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1 Introduction

The non-perturbative dynamics of quantum gauge theories is an important research area,
with applications to several fields of physics including the strong nuclear interactions and
condensed matter systems. The non-abelian gauge theories in 1+1 dimensions, which
have served as simplified models for Quantum Chromodynamics (QCD), provide a nice
playground where various methods can be tested. They are also interesting in their own
right and may have connections to condensed matter and cold atom physics. A well-known
such 2D model is the SU(N) gauge theory coupled to a fundamental Dirac fermion of
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mass m, often called QCD2. ’t Hooft [1] used Light-Cone Quantization (LCQ) to show
that, in the large N limit, the meson spectrum of this model is calculable and consists of
a single “Regge trajectory.” Therefore, this model exhibits quark confinement. The LCQ
has also been applied to the QCD2 models with small numbers of colors N [2–4]. This
is more complicated than the large N limit, since the states can no longer be truncated
to a single quark-antiquark pair. Nevertheless, numerical diagonalizations of the Light-
Cone Hamiltonian have produced quite precise results. Thus, the LCQ approach to the
bound state spectrum is sometimes more efficient than the Lattice Gauge Theory [5, 6] or
bosonization techniques [7]. When these different numerical approaches can be compared,
they appear to be in good agreement with each other [3, 4]. A remarkable feature of QCD2
with a massless quark is that the spectrum contains a massless baryon in addition to a
massless meson [8, 9].

A key reason for the simplification in two spacetime dimensions is that the gauge field
is not dynamical. This is a sharp distinction from the four-dimensional case, in which
propagating gluon degrees of freedom are physically important. It is thus interesting to
consider generalizations of the ’t Hooft model containing fields in the adjoint representation
of SU(N) [10]. The theory then has propagating adjoint degrees of freedom that lead to
interesting dynamics and the presence of different topological sectors [11–15]. In the large
N limit, application of Light-Cone Quantization leads to truncation to the single-trace
states. Since in the adjoint case these closed string-like states can consist of arbitrarily
large numbers of adjoint quanta, the numerical solution of the Light-Cone Schrödinger
equation is necessarily much more complicated than for the ’t Hooft model. Nevertheless,
good numerical results for the spectra have been obtained using Discretized Light-Cone
Quantization (DLCQ) [16] as well as Conformal Truncation approaches [17, 18].

A particularly simple 2D model with adjoint matter is SU(N) gauge theory coupled to
an adjoint Majorana fermion [10, 19–21]. The Light-Cone Quantization of this model is not
afflicted by the fermion-doubling problems seen on the lattice, and very good convergence
of the large N bound state spectra in DLCQ has been observed [20, 22]. When the adjoint
mass madj is taken to 0, all the “gluinoballs” stay massive, which follows from the vanishing
of the IR central charge [19, 20]; this gauged Majorana model is thus an example of a
gapped topological phase. A remarkable feature of the madj → 0 limit is that the string
tension divided by g2N is renormalized from order 1 at short distances to zero at long
distances. Thus, the theory with a massless adjoint fermion is not confining [15, 22–25].
In the DLCQ approach with antiperiodic boundary conditions, the lack of confinement
manifests itself in certain exact degeneracies observed even at a finite value of the cut-off
K [22, 24]. These degeneracies arise due to the Kac-Moody symmetry present in the DLCQ
formulation of the model [22, 26].

We can further improve upon the analogy with physical QCD by passing from the
large N limit to finite N and considering a 2D Yang-Mills theory with a low-rank SU(N)
gauge group coupled to an adjoint Majorana fermion of mass madj. This theory was
previously studied by Antonuccio and Pinsky in [27], who used DLCQ to numerically
estimate the masses of the lowest fermion and boson states. However, their method is not
straightforwardly extensible to extracting the entire spectrum, for group-theoretic reasons
we will elaborate on in section 3. In particular, it does not allow for a reliable estimation of
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the onset of the continuum in the spectrum. In this paper, we will describe a method that
allows us to augment the DLCQ approach with trace relations for low-rank gauge groups.
This enables us to accurately determine the spectrum of these theories, and to do so at a
relatively high numerical resolution, allowing for reliable extrapolation to the continuum
limit. We implement this method explicitly for N = 2, 3, and 4. Our results show that,
even for such low ranks, the low-lying gluinoball spectra can be well approximated via the
expansion in powers of 1/N2. In other words, we find that

M2 = g2N

π

(
a0 + a1N

−2 +O(N−4)
)
, (1.1)

and that for the low-lying gluinoballs a1 � a0. For example, in the madj = 0 theory, for the
lightest fermionic bound state a0 ≈ 5.7 and a1 ≈ 0.0035; and for the lightest bosonic bound
state a0 ≈ 10.8 and a1 ≈ 0.013. These results are complementary to the earlier studies of
the expansions in powers of 1/N2, which confirmed its validity for the glueballs in 3D and
4D SU(N) gauge theory [28, 29]. Additionally, when madj = 0, we find doubly degenerate
states starting at the two-body continuum threshold. While one such continuum can be
explained by two-particle states, the second cannot, and we interpret this as evidence of
screening analogous to the continuum in the single-trace spectrum at large N .

While our results for N = 3 and 4 are qualitatively (and even quantitatively!) quite
similar to those in the large N limit, N = 2 is a special case [30]. This is because the
SU(2) gauge theory with an adjoint fermion is equivalent to the SO(3) gauge theory with
a Majorana fermion in the fundamental representation. The bosonic eigenstates of this
theory are mesonic, while the fermionic ones are “baryonic,” except the baryon number
is valued in Z2 rather than in Z. In the madj → 0 limit there are no massless mesons or
baryons, unlike in the case of SU(N) gauge theory with a fundamental Dirac fermion.

