
J
H
E
P
0
4
(
2
0
2
3
)
1
2
5

Published for SISSA by Springer

Received: March 1, 2023
Revised: April 4, 2023

Accepted: April 11, 2023
Published: April 26, 2023

Dispersion relations for hadronic light-by-light
scattering in triangle kinematics

Jan Lüdtke,a Massimiliano Procuraa and Peter Stofferb,c
aFaculty of Physics, University of Vienna,
Boltzmanngasse 5, 1090 Vienna, Austria
bPhysik-Institut, Universität Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland
cPaul Scherrer Institut,
5232 Villigen PSI, Switzerland
E-mail: jan.luedtke@univie.ac.at, massimiliano.procura@univie.ac.at,
stoffer@physik.uzh.ch

Abstract: We present a new strategy for the dispersive evaluation of the hadronic light-by-
light contribution to the anomalous magnetic moment of the muon aµ. The new approach
directly applies in the kinematic limit relevant for aµ: one of the photons is treated as an
external electromagnetic field with vanishing momentum, so that the kinematics corresponds
to a triangle. We derive expressions for the relevant single-particle intermediate states, as
well as the tensor decompositions of the two-pion sub-processes that appear in addition to
those needed in the established dispersive approach. The existing approach is based on a
set of dispersion relations for the hadronic light-by-light tensor in four-point kinematics. At
present it is not known how to consistently include in this framework resonant intermediate
states of spin 2 or larger, due to the appearance of kinematic singularities that can be traced
back to the redundancy of the tensor decomposition. We show that our new approach
circumvents this problem and enables dispersion relations in the limit of triangle kinematics
that are manifestly free from kinematic singularities, paving the way towards a data-driven
evaluation of all relevant exclusive hadronic intermediate states.

Keywords: Chiral Lagrangian, Nonperturbative Effects, Effective Field Theories, Preci-
sion QED

ArXiv ePrint: 2302.12264

Open Access, c© The Authors.
Article funded by SCOAP3.
Corrected publication 2023

https://doi.org/10.1007/JHEP04(2023)125

mailto:jan.luedtke@univie.ac.at
mailto:massimiliano.procura@univie.ac.at
mailto:stoffer@physik.uzh.ch
https://arxiv.org/abs/2302.12264
https://doi.org/10.1007/JHEP04(2023)125


J
H
E
P
0
4
(
2
0
2
3
)
1
2
5

Contents

1 Introduction 1

2 The HLbL tensor 1
2.1 BTT decomposition of the HLbL tensor 2
2.2 Master formula for the HLbL contribution to aµ 4

3 Dispersion relations in triangle kinematics 5
3.1 Summary of the existing approach 5
3.2 Dispersing in the photon virtualities 6

4 Unitarity relations 9

5 Single-particle intermediate states 12
5.1 Pion pole 14
5.2 Narrow resonances in the s-channel 16

5.2.1 Scalar resonances 16
5.2.2 Axial-vector resonances 17
5.2.3 Tensor resonances 20

5.3 Vector resonances in the q2
3-channel 22

6 Tensor decomposition for two-pion sub-processes 23
6.1 The process ππ → ππγ 24

6.1.1 Kinematics and matrix element 24
6.1.2 BTT decomposition 24
6.1.3 Soft-photon limit 26

6.2 The process γ∗γ∗γ → 2π 27
6.2.1 Kinematics and matrix element 27
6.2.2 BTT decomposition 27
6.2.3 Soft-photon limit 28

7 Conclusions and outlook 31

Acknowledgements 31

A Scalar toy examples 31
A.1 Triangle diagram 31
A.2 Box diagram 33

B Tensor-meson contributions 35

C Tensor decomposition for γ∗γ∗γ → 2π 36
C.1 Off-shell tensor structures 36
C.2 Tensor structures for the soft-photon limit 38

– i –



J
H
E
P
0
4
(
2
0
2
3
)
1
2
5

1 Introduction

Achieving a stringent comparison between an accurate Standard Model evaluation of the
muon g− 2 [1–21] with robust theory uncertainties and its increasingly precise experimental
measurements [22, 23] is a key goal in particle physics. Hadronic contributions play a
central role in this context since they are responsible for the bulk of the theory uncertainty.
According to the current consensus [1], a substantial part of this uncertainty is due to
the hadronic light-by-light contribution (HLbL) [13–20, 24–38], which is the subject of
the present study. In the framework of a data-driven determination of HLbL based on
dispersion relations, achieving control over the contributions from intermediate states
with masses between 1 and 2GeV is crucial to reduce the theory error to the size of the
projected precision of the final experimental results at Fermilab [1, 39]. A model-independent
evaluation of these effects is not available yet, also due to the fact that it is not known
how to unambiguously include contributions from resonant intermediate states of spin
two or larger within the standard dispersive representation of HLbL in general four-point
kinematics [15, 40, 41]. In this paper, we introduce a novel formalism that overcomes this
issue. Our framework employs dispersion relations formulated directly in the limit of a
soft external photon (triangle kinematics), which is free of the aforementioned ambiguities.
Compared to the established approach, contributions from different intermediate states
get reshuffled, unitarity relations become more involved, and the dispersive reconstructions
of additional hadronic sub-processes, most importantly γ∗γ∗γ → ππ and ππ → ππγ, are
required. Here we explicitly derive analytic expressions for the single-particle intermediate
state contributions to HLbL in triangle kinematics, including tensor resonances, as well as
Lorentz decompositions for the two-pion sub-processes γ∗γ∗γ → ππ and ππ → ππγ leading
to scalar functions free of kinematic singularities. This opens a path towards the first
complete data-driven evaluation of all exclusive hadronic contributions to HLbL that are
relevant at an accuracy adequate for the comparison with the forthcoming measurements of
the muon g − 2.

The paper is organized as follows. After a brief review of the Lorentz decomposition
of the HLbL tensor and the master formula to extract the HLbL contribution to the
muon anomalous magnetic moment (Section 2), we discuss the dispersion relations in
triangle kinematics and highlight similarities, differences, and advantages with respect
to the established dispersive approach to HLbL in section 3. Unitarity relations, also in
comparison with four-point kinematics, are the subject of section 4. Our results for the
single-particle intermediate states are collected in section 5. Section 6 is devoted to the
tensor decompositions for the two-pion sub-processes required to solve two-pion unitarity
and to the discussion of the relevant soft-photon limits. Conclusions are drawn in section 7.

2 The HLbL tensor

In this section, we briefly review the Lorentz decomposition of the HLbL tensor and the
master formula for the HLbL contribution to aµ, in the notation of refs. [15, 41].
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2.1 BTT decomposition of the HLbL tensor

The HLbL tensor is defined as the hadronic Green’s function of four electromagnetic currents
in pure QCD:

Πµνλσ(q1, q2, q3) = −i
∫
d4x d4y d4z e−i(q1·x+q2·y+q3·z)〈0|T{jµem(x)jνem(y)jλem(z)jσem(0)}|0〉 ,

(2.1)

where the electromagnetic current includes the three lightest quarks:

jµem := q̄Qγµq , q = (u, d, s)T , Q = diag
(2

3 ,−
1
3 ,−

1
3

)
. (2.2)

The hadronic contribution to the helicity amplitudes for (off-shell) photon-photon scattering
is given by the contraction of the HLbL tensor with polarization vectors:

Hλ1λ2,λ3λ4 = ελ1
µ (q1)ελ2

ν (q2)ελ3
λ

∗(−q3)ελ4
σ
∗(q4)Πµνλσ(q1, q2, q3) , (2.3)

where q4 = q1 + q2 + q3. We use rescaled helicity amplitudes that remain finite in the
limit q2

i → 0:

Hλ1λ2,λ3λ4 =: κ1
λ1κ

2
λ2κ

3
λ3κ

4
λ4H̄λ1λ2,λ3λ4 , κi± = 1, κi0 = q2

i

ξi
, (2.4)

where ξi refers to the normalization of the longitudinal polarization vectors, see ref. [15].
The usual Mandelstam variables

s := (q1 + q2)2 , t := (q1 + q3)2 , u := (q2 + q3)2 (2.5)

fulfill the linear relation

s+ t+ u =
4∑
i=1

q2
i =: Σ . (2.6)

Gauge invariance requires the HLbL tensor to satisfy the Ward-Takahashi identities

{qµ1 , q
ν
2 , q

λ
3 , q

σ
4 }Πµνλσ(q1, q2, q3) = 0 . (2.7)

Based on a recipe by Bardeen, Tung [42], and Tarrach [43] (BTT), in ref. [41] a
decomposition of the HLbL tensor was derived:

Πµνλσ =
54∑
i=1

Tµνλσi Πi , (2.8)

where the tensor structures are given by

Tµνλσ1 = εµναβελσγδq1αq2βq3γq4δ ,

Tµνλσ4 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
qλ4 q

σ
3 − q3 · q4g

λσ
)
,

Tµνλσ7 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
q1 · q4

(
qλ1 q

σ
3 − q1 · q3g

λσ)+ qλ4 q
σ
1 q1 · q3 − qλ1 qσ1 q3 · q4

)
,
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Tµνλσ19 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
q2 · q4

(
qλ1 q

σ
3 − q1 · q3g

λσ)+ qλ4 q
σ
2 q1 · q3 − qλ1 qσ2 q3 · q4

)
,

Tµνλσ31 =
(
qµ2 q

ν
1 − q1 · q2g

µν
)(
qλ2 q1 · q3 − qλ1 q2 · q3

)(
qσ2 q1 · q4 − qσ1 q2 · q4

)
,

Tµνλσ37 =
(
qµ3 q1 · q4 − qµ4 q1 · q3

)(
qν3q

λ
4 q

σ
2 − qν4qλ2 qσ3 + gλσ

(
qν4q2 · q3 − qν3q2 · q4

)
+ gνσ

(
qλ2 q3 · q4 − qλ4 q2 · q3

)
+ gλν

(
qσ3 q2 · q4 − qσ2 q3 · q4

))
,

Tµνλσ49 = qσ3

(
q1 · q3q2 · q4q

µ
4 g

λν − q2 · q3q1 · q4q
ν
4g

λµ + qµ4 q
ν
4
(
qλ1 q2 · q3 − qλ2 q1 · q3

)
+ q1 · q4q

µ
3 q

ν
4q
λ
2 − q2 · q4q

µ
4 q

ν
3q
λ
1 + q1 · q4q2 · q4

(
qν3g

λµ − qµ3 g
λν))

− qλ4
(
q1 · q4q2 · q3q

µ
3 g

νσ − q2 · q4q1 · q3q
ν
3g

µσ + qµ3 q
ν
3
(
qσ1 q2 · q4 − qσ2 q1 · q4

)
+ q1 · q3q

µ
4 q

ν
3q
σ
2 − q2 · q3q

µ
3 q

ν
4q
σ
1 + q1 · q3q2 · q3

(
qν4g

µσ − qµ4 g
νσ))

+ q3 · q4
((
qλ1 q

µ
4 − q1 · q4g

λµ)(qν3qσ2 − q2 · q3g
νσ)

−
(
qλ2 q

ν
4 − q2 · q4g

λν)(qµ3 qσ1 − q1 · q3g
µσ)) (2.9)

and all remaining ones are crossed versions of the above structures [41]. The BTT de-
composition has the property that on the one hand all the Lorentz structures fulfill the
Ward-Takahashi identities, i.e.,

{qµ1 , q
ν
2 , q

λ
3 , q

σ
4 }T iµνλσ(q1, q2, q3) = 0 , ∀i ∈ {1, . . . , 54} , (2.10)

on the other hand the scalar coefficient functions Πi are free of kinematic singularities
and zeros.

Since the number of helicity amplitudes for fully off-shell photon-photon scattering is
41, the set of 54 structures {Tµνλσi } does not form a basis, but exhibits a 13-fold redundancy,
as discussed in detail in ref. [41]. While 11 linear relations hold in general, two additional
ones are present in four space-time dimensions [44, 45]. They can be derived most easily
using the relation

0 = qα1 q
β
2 q

γ
3

(
gµνελαβγ + gµλεαβγν + gµαεβγνλ + gµβεγνλα + gµγενλαβ

)
qα
′

1 q
β′

2 q
γ′

3 εσα′β′γ′ ,

(2.11)
which holds because the bracket vanishes in D = 4 space-time dimensions due to the
Schouten identity. After expanding the right-hand side of eq. (2.11) and expressing the
products of Levi-Civita tensors in terms of metric tensors, the projection onto the BTT set
gives a linear relation between the Lorentz structures, while a second independent relation
is obtained from a crossed version of eq. (2.11).

Away from D = 4 space-time dimensions, a subset of 43 Lorentz structures forms
a basis:

Πµνλσ =
43∑
i=1
Bµνλσi Π̃i , (2.12)

where the basis-coefficient functions Π̃i are no longer free of kinematic singularities. However,
the explicit structure of their kinematic singularities follows from the projection of the BTT
decomposition onto this basis in D dimensions.
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2.2 Master formula for the HLbL contribution to aµ
Based on projection techniques in Dirac space, one can extract the HLbL contribution to
aµ = (g − 2)µ/2 from the following expression [46]:

aHLbL
µ = − e6

48mµ

∫
d4q1
(2π)4

d4q2
(2π)4

1
q2

1q
2
2(q1 + q2)2

1
(p+ q1)2 −m2

µ

1
(p− q2)2 −m2

µ

× Tr
(
(/p+mµ)[γρ, γσ](/p+mµ)γµ(/p+ /q1 +mµ)γλ(/p− /q2 +mµ)γν

)
×

54∑
i=1

(
∂

∂qρ4
T iµνλσ(q1, q2, q4 − q1 − q2)

) ∣∣∣∣
q4=0

Πi(q1, q2,−q1 − q2) . (2.13)

There are only 19 independent linear combinations of the structures Tµνλσi that contribute
to (g − 2)µ, hence we can make a basis change in the 54 structures

Πµνλσ =
54∑
i=1

Tµνλσi Πi =
54∑
i=1

T̂µνλσi Π̂i , (2.14)

in such a way that in the limit q4 → 0 the derivative of 35 structures T̂µνλσi vanishes. For
the non-vanishing derivatives with indices {gi} = {1, . . . , 11, 13, 14, 16, 17, 39, 50, 51, 54},
we define

T̂µνλσ;ρ
gi

(q1, q2) :=
(

∂

∂q4ρ
T̂µνλσgi

(q1, q2, q4 − q1 − q2)
) ∣∣∣∣

q4=0
. (2.15)

The 13-fold redundancy in the set of HLbL tensor structures {Tµνλσi } implies ambiguities
in the scalar functions Πi in general kinematics and results in kinematic singularities in
the basis elements Π̃i. In contrast, in the limit q4 → 0 the 19 scalar functions Π̂i that
contribute to (g − 2)µ are free from ambiguities and kinematic singularities. This follows
from the BTT construction and the fact that the 19× 19 matrix

Aij(q2
1, q

2
2, q

2
3) := T̂µνλσ;ρ

gi
(q1, q2)T̂ gj

µνλσ;ρ(q1, q2) (2.16)

is invertible and allows one to obtain a set of 19 projectors Pµνλσ;ρ
i that fulfill

Π̂i(q1, q2,−q1 − q2) = Pµνλσ;ρ
i

(
∂

∂qρ4
Πµνλσ

) ∣∣∣∣
q4=0

. (2.17)

Due to gauge invariance, the projectors are not unique. A possible choice has been given in
ref. [47].

