′ is a positive-definite
matrix. Isolating specific terms in the Fisher matrix, one also finds that

dℓ,ℓ τNL ≥ c2
ℓf

2
NL ,

dℓ,ℓdℓ′,ℓ′ ≥
(
dℓ,ℓ′

)2
.

(2.28)

In this sense, this decomposition of the trispecturm can be diagonized in terms of a matrix will
all positive eigenvalues. This can be generalized to the case where ∆ is complex by combining
the ∆ and ∆∗ contributions to cℓ and dℓ,ℓ′ . We will see the utility of this construction in
the next section where it is used to isolate contributions to the trispectrum from particles
with different masses and spins.

Naturally, one might hope that the expansion of these correlators using the bispectrum-
weighted operators could be used as the starting point for a nonperturbative bootstrap in
analogy with CFTs [64]. However, this strategy is more limited than for unitary CFTs,

4For the exchange of particles with spin, there will be additional contributions that depend also on k⃗1 · k⃗3

and the associate Legendre polynomials. The generalization to this case is straightforward and is discussed in
section 3.2.
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due to the presence of the Gaussian terms which are manifestly positive. Nevertheless, it
will be interesting to explore the role of all the minors in the Fisher matrix in this and
other applications.

3 Applications to the early universe

The purpose of this section is to demonstrate that the bounds on the positivity of the Fisher
information matrix place nontrivial constraints on the dynamics of the early universe. This
is somewhat surprising, as one might expect such bounds to be trivial, in the sense that they
must be true for any statistical quantity. However, the late-time observables can encode
complicated dynamics of the early universe whose amplitudes and signs are not manifest
within the usual perturbative formalism. Our focus in this section will be on processes in
the early universe that produce trispectra with oscillating signs.

The key results in this section are as follows: scale invariance allows us to classify the
long-wavelength behavior of a field in de Sitter or inflation in terms of operators O with
scaling dimensions ∆. In section 3.1, we will show how these operators contribute to the
soft limits of cosmological correlators, with oscillatory features occurring when ∆ is complex.
Normalizing the two-point functions of such operators as

⟨O∆(⃗k )O∆(−k⃗ )⟩′ ≡ k2∆−3 ,

⟨O∆(⃗k )O∆∗(−k⃗ )⟩′ ≡ ξk∆+∆∗−3 ,
(3.1)

we then find that the bounds of section 2 are only satisfied if

ξ ≥ 1 or Re(∆) ≥ 3
2 . (3.2)

In section 3.2, we will show that the de Sitter isometries imply that ξ = 0 and therefore
Re(∆) ≥ 3/2 (i.e. principal series operators in de Sitter must have positive real anomalous
dimensions). In section 3.3, we will explain how Re(∆) < 3/2 and ξ ≥ 1 can arise in
inflationary models with broken boost symmetry.

These results are derived under the assumption that we can couple the observable density
fluctuation ζ to O∆ and O∆∗ such that it is the lowest dimension operator contributing to
collapsed limit of the trispectrum. We discuss in what sense these bounds can be relaxed
when O∆ only appears in conjunction with a complementary series field. This approach
follows a similar stategy to [66], which bounds use deep inelastic scaling of a specified operator
coupled to a probe as a tool to constrain the signs of anomalous dimensions of operators
appearing the OPE. Here it is the weak coupling to inflaton that is playing the role of
the probe of the principal series fields.

3.1 Soft limits and OPEs

The SY inequality and its generalizations are designed to isolate the squeezed limit of the
bispectrum and the collapsed limit of the trispectrum. Assuming that the fluctuations are
produced from freeze-out at horizon crossing, these limits capture the influence of superhorizon
(long-wavelength) modes on the statistics of the short modes as they freeze out. We will
describe this effect in terms of an operator product expansion (OPE).
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In the limit where ζ is scale-invariant, the dimension of ζ is zero and the OPE takes
the form [67],

ζ(p⃗)ζ (⃗k − p⃗) = P (p)
[
1 +

∑
∆
c∆ p

−∆O∆(⃗k ) + · · ·
]
, (3.3)

where O∆(⃗k ) is a scalar operator of dimension ∆ and the ellipses include operators with spin.
We will be particularly interested in the cases where ∆ and c∆ are complex. In terms of this
expansion,5 the soft limits of the bispectrum and trispectrum are [68]

lim
k→0

⟨ζ (⃗k )ζ(p⃗)ζ(−k⃗ − p⃗)⟩′

P (p) =
∑
∆
c∆ p

−∆⟨ζ (⃗k )O∆(−k⃗ )⟩′ , (3.4)

lim
k→0

⟨ζ(p⃗)ζ (⃗k − p⃗)ζ(p⃗ ′)ζ(−k⃗ − p⃗ ′)⟩′

P (p)P (p′) =
∑

∆,∆′

c∆c
′
∆ p

−∆p′−∆′⟨O∆(⃗k )O∆′(−k⃗ )⟩′ . (3.5)

If this were a unitary CFT in flat space, then ∆ and c∆ would be real, and positivity of (3.5)
would follow from the definition of the OPE. In contrast, when ∆ is complex, this expression
is not manifestly positive. However, this does not necessarily violate unitarity, since there
is no state-operator correspondence in de Sitter [69], despite the similarity to conventional
CFTs in terms of the symmetry algebra. See appendix B for further discussion.

In single-field inflation, we can choose a gauge where the only degrees of freedom are
associated with the metric. As a result, the operators O∆ must then be related to curvatures
of the metric and therefore have ∆ ≥ 2. The resulting constraints on the structure of
cosmological correlators are known as the “single-field consistency condition” and have been
well-explored from numerous perspectives [10, 43, 70–76]. We will instead be interested in
operators with Re(∆) ≤ 3/2, which violate the single-field consistency condition.