The rest of this paper is organized as follows. In section 2, we outline the DLCQ
method for 2D SU(N) Yang-Mills theory with a Majorana fermion transforming in the
adjoint representation. In particular, we show how to find a basis of physical states when N
is sufficiently large, and how to compute the action of the mass-squared operator on these
states. In section 3, we show that this basis becomes overcomplete when N is small. We
show how to calculate the number of physical states for finite N using representation theory,
and how to derive the relations among the overcomplete basis. In section 4, we use this
method to compute the spectra for SU(2), SU(3), and SU(4). We study the dependence on
the adjoint mass and find numerical evidence in support of the theory being supersymmetric
at finite N when m2

adj = g2N/π [19, 31]. Section 5 contains a discussion of the current
algebra and exact degeneracies that occur when madj = 0. We end with a discussion of our
results in section 6. Various technical details, as well as an alternative method for studying
the SU(2) case, are relegated to the appendices.

2 Discretized Lightcone Quantization

Let us start by reviewing the DLCQ setup, following [20, 22, 24].
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2.1 Action and Quantization

The action of adjoint QCD2 is

Sadj =
∫
d2x Tr

[
− 1

4g2FµνF
µν + i

2Ψ /DΨ− 1
2madjΨΨ

]
. (2.1)

Here we use the metric ηµν = diag{1,−1}, and gamma matrices γ0 = σ2, γ1 = iσ1 obeying
the Clifford algebra {γµ, γν} = 2ηµν . The covariant derivative acts as

DµΨij = ∂µΨij + i[Aµ,Ψ]ij , (2.2)

where the gauge field (Aµ)ij is Hermitian and traceless.
We define coordinates x± = (x0 ± x1)/

√
2, and gauge field components A± = (A0 ±

A1)/
√

2. The components of the adjoint fermion are taken to be Ψij = 2−1/4
(
ψij
χij

)
. After

fixing the gauge A− = 0, the action becomes

Sadj =
∫
d2x Tr

( 1
2g2 (∂−A+)2 + i

2 (ψ∂+ψ + χ∂−χ) +A+J
+ − i√

2
madjχψ

)
. (2.3)

The right-moving component J+ of the SU(N) current is given by

J+
ij = ψikψkj −

1
N
δijψklψlk . (2.4)

If we treat x+ as the time coordinate, then we can integrate out the non-dynamical
fields A+ and χ, so that the action becomes

S =
∫
d2x Tr

(
g2

2 J
+ 1
∂2J

+ + i

2ψ∂+ψ +
im2

adj
4 ψ

1
∂−
ψ

)
. (2.5)

We thus have the lightcone momentum operators

P+ = 1
2

∫
dx− Tr (iψ∂−ψ) ,

P− = −
∫
dx− Tr

(
g2

2 J
+ 1
∂2
−
J+ +

im2
adj

2 ψ
1
∂−
ψ

)
.

(2.6)

2.2 Discretization

To determine the spectrum of the theory, we diagonalize the mass-squared operator M2 =
2P+P−. In DLCQ, this problem is treated numerically by first compactifying the spatial
direction x− on a circle, with the boundary condition

ψij(x−) = −ψij(x− + 2πL) . (2.7)

We then have the mode expansion

ψij(x−) = 1√
2πL

∑
odd n>0

(
Bij(n)e−inx−/2L +B†ij(n)einx−/2L

)
, (2.8)
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where the dimensionless operators Bij(n) and B†ij(n) obey the algebra

{
Bij(m), B†kl(n)

}
= δm,n

(
δilδkj −

1
N
δijδkl

)
,

{Bij(m), Bkl(n)} =
{
B†ij(m), B†kl(n)

}
= 0 .

(2.9)

By substituting (2.8) into (2.6), we can write the lightcone momenta P± in terms of the
modes Bij(n) and B†ij(n). Since P+ and P− commute, we are free to first fix P+ = K/(2L)
for some integer K and then diagonalize P− on this sector. One can show that

P+ = 1
2L

∑
odd n>0

B†ij(n)Bij(n) , (2.10)

so a state with P+ = K/(2L) is one of the form

B†i1j1(n1) · · ·B†ipjp(np) |0〉 where
p∑
i=1

ni = K . (2.11)

To be gauge-invariant, all indices need to be contracted, and so we have a product of traces
of B† operators. For instance, at K = 7 the gauge-invariant states are

|ψ1〉 = Tr
(
B†(1)7

)
|0〉 |ψ2〉 = Tr

(
B†(3)B†(1)B†(1)B†(1)B†(1)

)
|0〉

|ψ3〉 = Tr
(
B†(3)B†(3)B†(1)

)
|0〉 |ψ4〉 = Tr

(
B†(5)B†(1)B†(1)

)
|0〉

|ψ5〉 = Tr
(
B†(3)B†(1)

)
Tr
(
B†(1)3

)
|0〉 .

(2.12)
Similarly, substituting (2.8) into the expression for P−, we find

P−= g2L

π

[
N

∑
odd n>0

yadj
n

+4
∑

odd m<n

1
(m−n)2

B†ij(n)Bij(n)

+2
∑

odd ni>0

{
δn1+n2,n3+n4

[( 1
(n1−n3)2−

1
(n1+n2)2

)
B†ik(n1)B†kj(n2)Bil(n3)Blj(n4)

+ 1
2

( 1
(n3−n2)2−

1
(n4−n2)2

)
B†ij(n1)B†kl(n2)Bil(n3)Bkj(n4)

]

+δn1,n2+n3+n4

[( 1
(n3+n4)2−

1
(n2+n3)2

)
B†ij(n1)Bik(n2)Bkl(n3)Blj(n4)+h.c.