The set of 19 scalar functions that contribute to (g − 2)µ is defined by the six
representatives

Π̂1 = Π1 + q1 · q2Π47 ,

Π̂4 = Π4 − q1 · q3 (Π19 −Π42)− q2 · q3 (Π20 −Π43) + q1 · q3q2 · q3Π31 ,

Π̂7 = Π7 −Π19 + q2 · q3Π31 ,

Π̂17 = Π17 + Π42 + Π43 −Π47 ,

Π̂39 = Π39 + Π40 + Π46 ,

Π̂54 = Π42 −Π43 + Π54 , (2.18)

– 4 –
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together with the crossed versions

Π̂2 = C23
[
Π̂1
]
, Π̂3 = C13

[
Π̂1
]
, Π̂5 = C23

[
Π̂4
]
, Π̂6 = C13

[
Π̂4
]
,

Π̂8 = C12
[
Π̂7
]
, Π̂9 = C12

[
C13
[
Π̂7
]]
, Π̂10 = C23

[
Π̂7
]
, Π̂13 = C13

[
Π̂7
]
, Π̂14 = C12

[
C23
[
Π̂7
]]
,

Π̂11 = C13
[
Π̂17

]
, Π̂16 = C23

[
Π̂17

]
, Π̂50 =−C23

[
Π̂54

]
, Π̂51 = C13

[
Π̂54

]
, (2.19)

where the crossing operators Cij exchange the photons i and j [15]. Crossing symmetry in
addition implies the intrinsic symmetries [15]

Π̂1 = C12
[
Π̂1
]
, Π̂4 = C12

[
Π̂4
]
, Π̂17 = C12

[
Π̂17

]
,

Π̂39 = C12
[
Π̂39

]
= C13

[
Π̂39

]
= . . . , Π̂54 = −C12

[
Π̂54

]
. (2.20)

After applying a Wick rotation, using Gegenbauer polynomial techniques [48, 49] to
perform five of the eight integrals, and employing the crossing symmetries under q1 ↔ −q2,
one arrives at the master formula for the HLbL contribution to (g − 2)µ containing a sum
of only 12 terms [15, 41]:

aHLbL
µ = 2α3

3π2

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτ
√

1− τ2Q3
1Q

3
2

12∑
i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ) ,

(2.21)

where Q1 := |Q1| and Q2 := |Q2| denote the norm of the Euclidean four-vectors. The 12
scalar functions Π̄i are a subset of the functions Π̂i and need to be evaluated for the reduced
(g − 2)µ kinematics

s = q2
3 = −Q2

3 = −Q2
1−2Q1Q2τ −Q2

2 , t = q2
2 = −Q2

2 , u = q2
1 = −Q2

1 , q2
4 = 0 .
(2.22)

3 Dispersion relations in triangle kinematics

3.1 Summary of the existing approach

The framework worked out in refs. [15, 41] consists of dispersion relations for the HLbL
tensor in general four-point kinematics, which can be derived from the Mandelstam double-
spectral representation. The photon virtualities are treated as fixed external variables,
while dispersion relations are written in terms of the Mandelstam variables. In particular,
in ref. [15] a basis of scalar functions Π̌i was derived that is suitable for dispersion relations
in the singly-on-shell limit q2

4 = 0. For t = q2
2, the scalar functions are free from kinematic

singularities in the Mandelstam variables s and u, enabling fixed-t dispersion relations. The
representation is also manifestly free from contributions of unphysical helicity amplitudes.
After writing the dispersion relation, the limit q4 → 0 is taken to arrive at the kinematics
relevant for (g − 2)µ.

One of the major difficulties in this approach is the fact that the BTT tensor decompo-
sition does not directly provide a tensor basis free from kinematic singularities, but rather
a redundant set of structures. Although the singly-on-shell basis functions Π̌i derived in

– 5 –
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ref. [15] are free from singularities in the Mandelstam variables, the redundancies in the
tensor basis result in spurious kinematic singularities in the photon virtualities. The residues
of these apparent singularities vanish due to a set of sum rules: these follow directly from the
fact that the tensor decomposition involves structures of different mass dimension and they
guarantee that the result of the dispersion relation for the entire HLbL tensor is independent
of the choice of tensor basis. At the same time, they imply that the apparent kinematic
singularities drop out for contributions that satisfy the sum rules. This is guaranteed to
happen only for the entire HLbL contribution, i.e., the sum over all intermediate states in
the unitarity relation. In contrast, individual intermediate states do not necessarily satisfy
the sum rules. These sum-rule violations make the contributions of individual states depend
on the chosen basis [1, 50, 51] and suffer from kinematic singularities [51].

The basis dependence affects all single-particle intermediate states in the unitarity
relation apart from the pseudoscalar contributions, as these do not contribute to the sum
rules. The sum rules are exactly fulfilled by the pion box [15]. Scalar intermediate states or
two-particle S-wave contributions are in general basis dependent, but they are not affected
by spurious singularities, see ref. [50]. In the basis of ref. [15], axial-vector contributions
are affected by singularities, but there exists an alternative basis, where this problem is
absent, as discussed in ref. [51]. By making use just of the minimal set of sum rules that
are necessary to render the entire HLbL contribution basis independent, it is impossible
to fully remove the spurious kinematic singularities from the contribution of tensor-meson
resonances or two-particle D- and higher partial waves. Whether this can be achieved by
making use of additional sum rules remains to be studied.

As long as no representation is available that is manifestly free of any kinematic
singularities, the spurious singularities need to be subtracted as described in ref. [15]. The
same subtraction scheme needs to be applied in all contributions that are affected by the
singularities. In the sum over all intermediate states, the subtraction again vanishes due
to the sum rules. The subtraction scheme introduces an ambiguity in the contribution of
individual intermediate states that is in addition to the general basis dependence. Due to
these ambiguities, one cannot expect to obtain a meaningful result for these contributions
unless the sum of included states fulfills the sum rules. This is one of the reasons why to
date no evaluation of the tensor-resonance contributions within the dispersive framework is
available [1].

3.2 Dispersing in the photon virtualities

Instead of fixing the photon virtualities, writing dispersion relations in the Mandelstam
variables, and finally taking the limit q4 → 0, here we propose to take a different approach: we
first take the limit q4 → 0 and then write dispersion relations for the functions Π̂i(q2

1, q
2
2, q

2
3)

entering the master formula, exploiting the analytic structure in the variables q2
i . This

alternative set of dispersion relations has been briefly discussed in ref. [19]. As explained
there, these new dispersion relations have the disadvantage that the original cuts in the
Mandelstam variables and in the photon virtualities are no longer separated.

However, this approach has an important advantage over the dispersion relations for
the four-point function: all the redundancies of the BTT set disappear in the (g− 2)µ limit.

– 6 –
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The functions Π̂i(q2
1, q

2
2, q

2
3) in the (g − 2)µ kinematic limit are free from any kinematic

singularities. Working directly with them removes the problem of spurious divergences.
Hence, this alternative is a promising approach for the model-independent evaluation of the
contributions of D- and higher partial waves, or narrow tensor-meson resonances such as
the f2(1270) [52].

A potential pitfall is the fact that for the new dispersion relations in triangle kinematics,
we need to reconstruct additional hadronic sub-processes, in particular γ∗γ∗γ → 2π as
well as ππ → ππγ. These sub-processes require their own tensor decomposition, which
could potentially re-introduce the problem of redundancies and kinematic singularities. In
the following, we derive the BTT tensor decompositions for these sub-processes and we
show that in the limit of (g − 2)µ kinematics, all but a single redundancy in γ∗γ∗γ → 2π
disappear, which under the assumption of a uniform asymptotic behavior of the tensor
amplitude can be traded for one kinematic constraint. This enables dispersion relations for
scalar functions free of kinematic singularities.

In the case of dispersion relations in triangle kinematics, the objects under consideration
are the functions Π̂i in eq. (2.14), which in (g − 2)µ kinematics depend on the three photon
virtualities, Π̂i(q2

1, q
2
2, q

2
3). For the contribution to (g − 2)µ, only a restricted domain of the

three virtualities belongs to the physical region, as determined by the master formula (2.21),
but analytic continuation allows us to treat the three virtualities as independent variables
and to continue the function beyond the physical region. We start by writing a dispersion
relation for Π̂i(q2

1, q
2
2, q

2
3) in q2

3, while keeping the other two virtualities q2
1,2 fixed:

Π̂i(q2
1, q

2
2, q

2
3) = 1

π

∫ ∞
s0

ds′
1

s′ − q2
3 − iε

Im Π̂i(q2
1, q

2
2, s
′) , (3.1)

where the imaginary part is obtained from

Im Π̂i(q2
1, q

2
2, s
′) = Π̂i(q2

1, q
2
2, s
′ + iε)− Π̂i(q2

1, q
2
2, s
′ − iε)

2i (3.2)

and the lowest threshold is s0 = M2
π0 . We now demonstrate how to obtain this imaginary

part by taking the appropriate limits of imaginary parts in four-point kinematics.
In ref. [15], a basis of 27 scalar functions Π̌i for HLbL scattering was derived, which

applies to four-point kinematics at fixed t = q2
2 and in the limit q2

4 = 0. The 19 functions
Π̂i relevant for (g − 2)µ can be obtained from a subset of the Π̌i functions,

Π̌i = Π̂gi + (s− q2
3)∆̄i + (s− q2

3)2 ¯̄∆i , (3.3)

i.e., by denoting the arguments as Π̌i(s; q2
1, q

2
2, q

2
3), the limit of (g−2)µ kinematics is given by

Π̂gi(q2
1, q

2
2, q

2
3) = Π̌i(q2

3; q2
1, q

2
2, q

2
3) . (3.4)

– 7 –
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The imaginary part (3.2) can be written as

Im Π̂gi(q2
1, q

2
2, s
′) = lim

q2
3→s′

Π̌i(s′ + iε; q2
1, q

2
2, q

2
3 + iε)− Π̌i(s′ − iε; q2

1, q
2
2, q

2
3 − iε)

2i

= lim
q2

3→s′

[Π̌i(s′ + iε; q2
1, q

2
2, q

2
3 + iε)− Π̌i(s′ − iε; q2

1, q
2
2, q

2
3 + iε)

2i

+ Π̌i(s′ − iε; q2
1, q

2
2, q

2
3 + iε)− Π̌i(s′ − iε; q2

1, q
2
2, q

2
3 − iε)

2i

]
= lim

q2
3→s′

[Π̌i(s′ + iε; q2
1, q

2
2, q

2
3 + iε)− Π̌i(s′ − iε; q2

1, q
2
2, q

2
3 + iε)

2i

+
(

Π̌i(s′ + iε; q2
1, q

2
2, q

2
3 + iε)− Π̌i(s′ + iε; q2

1, q
2
2, q

2
3 − iε)

2i

)∗ ]
=: lim

q2
3→s′

[
ImsΠ̌i(s′; q2

1, q
2
2, q

2
3 + iε) +

(
Im3Π̌i(s′ + iε; q2

1, q
2
2, q

2
3)
)∗]

. (3.5)

Here, we denote by Ims the s-channel discontinuity in four-point kinematics, analytically
continued in the third photon virtuality to q2

3 + iε, while Im3 denotes the discontinuity
in the variable q2

3, again in four-point kinematics and now analytically continued in the
Mandelstam variable to s′ + iε. Due to the analytic continuation, these discontinuities Ims

and Im3 in general are complex quantities.
Before taking the limit q2

3 → s′, the expression contains kinematic singularities of the
form 1/(q2

1 +q2
3) and 1/λ(q2

1, q
2
2, q

2
3), which are present in the quantities ∆̄i and ¯̄∆i [15], with

λ denoting the Källén triangle function. In the original s-channel dispersion relations [15],
the residue of these kinematic singularities vanishes due to the presence of sum rules for the
scalar functions Π̌i. Since individual partial waves or single narrow resonances violate the
sum rules, the residues of the kinematic singularities had to be subtracted “by hand.” The
basis Π̌i was then chosen in a way that leads to a simple form of kinematic singularities
and at the same time optimizes the convergence of the partial-wave-expanded pion box.
The alternative basis of Π̌i functions discussed in ref. [51] contains singularities that are
products of 1/q2

i and 1/(q2
1 + q2

3).
We note that the limit of each of the two discontinuities (3.5) may be singular: if the

soft photon is emitted from an external leg of the sub-process, the limit q4 → 0 puts an
internal propagator on shell. With the additional derivative in eq. (2.13), this potentially
leads to a double-pole in 1/(s′ − q2

3). However, analogous poles exist in both discontinuities
ImsΠ̌i and Im3Π̌i and they are guaranteed to cancel in the sum of the two discontinuities
because the HLbL tensor is free of such singularities. The two leading terms in the expansion
around q4 = 0 are related to the non-radiative process by Low’s theorem [53] and the same
is true for the poles in higher-orders in the expansion using dispersion relations as will be
demonstrated in a future publication [54]. Due to this absence of poles in the sum of the
two discontinuities, the contributions from ∆̄i and ¯̄∆i vanish in the limit q2

3 → s′, so that
ImΠ̂gi does not contain any kinematic singularities. For this reason, the contribution of a
single partial wave or a narrow resonance to (g − 2)µ can be defined without relying on
a sum rule that is violated by this particular contribution alone. The cancellation of soft
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= +

Figure 1. Unitarity cuts contributing to the discontinuity of HLbL with respect to q2
3 in triangle

kinematics. The static external electromagnetic field is denoted by a crossed circle.

= + + + . . .

= + + . . .

Figure 2. The contribution of different intermediate states to the s-channel and q2
3-channel discon-

tinuities.

singularities is illustrated for a simplified situation with single poles in scalar toy examples
in appendix A. The cancellation in the realistic case of HLbL and its sub-processes will be
presented in ref. [54].

Writing a dispersion relation in q2
3 and fixing q2

1,2 in eq. (3.1) is an arbitrary choice:
crossing symmetry requires that dispersion relations in any of the other virtualities lead to
the same result. In the final dispersive representation this symmetrization needs to be taken
into account, in a way that avoids any double counting. In the present article, we will show
how this is achieved for single-particle intermediate states: we add the crossed versions of
the contributions that are generated from the first term in eq. (3.5), corresponding to t- and
u-channel discontinuities. These contributions have discontinuities in q2

3, which accordingly
must be excluded from the dispersion relation in q2

3, in order to avoid a double counting. The
explicit symmetrization for the complete vector-meson and two-pion contribution is more
involved and is left for future work. The resulting representation will fulfill by construction
all constraints from crossing symmetry. Furthermore, it will satisfy single-variable dispersion
relations in any of the three virtualities and include the leading intermediate states in the
unitarity relations of all channels.