3.2 Anomalous dimensions in de Sitter

Our first application is the case of de Sitter-invariant fields that are weakly coupled to
the adiabatic perturbation ζ through an interaction like λζ̇2σ, where σ is a local scalar
operator in the full theory, such that in the superhorizon limit σ ⊃ O∆. Importantly, since
ζ is real, λσ is also real, even though O∆ may be complex. Nevertheless, when λ = 0
and Ḣ/H2 → 0, the correlators of σ, and hence O∆, are subject to the Ward identities
imposed by the dS isometries.

The operators O∆ transform under the dS isometries as primary operators of dimension ∆:

O∆(x⃗) →
(
1 + x⃗ · ∂⃗ +∆

)
O∆(x⃗) , (3.6)

O∆(x⃗) →
[
1− 2∆ x⃗ · b⃗+ x2 b⃗ · ∂⃗ − 2(⃗b · x⃗) x⃗ · ∂⃗

]
O∆(x⃗) , (3.7)

where b⃗ is an arbitrary real vector. The operators O∆ do not correspond to individual funda-
mental fields, but do form a basis of operators in the long-wavelength effective description [39].
Applying the Ward identities to the two-point function one finds

⟨O∆(x⃗)O∆′(y⃗ )⟩ = C∆ δ∆,∆′ |x⃗− y⃗ |−∆ +D∆ δ∆+∆′,3 δD(x⃗− y⃗ ) , (3.8)
5We are assuming a weak coupling between the principal series fields and the inflaton, and therefore, this

(asymptotic) expansion is controlled by perturbation theory in the usual sense.

– 9 –



J
H
E
P
0
4
(
2
0
2
4
)
0
3
4

where the second term is a contact term that is allowed when ∆+∆′ = 3. In the free theory,
principal series fields have complex ∆, with Re(∆) = 3/2, such that ∆ +∆∗ = 3 and we
can have the contact term for ⟨O∆O∆∗⟩. Interactions, however, can lead to Re(∆) ̸= 3/2
and (3.8) becomes

⟨O∆(x⃗)O∆∗(y⃗ )⟩ = 0 , Re(∆) ̸= 3
2 . (3.9)

This result will play a central role in our positivity bounds. It also implies that there are no
unitary states associated to operators with Re(∆) ̸= 3/2 [77, 78]. It is nonetheless easy to find
examples with Re(∆) > 3/2, such as composite operators arising from ϕ2(x⃗) (see appendix B).
This is not a contradiction, as there is no state-operator correspondence in de Sitter.

Massive fields. We will first focus on the case of scalar operators whose dimensions in
a free theory would be ∆± = 3

2 ± iν, with ν > 0. When we introduce interactions, the
fields can acquire both real and imaginary anomalous dimensions [50, 51, 69, 79, 80]. The
imaginary part is equivalent to a shift in the mass (since it simply shifts the value of ν).
We will therefore isolate the real anomalous dimension and define the dimensions of the
operators, O± ≡ O∆± , as

∆± = 3
2 + γ ± iν , (3.10)

where γ ̸= 0 is real. These dimensions obey ∆+ = ∆∗
− to ensure that the correlators of

ζ are real. Suppose that this operator is coupled to ζ, such that the trispectrum in the
collapsed limit takes the form

lim
k→0

⟨ζ(p⃗)ζ (⃗k−p⃗)ζ(p⃗ ′)ζ(−k⃗−p⃗ ′)⟩′c
P (p)P (p′) = k2γ

(pp′)3/2+γ

c2
+

(
k2

pp′

)iν
+c2

−

(
k2

pp′

)−iν
 , (3.11)

where we have defined the coupling to O± in terms of a (quasi)-OPE

lim
k→0

ζ(p⃗)ζ (⃗k − p⃗) ⊃ P (p)
(
c+ p

−∆+O+(⃗k ) + c− p
−∆−O−(⃗k )

)
, (3.12)

with the two-point functions normalized as ⟨O±(⃗k )O±(−k⃗ )⟩′ = k2∆±−3. This normalization
is somewhat unconventional, but will greatly simplify our calculations. It is important that
the field, in the absence of the coupling to ζ, is dS-invariant, such that ⟨O∆+O∆−⟩ = 0.

Using (2.4) to define P, we require that

⟨P(⃗k )P(−k⃗ )⟩′ = 36π4

p6
max

∫ d3p d3p′

(2π)6
⟨ζ(p⃗)ζ (⃗k − p⃗)ζ(p⃗ ′)ζ(−k⃗ − p⃗ ′)⟩′

P (p)P (p′) ≥ 0 . (3.13)

Inserting (3.11) and adding the Gaussian contribution, we get a generalization of (2.14):

P (k)

 2
p3

max
Re

 9c2
+(

3
2 − γ − iν

)2

(
k

pmax

)2γ+i2ν
+ 12π2

p3
max

 ≥ 0 . (3.14)

Crucially, because ν ̸= 0, the first term in this expression is sinusoidal and does not have a
definite sign as a function of k/pmax. Hence, we must have γ ≥ 0, so that this term never

– 10 –



J
H
E
P
0
4
(
2
0
2
4
)
0
3
4

dominates the expression. Specifically, taking γ < 0 and k → 0 violates positivity of the
power spectrum and therefore only γ ≥ 0 is consistent:

⟨P(⃗k )P(−k⃗ )⟩′ γ<0−−−−−−→
pmax≫k

(
k

pmax

)2γ
cos

[
2ν log(k/pmax)

]
≱ 0 =⇒ γ ≥ 0 . (3.15)

In other words, unitarity (positive probabilities) requires that any real anomalous dimensions
for principal series fields are non-negative.

Positivity of anomalous dimensions has been found in examples by direct computation [50,
51] and argued for more generally based on the Källén-Lehmann representation [69, 78–80].
Yet, these results depend on technical details about the nature of quantum physics in de
Sitter space. Here, we see that the same result holds beyond de Sitter.