]}]
(2.13)

where yadj = πm2
adj

g2N . Note that the terms involving B†ij(n1)B†kl(n2)Bil(n3)Bkj(n4) were not
included in [10, 20, 22, 24] because they are “string-breaking,” in the sense that when acting
on a state of the form (2.11) with a single trace, they produce terms involving products
of traces. Such terms are suppressed by 1/N2 in the large N limit, but they cannot be
ignored at finite N .
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To find the eigenvalues of M2, we might try to compute the matrix elements M2
ij ≡

〈ψi|M2|ψj〉 as well as the Gram matrix Gij = 〈ψi|ψj〉, and then solve the generalized
eigenvalue problem

M2
ijvj = λGijvj . (2.14)

However, computing Gij proves to be computationally infeasible at large K, since the inner
product between two states each involving p operators involves a sum over p! possible
contractions.1

A simple resolution to this difficulty would be to instead compute the action of M2 in
the form

M2 |ψi〉 =
∑
j

Aji |ψj〉 . (2.15)

The coefficients Aji can be computed efficiently. We then have

M2
ki =

∑
j

GkjAji = (GA)ki . (2.16)

If G were non-singular, then the eigenvalues of (2.14) would be equal to the eigenvalues of
A = G−1M2, and so we could simply diagonalize the matrix A. However, the Gram matrix
turns out to be highly singular. For instance, for K = 7, we have

GK=7 =


7f3(N) 0 0 0 0

0 f2(N) 0 0 0
0 0 f1(N) 0 0
0 0 0 f1(N) 0
0 0 0 0 3f2(N)

 , (2.17)

where

fk(N) =
k∏

j=−k
(N − j) . (2.18)

Since fk(N) = 0 for integer N ≤ k, we see from (2.17) that for SU(2) there are only two
physical states at K = 7, and for SU(3) there are only four. That is, for N ≤ 3, there are
null states at K = 7 that we should remove before proceeding. As we will show in the
following section, the number of these null states increases at higher K. Enumerating and
removing them is the key technical problem underlying DLCQ for adjoint QCD at finite N .

3 Trace relations for SU(N)

The nullity of certain states follows ultimately from the representation theory of SU(N).
For instance, from (2.17) we see that the null states for SU(2) at K = 7 are those with

1Of course, it is possible that a more clever polynomial-time algorithm exists. For instance, the determinant
of an n× n matrix is naïvely a sum of n! terms, but can in fact be computed in O(n3) time using an LU
decomposition, or faster still using Strassen’s algorithm or more sophisticated algorithms. The similarity
of our problem to the determinant (as opposed to the analogous problem for bosonic operators, which is
more similar to the permanent, known to be #P-hard [32]) raises the question of whether a faster algorithm
might exist, but we will not answer this question here.
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more than three copies of B†(1) in their expressions in (2.12). And indeed, since the B†(1)
operators must all be antisymmetrized and they transform in the adjoint representation,
which for SU(2) is three-dimensional, there is no nonzero gauge-singlet combination of more
than three of them.

In section 3.1 we generalize this logic by computing antisymmetric tensor powers of
the adjoint representations of SU(2), SU(3), and SU(4). For any fixed N , at sufficiently
large K the majority of states become null; for SU(2) this occurs even for very modest K.
In section 3.2, we show how to use the Cayley-Hamilton theorem to derive a complete set
of null relations for any fixed N . We can use this method to remove null states from the
overcomplete bases from section 2.

3.1 Counting physical states

Consider a set of B† operators in which different momenta appear with multiplicities
p1, . . . , pk. Then, since identical operators anticommute, the number of gauge-invariant
states is given by the number of singlets in

(∧p1 adj)⊗ (∧p2 adj)⊗ · · · ⊗ (∧pk adj) , (3.1)

where ∧◦ denotes an antisymmetric tensor power.
For example, we can work out what happens in SU(2) when we have two B†(1)’s and

two B†(3)’s. For sufficiently large N , there are three independent states:

|φ1〉 = Tr
(
B†(1)B†(1)B†(3)B†(3)

)
|0〉 ,

|φ2〉 = Tr
(
B†(1)B†(3)B†(1)B†(3)

)
|0〉 ,

|φ3〉 = Tr
(
B†(1)B†(3)

)2
|0〉 .

(3.2)

However, since ∧2 adj = adj = 3 in SU(2), and 3⊗ 3 = 1⊕ 3⊕ 5, we see that there can be
only one physical state in SU(2) formed from these operators. Thus, there must be two
null relations among the states in (3.2).

Indeed, for SU(2) the computation is always roughly this simple, because ∧1 adj =
∧2 adj = 3, ∧0 adj = ∧3 adj = 1, and all higher antisymmetric powers of the adjoint vanish.
Thus, the problem reduces to counting the number of singlets in some tensor power of the
adjoint. The number of singlets in ⊗n3 in SU(2) is given by the Riordan number Rn [33]
(sequence A005043 in OEIS), defined by the recursion

Rn = n− 1
n+ 1 (2Rn−1 + 3Rn−2) , (3.3)

with R0 = 1 and R1 = 0.
For larger groups we do not have such a simple formula, but we can still use (3.1)

explicitly. The antisymmetric powers can be computed using the character recursion
formula [34]