4 Unitarity relations

According to eq. (3.5), the relevant imaginary part that is needed in the new dispersion
relations can be obtained from the sum of the discontinuities in the s-channel and the q2

3-
channel in four-point kinematics, illustrated in figure 1. Unitarity of the S-matrix provides
these discontinuities in the form of two different relations. The first one is the s-channel
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unitarity relation that has already been employed in the established dispersive approach:

Ims

(
e4(2π)4δ(4)(q1+q2+q3−q4)Hλ1λ2,λ3λ4

)
=
∑
n

1
2Sn

(
n∏
i=1

∫
d̃pi

)
〈n;{pi}|γ∗(−q3,λ3)γ(q4,λ4)〉∗〈n;{pi}|γ∗(q1,λ1)γ∗(q2,λ2)〉 , (4.1)

where Sn denotes the symmetry factor for the intermediate state |n〉. The Lorentz-invariant
measure is abbreviated by d̃p := d3p

(2π)32p0 . Similarly, the discontinuity in the virtuality q2
3

can be obtained from the unitarity relation, where the fourth photon is crossed to the
initial state:

Im3
(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2λ4,λ3

)
=
∑
n

1
2Sn

(
n∏
i=1

∫
d̃pi

)
〈n; {pi}|γ∗(−q3, λ3)〉∗〈n; {pi}|γ∗(q1, λ1)γ∗(q2, λ2)γ(−q4, λ4)〉 .

(4.2)

The general strategy of the dispersive evaluation of the HLbL contribution to (g − 2)µ
amounts to summing up individual contributions to the unitarity relations (4.1) and (4.2).
Of course, in practice it is not possible to resum the whole tower of intermediate states and
one needs to truncate the sum. The remainder is assumed to be small at low energies, where
the lightest intermediate states dominate, but it becomes more important at higher energies
and in the end it needs to be taken into account by a proper matching to asymptotic
constraints [1, 13, 18, 19, 47, 51, 55–60].

The contributions of the lightest intermediate states to the unitarity relations in the
s- and q2

3-channels are illustrated in terms of unitarity diagrams in figure 2. In order
to evaluate the discontinuities, input for the sub-processes is required. In the case of
the s-channel discontinuities, the input is identical to the one in the familiar dispersion
relations, although evaluated for a different kinematic configuration: the evaluation of the
one-particle intermediate state requires the pion (and η, η′) transition form factor as input.
For two-pion intermediate states, the helicity partial waves for γ∗γ∗ → 2π are the required
input. The formalism for the full inclusion of three-particle intermediate states in the
s-channel is currently not available. This contribution contains axial-vector resonances,
which are expected to be numerically relevant [1, 13, 26, 56, 57, 61]. In a first step, these
effects can be described in a narrow-width approximation (NWA), replacing the three-pion
intermediate state by a narrow resonance. The required input in this approximation are the
axial-vector transition form factors, γ∗γ∗ → A. The effect of two-pion intermediate states
gets enhanced close to scalar or tensor resonances. In this case, the two-pion unitarization
can be compared to a NWA, which is used to include scalar and tensor resonances in
different isospin channels [50]. Again, the respective transition form factors are required
as input.

The input for the discontinuities in the q2
3-channel are given by the pion vector form

factor (VFF) and γ∗γ∗γ → 2π in the case of two-pion intermediate states. In the case
of three-pion intermediate states, the sub-processes are γ∗ → 3π and γ∗γ∗γ → 3π, with
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= + + +

Figure 3. Unitarity cuts for γ∗γ∗γ → 2π for a soft external on-shell photon. The first cut on
the r.h.s. denotes the soft divergence, the second diagram denotes the left-hand cut. The last two
diagrams are the two s-channel cuts. Crossed diagrams are not shown.

= + + + . . .

= + + + . . .

= + . . .

Figure 4. The contribution of different intermediate states to the discontinuities in γ∗γ∗γ → 2π.
The last diagram denotes ππ rescattering: the process γ∗γ∗γ → 2π itself reappears as a sub-process.

potentially non-negligible effects due to the narrow vector resonances ω and φ.1 Therefore,
compared to the established dispersion relations in four-point kinematics, the dispersion
relations in triangle kinematics require the processes γ∗γ∗γ → 2π and γ∗γ∗γ → V as new
inputs, where V denotes a vector resonance.

The new inputs required for the dispersion relations in triangle kinematics should be
reconstructed again dispersively. For γ∗γ∗γ → V , much can be taken over directly from
HLbL: in particular, this sub-process will be linked to the iso-scalar vector resonances in the
pion transition form factor (TFF) reshuffled from the pion pole in the established dispersion
relations [16]. We discuss the tensor decomposition and kinematics in section 5.3.

The second new input is the sub-process γ∗γ∗γ → 2π needed for the two-pion interme-
diate state in the q2

3-channel cut. The different unitarity cuts for γ∗γ∗γ → 2π are shown
in figure 3. The soft limit is understood after taking the derivative with respect to q4 in
eq. (2.13). Only terms that are singular or finite in this limit are required. The singular
terms can be expressed in terms of γ∗γ∗ → 2π via dispersion relations [54]. The finite

1In the case of the pion pole in the dispersion relations in four-point kinematics, the three-pion cut is
included in the dispersive treatment of the pion transition form factor [16, 28, 62].
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remainder is not directly determined by γ∗γ∗ → 2π and needs its own dispersion relation.
The relevant intermediate states of the different unitarity cuts are illustrated in figure 4: if
the photon virtualities are kept fixed, the original five-particle process reduces to four-point
kinematics in the (g− 2)µ limit. The complexity again increases with the multiplicity of the
intermediate states. The formalism for a fully dispersive reconstruction of the three-pion
intermediate state is not available, but resonant contributions to the three-particle channel
can be estimated in a NWA. Therefore, the main unknown sub-process is ππ → γππ for a
soft photon.

Any dispersion relation allows one to split up the entire HLbL contribution into a sum
over intermediate states in the unitarity relation. However, the notion of the contribution
of an individual intermediate state, obtained by inserting one term of the unitarity sum into
the dispersion integral, depends on the dispersion relation under consideration. This is true
for basis changes in the existing approach, as explained in section 3.1, but also if one uses
dispersion relations in a different kinematic variable. Only the result for the sum over all
intermediate states is unique. In particular, this means that, e.g., the pion pole as defined in
the established dispersive approach [16, 41] does not coincide with the pion pole in triangle
kinematics, as discussed in ref. [19]. When comparing the two approaches, one finds that a
reshuffling happens between the contributions of different intermediate states. Since each
dispersive approach requires some truncation of the unitarity sum, the correspondence is
not exact, but the remainder needs to be covered by the uncertainties in the matching to
an inclusive asymptotic contribution. We compare the two dispersion relations in table 1:
the splitting by intermediate states in the established approach corresponds to columns,
while the rows correspond to the contributions in the new dispersion relations in triangle
kinematics. Therefore, if asymptotic constraints are included for the sub-processes, the
established dispersion relations perform a resummation of columns, while the new approach
would correspond to a resummation of rows. Crosses in the table denote the absence of a
contribution. This sketch illustrates that the most promising strategy will be to combine
the two approaches, which however requires some care in avoiding any double-counting. A
detailed analysis of the reshuffling and the matching to asymptotic constraints is left for
future work and will be illustrated for the simpler case of the VVA three-point function in
a forthcoming publication [63].

In section 5, we consider single-particle intermediate states in triangle kinematics, while
two-pion intermediate states will be discussed in section 6.

5 Single-particle intermediate states

As shown in figure 2 and table 1, the s-channel cut receives single-particle contributions from
pseudoscalar poles, as well as from resonances in the NWA. The q2

3-channel discontinuity
receives single-particle contributions only in the NWA due to vector-meson resonances.

In section 5.1, we work out the explicit expression for the pion-pole contribution in trian-
gle kinematics and compare the result to the pion pole in the established dispersion relations
in four-point kinematics. Similar results follow immediately for the other pseudoscalars η
and η′. In section 5.2, we derive analogous expressions for resonance contributions in the
NWA. In section 5.3, we discuss vector-meson resonances in the q2

3-channel.
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DR in four-point kinematics

triangle-DR π0, η, η′ 2π S A T . . .

π0, η, η′ × × × × ×

× × × × ×

2π

V

S × × × × ×

A × × × × ×

T × × × × ×

. . . . . .

Table 1. Comparison of different unitarity contributions in the established dispersive approach
and the proposed dispersion relations in triangle kinematics. The soft external photon is denoted
by a crossed circle. The longer dashed line is the primary cut in triangle-kinematics dispersion
relations. Cuts through gray blobs denote even higher intermediate states that need to be covered
via the implementation of asymptotic constraints. Some scalar and tensor resonances correspond
to a NWA of two-pion contributions. Depending on the dispersion relation for the sub-processes,
the diagrams in the first row of the V intermediate state only contribute to normalizations. The
light-gray diagrams are already taken into account by implementing crossing symmetry (which is not
shown explicitly), hence these topologies should be excluded in order to avoid a double counting.
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5.1 Pion pole

The contribution of a single neutral pion in the s-channel unitarity relation is given by [41]

Imπ
s

(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2,λ3λ4

)
= 1

2

∫
d̃p 〈π0(p)|γ∗(−q3, λ3)γ(q4, λ4)〉∗〈π0(p)|γ∗(q1, λ1)γ∗(q2, λ2)〉 . (5.1)

The matrix element of the sub-process is reduced according to

〈π0(p)|γ∗(q1, λ1)γ∗(q2, λ2)〉 = −e2(2π)4δ(4)(p− q1 − q2)ελ1
µ (q1)ελ2

ν (q2)

×
∫
d4x e−iq1·x〈π0(p)|T{jµem(x)jνem(0)}|0〉 , (5.2)

relating it to the pion transition form factor (TFF)

i

∫
d4x e−iq·x〈π0(p)|T{jµem(x)jνem(0)}|0〉 = εµναβqαpβFπ0γ∗γ∗(q2, (q − p)2) , (5.3)

with ε0123 = +1. It should be stressed that the TFF Fπ0γ∗γ∗ is a scalar function of two
independent scalar variables (the photon virtualities)—it does not explicitly depend on
the four-vectors. E.g., momentum conservation is not part of the TFF but appears in the
form of the delta function in eq. (5.2). Inserting the pion TFF into eq. (5.1) allows one to
perform the phase-space integral, leading to

Imπ
sHλ1λ2,λ3λ4 = −π ελ1

µ (q1)ελ2
ν (q2)ελ3

λ

∗(−q3)ελ4
σ
∗(q4)

× δ(s−M2
π0)εµναβελσγδq1αq2βq3γq4δFπ0γ∗γ∗(q2

1, q
2
2)Fπ0γ∗γ∗(q2

3, 0) . (5.4)

This expression can be evaluated for fixed-t kinematics. In ref. [15], the basis change from
s-channel helicity amplitudes to the fixed-t singly-on-shell tensor coefficient functions is
provided, leading to the single-pion discontinuity of the functions Π̌i:

Imπ
s Π̌1(s′; q2

1, q
2
2, q

2
3) = −πδ(s′ −M2

π0)Fπ0γ∗γ∗(q2
1, q

2
2)Fπ0γ∗γ∗(q2

3, 0) ,
Imπ

s Π̌i(s′; q2
1, q

2
2, q

2
3) = 0 , i 6= 1 . (5.5)

Since there is no one-pion intermediate state in the q2
3-channel, the one-pion discontinuity

of the Π̂i functions follows by taking the limit (3.5):

Imπ Π̂1(q2
1, q

2
2, s
′) = −πδ(s′ −M2

π0)Fπ0γ∗γ∗(q2
1, q

2
2)Fπ0γ∗γ∗(M2

π0 , 0) ,
Imπ Π̂i(q2

1, q
2
2, s
′) = 0 , i ∈ {2, . . . , 11, 13, 14, 16, 17, 39, 50, 51, 54} . (5.6)

Inserting this imaginary part into the dispersion relation (3.1) leads to a pion-pole contri-
bution just in Π̂1 and no pole contribution in any other function. However, due to crossing
symmetry it is clear that Π̂2,3 contain pion poles in the q2

2- and q2
1-channels, respectively.

Those contributions could be reconstructed in the dispersion relation in q2
3 from higher

intermediate states due to cuts through the pion TFF, starting with a two-pion cut, which
correspond to the light-gray diagrams of the first column of table 1:

= + + . (5.7)
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However, in practice it is simpler to directly include these contributions by imposing crossing
symmetry, i.e., by adding the terms that appear in the crossed unitarity relations. These
topologies then need to be omitted from the reconstruction of the cuts in q2

3, in order to
avoid a double counting. The same applies to the remaining topologies in the dispersion
relation in q2

3, which need to be symmetrized accordingly. This prescription leads to the
final result for the pion-pole contribution in triangle kinematics:

Π̂π
1 (q2

1, q
2
2, q

2
3) =

Fπ0γ∗γ∗(q2
1, q

2
2)Fπ0γ∗γ∗(M2

π0 , 0)
q2

3 −M2
π0

,

Π̂π
i (q2

1, q
2
2, q

2
3) = 0 , i ∈ {4, 7, 17, 39, 54} , (5.8)

written in terms of the six representatives (2.18), while the remaining 13 functions follow
from the crossing relations (2.19). Explicitly, they are given by

Π̂π
2 (q2

1, q
2
2, q

2
3) =

Fπ0γ∗γ∗(q2
1, q

2
3)Fπ0γ∗γ∗(M2

π0 , 0)
q2

2 −M2
π0

,

Π̂π
3 (q2

1, q
2
2, q

2
3) =

Fπ0γ∗γ∗(q2
2, q

2
3)Fπ0γ∗γ∗(M2

π0 , 0)
q2

1 −M2
π0

, (5.9)

and there are no further pion-pole contributions to the remaining functions. The pion-pole
contribution fulfills the intrinsic crossing symmetries (2.20) due to the symmetry of the
pion TFF, Fπ0γ∗γ∗(q2

1, q
2
2) = Fπ0γ∗γ∗(q2

2, q
2
1).

The result for the pion pole (5.8) differs from the expression for the pion pole that
follows from the dispersion relations in four-point kinematics [41], which is

Π̂π0-pole
1 (q2

1, q
2
2, q

2
3) =

Fπ0γ∗γ∗(q2
1, q

2
2)Fπ0γ∗γ∗(q2

3, 0)
q2

3 −M2
π0

,

Π̂π0-pole
i (q2

1, q
2
2, q

2
3) = 0 , i ∈ {4, 7, 17, 39, 54} . (5.10)

This mismatch led to some confusion in the literature [64, 65], although the reason for it
was already explained in ref. [19]: the different expressions (5.8) and (5.10) do not put
the validity of either dispersion relation into question. Both, the dispersion relations in
four-point kinematics and the ones in triangle kinematics can be used to describe the HLbL
contribution to (g − 2)µ. They reconstruct the same function if the tower of intermediate
states in the unitarity relation is resummed. However, since the limit q4 → 0 changes the
meaning of the kinematic invariants, writing dispersion relations before or after taking
this limit does not lead to the same expressions. In particular, the contributions of one
particular intermediate state do not need to agree in the two formalisms. As discussed in
ref. [19], the difference between eqs. (5.8) and (5.10) is regular at q2

3 = M2
π0 :

Π̂π0-pole
1 (q2

1, q
2
2, q

2
3)− Π̂π

1 (q2
1, q

2
2, q

2
3) = Fπ0γ∗γ∗(q2

1, q
2
2)
Fπ0γ∗γ∗(q2

3, 0)−Fπ0γ∗γ∗(M2
π0 , 0)

q2
3 −M2

π0
.