Adding light fields. One mechanism for generating anomalous dimensions is through
loops of light fields in the complementary series (0 < m2 < 9

4H
2) that interact with the

principal series fields [50, 51]. However, the presence of these additional fields can introduce
new contributions to the trispectrum that can potentially relax the bounds on anomalous
dimensions. Specifically, combining the results of (3.14) and (2.14), we require that

2
p3

max
Re

 9c2
+(

3
2−γ−iν

)2

(
k

pmax

)2γ+i2ν
+ 36τNL

(3−∆)2

(
k

pmax

)2∆
P (k)≥−12π2

p3
max

, (3.16)

where ∆ is the real dimension of the complementary series field. If ∆ ≤ 3/2 + γ, positivity
can be satisfied as long as τNL is sufficiently large. Naturally, one might think that if γ < 0
is always tied to a coupling to complementary series field, this would not be a stringent
constraint. However, we will now show that the implications of positivity are more subtle.

The functional form of the trispectrum contributions in (3.16) for the principal and
complementary series fields is quite different. As a result, one might suspect that we can
isolate the individual contributions using the right bispectrum-weighted operators. With this
in mind, we will consider the following bispectrum template

B(p⃗, k⃗ − p⃗) = P (p)P (k)Re
[(

p

k∗

)γ+iν
]
, (3.17)

for some fixed reference scale k∗. Using this template to define P via (2.20), we then have

⟨P(⃗k )P(−k⃗ )⟩′ =
(

6π2

p3
max

)2 ∫ d3p d3p′

(2π)6 Re
[(

p

k∗

)γ+iν
]
Re
[(

p′

k∗

)γ+iν]

× P (p)P (p′)
P (|⃗k − p⃗ |)P (|⃗k + p⃗ ′|)

[
2G+ F + 4τNL

(
k2

pp′

)∆

P (k)
)]

,

(3.18)

where we assumed ∆ = 3/2 + γ for the complementary series field and defined

F ≡ k2γ

(pp′)3/2+γ

c2
+

(
k2

pp′

)iν
+ c2

−

(
k2

pp′

)−iν
 , (3.19)

G ≡ (2π)3δD(p⃗+ p⃗ ′) . (3.20)
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These integrals are straightforward, but messy to evaluate. However, when ν ≫ 1, the
results simplify and yield

2
p3

max
Re
[
c2

+

(
k

k∗

)2γ+i2ν
+ 9π2

3 + 2γ

(
pmax
k∗

)2γ
]
+O

(
ν−1τNL

)
≥ 0 . (3.21)

In the high-mass limit, ν ≫ 1, we again find that γ < 0 is forbidden6 by the positivity of the
Fisher information matrix, even when we include τNL > 0 to make the trispectrum positive
in the sense of (3.16). Specifically, the bispectrum template suppresses this contribution,
although it does not project it out entirely.7 Nevertheless, we see that adding complementary
series fields does not offer a trivial resolution to the apparent violation of unitarity associated
with γ < 0, although this may be possible for ν = O(1). This example also highlights
the utility of the template decomposition of P to isolate the different kinds of operators
contributing to the trispectrum.

Particles with spin. Every quantum field theory comes with a tower of operators of
different spins. These operators are essential for the description of correlators in terms
of an OPE and many other applications. In AdS/CFT, these operators are particularly
important as their anomalous dimensions and OPE coefficients in the CFT are in one-to-one
correspondence to the dynamics in (and of) the bulk spacetime [81, 82]. Naturally, this
suggests that understanding these operators could have similar implications for understanding
the dynamics of dS. In addition, particles with spin offer a unique signal of interest for
cosmological collider physics [14, 83]. It therefore is important to extend the results of the
previous section to operators with spin s > 0.

In a CFT, the two-point functions of operators with spin s are [84]

⟨[O∆]µ1...µs(x)[O∆]ν1...νs(0)⟩ = Cs,∆

(
I(µ1 (ν1(x) · · · Iµs)

νs)(x)
x2∆ − traces

)
, (3.22)

where Iµν(x) ≡ δµν − 2xµxν/x2 and the scaling dimensions (for a free field) are

∆± = 3
2 ±

√(
s− 1

2

)2
− m2

H2 . (3.23)

When ∆± is real, the two-point functions for physical operators must be positive, which leads
to the unitarity constraint m2 = 0 or m2 ≥ s(s − 1)H2 [85, 86]. For m2 > (s − 1

2)
2H2, we

have ∆± = 3
2 ± iν, which allows a delta-function solution to ⟨O∆O∆∗⟩ as in (3.8).

The exchange of spinning operators leads to the following trispectrum [14]:

lim
k→0

⟨ζ(p⃗)ζ (⃗k − p⃗)ζ(p⃗ ′)ζ(−k⃗ − p⃗ ′)⟩′c
P (p)P (p′) = k2γ

(pp′)3/2+γ

S+c
2
+

(
k2

pp′

)iν
+ S−c

2
−

(
k2

pp′

)−iν
 ,
(3.24)

6For ∆ < 3 + γ, this depends on the order of limits of ν → ∞ and k → 0. Here we are taking ν → ∞ at
finite k.

7It is possible we could isolate the principal series term with a different choice of bispectrum template.

– 12 –



J
H
E
P
0
4
(
2
0
2
4
)
0
3
4

which is a generalization of (3.11) that includes an angular dependence through the functions
S±. The latter can be written as

S±(k̂, p̂, p̂′) ≡
s∑

m=−s
eim(ψ−ψ′)Pms (cos θ)Pms

(
cos θ′

)
a

(s,m)
± , (3.25)

where Pms (x) are associated Legendre polynomials, with cos θ ≡ k̂ · p̂, cos θ′ ≡ k̂ · p̂′, and
ψ − ψ′ being the angle between p⃗ and p⃗ ′ in the plane orthogonal to k⃗. In principle, one can
find all the coefficients a(s,m)

± , as a function of ∆±, by Fourier transforming (3.22). For the
tree-level exchange of particles with spin, these solutions are known [14].