χ (∧pR; zi) = 1
p

p∑
k=1

(−1)k−1χ
(
R; zki

)
χ
(
∧p−kR; zi

)
, (3.4)
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k ∧k adj in SU(3)
1 8
2 8⊕ 10⊕ 10
3 1⊕ 8⊕ 10⊕ 10⊕ 27
4 2(8)⊕ 2(27)

k ∧k adj in SU(4)
1 15
2 15⊕ 45⊕ 45
3 1⊕ 15⊕ 20′ ⊕ 35⊕ 35⊕ 45⊕ 45⊕ 84⊕ 175
4 2(15)⊕ 2(20′)⊕35⊕35⊕45⊕45⊕ 2(84)⊕105⊕ 2(175)⊕256⊕256
5 1⊕ 2(15)⊕ 20′ ⊕ 3(45⊕ 45)⊕ 2(84)⊕ 105⊕ 3(175)⊕ 2(256⊕ 256)⊕

280⊕ 280⊕ 300′

6 3(15)⊕ 20′ ⊕ 35⊕ 35⊕ 3(45⊕ 45)⊕ 3(84)⊕ 5(175)⊕ 2(256⊕ 256)⊕
2(280⊕ 280)⊕ 2(300′)⊕ 729

7 1⊕ 2(15)⊕ 3(20′)⊕ 35⊕ 35⊕ 3(45⊕ 45)⊕ 4(84)⊕ 2(105)⊕ 5(175)⊕
3(256⊕ 256)⊕ 280⊕ 280⊕ 300′ ⊕ 3(729)

Table 1. Antisymmmetric powers of the adjoint for SU(3) and SU(4). In SU(3) we have ∧8−k adj =
∧k adj, and in SU(4) we have ∧15−k adj = ∧k adj.

where χ(R; zi) is the character of the representation R evaluated at arguments zi. In table 1
we give all the antisymmetric tensor powers of adjoints in SU(3) and SU(4).

To count the number of states at some fixed K, we first enumerate all the ways to
write K as a sum of odd numbers, and then use the method described above to count the
number of singlet states for each of those combinations of B† operators. The results are
given in table 2.

In appendix B, we show a more powerful method for deriving the results of table 2
that is based on the Kac-Moody algebra discussed in section 5. Using this method, one can
show that the number of physical states AN,K at level K exhibits the Cardy growth

AN,K ∼ exp

√(N2 − 1)K
6

 . (3.5)

In contrast, in the large N limit the number of states grows exponentially in K rather than
in
√
K. Thus, for any finite N , at sufficiently large K almost all the naïve gauge-invariant

states one could write down are null.

3.2 Cayley-Hamilton relations

We know from the calculations in the previous section that many of the states in DLCQ
at large N become null for small N . However, to calculate the spectrum using DLCQ, we
need to know precisely what the null states are.

– 8 –
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K SU(2) SU(3) SU(4) Large N
3 1 1 1 1
4 1 1 1 1
5 1 2 2 2
6 1 2 2 2
7 2 4 5 5
8 3 8 9 9
9 3 10 12 13
10 3 12 17 18
11 5 20 30 33
12 7 31 51 57
13 7 40 72 85
14 8 54 108 134
15 12 80 178 229
16 15 113 272 375
17 16 150 395 589
18 19 200 588 945
19 25 276 891 1,551
20 31 380 1,328 2,530
21 35 502 1,927 4,057
22 40 658 2,794 6,525
23 51 888 4,100 10,630
24 63 1,188 5,947 17,262
25 70 1,544 8,476 27,799
26 81 2,012 12,088 44,901
27 101 2,650 17,284 72,850
28 120 3,463 24,506 117,981
29 136 4,472 34,442 190,612
30 158 5,760 48,309 308,226
31 190 7,448 67,690 499,167
32 225 9,605 94,349 808,033
33 256 12,266 130,703 1,306,666
34 294 15,622 180,573 2,113,616
35 350 19,954 249,043 3,421,191
36 410 25,400 342,069 5,536,551

Table 2. The numbers of states for K = 3 through 36 for SU(2), SU(3), SU(4), and at large N
(in the latter we include all possible multi-trace states). For any fixed value of N , we see that for
sufficiently large K most of the states at large N become null.

– 9 –
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3.2.1 Example for N = 2 and K = 8

To illustrate the method we will be employing to determine these null states, let us start
with an example. We saw that among the states at large N and at K = 8 are those in (3.2),
and that for N = 2 there are two null linear combinations of these states. As discussed in
section 2, one way of determining the null combinations is to explicitly compute the Gram
matrix. The Gram matrix for the states in (3.2) is

G1133 =

Nf1(N) 0 2f1(N)
0 2(N2 − 1)(N2 − 4) 0

2f1(N) 0 2(N2 − 1)(N2 − 2)

 , (3.6)

with fk(N) as in (2.18). Setting N = 2, we see that |φ2〉 = 0 and |φ1〉 − |φ3〉 = 0.
However, as we already mentioned, computing the Gram matrix is inefficient. We

could determine these null relations directly in the following way, without ever needing to
calculate an inner product. Let X1 and X2 be elements of SU(2); then we have

{X1, X2} = Xi
1X

j
2{σi, σj} = 2Xi

1X
j
2δij1 = Xi

1X
j
2 Tr(σiσj)1 = Tr(X1X2)1 . (3.7)

We can find both null states by making careful choices for X1 and X2. For instance, if
we take X1 = B†(1) and X2 =

[
B†(1), B†(3)

]
− Tr

(
B†(1)B†(3)

)
1, where the latter linear

combination was chosen so that trX2 = 0, then (3.7) gives

B†(1)2B†(3)−B†(3)B†(1)2 − 2B†(1) Tr
(
B†(1)B†(3)

)
= 0 . (3.8)