(5.11)

As shown in table 1, this quantity can be identified with contributions from higher in-
termediate states in the dispersion relation in triangle kinematics [51], which needs to
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be considered when combining the two approaches: the q2
3-channel pole Π̂π

1 (q2
1, q

2
2, q

2
3) in

eq. (5.8) corresponds to the first row of the table (for the case of a π0) and consists only of
the upper left entry, while Π̂π0-pole

1 (q2
1, q

2
2, q

2
3) in eq. (5.10) contains all the diagrams of the

first column that are not shown in light-gray.2

5.2 Narrow resonances in the s-channel

In complete analogy to the single-pion (or, more generally, single-pseudoscalar) contribution
in the s-channel, we can consider single-particle scalar, axial-vector, and tensor intermediate
states, describing the contribution of resonances in the NWA.

5.2.1 Scalar resonances

The contribution of a scalar resonance to the s-channel unitarity relation is given by

ImS
s

(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2,λ3λ4

)
= 1

2

∫
d̃p 〈S(p)|γ∗(−q3, λ3)γ(q4, λ4)〉∗〈S(p)|γ∗(q1, λ1)γ∗(q2, λ2)〉 . (5.12)

The matrix element of the sub-process can be decomposed according to [66]

〈S(p)|γ∗(q1, λ1)γ∗(q2, λ2)〉 = ie2(2π)4δ(4)(p− q1 − q2)ελ1
µ (q1)ελ2

ν (q2)Mµν(q1, q2 → p) ,

Mµν(q1, q2 → p) = i

∫
d4x e−iq1·x〈S(p)|T{jµem(x)jνem(0)}|0〉

= F
S
1 (q2

1, q
2
2)

mS
Tµν1 + F

S
2 (q2

1, q
2
2)

m3
S

Tµν2 , (5.13)

where the Lorentz structures are given by

Tµν1 = q1 · q2g
µν − qµ2 q

ν
1

Tµν2 = q2
1q

2
2g
µν + q1 · q2q

µ
1 q

ν
2 − q2

1q
µ
2 q

ν
2 − q2

2q
µ
1 q

ν
1 , (5.14)

and FS1 and FS2 are the scalar TFFs. For fixed-t kinematics, one obtains the following
discontinuity of the functions Π̌i [50]:

ImS
s Π̌4(s′; q2

1, q
2
2, q

2
3) = −πδ(s′ −m2

S)
(
FS1 (q2

1, q
2
2)

m2
S

− (s′ + q2
1 + q2

2)
2m4

S

FS2 (q2
1, q

2
2)
)
FS1 (q2

3, 0) ,

ImS
s Π̌15(s′; q2

1, q
2
2, q

2
3) = −πδ(s′ −m2

S)F
S
2 (q2

1, q
2
2)FS1 (q2

3, 0)
m4
S

,

ImS
s Π̌i(s′; q2

1, q
2
2, q

2
3) = 0 , i /∈ {4, 15} . (5.15)

2Note that this reshuffling of the pion pole is not related to the implementation of crossing symmetry
discussed above: eq. (5.11) does not contain any pion pole in the q2

1,2 channels.
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The discontinuity of the Π̂i functions follows as:

ImS Π̂4(q2
1, q

2
2, s
′) = −πδ(s′ −m2

S)
(
FS1 (q2

1, q
2
2)

m2
S

− (m2
S + q2

1 + q2
2)

2m4
S

FS2 (q2
1, q

2
2)
)
FS1 (m2

S , 0) ,

ImS Π̂17(q2
1, q

2
2, s
′) = −πδ(s′ −m2

S)F
S
2 (q2

1, q
2
2)FS1 (m2

S , 0)
m4
S

,

ImS Π̂i(q2
1, q

2
2, s
′) = 0 , i ∈ {1, 2, 3, 5, . . . , 11, 13, 14, 16, 39, 50, 51, 54} . (5.16)

Inserting this imaginary part into the dispersion relation (3.1) leads to

Π̂S
4 (q2

1, q
2
2, q

2
3) = F

S
1 (m2

S , 0)
q2

3 −m2
S

(
FS1 (q2

1, q
2
2)

m2
S

− (m2
S + q2

1 + q2
2)

2m4
S

FS2 (q2
1, q

2
2)
)
,

Π̂S
17(q2

1, q
2
2, q

2
3) = F

S
1 (m2

S , 0)
q2

3 −m2
S

FS2 (q2
1, q

2
2)

m4
S

,

Π̂S
i (q2

1, q
2
2, q

2
3) = 0 , i ∈ {1, 7, 39, 54} . (5.17)

The six representative functions do not contain any scalar-meson poles in the crossed
channels. However, the implementation of crossing symmetry in analogy to the pion pole
implies that some of the remaining scalar functions contain scalar-meson poles in the crossed
channels, as follows directly from eq. (5.17) and the crossing relations (2.19). E.g., the
contribution to Π̂5 reads

Π̂S
5 (q2

1, q
2
2, q

2
3) = F

S
1 (m2

S , 0)
q2

2 −m2
S

(
FS1 (q2

1, q
2
3)

m2
S

− (m2
S + q2

1 + q2
3)

2m4
S

FS2 (q2
1, q

2
3)
)
, (5.18)

and a double counting needs to be avoided by omitting from the q2
3-dispersion relation the

light-gray diagrams in the S column, which correspond, e.g., to two-pion and vector-meson
intermediate states in the scalar-meson TFF in eq. (5.18). The result (5.17) can be obtained
from the scalar contribution in four-point kinematics [50] by keeping only the pure pole in
q2

3. It differs from it by a piece regular at q2
3 = m2

S , which corresponds to the entries in the
“S” column of table 1 that do not belong to the “S” row and are not light-gray diagrams.

5.2.2 Axial-vector resonances

Next, we consider the contribution of an axial-vector resonance to the s-channel:

ImA
s

(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2,λ3λ4

)
= 1

2
∑
λA

∫
d̃p 〈A(p, λA)|γ∗(−q3, λ3)γ(q4, λ4)〉∗〈A(p, λA)|γ∗(q1, λ1)γ∗(q2, λ2)〉 . (5.19)
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The matrix element of the sub-process can be decomposed into Lorentz structures accord-
ing to

〈A(p,λA)|γ∗(q1,λ1)γ∗(q2,λ2)〉= ie2(2π)4δ(4)(p−q1−q2)ελ1
µ (q1)ελ2

ν (q2)Mµν(q1, q2→{p,λA}) ,

Mµν(q1, q2→{p,λA}) = i

∫
d4xe−iq1·x〈A(p,λA)|T{jµem(x)jνem(0)}|0〉

=: ελA
α
∗(p)Mµνα(−q1,−q2) ,

Mµνα(q1, q2) =−Mµνα(−q1,−q2)

= i

m2
A

3∑
i=1

Tµναi FAi (q2
1, q

2
2) , (5.20)

where the Lorentz structures are given by [66]

Tµνα1 = εµνβγq1βq2γ(qα1 − qα2 ) ,

Tµνα2 = εανβγq1βq2γq
µ
1 + εαµνβq2βq

2
1 ,

Tµνα3 = εαµβγq1βq2γq
ν
2 + εαµνβq1βq

2
2 , (5.21)

and FAi are the axial-vector TFFs. For fixed-t kinematics, the discontinuity of the functions
Π̌i in the basis of ref. [15] is rather complicated and contains kinematic singularities
proportional to s′ − q2

3, which drop out when we take the limit q2
3 → s′. This leads to

ImA Π̂5(q2
1 , q

2
2 ,s
′) =πδ(s′−m2

A)m
2
A−q2

1−q2
2

2m4
A

(
2FA1 (q2

1 , q
2
2)+FA3 (q2

1 , q
2
2)
)
FA2 (m2

A,0) ,

ImA Π̂6(q2
1 , q

2
2 ,s
′) =−πδ(s′−m2

A)m
2
A−q2

1−q2
2

2m4
A

(
2FA1 (q2

1 , q
2
2)+FA2 (q2

1 , q
2
2)
)
FA2 (m2

A,0) ,

ImA Π̂9(q2
1 , q

2
2 ,s
′) =−ImA Π̂13(q2

1 , q
2
2 ,s
′)

=−πδ(s′−m2
A) 1
m4
A

(
2FA1 (q2

1 , q
2
2)+FA2 (q2

1 , q
2
2)+FA3 (q2

1 , q
2
2)
)
FA2 (m2

A,0) ,

ImA Π̂10(q2
1 , q

2
2 ,s
′) =πδ(s′−m2

A) 1
m4
A

(
2FA1 (q2

1 , q
2
2)+FA3 (q2

1 , q
2
2)
)
FA2 (m2

A,0) ,

ImA Π̂11,54(q2
1 , q

2
2 ,s
′) =−ImA Π̂16(q2

1 , q
2
2 ,s
′)

=−πδ(s′−m2
A) 1

2m4
A

(
4FA1 (q2

1 , q
2
2)+FA2 (q2

1 , q
2
2)+FA3 (q2

1 , q
2
2)
)
FA2 (m2

A,0) ,

ImA Π̂14(q2
1 , q

2
2 ,s
′) =−πδ(s′−m2

A) 1
m4
A

(
2FA1 (q2

1 , q
2
2)+FA2 (q2

1 , q
2
2)
)
FA2 (m2

A,0) ,

ImA Π̂17,39,50,51(q2
1 , q

2
2 ,s
′) =πδ(s′−m2

A) 1
2m4

A

(
FA2 (q2

1 , q
2
2)−FA3 (q2

1 , q
2
2)
)
FA2 (m2

A,0) ,

ImA Π̂i(q2
1 , q

2
2 ,s
′) = 0 , i∈{1,2,3,4,7,8} . (5.22)

Plugging these imaginary parts into dispersion relations in q2
3 leads to axial-vector contribu-

tions in only the q2
3-channel. In analogy to the pion-pole and scalar-resonance contributions,

crossing symmetry implies that there are also axial-vector poles in the q2
1- and q2

2-channels.
Therefore, we write the full axial-vector contribution as

Π̂A
i = Π̂A,1

i + Π̂A,2
i + Π̂A,3

i , (5.23)
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which fulfills all constraints of crossing symmetry. Explicitly, it is given in terms of the six
representative functions (2.18) as

Π̂A,3
17 (q2

1, q
2
2, q

2
3) = Π̂A,3

39 (q2
1, q

2
2, q

2
3) = F

A
2 (m2

A, 0)
q2

3 −m2
A

FA3 (q2
1, q

2
2)−FA2 (q2

1, q
2
2)

2m4
A

,

Π̂A,3
54 (q2

1, q
2
2, q

2
3) = F

A
2 (m2

A, 0)
q2

3 −m2
A

4FA1 (q2
1, q

2
2) + FA2 (q2

1, q
2
2) + FA3 (q2

1, q
2
2)

2m4
A

,

Π̂A,3
i (q2

1, q
2
2, q

2
3) = 0 , i ∈ {1, 4, 7} , (5.24)

for the axial-vector contributions in the q2
3-channels, while the contributions in the other

two channels are

Π̂A,1
1 (q2

1, q
2
2, q

2
3) = 0 ,

Π̂A,1
4 (q2

1, q
2
2, q

2
3) = −

(
m2
A − q2

2 − q2
3

) FA2 (m2
A, 0)

q2
1 −m2

A

2FA1 (q2
2, q

2
3) + FA3 (q2

2, q
2
3)

2m4
A

,

Π̂A,1
7 (q2

1, q
2
2, q

2
3) = F

A
2 (m2

A, 0)
q2

1 −m2
A

2FA1 (q2
2, q

2
3) + FA2 (q2

2, q
2
3) + FA3 (q2

2, q
2
3)

m4
A

,

Π̂A,1
17 (q2

1, q
2
2, q

2
3) = −F

A
2 (m2

A, 0)
q2

1 −m2
A

4FA1 (q2
2, q

2
3) + FA2 (q2

2, q
2
3) + FA3 (q2

2, q
2
3)

2m4
A

,

Π̂A,1
39 (q2

1, q
2
2, q

2
3) = Π̂A,1

54 (q2
1, q

2
2, q

2
3) = F

A
2 (m2

A, 0)
q2

1 −m2
A

FA3 (q2
2, q

2
3)−FA2 (q2

2, q
2
3)

2m4
A

, (5.25)

as well as

Π̂A,2
1 (q2

1, q
2
2, q

2
3) = 0 ,

Π̂A,2
4 (q2

1, q
2
2, q

2
3) = −

(
m2
A − q2

1 − q2
3

) FA2 (m2
A, 0)

q2
2 −m2

A

2FA1 (q2
1, q

2
3) + FA3 (q2

1, q
2
3)

2m4
A

,

Π̂A,2
7 (q2

1, q
2
2, q

2
3) = −F

A
2 (m2

A, 0)
q2

2 −m2
A

2FA1 (q2
1, q

2
3) + FA3 (q2

1, q
2
3)

m4
A

,

Π̂A,2
17 (q2

1, q
2
2, q

2
3) = −F

A
2 (m2

A, 0)
q2

2 −m2
A

4FA1 (q2
1, q

2
3) + FA2 (q2

1, q
2
3) + FA3 (q2

1, q
2
3)

2m4
A

,

Π̂A,2
39 (q2

1, q
2
2, q

2
3) = −Π̂A,2

54 (q2
1, q

2
2, q

2
3) = F

A
2 (m2

A, 0)
q2

2 −m2
A

FA3 (q2
1, q

2
3)−FA2 (q2

1, q
2
3)

2m4
A

. (5.26)

The axial-vector contribution to the remaining 13 functions follows from the crossing
relations (2.19). This implementation of crossing symmetry is analogous to the pion pole or
scalar resonances, but in the case of axial-vector resonances most of the scalar functions
receive contributions from multiple channels. We also note that due to the symmetries of
the axial-vector TFFs [66], the intrinsic crossing symmetries (2.20) are manifestly fulfilled.
Similarly to the pion pole and scalar contribution, the added crossed-channel axial-vector
contributions contain two-pion, vector-meson, and higher intermediate states in the q2

3-
channel, due to the singularity structure of the TFFs that depend on q2

3. This needs to be
considered when taking into account these cuts in q2

3, in order to avoid a double counting,
again in complete analogy to the pion-pole or scalar-meson contributions.
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With the modified basis of Π̌i functions discussed in ref. [51], axial-vector contributions
can be taken into account in the dispersion relation in four-point kinematics without
introducing spurious kinematic singularities. The results (5.24), (5.25), and (5.26) differ
from the results in four-point kinematics [50] only by non-pole pieces. As before, this
difference is given by the entries in the “A” column of table 1 that do not belong to the “A”
row and are not light-gray diagrams.