Using orthogonality of the Legendre polynomials, we can isolate any given term in the
sum over helicities. For example, for m = 0, we can use (2.27) and (2.28) to find

Re

 3a(s,0)
+

(2s+ 1)
(

3
2 − γ − iν

) c2
+

(
k

pmax

)2γ+i2ν
+ 3π2 ≥ 0 , (3.26)

which is a generalization of (3.21). This is now identical to the scalar case: when γ < 0, we
can neglect the constant as k → 0. However, the resulting correlator does not satisfy the
bound (2.28) and we thus require for consistency that8

γ ≥ 0 . (3.27)

In this sense, there is no meaningful distinction between the bounds on heavy scalars and
heavy particles with spin.

3.3 Signals from the cosmological collider

During inflation, the time-dependent background breaks the de Sitter isometries and allows
for non-Lorentz-invariant interaction terms [18, 72]. It is then possible to find multi-field
models where a field has ∆± = r± iν, with r ≪ 1 and ν > 1. Such models would have a large
non-Gaussian signal with a unique oscillatory shape. In the previous section, we proved that
this is impossible in exact de Sitter (r ≥ 3/2), but we will now identify precisely how this
can be evaded within inflationary models. Specifically, we will show that such a feature is
possible only if it is accompanied by a larger non-oscillatory contribution to the trispectrum.

A model with γ < 0. While we may naturally guess that the bounds from dS are
weakened in the context of inflation, it is another matter to find specific examples that
saturate the weaker bounds. In particular, given the technical challenges in calculating
anomalous dimensions via loops, we would like to have a simple example where γ < 0
unambiguously.

A straightforward mechanism for achieving γ < 0 is through the kinetic mixing of two
massive scalar fields σ1,2 [46]:

Lσ = −1
2

2∑
i=1

(
∂µσi∂

µσi −m2
iσ

2
i

)
+ ρ(σ̇1σ2 − σ̇2σ1) , (3.28)

8Technically, it only forces the m = 0 component to vanish. However, repeating the analysis for m ̸= 0, we
arrive at the conclusion that γ ≥ 0.
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where the parameter ρ ∝ ϕ̇ breaks Lorentz invariance, with ϕ(t) being the time-dependent
inflaton. The resulting equations of motion are

σ̈1 + 3Hσ̇1 +
(
k2

a2 +m2
1

)
σ1 + ρ(2σ̇2 + 3Hσ2) = 0 , (3.29)

σ̈2 + 3Hσ̇2 +
(
k2

a2 +m2
2

)
σ2 − ρ(2σ̇1 + 3Hσ1) = 0 . (3.30)

Our primary interest is understanding the allowed values of ∆ in the limit k → 0. Writing
σ⃗ = (σ1, σ2) = a(t)−∆v⃗, where v⃗ is a constant vector, the equations of motion for k = 0
and Ḣ → 0 become∆(∆− 3)H2 +m2

1 Hρ(−2∆ + 3)

Hρ(2∆− 3) ∆(∆− 3)H2 +m2
2

 v⃗ = 0 . (3.31)

Solving this equation is equivalent to finding the values of ∆ for which the matrix has a
vanishing determinant. The resulting quartic equation has the following four solutions:

∆± = 3
2 −

√
9
4 + a± and 3−∆± , (3.32)

where

a±≡−1
2
m2

1+m2
2+4ρ2

H2 ±2

√√√√1
2
ρ2

H2

(
m2

1+m2
2+2ρ2

H2 − 9
2

)
+ 1
16

(m1−m2)2

H2 . (3.33)

Our goal then is to find solutions of the form ∆ = r + iν, with r < 3/2 and ν ̸= 0. Clearly,
if a± is real, then we will have either ν = 0 or r = 3/2 for a± ≥ −9/4 and a± < −9/4,
respectively. The only regime where r ̸= 0, but our solutions are complex, is when a± is
itself complex. This is only possible when

1
2
m2

1 +m2
2 + 2ρ2

H2 + 1
16

(m1 −m2)2

ρ2 <
9
4 . (3.34)

There are regimes of parameter space where this inequality is satisfied and the solutions are
stable. For example, taking ρ = H and m2

1 = m2
2 = 0.1H2 gives ∆± = 0.42± i. On the other

hand, notice that taking m2
i ≫ ρ2 ≫ H2 always implies that Re(∆±) = 3/2, as one would

expect from the redshifting of massive particles in an expanding universe [14].

Positivity bounds. The above example clearly demonstrates that γ < 0 is allowed if we
break the symmetries of de Sitter space. Although we can quantify the conditions for this
to occur in the model, we would like to derive a model-independent bound on the amount
and type of symmetry breaking needed in any self-consistent example. To do this, we will
return to our OPE description.

Let us assume an inflationary model that includes operators O± whose scaling dimensions
(in the superhorizon limit) are ∆± = r± iν. Coupling these operators to ζ gives the following
trispectrum (in the collapsed limit)

lim
k→0

⟨ζ(p⃗)ζ (⃗k − p⃗)ζ(p⃗ ′)ζ(−k⃗ − p⃗ ′)⟩′

P (p)P (p′) = k2r−3

(pp′)r

c+c−ξ

(
p

p′

)iν
+ c2

+

(
k2

pp′

)iν
+ c.c.

 ,
(3.35)
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where we defined

⟨O+(⃗k )O−(−k⃗ )⟩′ =
ξ

k3k
∆++∆− = ξk2r−3 . (3.36)

Unlike in de Sitter, ξ ̸= 0 is now allowed because the inflaton defines a preferred slicing
and therefore breaks to dS isometries.

We will again define the bispectrum-weighted operator P using B(p⃗, k⃗ − p⃗) from (3.17)
and replacing r = 3/2 + γ. We are only interested in the regime γ < 0 and we can therefore
drop the Gaussian contribution and calculate

⟨P(⃗k )P(−k⃗ )⟩′=
(

6π2

p3
max

)2 ∫ d3pd3p′

(2π)6 Re
[(

p

k∗

)γ+iν
]
Re
[(

p′

k∗

)γ+iν]
×

× P (p)P (p′)
P (|⃗k−p⃗ |)P (|−k⃗−p⃗ ′|)

k2γ

(pp′)3/2+γ

c+c− ξ

(
p

p′

)iν
+c2

+

(
k2

pp′

)iν
+c.c.