If we then multiply both sides on the right by B†(3) and take the trace, we find

2 Tr
(
B†(1)B†(1)B†(3)B†(3)

)
− 2 Tr

(
B†(1)B†(3)

)2
= 0 . (3.9)

After acting with this operator on the vacuum, this gives |φ1〉 − |φ3〉 = 0.
Likewise, if we take X1 = B†(1) and X2 = i

{
B†(1), B†(3)

}
, we find

B†(1)2B†(3) + 2B†(1)B†(3)B†(1) +B†(3)B†(1)2 = 2 Tr
(
B†(1)2B†(3)

)
1 . (3.10)

Multiplying on the right by B†(3) and taking the trace, the first and third terms on the left
cancel and the right hand side vanishes, so we are left with

2 Tr
(
B†(1)B†(3)B†(1)B†(3)

)
= 0 . (3.11)

This implies |φ2〉 = 0.

3.2.2 Null states for N = 2

We can in fact derive all the null relations by generalizing the example above. The
identity (3.7) is a consequence of the Cayley-Hamilton theorem. Indeed, if we have a general
SU(2) element A = aiσi, its characteristic equation is

0 = det(A− α1) = α2 − aiai , (3.12)
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and so the Cayley-Hamilton theorem implies A2 = aiai1. Substituting the definition of A
and symmetrizing the coefficients gives

{σi, σj} = 2δij1 , (3.13)

and contracting with Xi
1 and Xj

2 reproduces (3.7). Similarly, if we contract (3.13) with
Grassmann numbers, we obtain the identity

[X1, X2] = Tr (X1X2)1 (3.14)

for any two Grassmann-valued elements of SU(2). For instance, taking X1 = B†(1)
and X2 = B†(3), and then contracting the resulting identity with B†(5), we learn that
Tr
(
B†(1)B†(3)B†(5)

)
= Tr

(
B†(1)B†(5)B†(3)

)
.

While this method is very effective and, as we show below, it generalizes for N > 2, we
in fact do not use it for N = 2. For N = 2 we will use a more efficient method presented in
appendix A that is based on rewriting the SU(2) gauge theory with an adjoint as an SO(3)
gauge theory with a fundamental.

3.2.3 Null states for N > 2

For N = 2, the identities (3.7) and (3.14) are simple consequences of well-known properties
of the Pauli matrices, but following the same procedure for other groups gives more intricate
identities. For instance, for N = 3 the Cayley-Hamilton theorem implies the following
identity for the Gell-Mann matrices [35]:

λiλjλk + permutations = Tr(λiλj)λk + Tr(λjλk)λi + Tr(λkλi)λj + Tr(λi{λj , λk})1 .
(3.15)

Contracting this with commuting numbers gives

X1X2X3 + permutations
= Tr(X1X2)X3 + Tr(X2X3)X1 + Tr(X3X1)X2 + Tr (X1{X2, X3}) ,

(3.16)

and with anticommuting numbers gives

X1X2X3 + signed permutations
= Tr(X1X2)X3 + Tr(X2X3)X1 + Tr(X3X1)X2 + Tr (X1[X2, X3]) .

(3.17)

Finally, we could have X1 and X2 Grassmann-valued and X3 commuting, giving

X1X2X3 +X1X3X2 +X3X1X2 −X2X1X3 −X2X3X1 −X3X2X1

= Tr(X1X2)X3 − Tr(X2X3)X1 + Tr(X3X1)X2 + Tr (X1{X2, X3}) .
(3.18)

For SU(4), the Cayley-Hamilton identity for the generators λ(4)
i is

λiλjλkλl + . . . = −
(

Tr(λiλj) Tr(λkλl) + . . .
)

+
(

Tr(λiλj){λk, λl}+ . . .
)

+
(

Tr(λi{λj , λk})λl + . . .
)

+
(

Tr(λiλjλkλl) + . . .
)
,

(3.19)
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where the dots denote a sum of all inequivalent terms of the same form as the first one. By
contracting with commuting or anticommuting numbers, one can derive several identities
for SU(4) elements.

With these basic Cayley-Hamilton identities in hand, we can follow the same procedure
as in the example above: consider all possible choices for the Xi, and then contract with
various operators and multiply by the vacuum to form relations among gauge-invariant
states. We can enumerate all possible relations separately for each possible collection of
B† operators. Using the method of section 3.1 we can determine how many independent
null relations there should be, so we can stop searching for new ones when enough have
been found.

After finding all the null relations, we can identify a subset of the large-N basis that
forms a physical basis for the gauge group in hand. We then use the null relations to write
every other basis state in terms of the physical basis. We can compute the action of P− on
the physical basis, which will in general produce other large-N states not in that basis, and
then rewrite them in terms of our basis. This gives an effective method for computing the
action of P− on a physical basis for any N .

4 Results

After computing the null relations and using them to calculate the action of P− on a basis
of physical states, we can diagonalize M2 = 2P+P−. In practice we use SLEPc [36–39]
for this task, although our matrices are small enough that a single core suffices for all the
diagonalizations. In section 4.1 we study the massless point yadj = 0, at which the theory
is in the screening phase [22, 23]. In section 4.2 we study other values of yadj, especially
yadj = 1 where the theory is supersymmetric [19, 31].