5.2.3 Tensor resonances

We finally consider the contribution of a tensor resonance to the s-channel:

ImT
s

(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2,λ3λ4

)
= 1

2
∑
λT

∫
d̃p 〈T (p, λT )|γ∗(−q3, λ3)γ(q4, λ4)〉∗〈T (p, λT )|γ∗(q1, λ1)γ∗(q2, λ2)〉 . (5.27)

The matrix element of the sub-process can be decomposed into Lorentz structures accord-
ing to

〈T (p,λT )|γ∗(q1,λ1)γ∗(q2,λ2)〉= ie2(2π)4δ(4)(p−q1−q2)ελ1
µ (q1)ελ2

ν (q2)Mµν(q1, q2→{p,λT }) ,

Mµν(q1, q2→{p,λT }) = i

∫
d4xe−iq1·x〈T (p,λT )|T{jµem(x)jνem(0)}|0〉

=: ελT
αβ

∗(p)Mµναβ(−q1,−q2) ,

Mµναβ(q1, q2) =Mµναβ(−q1,−q2)

=
5∑
i=1

Tµναβi

1
mni
T

FTi (q2
1, q

2
2) , (5.28)

with n1 = 1 and the other ni = 3 and where the Lorentz structures are given in ref. [66].
The polarization sum is

sTαβα′β′(p) :=
∑
λT

ελT
αβ(p)ελT

α′β′
∗(p) = 1

2
(
sαβ′sα′β + sαα′sββ′

)
− 1

3sαβsα
′β′ , (5.29)

where

sαα′ := −
(
gαα′ −

pαpα′

m2
T

)
. (5.30)

The projection onto the functions Π̂i leads to the following imaginary parts:

ImT Π̂i(q2
1, q

2
2, s
′) = πδ(s′ −m2

T )
5∑
j=1

ti,j(q2
1, q

2
2)
FTj (q2

1, q
2
2)

m6
T

(
FT1 (m2

T , 0) + FT5 (m2
T , 0)

)
,

(5.31)

where the coefficients ti,j are defined in appendix B. In analogy to the axial-vector con-
tributions, we combine dispersion relations in all three virtualities in order to arrive at a
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tensor-meson contribution that respects crossing symmetry. The full tensor-meson contri-
butions is given by

Π̂T
i = Π̂T,1

i + Π̂T,2
i + Π̂T,3

i , (5.32)

which fulfills all constraints of crossing symmetry and can be defined in terms of the six
representative functions (2.18):

Π̂T,3
i (q2

1, q
2
2, q

2
3) =−

5∑
j=1

ti,j(q2
1, q

2
2)
FTj (q2

1, q
2
2)

m6
T

FT1 (m2
T ,0)+FT5 (m2

T ,0)
q2

3−m2
T

, i∈{4,7,17,39,54} ,

Π̂T,3
1 (q2

1, q
2
2, q

2
3) = 0 . (5.33)

The crossed-channel contributions to the six representative functions are obtained as

Π̂T,1
1 (q2

1, q
2
2, q

2
3) = 0 ,

Π̂T,1
4 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t5,j(q2
2, q

2
3)
FTj (q2

2, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

1 −m2
T

,

Π̂T,1
7 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t9,j(q2
2, q

2
3)
FTj (q2

2, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

1 −m2
T

,

Π̂T,1
17 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t16,j(q2
2, q

2
3)
FTj (q2

2, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

1 −m2
T

,

Π̂T,1
39 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t39,j(q2
2, q

2
3)
FTj (q2

2, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

1 −m2
T

,

Π̂T,1
54 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t50,j(q2
2, q

2
3)
FTj (q2

2, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

1 −m2
T

(5.34)

and

Π̂T,2
1 (q2

1, q
2
2, q

2
3) = 0 ,

Π̂T,2
4 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t5,j(q2
1, q

2
3)
FTj (q2

1, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

2 −m2
T

,

Π̂T,2
7 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t10,j(q2
1, q

2
3)
FTj (q2

1, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

2 −m2
T

,

Π̂T,2
17 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t16,j(q2
1, q

2
3)
FTj (q2

1, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

2 −m2
T

,

Π̂T,2
39 (q2

1, q
2
2, q

2
3) = −

5∑
j=1

t39,j(q2
1, q

2
3)
FTj (q2

1, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

2 −m2
T

,

Π̂T,2
54 (q2

1, q
2
2, q

2
3) =

5∑
j=1

t50,j(q2
1, q

2
3)
FTj (q2

1, q
2
3)

m6
T

FT1 (m2
T , 0) + FT5 (m2

T , 0)
q2

2 −m2
T

, (5.35)
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while the contribution to the remaining 13 functions again follows directly from the crossing
relations (2.19). The same comment regarding double counting with two-pion, vector-meson,
and higher cuts in q2

3 applies as for the other resonances.
To the best of our knowledge, there is no alternative basis of Π̌i functions that would

allow dispersion relations in four-point kinematics for the tensor-meson contributions that
are manifestly free from spurious kinematic singularities if no additional sum rules compared
to the ones of ref. [15] are invoked. The modified basis discussed in ref. [51] reduces the
spurious kinematic singularities in the tensor-meson contribution to simple poles of the
type 1/q2

1 for fixed-t kinematics.

5.3 Vector resonances in the q2
3-channel

In the q2
3-channel, single-particle intermediate states only appear in the NWA, in particular

the iso-scalar vector-meson resonances ω and φ (the prominent iso-vector ρ resonance is
best described in terms of two-pion P -wave rescattering). The unitarity relation reads

ImV
3

(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2λ4,λ3

)
= 1

2
∑
λV

∫
d̃p 〈V (p, λV )|γ∗(−q3, λ3)〉∗〈V (p, λV )|γ∗(q1, λ1)γ∗(q2, λ2)γ(−q4, λ4)〉 . (5.36)

The matrix element of the first sub-process is simply given by

〈V (p, λV )|γ∗(−q3, λ3)〉 = −ie ελ3
µ (−q3)εµλV

(p)∗(2π)4δ(4)(p+ q3)mV fV , (5.37)

where the vector-meson decay constant fV is defined as

〈0|jµem(x)|V (p, λV )〉 = mV fV ε
µ
λV

(p)e−ip·x . (5.38)

For the matrix element of the second sub-process γ∗γ∗γ → V , we define

〈V (p, λV )|γ∗(q1, λ1)γ∗(q2, λ2)γ(−q4, λ4)〉 = i(2π)4δ(4)(q1 + q2 − q4 − p)e3

× ελ1
µ (q1)ελ2

ν (q2)ελ4
σ (−q4)ελV

λ (p)∗Πµνλσ
V ,

(5.39)

where

ελV
λ (p)∗Πµνλσ

V (q1, q2, p) =
∫
d4xd4y e−i(q1·x+q2·y) 〈V (p, λV )|T{jµem(x)jνem(y)jσem(0)}|0〉 ,

(5.40)

and we perform the BTT tensor decomposition [42, 43] for Πµνλσ
V (q1, q2, p) in close analogy

to the case of HLbL scattering [41]. We first impose transversality for the three photons by
making use of gauge projectors

Iµν12 = gµν − qµ2 q
ν
1

q1 · q2
, Iσσ

′
4 = gσσ

′ − qσ4 q
σ′
4

q2
4

, (5.41)

and we remove kinematic singularities in the projected tensor structures according to the
BTT recipe. This leads to a highly redundant generating set of 72 tensor structures. For
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the dispersion relations in triangle kinematics, we can immediately take the derivative
with respect to the external photon momentum and put q4 → 0. After this step, only 26
linear combinations of tensor structures are non-vanishing. In a final step, we note that in
any observable (in particular in (g − 2)µ) the tensor Πµνλσ

V appears contracted with the
vector-meson polarization sum

∑
λV

ελV
λ (p)ελV

λ′ (p)∗ = −
(
gλλ′ −

pλpλ′

m2
V

)
. (5.42)

This implies that out of the 26 derivative tensor structures, only 19 linear combinations
enter (g − 2)µ, which can be chosen to be identical to the HLbL tensor structures T̂µνλσ;ρ

i

in eq. (2.15): the contraction with the polarization sum has the same effect as imposing
the QED Ward identity, with the difference that factors of m2

V in the denominator should
not be regarded as kinematic singularities. Choosing the HLbL structures instead of the
ones that naturally come out of the BTT construction with a vector meson only amounts
to a basis change that does not introduce kinematic singularities but involves factors of
1/m2

V . The ideal basis for a dispersive reconstruction of the scalar functions depends on
the asymptotic behavior, which will require a dedicated analysis. Here, we decompose the
tensor as

∂

∂q4ρ
Πµνλσ
V (q1, q2, p)

∣∣∣∣
q4=0

=
19∑
i=1

T̂µνλσ;ρ
i (q1, q2)FVi (q2

1, q
2
2) , (5.43)

dropping directly the unphysical contributions that vanish upon contraction with the
polarization sum. Hence, the unitarity relation leads to

ImV Π̂gi(q2
1, q

2
2, s
′) = πδ(s′ −m2

V )mV fV FVi (q2
1, q

2
2) , (5.44)

and therefore

Π̂V,3
gi

(q2
1, q

2
2, q

2
3) = −FVi (q2

1, q
2
2) mV fV
q2

3 −m2
V

. (5.45)

Analogous expressions hold for the contributions in the two crossed channels. Again, when
writing a representation that is manifestly crossing symmetric, a double counting must be
avoided. E.g., the crossed pion-pole contributions already contain the vector-resonance
contribution that corresponds to the pion pole in FVi in the q2

1- and q2
2-channels.

6 Tensor decomposition for two-pion sub-processes

Apart from single-particle intermediate states, we are mainly interested in two-pion contribu-
tions in the new formalism: in the D-wave of ππ scattering, we find the f2(1270) resonance.
In order to compare the description of this resonance in terms of a NWA with the two-pion
representation (in analogy to the comparison for scalar resonances performed in ref. [50]), we
need to reconstruct the two-pion sub-processes appearing in the unitarity relations for HLbL.
The main missing input is the five-particle process γ∗γ∗γ → 2π, up to the first non-trivial
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order in the soft-photon expansion. As a nested sub-process, the process ππ → ππγ appears.
In the following subsections, we present the Lorentz decomposition for these sub-processes,
which are key to set up a dispersive treatment. The dispersive reconstruction itself, which
solves two-pion unitarity, will be the subject of a future publication [54].

6.1 The process ππ → ππγ

6.1.1 Kinematics and matrix element

We consider ππ scattering with the emission of an additional soft photon, ππ → ππγ, with
polarization λ. We define the process via the matrix element

〈πc(−p3)πd(−p4)γ(−q, λ)|πa(p1)πb(p2)〉

= −ieελµ
∗(−q)

∫
d4x e−iq·x〈πc(−p3)πd(−p4)|jµem(x)|πa(p1)πb(p2)〉

= −ie(2π)4δ(4)(p1 + p2 + p3 + p4 + q)ελµ
∗(−q)〈πc(−p3)πd(−p4)|jµem(0)|πa(p1)πb(p2)〉

=: −ie(2π)4δ(4)(p1 + p2 + p3 + p4 + q)ελµ
∗(−q)Mµ(p1, p2, p3, p4) . (6.1)

In the end, we will be interested in the limit of a soft on-shell photon. Via Low’s theorem [53],
the first two terms, i.e., the divergent and finite pieces in an expansion in the soft-photon
momentum are determined in terms of ππ scattering. These terms need to be defined in
a gauge-invariant way that does not introduce kinematic singularities and such that the
remainder is non-singular in the soft-photon limit, see also ref. [67] for a related discussion.
The part of the remainder that is linear in the soft-photon momentum still contributes to
(g − 2)µ. It is not fixed by Low’s theorem and needs to be reconstructed dispersively [54].
Possible input could also be provided by lattice QCD [68–70]. In the following, we will
derive the Lorentz decomposition for this contribution.

6.1.2 BTT decomposition

In a first step, we consider the decomposition of the matrix element into gauge-invariant
Lorentz structures. Applying the BTT [42, 43] recipe to the matrix elementMµ(p1, p2, p3, p4)
is a trivial exercise. One starts with four independent four-vectors and applies gauge
projectors, which leave three independent structures. However, these structures become
degenerate in certain kinematic limits, requiring the introduction of three redundant Tarrach
structures. This is equivalent to including the crossed Lorentz structures. The decomposition
then reads

Mµ(p1, p2, p3, p4) =
6∑
i=1

Tµi Mi , (6.2)

where

Tµ1 = pµ1 (p2 · q)− pµ2 (p1 · q) (6.3)

and the remaining structures are related by crossing:

Tµ2 = C23
[
Tµ1
]
, Tµ3 = C24

[
Tµ1
]
, Tµ4 =−C13

[
Tµ1
]
, Tµ5 =−C14

[
Tµ1
]
, Tµ6 = C13

[
C24
[
Tµ1
]]
.

(6.4)
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Here, we define the crossing operators Cij to exchange momenta (and isospin indices) of the
pions i and j. There is one internal crossing symmetry,

Tµ1 = −C12
[
Tµ1
]
. (6.5)

Crossing symmetry of the full amplitude implies that the scalar functionsMi fulfill the
same crossing relations as the Lorentz structures.

Gauge invariance is manifestly fulfilled by the Lorentz structures,

qµT
µ
i = 0 , (6.6)

and at the same time the scalar functionsMi are free of kinematic singularities. The three
Tarrach redundancies read

(p3 · q)Tµ1 − (p2 · q)Tµ2 + (p1 · q)Tµ4 = 0 ,
(p4 · q)Tµ1 − (p2 · q)Tµ3 + (p1 · q)Tµ5 = 0 ,
(p4 · q)Tµ2 − (p3 · q)Tµ3 + (p1 · q)Tµ6 = 0 . (6.7)

Eliminating redundant structures introduces kinematic singularities into the scalar coeffi-
cient functions.

Finally, we perform a basis change

Mµ(p1, p2, p3, p4) =
6∑
i=1

Tµi Mi =
6∑
i=1

T̂µi M̂i , (6.8)

where

T̂µ1 = Tµ4 , T̂µ2 = −Tµ2 , T̂µ3 = Tµ1 , T̂µ4 = Tµ1 + Tµ2 + Tµ3 ,

T̂µ5 = −Tµ1 + Tµ4 + Tµ5 , T̂µ6 = −Tµ2 − T
µ
4 + Tµ6 , (6.9)

explicitly

T̂µ1 = pµ2 (p3 ·q)−pµ3 (p2 ·q) , T̂µ2 = pµ3 (p1 ·q)−pµ1 (p3 ·q) , T̂µ3 = pµ1 (p2 ·q)−pµ2 (p1 ·q) ,
T̂µ4 = qµ(p1 ·q)−pµ1q2 , T̂µ5 = qµ(p2 ·q)−pµ2q2 , T̂µ6 = qµ(p3 ·q)−pµ3q2 .