 .
(3.37)

Taking ν ≫ 1 and dropping terms that are suppressed by powers of ν, we find

2 |c+|2ξ
p3

max

(
k

k∗

)2γ
+ 2Re

[
c2

+
p3

max

(
k

k∗

)2γ+i2ν]
≥ 0 =⇒ ξ ≥ 1 . (3.38)

We can think of this bound as the minimal level of conformal-symmetry breaking that is
necessary to arrive at r < 3/2 (i.e. γ < 0).

An example. To satisfy the positivity constraint in (3.38), the amplitudes of the various
contributions to the trispectrum must be related. The model in (3.28) gives us a concrete
demonstration of how such correlations can arise. Concretely, we recall that the scaling
solutions to (3.31) must match onto the full solutions to the mode function, fi(⃗k, a(t)),
defined by the σ̂i operators

σ̂i(⃗k, a(t)) = â
(i)
k⃗
fi(⃗k, a(t)) + h.c. , (3.39)

where â(i)
k⃗

are annihilation operators. In the limit k/(aH) → 0, the mode functions must
reduce to a combination of these solutions,

fi(⃗k ) =
∑
∆
c∆(v⃗∆)i

k∆

a∆k3/2 . (3.40)

In this way, fi(⃗k ) contains all the contributions from the scaling operators of the long-
wavelength solutions, O∆(⃗k). However, ζ cannot couple individually to O∆; it can only couple
locally to σi(x⃗). Since σ⃗(x⃗) is a real field, it contributes to the trispectrum via an exchange
diagram that is proportional to its power spectrum,

⟨σi(⃗k )σi(−k⃗ )⟩′ = |fi(k, a)|2 > 0 . (3.41)

We have also verified that our positivity constraints are obeyed for the bispectra and trispectra
calculated in the explicit examples of γ < 0 found in [46]. In both cases, the correlations
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needed to satisfy (3.38) occur because the operators O±(⃗k) are defined in terms of a single
pair of creation and annihilation operators â†

k⃗
and â

−k⃗
.

In appendix B, we show that the absence of manifest positivity for dS correlators when
γ ̸= 0 requires a failure of a reality condition for the operator in the exchange diagram. Even
for γ > 0, the implication is that loop corrections must spoil these conditions. There is no
such issue here, as γ ̸= 0 arises as a solution to the quadratic field equations and reality (and
therefore positivity) is manifest via canonical quantization.

4 Positivity in galaxy surveys

In this section, we will show how the positivity bounds on the primordial statistics manifest
themselves in the late-time distribution of galaxies. We will see that some of our bounds
can be derived directly from the correlations of galaxies and matter. Yet, consistency
between the positivity of the primordial and late-time statistics also constrain the physics
of galaxy formation.

4.1 Review of scale-dependent bias

Nontrivial squeezed and collapsed limits of the primordial statistics introduces long-range
correlations in the distribution of galaxies and other collapsed objects [87] (see also [88–93]).
The resulting enhancement of the galaxy power spectrum at long wavelengths, termed scale-
dependent bias, is one of the key observational tools being used to search for non-Gaussian
signals from inflation [94–96]. Following [90], we will briefly review how the primordial
correlations are imprinted in this scale-dependent bias.

At linear order, the relationship between the primordial density fluctuations ζ(x⃗) and
the (fractional) matter overdensity δm(x⃗) is given by

δm(z, k⃗ ) =
k2T (k)D(z)

ΩmH2 ζ (⃗k ) ≡ T (k, z)ζ (⃗k ) , (4.1)

where z is the redshift, T (k) is the linear transfer function and D(z) is the growth factor.
For our purposes, it is sufficient to assume that the number of collapsed objects is

determined by the local gravitational evolution, and hence the local matter density fluctuations.
In other words, the number density of galaxies, ng(x⃗), is some general function of local
composite operators made from δm(x⃗) and its derivatives [97]. Defining the galaxy overdensity
as δg(x⃗) ≡ (ng(x⃗) − n̄g)/n̄g and expanding it in powers of δm, we have the following bias
expansion9

δg(x⃗) = b1 δm(x⃗) + b2 δ
2
m(x⃗) + · · ·+ ϵ(x⃗) , (4.2)

where the parameters bn are the bias coefficients and ϵ(x⃗) is a “stochastic bias” that is
uncorrelated with δm(x⃗) (see e.g. [98] for review). The stochastic bias is required because
ng(x⃗) is a discrete variable and δm(x⃗) is continuous.

9The bias expansion is likely an asymptotic expansion. We will only need the lowest orders in this expansion
which have been shown to be highly accurate descriptions at low-k from comparisons to simulations.
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Higher-order operators in the bias expansion encode non-Gaussian statistics in the
distribution of galaxies. For example, the operator

[δ2
m](z, k⃗ ) =

∫ d3p

(2π)3 T (p, z)T (|⃗k − p⃗ |, z)ζ(p⃗)ζ (⃗k − p⃗) (4.3)

leads to a cross correlation of galaxies and matter Pgm(k) ≡ ⟨δgδm⟩′ that depends on
the primordial bispectrum, while the galaxy power spectrum Pg(k) ≡ ⟨δgδg⟩′ contains the
primordial trispectrum. As a result, we get

Pgm(k) ⊃ bϕfNL (kR∗)∆ T (k)P (k) = bϕfNL
(kR∗)∆

T (k) Pm(k) , (4.4)

Pg(k) ⊃ b2
ϕ

(5
6

)2
τNL (kR∗)2∆ P (k) =

(5
6

)2
τNLb

2
ϕ

(kR∗)2∆

T (k)2 Pm(k) + Pϵ(k) , (4.5)

where Pϵ(k) = ⟨ϵ(⃗k )ϵ(−k⃗ )⟩′. The parameter bϕ is associated with the regulator R−1
∗ ∼ pmax

in the integrals over p or p′. In practice, the precise value bϕ depends on ∆, but also on mass,
redshift, and the (unknown) physics of galaxy formation. These details are important for
precise experimental constraints on fNL and τNL, but are unimportant for the positivity of
the Fisher information. See e.g. [90], for more details.