4.1 Massless adjoint

In figure 1, we give the spectra of fermions and bosons in the theory with a massless adjoint
for SU(2), SU(3), SU(4), and in the large N limit. For SU(2), these are computed up to
K = 60 using the alternative method outlined in appendix A, which permits the calculation
of P− on the physical basis directly without ever invoking the prohibitively large basis
of large-N states. For SU(3) and SU(4), we use the method described in section 3.2 to
work up to K = 30 and K = 25 respectively. As an example, working with the SU(3)
theory at K = 30 requires finding 302,466 relations, and then diagonalizing P− on the
remaining 5,760 states. Finally, for large N all string-breaking and string-joining terms are
suppressed, so it suffices to compute and diagonalize P− on the single-trace sector and then
assemble multi-trace eigenstates from these single-trace building blocks. For this we use the
single-trace spectra computed in [22]. The spectrum in figure 1 differs from those in [22],
because here we also include the multi-trace sectors.

The bosonic spectra of SU(3) and SU(4) are similar to that of SU(2), with a bound
state at M2 ≈ 10.8g

2N
π and a continuum beginning at M2 ≈ 22.9g

2N
π . In each case, this

continuum is interpreted as the spectrum of two-particle states formed from the fermion
ground state at M2 ≈ 5.7g

2N
π [22, 24].
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The fermion spectrum is also quite similar among SU(3), SU(4), and large N : in each
case we see bound states at M2 ≈ 5.7g

2N
π and M2 ≈ 17.2g

2N
π , and a continuum beginning

at what appears to be the same mass as the boson continuum. In the SU(2) theory, however,
there are some marked differences. There is no bound state at M2 ≈ 17.2g

2N
π ; this is

because this state at higher N is odd under charge conjugation, but SU(2) has no complex
representations and hence all states are even under charge conjugation. Furthermore, in
SU(2) the continuum does not begin until M2 ≈ 32.2g

2N
π . We interpret this as the two-

particle continuum formed from the lowest fermion and the lowest boson states, since indeed(√
5.7 +

√
10.8

)2
≈ 32.2 . (4.1)

Finally, in SU(2) there is an additional bound state at M2 = 25.4g
2N
π .

Given the remarkably close agreement among the low-lying bound state masses for
different values of N , it is natural to ask what corrections there are to the bound state
masses as a function of N . Figure 2 shows the mass-squared of the lowest three states as
a function of 1/N2 for several values of N .2 The corrections are very nearly proportional
to N−2, with any N−4 or higher corrections very small. Furthermore, we see that the
magnitudes of the N−2 corrections are themselves quite small, explaining why we hardly
see any change in these values as a function of N in figure 1.

We can also extract the coefficient a1 of the N−2 correction (as in (1.1)) using eigenvalue
perturbation theory at a fixed K. For any value of K, the matrix for P− can be expressed as

P−K = g2N

π

(
P−0,K + 1

N
P−1,K + 1

N2P
−
2,K

)
. (4.2)

We can similarly expand the eigenvalues Ei of P−K in 1/N :

Ei,K = g2N

π

(
Ei,0,K + 1

N
Ei,1,K + 1

N2Ei,2,K + · · ·
)
. (4.3)

At leading order, Ei,0,K are the eigenvalues of P−0,K , but because P−0,K is not Hermitian, for
each eigenvalue we have a left eigenvector 〈li,K | and a right eigenvector |ri,K〉 that can be
chosen to be orthonormal 〈li,K |rj,K〉 = δij . The first order correction due to P−1,K can be
computed using a modified expression for first order non-degenerate perturbation theory,
and it can be shown to vanish:

Ei,1,K = 〈li,K |P−1,K |ri,K〉 = 0 . (4.4)

There are then two sources of 1/N2 corrections to the eigenvalues: the first-order corrections
from P−2,K , and the second-order corrections from P−1,K :

Ei,2,K = 〈li,K |P−2,K |ri,K〉+
∑
j 6=i

〈lj,K |P−1,K |ri,K〉 〈li,K |P
−
1,K |rj,K〉

Ei,0,K − Ej,0,K
. (4.5)

2Here we follow the method of [27], ignoring the presence of null states. By comparing to the spectra we
obtain after carefully removing null states, we see that this procedure does not change P− eigenvalues, but
only subtracts some of them from the spectrum. Hence, the only error we could be making is if these states
themselves are null; but we can be well-assured from figure 1 that these three bound states are present
for N ≥ 3.
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Figure 1. The DLCQ spectra at yadj = 0 for SU(2), SU(3), SU(4). We also exhibit the spectrum
in the large N limit where we include the multi-trace states (the plot is therefore different from [10,
20, 22, 24] where only the single-trace states were exhibited). The spectrum of bound states below
the continuum and the continuum thresholds are similar for N ≥ 3, with fermion bound states at
M2 ≈ 5.7 g

2N
π and M2 ≈ 17.2 g

2N
π and a boson bound state at M2 ≈ 10.8 g

2N
π , and continua for both

bosons and fermions beginning at M2 ≈ 22.9 g
2N
π . The SU(2) theory is distinct, lacking the fermion

at M2 ≈ 17.2 g
2N
π , having an extra fermion at M2 ≈ 25.5 g

2N
π , and with the fermion continuum

threshold at M2 ≈ 32.2 g
2N
π .
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Figure 1. Continued.
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1
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0.0131

0.0279

0.0458

Figure 2. For each of the lowest three bound states in the N ≥ 3 spectra, we extrapolate the
difference between the finite N mass and the large N mass to the continuum, and plot this difference
as a function of N−2. The leading order correction is seen to be of order N−2, with any higher-order
corrections much smaller. On the right, we estimate the coefficient a1 of the N−2 corrections using
eigenvalue perturbation theory at fixed K, and then extrapolating the results to large K. The
results agree well with the fits on the left.