(6.10)

The Tarrach redundancies eq. (6.7) imply that the shifts

M̂1 7→ M̂1 + (p1 · q)∆1 ,

M̂2 7→ M̂2 + (p2 · q)∆1 + q2∆3 ,

M̂3 7→ M̂3 + (p3 · q)∆1 + q2∆2 ,

M̂4 7→ M̂4 + (p2 · q)∆2 − (p3 · q)∆3 ,

M̂5 7→ M̂5 − (p1 · q)∆2 ,

M̂6 7→ M̂6 + (p1 · q)∆3 (6.11)

with arbitrary non-singular ∆i leave the amplitude unchanged.
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6.1.3 Soft-photon limit

In the soft-photon limit, q → 0, the scalar coefficient functions Mi contain double and
single poles, which are determined by ππ scattering alone. We assume a gauge-invariant
separation of these soft singularities that respects crossing symmetries and leaves a regular
remainder, which can be achieved by using a dispersive definition as will be discussed
in ref. [54]:

Mi =Mpoles
i +Mnon-pole

i . (6.12)

We are only interested in the leading non-pole term, i.e., in the limit lim
q→0
Mnon-pole

i . Defining

Mµ
reg(p1, p2, p3, p4) =

6∑
i=1

T̂µi M̂
non-pole
i , (6.13)

we obtain the desired contribution by taking the following derivative:

∂

∂qν
Mµ

reg(p1, p2, p3, p4)
∣∣∣∣
q=0

=
6∑
i=1

(
∂

∂qν
T̂µi

)∣∣∣∣
q=0
M̂non-pole

i (q = 0)

=
3∑

i,j,k=1
εijkp

µ
i p

ν
jM̂

non-pole
k (q = 0) , (6.14)

with the antisymmetric tensor ε123 = 1. The first three coefficient functions M̂i contain a
Tarrach redundancy of the form

M̂i 7→ M̂i + (pi · q)∆ , i = 1, 2, 3 , (6.15)

with arbitrary non-singular ∆, which, however, drops out in the limit q → 0.
In the following, we will focus on the mixed-charge channel π0π0 → π+π−γ: in the

isospin limit, the fully charged process π+π− → π+π−γ can be related to this amplitude [71,
72]. Bose symmetry implies

Mµ = C12
[
Mµ] = −C34

[
Mµ] = −C12

[
C34
[
Mµ]] . (6.16)

Since the scalar coefficient functions only depend on the scalar invariants, in the limit q → 0
they are invariant under simultaneous crossing of the two neutral and the two charged pions:

M̂i(q = 0) = C12
[
C34
[
M̂i(q = 0)

]]
. (6.17)

Assuming that the definition of Mpoles
i respects crossing symmetry, not all three scalar

functions are independent at q = 0, but one finds

M̂non-pole
2 (q = 0) = −M̂non-pole

1 (q = 0) . (6.18)

Thus, we define the new tensor decomposition

∂

∂qν
Mµ

reg(p1, p2, p3, p4)
∣∣∣∣
q=0

= (pµ3pν4 − p
µ
4p

ν
3)M̄1 + (pµ1pν2 − p

µ
2p

ν
1)M̄2 (6.19)
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where

M̄1 = M̂non-pole
1 (q = 0) , M̄2 = M̂non-pole

3 (q = 0) . (6.20)

In the limit q → 0, the five-particle process reduces to four-point kinematics. The scalar
functions M̄1 and M̄2 are functions of the Mandelstam variables s = (p1+p2)2, t = (p1+p3)2,
and u = (p1 + p4)2, fulfilling s+ t+ u = 4M2

π . Crossing symmetry further implies that M̄1
is symmetric and M̄2 is antisymmetric under t↔ u. These functions will be reconstructed
dispersively in ref. [54].

6.2 The process γ∗γ∗γ → 2π

6.2.1 Kinematics and matrix element

As a sub-process in the new dispersion relations in triangle kinematics, we require the
(unphysical) process γ∗γ∗γ → 2π with two off-shell photons as input. C-symmetry of the
strong interaction implies that the two-pion state is odd under charge conjugation and
hence pure isospin I = 1, i.e., only charged pions contribute. We define the process via the
matrix element

〈π+(p1)π−(p2)|γ∗(q1, λ1)γ∗(q2, λ2)γ(q3, λ3)〉

= ie3(2π)4δ(4)(p1 + p2 − q1 − q2 − q3)ελ1
µ (q1)ελ2

ν (q2)ελ3
λ (q3)

×
∫
d4x d4y e−i(q1·x+q2·y)〈π+(p1)π−(p2)|T{jµem(x)jνem(y)jλem(0)}|0〉

=: ie3(2π)4δ(4)(p1 + p2 − q1 − q2 − q3)ελ1
µ (q1)ελ2

ν (q2)ελ3
λ (q3)Mµνλ(p1, p2, q1, q2) . (6.21)

We are interested in the case where the on-shell photon with q2
3 = 0 is soft and we will need

terms up to linear order in q3.

6.2.2 BTT decomposition

We start from the BTT decomposition [42, 43] for the process γ∗γ∗γ∗ → π+π− with three
off-shell photons. The construction is of considerable complexity, since the rank-3 tensor
structures depend on four independent four-momenta. In the construction, we keep photon-
crossing symmetry manifest. We define the momenta q4 := p1 + p2, q5 := p1 − p2, hence
q1 + q2 + q3 = q4. The BTT construction starts off with the following 76 naive rank-3
tensor structures:3

{Lµνλi } =
{
qµi q

ν
j q
λ
k , q

µ
i g

νλ, qνj g
µλ, qλkg

µν
}
i∈{2,3,4,5}, j∈{1,3,4,5}, k∈{1,2,4,5}

. (6.22)

The application of projectors

Iµν12 = gµν − qµ2 q
ν
1

q1 · q2
, Iνλ23 = gνλ − qν3q

λ
2

q2 · q3
, Iλµ31 = gλµ − qλ1 q

µ
3

q1 · q3
(6.23)

3Although for five-point kinematics, the 64 structures that do not contain the metric tensor already form
a basis in 4 space-time dimensions [73], we keep all structures as we are interested in the degenerate soft
limit, which corresponds to four-point kinematics.
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maps 40 structures directly to zero. The remaining structures map to structures with
kinematic singularities, which are removed following the BTT recipe. In the end, the set of
structures has to be enlarged again to account for Tarrach degeneracies. We end up with
a highly redundant set of 74 off-shell structures, split into 20 distinct equivalence classes
under photon crossing:

Mµνλ(p1, p2, q1, q2) =
74∑
i=1

Tµνλi Ai . (6.24)

The 20 photon-crossing classes of tensor structures are defined in appendix C.1. There
are 38 Tarrach redundancies, leading to 36 independent structures in D dimensions. In
4 space-time dimensions 9 additional relations due to the Schouten identity reduce the
basis to 27 elements. This agrees with the number of helicity amplitudes for three off-shell
photons, 33 = 27. In contrast to n-particle processes with n ≤ 4, such as γ∗γ∗ → ππ

or HLbL [15, 41], parity does not reduce the number of independent helicity amplitudes
for a five-particle process [73]: in this case, the contraction of the tensor structures with
polarization vectors leads to angular dependences of the helicity amplitudes that can be
expressed as a non-trivial dependence on the parity-odd invariant εµνλσqµ1 qν2qλ3 qσ5 .

6.2.3 Soft-photon limit

In analogy to ππ → ππγ, we assume an appropriate gauge-invariant splitting of the
amplitude into soft-singular and regular pieces,

Ai = Apole
i +Anon-pole

i , (6.25)

where the scalar functions Apole
i contain double and single poles in the soft-photon limit

q3 → 0 and can be expressed in terms of γ∗γ∗ → π+π−, whereas Anon-pole
i are regular in

the limit q3 → 0. Defining

Mµνλ
reg (p1, p2, q1, q2) =

74∑
i=1

Tµνλi Anon-pole
i , (6.26)

we are interested only in the leading non-pole term, which is obtained from

∂

∂q3σ
Mµνλ

reg (p1, p2, q1, q2)
∣∣∣∣
q3=0

=
74∑
i=1

(
∂

∂q3σ
Tµνλi

) ∣∣∣∣
q3=0
Anon-pole
i (q3 = 0)

=:
74∑
i=1

Tµνλ;σ
i (q1, q2, q5)Anon-pole

i (q3 = 0) . (6.27)

With a basis change that does not introduce any kinematic singularities, it is possible to
express the soft-photon limit of the regular part in terms of 34 structures

∂

∂q3σ
Mµνλ

reg (p1, p2, q1, q2)
∣∣∣∣
q3=0

=
34∑
i=1

T̂µνλ;σ
i (q1, q2, q5)Âi . (6.28)

The soft-photon limit of the five-particle process corresponds to four-point kinematics and
we define Mandelstam variables

s = (q1 + q2)2 , t = (q1 − p1)2 , u = (q1 − p2)2 , (6.29)
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fulfilling s+ t+ u = q2
1 + q2

2 + 2M2
π . The matrix

Cij(s, t− u, q2
1, q

2
2) := T̂µνλ;σ

i (q1, q2, q5)T̂ jµνλ;σ(q1, q2, q5) (6.30)

has rank 27: the set of structures T̂µνλ;σ
i still contains six Tarrach redundancies and the

Schouten identity implies one additional linear relation in 4 space-time dimensions.
In order to further reduce the redundancies, we consider crossing symmetry, in analogy

to the case of γ∗γ∗ → ππ [41, 74]. We define C12 as the crossing operator exchanging the
two off-shell photons and C5 as the crossing operator for the two pions, exchanging p1 and
p2 or, equivalently, q5 7→ −q5. The amplitude is even under photon crossing, but odd under
pion crossing, since the two pions are in the isospin I = 1 state:

Mµνλ
reg = C12

[
Mµνλ

reg
]

= −C5
[
Mµνλ

reg
]

= −C5
[
C12
[
Mµνλ

reg
]]
. (6.31)

In the limit q3 → 0, the crossing operations act on the scalar functions as

C5
[
Âi(s, t− u, q2

1, q
2
2)
]

= Âi(s, u− t, q2
1, q

2
2) ,

C5
[
C12
[
Âi(s, t− u, q2

1, q
2
2)
]]

= Âi(s, t− u, q2
2, q

2
1) . (6.32)

It is possible to choose the basis T̂µνλ;σ
i in such a way that all the elements have definite

crossing properties:

T̂µνλ;σ
i = −C5

[
T̂µνλ;σ
i

]
= −C5

[
C12
[
T̂µνλ;σ
i

]]
for i ∈ {1, . . . , 9} ,

T̂µνλ;σ
i = −C5

[
T̂µνλ;σ
i

]
= C5

[
C12
[
T̂µνλ;σ
i

]]
for i ∈ {10, . . . , 18} ,

T̂µνλ;σ
i = C5

[
T̂µνλ;σ
i

]
= −C5

[
C12
[
T̂µνλ;σ
i

]]
for i ∈ {19, . . . , 28} ,

T̂µνλ;σ
i = C5

[
T̂µνλ;σ
i

]
= C5

[
C12
[
T̂µνλ;σ
i

]]
for i ∈ {29, . . . , 34} . (6.33)

This implies that the scalar coefficient functions contain kinematic zeros of the following form:

Âi(s, t− u, q2
1, q

2
2) = κi

ˆ̂Ai(s, t− u, q2
1, q

2
2) , (6.34)

where

κi = 1 for i ∈ {1, . . . , 9} ,

κi = q2
1 − q2

2 for i ∈ {10, . . . , 18} ,

κi = t− u for i ∈ {19, . . . , 28} ,

κi = (q2
1 − q2

2)(t− u) for i ∈ {29, . . . , 34} , (6.35)

and the functions ˆ̂Ai are still free from kinematic singularities. The kinematic zeros that
follow from the crossing symmetries allow us to remove all but a single redundancy in the
tensor basis, hence we only need to keep a subset of 28 structures κiT̂µνλ;σ

i and write

∂

∂q3σ
Mµνλ

reg (p1, p2, q1, q2)
∣∣∣∣
q3=0

=
28∑
i=1

T̃µνλ;σ
i (q1, q2, q5)Ãi(s, t− u, q2

1, q
2
2) , (6.36)
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where the tensor structures T̃µνλ;σ
i have mass dimensions between 4 and 10. They are given

in appendix C.2. We express the scalar functions Ãi in terms of the 74 coefficient functions
Anon-pole
i (q3 = 0):

Ãi(s, t− u, q2
1, q

2
2) =

74∑
j=1

aijAnon-pole
j (q3 = 0) , (6.37)

where the matrix aij contains poles of the form 1/(q2
1 − q2

2) and 1/(t − u), which are
cancelled in Ãi by kinematic zeros due to crossing symmetry. The matrix aij is provided
as supplementary material, together with a Mathematica notebook that makes use of
FeynCalc [75–77].

The remaining redundancy only involves structures of dimension 8 and 10 and has
the form

0 = (t− u)2T̃µνλ;σ
22 − (q2

1 − q2
2 − s)(q2

1 − q2
2 + s)T̃µνλ;σ

27 + (q2
1 + q2

2 − s)T̃
µνλ;σ
28 . (6.38)

We can write the soft-photon limit in terms of a basis:

∂

∂q3σ
Mµνλ

reg (p1, p2, q1, q2)
∣∣∣∣
q3=0

=
27∑
i=1
Bµνλ;σ
i (q1, q2, q5)Āi(s, t− u, q2

1, q
2
2) , (6.39)

where

Bµνλ;σ
22 = 1

q2
1 + q2

2 − s
T̃µνλ;σ

22 , Bµνλ;σ
27 = 1

q2
1 + q2

2 − s
T̃µνλ;σ

27 ,

Bµνλ;σ
i = T̃µνλ;σ

i for i ∈ {1, . . . , 21, 23, . . . , 26} . (6.40)

The redundancy is traded for the following kinematic constraint:

Ā22 = (q2
1 + q2

2 − s)Ã22 − (t− u)2Ã28 ,

Ā27 = (q2
1 + q2

2 − s)Ã27 + (q2
1 − q2

2 − s)(q2
1 − q2

2 + s)Ã28 ,

Āi = Ãi for i ∈ {1, . . . , 21, 23, . . . , 26} , (6.41)

which ensures that the spurious kinematic singularities in eq. (6.40) drop out in eq. (6.39).
We note that in contrast to HLbL in four-point kinematics, the assumption of unsubtracted
dispersion relations for the basis coefficient functions Āi does not require sum rules for the
functions Ãi beyond the ones that guarantee basis independence for the regular tensor in
the soft-photon limit. In addition, the spurious singularities in eq. (6.40) are harmless: their
cancellation in the imaginary part of the HLbL scalar functions Π̂i is numerically uncritical,
because the imaginary part in the dispersion relation (3.1) is evaluated only for q2

1,2 ≤ 0
and s ≥ 4M2

π .
This shows that dispersion relations in triangle kinematics, together with the derived

tensor decompositions for the sub-processes, open up a path towards the dispersive evaluation
of two-pion contributions beyond S-waves, including tensor-meson resonances in the D-wave:
the new formalism is not affected by ambiguous singular subtractions that require the exact
fulfillment of sum rules by the HLbL tensor.

– 30 –



J
H
E
P
0
4
(
2
0
2
3
)
1
2
5

7 Conclusions and outlook

In this paper, we introduced a novel dispersive framework for HLbL which directly applies in
the kinematic limit relevant for aµ. We showed in detail how this allows us to overcome issues
with kinematic singularities that affect intermediate states of spin two and higher present
in the established dispersive approach in four-point kinematics. In the new framework, a
reshuffling of intermediate-state contributions takes place and further sub-processes enter the
two-pion unitarity relations. These can be dispersively reconstructed without introducing
kinematic singularities nor ambiguities. Our results pave the way for a first complete
data-driven evaluation of all contributions to HLbL that are described in terms of exclusive
hadronic intermediate states and that are required to reach an accuracy matching the final
precision goal of the E989 experiment at Fermilab.