For models of inflation with Re(∆) < 3/2 and Im(∆) ̸= 0, like those discussed in
section 3.3, the cross correlation is purely oscillatory [46]

Pgm(k) ⊃ bϕfNL (kR∗)3/2+γ cos
(
ν log kR∗ + φ

)
T (k)P (k) , (4.6)

where we used (3.35) and defined a phase φ which depends arg(c+) and on the details of
the biasing model. Meanwhile, the galaxy power spectrum receives both oscillatory and
non-oscillatory contributions

Pg(k) ⊃ b2
ϕ

(5
6

)2
τNL (kR∗)3+2γ

[
ξ + cos

(
2ν log kR∗ + φ′

)]
P (k) , (4.7)

where the phase φ′ is not necessarily the same as φ. The bound ξ ≥ 1 ensures positivity of
the power spectrum as k → 0. This is the same as our bound from the Fisher information
in (3.38). Here, we have allowed for the possibility of fNL ̸= 0 through an additional mixing
of ζ and σ via an interaction like λ′ζ̇σ (in addition to the existing λζ̇2σ interaction). See [46],
for a detailed example.

4.2 Positivity and the galaxy power spectrum

The statistics of galaxies is a hallmark of the kind classical statistical quantity on which
our positivity bounds were derived. It is also precisely the observable that will drive future
constraints on non-Gaussianity. We would therefore like to understand in what sense our
previous bounds could be derived directly from the statistics of galaxies, rather than through
our fictitious operators Pi(⃗k ).

In the late universe, δm and δg are classical stochastic variables and therefore obey the
Cauchy-Schwartz inequality

Pm(k)Pg(k) ≥ |Pmg(k)|2 . (4.8)
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Applying this to the conventional scale-dependent bias discussed in the previous subsec-
tion, we get

b2
ϕ

[(5
6

)2
τNL − f2

NL

]
(kR∗)2∆

T (k)2 Pm(k) + Pϵ(k) ≥ 0 . (4.9)

To isolate the non-Gaussian term, we take the limit k → 0. In this limit, the stochastic
term is simply a constant that is well approximated by shot noise, Pϵ(k) ≈ n̄−1

g . In contrast,
Pm(k → 0) ∝ k and therefore the matter power spectrum itself is suppressed relative to
the shot noise. However, the non-Gaussian term is enhanced as k → 0 since T (k) → k2

in that limit. Using
1

T (k)2Pm(k) = P (k) ≡ As
k3 , (4.10)

we find

lim
k→0

(
b2
ϕ

[(5
6

)2
τNL − f2

NL

]
(kR∗)2∆ As

k3 + 1
n̄g

)
≥ 0 . (4.11)

As a result, just like in the primordial statistics, we find that positivity of the galaxy correlators
implies the SY inequality τNL ≥ (6

5fNL)2, if we assume ∆ < 3/2.
Interestingly, for ∆ = 3/2, we can still derive a bound

b2
ϕR

3
∗

[(5
6

)2
τNL − f2

NL

]
As ≥ − 1

n̄g
. (4.12)

At face value, this does not place an interesting constraint on the correlators. However, it
must also be true that the correlators of galaxies cannot contain more information than the
primordial statistics [65]. For ∆ = 3/2, the bound from the initial conditions is[(5

6

)2
τNL − f2

NL

]
As ≥ −3π2

4 . (4.13)

Requiring the galaxy-based bound not to exceed this bound from the initial conditions
then implies that

n̄g ≤
4

3π2
1

b2
ϕR

3
∗
. (4.14)

This upper-limit on n̄g makes sense intuitively. We do not expect every region of the
characteristic scale of a halo, R3

∗, to contain a galaxy. This physics expectation roughly
translates to ngR−3

∗ < 1. Nonetheless, the bound (4.14) is a strict requirement that includes
the parameters bϕ and R∗, which set the amplitude of the signal for any τNL and fNL.

Finally, we can repeat this analysis for the oscillatory bispectra and trispectra. The
two-point statistics, Pmg(k) and Pg(k), are given by (4.6) and (4.7), respectively. Assuming
γ < 0, so that we can neglect the stochastic term, the Cauchy-Schwartz inequality implies

b2
ϕ

(5
6

)2
τNL

(
kR∗

)3+2γ[
ξ + cos

(
2ν log kR∗ + φ′

)]
Pm(k)P (k)

≥
[
bϕfNL (kR∗)3/2+γ cos

(
ν log kR∗ + φ

)]2
Pm(k)P (k) .

(4.15)
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A sufficient condition for satisfying this inequality is

τNL
(
ξ ± 1

)
≥
(6
5fNL

)2
. (4.16)

As a purely theoretical statement, this implies that, as k → 0, there will be a non-oscillatory
contribution to Pgg(k) whose amplitude is larger than the oscillatory signal. In practice,
observational constraints on non-Gaussianity in the near-term arise from the regime at
finite k where

Pg(k) ≈
[
b2

1 + 2b1bϕ
fNL
T (k) (kR∗)3/2+γ cos

(
ν log kR∗ + φ

)]
Pm(k) . (4.17)

As a result, it is entirely possible that the oscillatory contribution to the scale-dependent
bias will be the dominant observational signal in the galaxy power spectrum at small but
finite k. This simply reflects the fact that the signal-to-noise of the bispectrum is larger
than that of the trispectrum when τNL = O(f2

NL).