For the ith eigenstate, the coefficient a1 defined in (1.1) is then

a1 = lim
K→∞

(KEi,2,K) . (4.6)

We performed this calculation, as well as the large K extrapolation for the four lowest-lying
states in the right panel of figure 2. The results obtained using this method match very well
those obtained using the other order of limits, namely the large K extrapolation followed
by the large N extrapolation, which are given in the left panel of figure 2.

4.2 Mass dependence and supersymmetric point

There is no computational difficulty for the mass term in (2.13), and so we can freely study
these theories at various values of the adjoint mass. In figure 3, we show how the masses
of the lightest fermion and boson in the SU(2) theory depend on yadj. In table 3, we give
numerical values of the fermion and boson mass gaps for a few specific values of yadj. The
errors are estimated by fitting quadratic functions of K−1 to points at various subsets of
the values of K where we have computed the spectrum, and looking at the distribution of
the extrapolated values we obtain from these fits.

Perhaps the most interesting mass is m2
adj = g2N

π , or yadj = 1. It has long been
known that adjoint QCD2 exhibits supersymmetry at this mass [19], and recently this
understanding has been extended to matter in other representations [31]. We see this for
instance in figure 3, with the lightest fermion and boson becoming degenerate at yadj = 1.
In figure 4, we give the first numerical demonstration of this supersymmetry in theories
with finite N , along with the large N spectra at yadj = 1 assembled from [22]. The fermion
and boson masses appear to approach the same values as K →∞.

For each value of N , we extrapolate the lowest two bound states, which appear at
M2 ≈ 25g

2N
π and M2 ≈ 58g

2N
π . Since we have especially well-converged spectra for SU(2),

and because the smaller number of states in this theory makes the trajectories easier to
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Figure 3. The lightest fermion and boson states in the SU(2) theory as a function of the adjoint
mass parameter yadj. These states become degenerate at yadj = 1, a consequence of the emergent
supersymmetry at this value.

yadj 0 0.1 0.25 0.5 0.75 1

Lowest Fermion 5.710(1) 8.50(5) 12.15(8) 17.27(8) 21.64(7) 25.57(5)

Lowest Boson 10.764(4) 13.05(5) 15.95(9) 19.83(10) 22.93(8) 25.58(6)

Table 3. Some values of πM
2

g2N for the lowest fermion and lowest boson in the SU(2) theory, as given
in figure 3. Errors are estimated by taking an ensemble of extrapolations to K →∞ calculated using
subsets of 10 or more consecutive points between K = 30 and K = 60, and taking the standard
deviation of the extrapolated values.

distinguish, we also extrapolate two more bound states in this theory at M2 ≈ 84g
2N
π and

M2 ≈ 90g
2N
π . We also see the onset of the continuum at M2 ≈ 100g

2N
π , consistent with the

two-particle threshold for the lowest bound state.
For values of madj near the supersymmetric point, the boson and fermion states that

were degenerate at yadj = 1 should be slightly split. In [40], the splitting is calculated to be

π

g2N

∣∣∣M2
f −M2

b

∣∣∣ =
√

π

g2N
M |yadj − 1|+O

(
|yadj − 1|3

)
, (4.7)

where M2
f and M2

b are the fermion and boson mass-squareds near yadj = 1, and M =√
M2
f

∣∣∣
yadj=1

=
√
M2
b

∣∣
yadj=1 is their common mass at the supersymmetric point. Figure 5

shows the excellent agreement between this prediction and our extrapolated continuum
SU(2) spectrum near yadj = 1.
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Figure 4. The DLCQ spectra at yadj = 1 for SU(2), SU(3), SU(4), and large N , with maximum K

values of 60, 30, 25, and 41, respectively. The spectra exhibit the expected supersymmetry [19, 31].
The lowest two doublets appear at similar masses for all N . For SU(2), we also extrapolate an
additional two bound states and the onset of the two-particle continuum at twice the mass of the
lowest doublet.
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Figure 4. Continued.
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Figure 5. For the lowest two states in the SU(2) spectrum near the supersymmetric mass yadj = 1,
we plot the absolute difference between the extrapolated continuum boson and fermion masses in
the first lowest two doublets as a function of yadj. We find that they have equal masses (up to
extrapolation error) at yadj = 1. The dashed lines are the prediction of (4.7), which shows excellent
agreement with the numerics.

5 Current algebra and exact double degeneracies

A feature of our results not yet discussed is that, when madj = 0, the spectra presented in
figure 1 exhibit some double degeneracies for N ≥ 3. These degeneracies were also noticed
in [27]. As was also mentioned in [22], the double degeneracies can be understood as a
consequence of charge conjugation symmetry and a Kac-Moody algebra structure that
makes the light-cone Hamiltonian P− block diagonal. Let us now review this explanation
and provide more details.

5.1 Kac-Moody algebra

When madj = 0, P− can be written solely in terms of the Fourier modes of the current
J+ [22, 26]. In terms of the fermionic oscillators, these Fourier modes are

Jij(n) =
∑

m1+m2=n

(
Bik(m1)Bkj(m2)− 1

N
δijBkl(m1)Blk(m2)

)
, (5.1)

where we used the notation Bij(−m) = B†ji(m). The modes Jij(n) obey a level N Kac-
Moody algebra ŝu(N)N

[Jij(n),Jkl(m)] = δkjJil(n+m)−δilJkj(n+m)+N nδn+m,0
2

(
δilδkj−

1
N
δijδkl

)
. (5.2)
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Discretizing the expression for P− in (2.6) and using the algebra (5.2) one can write