We stress that the goal of our new dispersive formalism is not to replace the established
one but rather to extend and complement it. The dispersive reconstruction of the sub-
processes needed to solve two-pion unitarity in triangle kinematics will allow us to obtain
numerical results for two-pion contributions to HLbL beyond the S-wave, including the
f2(1270) resonance in the D-wave. Once a description of all relevant sub-processes is
available, a detailed analysis of the reshuffling of intermediate-state contributions with
respect to the established approach will be possible yielding more robust estimates of
suppressed effects. Therefore, while the new formalism offers a path towards a dispersive
treatment of higher-spin resonances, we expect that the detailed comparison of the two
approaches will be very useful even for contributions that can be included in the established
approach, such as scalar and axial-vector contributions. Moreover, the new approach
provides new perspectives on the matching onto asymptotic constraints [19, 78]. A suitable
combination of the two dispersive approaches to HLbL will enable a precise data-driven
determination of this contribution with reliable uncertainties, compatible with all theoretical
and experimental constraints.
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A Scalar toy examples

A.1 Triangle diagram

As an illustration of the cancellation of soft singularities between s- and q2
3-channel unitarity

cuts in HLbL, we consider the simple example of a scalar three-point function. We define
the triangle function by

C0(q2
1, q

2
2, q

2
3) =

∫
d4l

(2π)4
i

l2 −M2
i

(l − q2)2 −M2
i

(l + q3)2 −M2 . (A.1)
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The Feynman parametrization reads

C0(q2
1, q

2
2, q

2
3) = − 1

16π2

∫ 1

0
dxdydz

δ(1− x− y − z)
∆123

,

∆ijk = M2 − xyq2
i − xzq2

j − yzq2
k . (A.2)

For values of q2
2,3 that avoid anomalous thresholds [79], the C0 function fulfills the following

dispersion relation:

C0(q2
1, q

2
2, q

2
3) = 1

π

∫ ∞
4M2

ds
∆1C0(s, q2

2, q
2
3)

s− q2
1 − iε

,

∆1C0(s, q2
2, q

2
3) = C0(s+ iε, q2

2, q
2
3)− C0(s− iε, q2

2, q
2
3)

2i

= 1
16π

1
λ

1/2
23 (s)

log
(
−s(s− q2

2 − q2
3) +

√
s(s− 4M2)λ1/2

23 (s)
−s(s− q2

2 − q2
3)−

√
s(s− 4M2)λ1/2

23 (s)

)
,

λij(s) = λ(s, q2
i , q

2
j ) . (A.3)

Consider now the scalar triangle diagram for degenerate kinematics q3 → 0:

C0(q2
1, q

2
1, 0) = 1

i

∫
d4l

(2π)4
1

l2 −M2
1

(l + q1)2 −M2
1

l2 −M2 . (A.4)

Explicit evaluation of the integral gives

C0(q2
1, q

2
1, 0) = − 1

16π2
1√

q2
1(q2

1 − 4M2)
log


√
q2

1(q2
1 − 4M2) + 2M2 − q2

1

2M2

 . (A.5)

This function satisfies a dispersion relation

C0(q2
1, q

2
1, 0) = 1

π

∫ ∞
4M2

ds
∆C0(s)

s− q2
1 − iε

,

∆C0(s) = C0(s+ iε, s+ iε, 0)− C0(s− iε, s− iε, 0)
2i = − 1

16π
1√

s(s− 4M2)
. (A.6)

This representation can also be obtained by starting from the dispersion relation (A.3):

C0(q2
1, q

2
1, 0) = 1

π

∫ ∞
4M2

ds
∆1C0(s, q2

1, 0)
s− q2

1 − iε
,

∆1C0(s, q2
1, 0) = 1

16π
1

s− q2
1

log
(
s−

√
s(s− 4M2)

s+
√
s(s− 4M2)

)
. (A.7)

The double pole can be written as a derivative of the Cauchy kernel:

C0(q2
1, q

2
1, 0) = 1

π

∫ ∞
4M2

ds
∂

∂s

( 1
s− q2

1

) −1
16π log

(
s−

√
s(s− 4M2)

s+
√
s(s− 4M2)

)

= 1
π

∫ ∞
4M2

ds
1

s− q2
1

∂

∂s

1
16π log

(
s−

√
s(s− 4M2)

s+
√
s(s− 4M2)

)

= 1
π

∫ ∞
4M2

ds
1

s− q2
1

−1
16π

1√
s(s− 4M2)

, (A.8)
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where we integrated by parts. However, this trick only works because q2
1 appears in

∆1C0(s, q2
1, 0) as a pure pole. More generally, we can derive the imaginary part in analogy

to eq. (3.5):

∆C0(s) = C0(s+ iε, s+ iε, 0)− C0(s− iε, s− iε, 0)
2i

= lim
t→s

[
C0(s+ iε, t+ iε, 0)− C0(s− iε, t− iε, 0)

2i

]
= lim

t→s

[
C0(s+ iε, t+ iε, 0)− C0(s− iε, t+ iε, 0)

2i

+ C0(s− iε, t+ iε, 0)− C0(s− iε, t− iε, 0)
2i

]
= lim

t→s

[
C0(s+ iε, t+ iε, 0)− C0(s− iε, t+ iε, 0)

2i

+
(
C0(s+ iε, t+ iε, 0)− C0(s+ iε, t− iε, 0)

2i

)∗]
= lim

t→s

[
∆1C0(s, t+ iε, 0) +

(
∆2C0(s+ iε, t, 0)

)∗]
, (A.9)

where we made use of the Schwarz reflection principle. Note that the limits of the individual
terms in the bracket do not exist due to the soft singularities in the discontinuities. However,
these poles cancel in the sum of the two discontinuities. The explicit calculation gives

∆C0(s) = lim
t→s

[
∆1C0(s, t+ iε, 0) + ∆2C0(s+ iε, t, 0)∗

]
= 1

16π lim
t→s

[ 1
s− t

f(s) + 1
t− s

f(t)
]

= 1
16πf

′(s) , (A.10)

where

f(s) = log
(
s−

√
s(s− 4M2)

s+
√
s(s− 4M2)

)
, (A.11)

i.e., indeed

∆C0(s) = − 1
16π

1√
s(s− 4M2)

. (A.12)

A.2 Box diagram

Similarly to the triangle diagram, we consider the scalar box integral with equal internal
masses, defined by

D0(q2
1, q

2
2, q

2
3, q

2
4,s, t) = 1

i

∫
d4l

(2π)4
1

l2−M2
1

(l+q1)2−M2
1

(l+q1+q2)2−M2
1

(l−q4)2−M2 ,

(A.13)
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where s = (q1 + q2)2 and t = (q2 + q3)2. This loop function satisfies the following dispersion
relation in the Mandelstam variable s:

D0(q2
1, q

2
2, q

2
3, q

2
4, s, t) = 1

π

∫ ∞
4M2

ds′
∆sD0(q2

1, q
2
2, q

2
3, q

2
4, s
′, t)

s′ − s− iε
,

∆sD0(q2
1, q

2
2, q

2
3, q

2
4, s, t) = D0(q2

1, q
2
2, q

2
3, q

2
4, s+ iε, t)−D0(q2

1, q
2
2, q

2
3, q

2
4, s− iε, t)

2i

= 1
64π2

√
1− 4M2

s

∫
dΩl

1
(l + q1)2 −M2

1
(l − q4)2 −M2 , (A.14)

where in the phase-space integral, l2 = M2, |~l| =
√
s−4M2

2 . The phase-space integral can
be evaluated explicitly by using a Feynman parametrization for the two propagators. It
can also be converted into a second dispersion integral, which leads to the double-spectral
representation [41, 80].

Alternatively, the D0 function satisfies a dispersion relation in the virtuality q2
3 for fixed

Mandelstam variables:

D0(q2
1, q

2
2, q

2
3, q

2
4, s, t) = 1

π

∫ ∞
4M2

dw
∆3D0(q2

1, q
2
2, w, q

2
4, s, t)

w − q2
3 − iε

,

∆3D0(q2
1, q

2
2, q

2
3, q

2
4, s, t) = D0(q2

1, q
2
2, q

2
3 + iε, q2

4, s, t)−D0(q2
1, q

2
2, q

2
3 − iε, q2

4, s, t)
2i

= 1
64π2

√
1− 4M2

q2
3

∫
dΩl

1
(l − q1 − q4)2 −M2

1
(l − q4)2 −M2 ,

(A.15)

where l2 = M2, |~l| =
√
q2

3−4M2

2 .
We now consider the box diagram in the kinematic limit q4 → 0:

D0(q2
1, q

2
2, q

2
3, 0, q2

3, q
2
1) = 1

i

∫
d4l

(2π)4
1

l2 −M2
1

(l + q1)2 −M2
1

(l + q1 + q2)2 −M2
1

l2 −M2 .

(A.16)

This function satisfies the following dispersion relation in q2
3:

D0(q2
1, q

2
2, q

2
3, 0, q2

3, q
2
1) = 1

π

∫ ∞
4M2

ds
∆D0(q2

1, q
2
2, s)

s− q2
3 − iε

,

∆D0(q2
1, q

2
2, s) = D0(q2

1, q
2
2, s+ iε, 0, s+ iε, q2

1)−D0(q2
1, q

2
2, s− iε, 0, s− iε, q2

1)
2i

= 1
16π

1√
s(s− 4M2)

2M2(s− q2
1 + q2

2)− sq2
2

M2λ12(s) + sq2
1q

2
2

. (A.17)

Similarly to the case of the triangle diagram, this discontinuity can be obtained from the
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discontinuities for non-degenerate kinematics:

∆D0(q2
1, q

2
2,s) = lim

w→s

[
D0(q2

1, q
2
2,s+iε,0,w+iε,q2

1)−D0(q2
1, q

2
2,s+iε,0,w−iε,q2

1)
2i

+D0(q2
1, q

2
2,s+iε,0,w−iε,q2

1)−D0(q2
1, q

2
2,s−iε,0,w−iε,q2

1)
2i

]

= lim
w→s

[
D0(q2

1, q
2
2,s+iε,0,w+iε,q2

1)−D0(q2
1, q

2
2,s+iε,0,w−iε,q2

1)
2i

+
(
D0(q2

1, q
2
2,s+iε,0,w+iε,q2

1)−D0(q2
1, q

2
2,s−iε,0,w+iε,q2

1)
2i

)∗]

= lim
w→s

[
∆sD0(q2

1, q
2
2,s+iε,0,w,q2

1)+∆3D0(q2
1, q

2
2,s,0,w+iε,q2

1)∗
]
, (A.18)

where again the limit of the individual terms does not exist due to soft singularities in the
discontinuities, which cancel in the sum. By explicitly calculating the discontinuities ∆sD0
and ∆3D0 using Feynman parameters, we indeed reproduce (A.17).

B Tensor-meson contributions

The contribution of tensor mesons in the NWA to the s-channel unitarity relation is given
by eqs. (5.33), (5.34), and (5.35), with the following coefficients:

t4,1(q2
1, q

2
2) = 8m4

T

3 ,

t4,2(q2
1, q

2
2) = 2

3
(
m4
T + (q2

1 + q2
2)m2

T − 2(q2
1 − q2

2)2
)
,

t4,3(q2
1, q

2
2) = 2

3
(
m4
T − (q2

1 + q2
2)m2

T − 2(q2
1 − q2

2)2
)
,

t4,4(q2
1, q

2
2) = t4,5(q2

2, q
2
1) = −4

3
(
m4
T − q2

2m
2
T − (q2

1 − q2
2)2
)
,

t5,1(q2
1, q

2
2) = t6,1(q2

1, q
2
2) = −m2

T (m2
T − q2

1 − q2
2) ,

t5,3(q2
1, q

2
2) = −t5,5(q2

1, q
2
2) = t6,3(q2

2, q
2
1) = −t6,4(q2

2, q
2
1) = (m2

T + q2
2)(m2

T − q2
1 − q2

2) ,

t5,4(q2
1, q

2
2) = t6,5(q2

1, q
2
2) = 1

2(m2
T − q2

1 − q2
2)2 ,

t7,4(q2
1, q

2
2) = t7,5(q2

1, q
2
2) = −t7,2(q2

1, q
2
2) = −t7,3(q2

1, q
2
2)

= t8,4(q2
2, q

2
1) = t8,5(q2

2, q
2
1) = −t8,2(q2

2, q
2
1) = −t8,3(q2

2, q
2
1) = 2(m2

T − q2
1 + q2

2) ,
t9,3(q2

1, q
2
2) = t10,1(q2

1, q
2
2) = t13,3(q2

1, q
2
2) = t14,1(q2

1, q
2
2)

= t50,1(q2
1, q

2
2) = t51,1(q2

1, q
2
2) = −t39,1(q2

1, q
2
2) = −2m2

T ,

t9,5(q2
1, q

2
2) = t10,4(q2

1, q
2
2) = t13,4(q2

1, q
2
2) = t14,5(q2

1, q
2
2)

= −t9,4(q2
1, q

2
2) = −t13,5(q2

1, q
2
2) = m2

T − q2
1 − q2

2 ,

t10,3(q2
1, q

2
2) = −t10,5(q2

1, q
2
2) = t14,3(q2

2, q
2
1) = −t14,4(q2

2, q
2
1) = 2(m2

T + q2
2) ,

t11,3(q2
1, q

2
2) = t54,3(q2

1, q
2
2) = t16,3(q2

2, q
2
1) = q2

1 − q2
2 ,

– 35 –



J
H
E
P
0
4
(
2
0
2
3
)
1
2
5

t11,4(q2
1, q

2
2) = t54,4(q2

1, q
2
2) = −t16,4(q2

1, q
2
2) = t16,5(q2

2, q
2
1)

= −t11,5(q2
2, q

2
1) = −t54,5(q2

2, q
2
1) = 1

2(m2
T − q2

1 + q2
2) ,

t17,1(q2
1, q

2
2) = −10m2

T

3 ,

t17,3(q2
1, q

2
2) = 1

3(2m2
T + 5(q2

1 + q2
2)) ,

t17,4(q2
1, q

2
2) = t17,5(q2

2, q
2
1) = 1

6(7m2
T − 7q2

1 − 13q2
2) ,

t39,3(q2
1, q

2
2) = 2m2

T − q2
1 − q2

2 ,

t39,4(q2
1, q

2
2) = t39,5(q2

2, q
2
1) = 1

2(−3m2
T + 3q2

1 + q2
2) ,

t50,3(q2
1, q

2
2) = t51,3(q2

1, q
2
2) = q2

1 + q2
2 ,

t50,4(q2
1, q

2
2) = t51,4(q2

1, q
2
2) = t50,5(q2

2, q
2
1) = t51,5(q2

2, q
2
1) = 1

2(m2
T − q2

1 − 3q2
2) (B.1)

and all other ti,j vanish.