5 Conclusions

The nature of quantum field theory and quantum gravity in accelerating cosmologies have long
been a source of confusion. Without a clear definition of nonperturbative observables, progress
has relied on perturbative calculations. Unfortunately, these calculations are themselves
technically challenging and have led to much confusion [26]. Straightforward constraints
on dynamics in these spacetimes is an important tool in the path towards understanding
the quantum nature of our universe. Intuition suggests that on small scales, flat-space
consistency conditions will still apply. Yet, deriving strict bounds in the cosmological setting
has proven challenging.

Fortunately, long-wavelength fluctuations in these accelerating spacetimes are subject to
familiar symmetries. Both de Sitter space and inflationary background possess an SO(d, 1)
symmetry that is either linearly or non-linearly realized [73, 74]. Organizing observables
according to these symmetries has driven process in both the cosmological bootstrap [24]
and EFT approaches to cosmic observables [26].

Yet, despite these symmetries, the behavior of fields in de Sitter space has long been
known to evade the usual constraints of a unitary CFT. This has limited the utility of
the dS/CFT correspondence [70, 99] as a tool for understanding de Sitter space. Cosmic
observables on a fixed time-slice are Euclidean and thus not required to obey the traditional
unitarity constraints. Naturally, one is left to ask how the rules of unitarity manifest
themselves [15, 100, 101], if at all [102, 103], in these backgrounds. Furthermore, constraints
on the dynamics of scalar fields that are known to hold in flat space [23] and in AdS [104]
have remained hidden in cosmic observables. We expect many of these bounds to hold in
cosmology as well, but this has not been demonstrated.

In this paper, we explored some very simple constraints on fields in both de Sitter and
inflationary backgrounds using classical statistics. While these bounds will necessarily be
satisfied by any realistic measurement, they imply nontrivial constraints on the dynamics of
fields in the early universe. Concretely, there can be no negative (real) anomalous dimensions
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for heavy fields in quasi-de Sitter spacetimes. Furthermore, the bounds specify restrictive
conditions on the correlation functions of fields with negative anomalous dimensions in
inflationary backgrounds with a preferred time-slicing.

Our results are similar in some ways to the bounds on the stress-tensor correlators from
conformal collider physics [105–107]. While it may seem self-evident that a physical detector
will only measure positive energies, the implication for the properties of CFTs are not. One
might hope that a more nuanced analysis of the positivity of the Fisher information might
similarly yield more insights into the physics of the early universe.
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A Relation to in-in correlators

The freeze-out of superhorizon fluctuations ensures that cosmological correlators obey classical
statistics and the host of inequalities which this implies. In the main text, we investigated
the implications of these classical constraints on cosmological correlators. Yet, given how
simple and general these results are, one might imagine that they are easy to derive directly
within the in-in formalism. In this appendix, we will explore to what degree these results
are already encoded in perturbation theory.

In-in formalism. The general definition of an in-in correlator is [54, 55]

〈
Q(t)

〉
=
〈
T̄ exp

[
i

∫ t

−∞+
dt′Hint

(
t′
)]
Qint(t)T exp

[
−i
∫ t

−∞−
dt′Hint

(
t′
)]〉

, (A.1)

where (T̄ ) T denotes (anti-)time ordering and −∞± ≡ −∞(1 ± iϵ). The operator Q(t) is
defined in term of fields at a single time t, but is not necessarily local in space. The iϵ
prescription of the time integral defines the interacting vacuum, just like in flat space.

For illustrative purposes, we will consider the composite Q ≡ ζ2(x⃗). Its Fourier transform
is

[ζ2](⃗k ) =
∫ d3p

(2π)3 ζ(p⃗)ζ (⃗k − p⃗) , (A.2)

and the two-point function is given by〈
[ζ2](⃗k )[ζ2](−k⃗ )

〉′ = 〈
U−1(t,−∞+) [ζ2

int](⃗k )[ζ2
int](−k⃗ )U(t,−∞−)

〉′
, (A.3)

where we have introduced

U(tf , ti) ≡ T exp
[
−i
∫ tf

ti

dt′Hint
(
t′
)]
. (A.4)
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It is known to all orders in perturbation theory that ζ freezes out and becomes classical. As
a result, the correlator (A.3) is necessarily positive. We would like to understand to what
degree this is obvious by standard manipulations.

Positivity of in-in correlators. Positivity of this correlator is most apparent if we set
ϵ = 0, so that −∞± → −∞. The operator U(t) ≡ U(t,−∞) is then unitary and we can
write (A.3) as〈

[ζ2](⃗k )[ζ2](−k⃗ )
〉′ = 〈

U−1(t) [ζ2
int](⃗k )U(t)U−1(t) [ζ2

int](−k⃗ )U(t)
〉′
. (A.5)

Using momentum conservation and the reality condition ζ∗(⃗k ) = ζ(−k⃗ ), we get〈
[ζ2](⃗k )[ζ2](−k⃗ )

〉′ = 〈 ∣∣∣Q(⃗k )
∣∣∣2 〉′ , (A.6)

where Q(⃗k ) ≡ U−1(t)[ζ2
int](⃗k )U(t) is a real operator. Furthermore, since Qint is defined

entirely in terms of free fields, this correlator is completely determined by Wick contractions
and is positive. Unfortunately, most of the time integrals that define U(t,−∞) do not
converge and therefore although the expression is manifestly positive, it is not useful without
regulating the early-time (or high-energy) behavior.

The bad behavior at early times is the result of not being in the interacting vacuum.
This is resolved by restoring ϵ ̸= 0, as is standard in QFT. Naively, we would simply repeat
the above argument, however we see that it fails because U is not manifestly unitary,

U(t,−∞(1− iϵ))U−1(t,−∞(1 + iϵ)) ̸= 1 . (A.7)

For local non-Gaussianity, the contribution to the correlator is dominated by late times
where ϵ = 0 can be used reliably. More generally, physics at horizon crossing does matter,
as does the iϵ precision and thus our positivity constraints are not trivial consequences of
the usual in-in expressions. In fact, existing calculations of the anomalous dimensions for O
suggests that the results are related to optical theorem in the flat space limit [50, 51]. In
this sense, it is likely that some care regarding the iϵ prescription is needed to reproduce
the bounds derived in this paper.