C Tensor decomposition for γ∗γ∗γ → 2π

C.1 Off-shell tensor structures

The 20 photon-crossing classes of tensor structures for the off-shell process γ∗γ∗γ∗ → 2π
are defined by the following representative elements:

Tµνλ1 = (q1 ·q2)
(
qµ3 g

λν−qν3gλµ
)
+(q1 ·q3)

(
qλ2 g

µν−qµ2 g
λν)

+qν1
(
(q2 ·q3)gλµ−qλ2 q

µ
3
)
+qλ1

(
qµ2 q

ν
3−(q2 ·q3)gµν

)
,

Tµνλ2 =
(
qµ3 (q1 ·q2)−qµ2 (q1 ·q3)

)(
qλ2 q

ν
3−(q2 ·q3)gλν

)
,

Tµνλ5 =
(
qµ4 (q1 ·q2)−qµ2 (q1 ·q4)

)(
qλ2 q

ν
3−(q2 ·q3)gλν

)
,

Tµνλ11 =
(
qµ5 (q1 ·q2)−qµ2 (q1 ·q5)

)(
qλ2 q

ν
3−(q2 ·q3)gλν

)
,

Tµνλ17 =
(
qµ5 (q1 ·q4)−qµ4 (q1 ·q5)

)(
qλ2 q

ν
3−(q2 ·q3)gλν

)
,

Tµνλ20 = qν4

[
(q2 ·q3)

(
(q1 ·q5)gλµ−qλ1 q

µ
5
)
+qλ2

(
qµ5 (q1 ·q3)−qµ3 (q1 ·q5)

)]
+(q2 ·q4)

[
qµ5
(
qλ1 q

ν
3−(q1 ·q3)gλν

)
+(q1 ·q5)

(
qµ3 g

λν−qν3gλµ
)]
,

Tµνλ26 = qλ4
[
(q1 ·q3)

(
qµ2 q

ν
4−(q2 ·q4)gµν

)
+qµ3

(
qν1 (q2 ·q4)−qν4 (q1 ·q2)

)]
+(q3 ·q4)

[
qν4
(
(q1 ·q2)gλµ−qλ1 q

µ
2
)
+(q2 ·q4)

(
qλ1 g

µν−qν1gλµ
)]
,

Tµνλ29 = qλ5
[
(q1 ·q3)

(
qµ2 q

ν
5−(q2 ·q5)gµν

)
+qµ3

(
qν1 (q2 ·q5)−qν5 (q1 ·q2)

)]
+(q3 ·q5)

[
qν5
(
(q1 ·q2)gλµ−qλ1 q

µ
2
)
+(q2 ·q5)

(
qλ1 g

µν−qν1gλµ
)]
,

Tµνλ32 = 2(q1 ·q2)(q1 ·q3)qµ4 gλν−(q1 ·q4)
[
(q1 ·q2)

(
qµ3 g

λν−qν3gλµ
)
+(q1 ·q3)

(
qµ2 g

λν−qλ2 gµν
)]

−qν1
[
(q1 ·q4)(q2 ·q3)gλµ+qλ2

(
2qµ4 (q1 ·q3)−qµ3 (q1 ·q4)

)]
−qλ1

[
(q2 ·q3)

(
(q1 ·q4)gµν−2qµ4 qν1

)
+qν3

(
2qµ4 (q1 ·q2)−qµ2 (q1 ·q4)

)]
,
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Tµνλ35 = 2(q1 ·q2)(q1 ·q3)qµ5 gλν+(q1 ·q5)
[
(q1 ·q2)

(
qν3g

λµ−qµ3 g
λν)+(q1 ·q3)

(
qλ2 g

µν−qµ2 g
λν)]

+qν1
[
qλ2
(
qµ3 (q1 ·q5)−2qµ5 (q1 ·q3)

)
−(q1 ·q5)(q2 ·q3)gλµ

]
+qλ1

[
(q2 ·q3)

(
2qµ5 qν1−(q1 ·q5)gµν

)
+qν3

(
qµ2 (q1 ·q5)−2qµ5 (q1 ·q2)

)]
,

Tµνλ38 =
(
qµ4 (q1 ·q3)−qµ3 (q1 ·q4)

)[
(q3 ·q4)

(
(q2 ·q5)gλν−qλ2 qν5

)
+qλ4

(
qν5 (q2 ·q3)−qν3 (q2 ·q5)

)]
,

Tµνλ44 =
(
qµ4 (q1 ·q3)−qµ3 (q1 ·q4)

)[
(q3 ·q5)

(
(q2 ·q5)gλν−qλ2 qν5

)
+qλ5

(
qν5 (q2 ·q3)−qν3 (q2 ·q5)

)]
,

Tµνλ50 =
(
qµ5 (q1 ·q4)−qµ4 (q1 ·q5)

)[
(q2 ·q4)

(
(q3 ·q5)gλν−qλ5 qν3

)
+qν4

(
qλ5 (q2 ·q3)−qλ2 (q3 ·q5)

)]
,

Tµνλ56 =
(
qµ5 (q1 ·q4)−qµ4 (q1 ·q5)

)[
(q3 ·q5)

(
(q2 ·q5)gλν−qλ2 qν5

)
+qλ5

(
qν5 (q2 ·q3)−qν3 (q2 ·q5)

)]
,

Tµνλ59 =
(
qµ5 (q1 ·q4)−qµ4 (q1 ·q5)

)[
(q3 ·q4)

(
(q2 ·q4)gλν−qλ2 qν4

)
+qλ4

(
qν4 (q2 ·q3)−qν3 (q2 ·q4)

)]
,

Tµνλ62 = qλ4

[
(q1 ·q4)

[
(q2 ·q4)

(
(q1 ·q3)gµν+qµ3 qν1

)
−qν4

(
qµ3 (q1 ·q2)+qµ2 (q1 ·q3)

)]
+2qµ4 (q1 ·q3)

(
qν4 (q1 ·q2)−qν1 (q2 ·q4)

)]
+(q3 ·q4)

[
qν4

[
(q1 ·q4)

(
(q1 ·q2)gλµ+qλ1 q

µ
2
)
−2qλ1 q

µ
4 (q1 ·q2)

]
+(q2 ·q4)

[
2qλ1 q

µ
4 q

ν
1−(q1 ·q4)

(
qν1g

λµ+qλ1 gµν
)]]

,

Tµνλ65 = qλ4

[
(q2 ·q4)

[
(q1 ·q5)

(
(q1 ·q3)gµν+qµ3 qν1

)
−2qµ5 qν1 (q1 ·q3)

]
+qν4

[
2qµ5 (q1 ·q2)(q1 ·q3)−(q1 ·q5)

(
qµ3 (q1 ·q2)+qµ2 (q1 ·q3)

)]]
+(q3 ·q4)

[
qν4

[
(q1 ·q5)

(
(q1 ·q2)gλµ+qλ1 q

µ
2
)
−2qλ1 q

µ
5 (q1 ·q2)

]
+(q2 ·q4)

(
2qλ1 q

µ
5 q

ν
1−(q1 ·q5)

(
qν1g

λµ+qλ1 gµν
))]

,

Tµνλ68 = (q1 ·q4)
[
qλ5
[
(q2 ·q5)

(
(q1 ·q3)gµν+qµ3 qν1

)
−qν5

(
qµ3 (q1 ·q2)+qµ2 (q1 ·q3)

)]
+(q3 ·q5)

[
qν5
(
(q1 ·q2)gλµ+qλ1 q

µ
2
)
−(q2 ·q5)

(
qν1g

λµ+qλ1 gµν
)]]

+2qµ4
(
qλ5 (q1 ·q3)−qλ1 (q3 ·q5)

)(
qν5 (q1 ·q2)−qν1 (q2 ·q5)

)
,

Tµνλ71 = qλ5

[
(q1 ·q5)

[
(q2 ·q5)

(
(q1 ·q3)gµν+qµ3 qν1

)
−qν5

(
qµ3 (q1 ·q2)+qµ2 (q1 ·q3)

)]
+2qµ5 (q1 ·q3)

(
qν5 (q1 ·q2)−qν1 (q2 ·q5)

)]
+(q3 ·q5)

[
qν5

[
(q1 ·q5)

(
(q1 ·q2)gλµ+qλ1 q

µ
2
)
−2qλ1 q

µ
5 (q1 ·q2)

]
+(q2 ·q5)

[
2qλ1 q

µ
5 q

ν
1−(q1 ·q5)

(
qν1g

λµ+qλ1 gµν
)]]

,

Tµνλ74 =
(
qλ5 (q3 ·q4)−qλ4 (q3 ·q5)

)(
qµ5 (q1 ·q4)−qµ4 (q1 ·q5)

)(
qν5 (q2 ·q4)−qν4 (q2 ·q5)

)
. (C.1)

The remaining 54 structures in eq. (6.26) can be obtained from the given ones by applying
the following photon-crossing operations:

Tµνλ3 = C12
[
Tµνλ2

]
, Tµνλ4 = C13

[
Tµνλ2

]
,

Tµνλ6 = C12
[
Tµνλ5

]
, Tµνλ7 = C13

[
Tµνλ5

]
, Tµνλ8 = C23

[
Tµνλ5

]
, Tµνλ9 = C12

[
Tµνλ8

]
, Tµνλ10 = C12

[
Tµνλ7

]
,

Tµνλ12 = C12
[
Tµνλ11

]
, Tµνλ13 = C13

[
Tµνλ11

]
, Tµνλ14 = C23

[
Tµνλ11

]
, Tµνλ15 = C12

[
Tµνλ14

]
, Tµνλ16 = C12

[
Tµνλ13

]
,

Tµνλ18 = C12
[
Tµνλ17

]
, Tµνλ19 = C13

[
Tµνλ17

]
,
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Tµνλ21 = C12
[
Tµνλ20

]
, Tµνλ22 = C13

[
Tµνλ20

]
, Tµνλ23 = C23

[
Tµνλ20

]
, Tµνλ24 = C12

[
Tµνλ23

]
, Tµνλ25 = C12

[
Tµνλ22

]
,

Tµνλ27 = C12
[
Tµνλ26

]
, Tµνλ28 = C13

[
Tµνλ26

]
,

Tµνλ30 = C12
[
Tµνλ29

]
, Tµνλ31 = C13

[
Tµνλ29

]
,

Tµνλ33 = C12
[
Tµνλ32

]
, Tµνλ34 = C13

[
Tµνλ32

]
,

Tµνλ36 = C12
[
Tµνλ35

]
, Tµνλ37 = C13

[
Tµνλ35

]
,

Tµνλ39 = C12
[
Tµνλ38

]
, Tµνλ40 = C13

[
Tµνλ38

]
, Tµνλ41 = C23

[
Tµνλ38

]
, Tµνλ42 = C12

[
Tµνλ41

]
, Tµνλ43 = C12

[
Tµνλ40

]
,

Tµνλ45 = C12
[
Tµνλ44

]
, Tµνλ46 = C13

[
Tµνλ44

]
, Tµνλ47 = C23

[
Tµνλ44

]
, Tµνλ48 = C12

[
Tµνλ47

]
, Tµνλ49 = C12

[
Tµνλ46

]
,

Tµνλ51 = C12
[
Tµνλ50

]
, Tµνλ52 = C13

[
Tµνλ50

]
, Tµνλ53 = C23

[
Tµνλ50

]
, Tµνλ54 = C12

[
Tµνλ53

]
, Tµνλ55 = C12

[
Tµνλ52

]
,

Tµνλ57 = C12
[
Tµνλ56

]
, Tµνλ58 = C13

[
Tµνλ56

]
,

Tµνλ60 = C12
[
Tµνλ59

]
, Tµνλ61 = C13

[
Tµνλ59

]
,

Tµνλ63 = C12
[
Tµνλ62

]
, Tµνλ64 = C13

[
Tµνλ62

]
,

Tµνλ66 = C12
[
Tµνλ65

]
, Tµνλ67 = C13

[
Tµνλ65

]
,

Tµνλ69 = C12
[
Tµνλ68

]
, Tµνλ70 = C13

[
Tµνλ68

]
,

Tµνλ72 = C12
[
Tµνλ71

]
, Tµνλ73 = C13

[
Tµνλ71

]
. (C.2)

The tensor structures Tµνλi can also be found in the supplementary material.

C.2 Tensor structures for the soft-photon limit

We express the 28 tensor structures in the soft-photon limit in terms of the derivatives of
the 74 off-shell structures defined in appendix C.1:

Tµνλ;σ
i (q1, q2, q5) =

(
∂

∂q3σ
Tµνλi

) ∣∣∣∣
q3=0

. (C.3)

They are given by

T̃µνλ;σ
1 =Tµνλ;σ

11 +Tµνλ;σ
12 , T̃µνλ;σ

2 =Tµνλ;σ
13 +Tµνλ;σ

16 , T̃µνλ;σ
3 =Tµνλ;σ

17 +Tµνλ;σ
18 ,

T̃µνλ;σ
4 =Tµνλ;σ

20 +Tµνλ;σ
21 , T̃µνλ;σ

5 =Tµνλ;σ
22 +Tµνλ;σ

25 , T̃µνλ;σ
6 =Tµνλ;σ

23 +Tµνλ;σ
24 ,

T̃µνλ;σ
7 = (t−u)Tµνλ;σ

1 ,

T̃µνλ;σ
8 =Tµνλ;σ

41 +Tµνλ;σ
42 , T̃µνλ;σ

9 =Tµνλ;σ
56 +Tµνλ;σ

57 , T̃µνλ;σ
10 =Tµνλ;σ

58 ,

T̃µνλ;σ
11 = (q2

1−q2
2)
(
Tµνλ;σ

11 −Tµνλ;σ
12

)
, T̃µνλ;σ

12 = (q2
1−q2

2)
(
Tµνλ;σ

13 −Tµνλ;σ
16

)
,

T̃µνλ;σ
13 = (q2

1−q2
2)
(
Tµνλ;σ

17 −Tµνλ;σ
18

)
, T̃µνλ;σ

14 = (q2
1−q2

2)
(
Tµνλ;σ

20 −Tµνλ;σ
21

)
,

T̃µνλ;σ
15 = (q2

1−q2
2)
(
Tµνλ;σ

23 −Tµνλ;σ
24

)
, T̃µνλ;σ

16 = (q2
1−q2

2)
(
Tµνλ;σ

22 −Tµνλ;σ
25

)
,

T̃µνλ;σ
17 = (t−u)Tµνλ;σ

4 , T̃µνλ;σ
18 = (t−u)

(
Tµνλ;σ

26 −Tµνλ;σ
27

)
,

T̃µνλ;σ
19 = (t−u)Tµνλ;σ

28 , T̃µνλ;σ
20 = (t−u)

(
Tµνλ;σ

29 −Tµνλ;σ
30

)
, T̃µνλ;σ

21 = (t−u)Tµνλ;σ
31 ,

T̃µνλ;σ
22 = (q2

1−q2
2−s)T

µνλ;σ
41 −(q2

1−q2
2 +s)Tµνλ;σ

42 , T̃µνλ;σ
23 = (q2

1−q2
2)
(
Tµνλ;σ

56 −Tµνλ;σ
57

)
,

T̃µνλ;σ
24 = (q2

1−q2
2)
(
t−u

2 Tµνλ;σ
30 +Tµνλ;σ

58 −Tµνλ;σ
72

)
, T̃µνλ;σ

25 = (t−u)
(
Tµνλ;σ

50 −Tµνλ;σ
51

)
,
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T̃µνλ;σ
26 = (q2

1−q2
2)(t−u)

(
Tµνλ;σ

26 +Tµνλ;σ
27

)
,

T̃µνλ;σ
27 = (q2

1 +q2
2−s)

(
Tµνλ;σ

56 +Tµνλ;σ
57

)
−(q2

1−q2
2−s)T

µνλ;σ
58 +(q2

1−q2
2)Tµνλ;σ

72

+(t−u)
[
−Tµνλ;σ

50 +Tµνλ;σ
51 +(q2

1−q2
2−s)T

µνλ;σ
29 + 1

2(q2
1−q2

2 +2s)Tµνλ;σ
30

+(s−4M2
π)
(
sTµνλ;σ

1 +Tµνλ;σ
26 −Tµνλ;σ

27 −Tµνλ;σ
28

)]
+ (t−u)2

2
(
−Tµνλ;σ

17 −Tµνλ;σ
18 +Tµνλ;σ

20 +Tµνλ;σ
21 +Tµνλ;σ

22 +Tµνλ;σ
25

)
,

T̃µνλ;σ
28 = (t−u)

(
(q2

1−q2
2−s)T

µνλ;σ
50 +(q2

1−q2
2 +s)Tµνλ;σ

51

)
. (C.4)

The tensor structures T̃µνλ;σ
i can also be found in the supplementary material.
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