Complete set of states. An alternative strategy is to assume that we can insert of a
complete set of states,

1 =
∑
n,p⃗

|n, p⃗⟩⟨n, p⃗ | , (A.8)

where n is some internal quantum number and p⃗ is the momentum. We then have10

〈
[ζ2](⃗k )[ζ2](⃗k ′)

〉
=
∑
n,p⃗

〈
[ζ2](⃗k ) |n, p⃗⟩⟨n, p⃗ | [ζ2](⃗k ′)

〉
= (2π)3δD (⃗k + k⃗

′)
∑
n

〈
[ζ2](⃗k )|n, k⃗ ⟩⟨n, k⃗ |[ζ2](−k⃗ )

〉
= (2π)3δD (⃗k + k⃗

′)
∑
n

∣∣⟨[ζ2](⃗k )|n, k⃗ ⟩
∣∣2 . (A.9)

10A similar argument was used in [43] to prove that τNL > (6fNL/5)2 for general masses, assuming that the
sum is dominated by single-particle states.
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This expression can be used to reproduces the positivity bounds we derived in the main
text. However, given that a nonperturbative definition of the complete basis of states has
not been demonstrated in context of inflation, it leaves possible loopholes that do not apply
to the bounds in this paper.

B Positivity of two-point functions

The fact that the two-point functions of O±, or their contributions to the trispectrum, are
not positive when Re(∆) ̸= 3/2 is a bit surprising. After all, these operators arise as the
long-wavelength description of real scalar fields and the power spectra of real operators are
positive. Specifically, if O(x⃗) is a real operator, then the reality condition in Fourier space
implies that O†(⃗k ) = O(−k⃗ ) and therefore

⟨O(⃗k )O(−k⃗ )⟩′ = ⟨|O(⃗k )|2⟩ , (B.1)

which is the average of a manifestly positive quantity. In this appendix, we will explore the
consequences of Re(∆) ̸= 3/2 for the operators O± in consistent theories. We confirm this
behavior in a simple example in dS where such operators must arise.

Two-point negativity. When the scaling dimension ∆ is real, it is reasonable to demand
that O∆(x⃗) is a real operator and its two-point statistics are positive. However, when ∆
is complex, O∆ is also complex and therefore

⟨O∆(⃗k )O∆(−k⃗ )⟩′ ̸= ⟨|O∆(⃗k )|2⟩ . (B.2)

Importantly, this means that the power spectrum of O∆ does not have a fixed sign.
When ∆ is complex, there always exists a second operator with dimension ∆∗. It is

therefore natural to assume that these operators obey O†
∆(⃗k ) = O∆∗(−k⃗ ), in which case

it should be true that

⟨O∆(⃗k )O∆∗(−k⃗ )⟩′ = ⟨|O∆(⃗k )|2⟩ ≥ 0 . (B.3)

This is true for free principal series fields in dS. However, for complex ∆, with Re(∆) ̸= 3/2,
conformal invariance demands that

⟨|O∆(⃗k )|2⟩ = 0 . (B.4)

On its own, this might appear to imply the existence of null states, but it is crucial that
there is no state operator correspondence, and therefore

⟨|O∆(⃗k )|2⟩ ̸= ⟨∆|∆⟩ . (B.5)

Yet, it does imply the surprising outcome that〈 (
O∆(⃗k ) +O∆∗ (⃗k )

) (
O∆(−k⃗ ) +O∆∗(−k⃗ )

) 〉′ = 〈
O∆(⃗k )O∆(−k⃗ )

〉′ + 〈O∆∗ (⃗k )O∆∗(−k⃗ )
〉′

∝ Re
(
k

aH

)2∆
, (B.6)
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which is not positive definite for complex ∆. Hence, if ∆ is complex and Re(∆) ̸= 3/2, then
O∆(x⃗) +O∆∗(x⃗) is not real, or equivalently, O†

∆∗(x⃗) ̸= O∆(x⃗). Negative two-point statistics
on their own is not an issue, but it does require the failure of these kinds of reality conditions.

Of course, in the main text, we showed that Re(∆) < 3/2 is inconsistent with the
required positivity of cosmology correlators and thus are forbidden. In contrast, Re(∆) > 3/2
also have negative two-point statistics, but these operators necessarily arise in physical
theories. As a result, our bounds are not equivalent to the condition that these two-point
statistics must be positive.

An example. For illustration, consider a principal series field producing operators φ±
with dimensions ∆± = 3/2± iν. We now look at the two-point statistics of the composite
operators [φ2

±] with dimensions 2∆±. In the free theory, the power spectra of these operators
are determined by Wick contractions and yield

⟨[φ2
±](⃗k )[φ2

±](−k⃗ )⟩′ =
∫ d3p

(2π)3 p
±2iν |⃗k − p⃗ |±2iν

= 1
2π2

2−4∓2iνπΓ
[
−3

2 ∓ i2ν
]
Γ
[

3
2 ± iν

]
4Γ[2πν]Γ[∓iν]2 k3±4iν . (B.7)

We see that the result is both nonzero and not positive. The principal series field itself, on
the other hand, has a positive two-point function by virtue of the contact term

⟨φ+(⃗k )φ−(−k⃗ )⟩′ = C , (B.8)

which is allowed because Re(∆) = 3/2 and thus this contact term is consistent with conformal
invariance. However, there is no such term for the composite operator,

⟨[φ2
+](⃗k )[φ2

−](−k⃗ )⟩′ =
∫ d3p

(2π)3 C
2 = 0 , (B.9)

where we used dimensional regularization to regulate the power-law divergence. These
operators are physical and yet have negative two-point statistics. We conclude that our
bounds are not trivially related to positivity of the two-point statistics in de Sitter space.
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any medium, provided the original author(s) and source are credited.
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