P− = 2g2N

π

∑
even n>0

Jij(−n)Jji(n)
n2 , (5.3)

up to an additive normal-ordering ambiguity that is fixed by requiring that P− |0〉 = 0.
As explained in [22, 26], the Kac-Moody algebra (5.2) gives a useful way of organizing

the states, as well as the spectrum of P−. Indeed, the underlying Hilbert space consisting
of all gauge-invariant and gauge non-invariant states organizes itself into highest-weight
irreps of the Kac-Moody algebra, also referred to as current blocks. Each irrep is uniquely
specified by the SU(N) irrep ρ of its Kac-Moody primary state |χ〉I , with I = 1, . . . , dim ρ.
The Kac-Moody primary is annihilated by all the lowering operators of the current algebra

Jij(n) |χ〉I = 0 ∀ even n > 0 . (5.4)

The vacuum is always a Kac-Moody primary, but in general there are others, such as the
state |χ〉ij = B†ij(1) |0〉, which satisfies (5.4), as one can verify explicitly. As we will review
below, there are precisely 2N−1 Kac-Moody primaries, each transforming in a different
irreducible representation of su(N).

In addition to the Kac-Moody primary, each current block contains descendants
obtained by acting with the raising operators Jij(−n), with n > 0, on the primary. The
gauge-invariant states in a current block are those annihilated by Jij(0).

When acting with P− in the form (5.3) on a descendant of some Kac-Moody primary,
we can use the algebra (5.2) to move each lowering operator in P− all the way to the right
where it annihilates the primary. We then obtain a linear combination of states in the same
current block as the one we started with. Hence, P− is block-diagonal on the current blocks.

5.2 List of Kac-Moody blocks

To understand how many Kac-Moody blocks there are for a given N , note that before
gauging we start off with N2 − 1 Majorana fermions, whose Hilbert space can be organized
into representations of the ŝo(N2 − 1)1 Kac-Moody algebra. There are only two such
representations:

1. the singlet representation, whose states are bosons and consist of modes of the
so(N2 − 1) currents acting on the vacuum |0〉;

2. the vector representation, whose states are fermions and consist of modes of the
so(N2 − 1) currents acting on the primary B†ij(1) |0〉, which transforms in the vector
representation of so(N2 − 1).

We should then decompose these two representations of ŝo(N2−1)1 into representations
of the ŝu(N)N algebra (5.2). This decomposition was performed in [41] and used in a related
context in [15, 25]. The answer is that there are precisely 2N−1 irreps of ŝu(N)N in this
decomposition, each appearing with unit multiplicity. The Kac-Moody primaries of these
irreps transform in su(N) irreps λ with the following two properties:

– 21 –



J
H
E
P
0
4
(
2
0
2
3
)
1
0
7

1. The Young diagram corresponding to λ has at most N columns. In other words, in
Dynkin label notation λ = [λ1λ2 . . . λN−1], where λi equals the number of columns of
length i in the Young diagram, we have

∑N−1
i=1 λi ≤ N .

2. The highest weight λ of the representation is of the form

λ = w(ρ)− ρ+Nα , (5.5)

for some w and α, where w is a Weyl group element of su(N), ρ and w(ρ) are the
Weyl vector and its image under w, and α belongs to the root lattice. The Weyl
group is isomorphic to the permutation group SN , so w is a permutation. The λ’s of
the form (5.5) for which w is an even permutation belong to the decomposition of the
singlet representation of ŝo(N2 − 1)1 (i.e. they give bosons), while those for which w
is an odd permutation belong to the decomposition of the vector representation of
ŝo(N2 − 1)1 (i.e. they give fermions).

As we review in appendix B, one can check this decomposition explicitly from the decompo-
sitions of characters of ŝo(N2 − 1)1 into characters of ŝu(N)N .

Ref. [15] determined that the numbers of bosonic and fermionic Kac-Moody blocks are

# of bosonic K-M blocks =

2N−2 if N is even ,
2N−2 + 2(N−3)/2 if N is odd ,

# of fermionic K-M blocks =

2N−2 if N is even ,
2N−2 − 2(N−3)/2 if N is odd .

(5.6)

Before giving examples, let us note that we can also determine the value K = Kλ at
which the Kac-Moody primary of representation λ occurs. Due to the fact that ŝu(N)N ⊂
ŝo(N2−1)1 is a conformal embedding, the Sugawara stress tensors of ŝu(N)N and ŝo(N2−1)1
agree. Since the latter algebra has a free field representation in terms of the Majorana
fermions, its Sugawara stress tensor is simply T++. Consequently, the Virasoro L0 operator is
just P+L, and thereforeKλ is twice the eigenvalue of L0 for the primary of the representation
λ. This is given by the standard formula [42]

Kλ = (λ+ 2ρ, λ)
2N . (5.7)

The explicit decompositions for N = 2, 3, 4 along with the corresponding values of Kλ

are given in table 4.

5.3 Degeneracies

One can understand the degeneracies in the spectrum as follows. Since the action of P−

only depends on the level of the Kac-Moody algebra and the structure of each Kac-Moody
representation, if a Kac-Moody irrep λ were to appear with multiplicity dλ, then the
corresponding P− eigenvalues will also have multiplicity dλ. Such a situation, however,
does not occur for us, because each Kac-Moody irrep appears with unit multiplicity.3

3This is, however, a specific property of adjoint QCD2. For QCD2 with a fermion in a different SU(N)
irrep, the degeneracies of the various Kac-Moody irrep could be greater than one.
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Kλ = 0 Kλ = 1 Kλ = 2 Kλ = 3 Kλ = 4

SU(2) 1 3

SU(3) 1 8 10, 10

SU(4) 1 15 45, 45 35, 35, 175 105

Table 4. The SU(N) representations of the Kac-Moody primaries for N = 2, 3, 4 and the corre-
sponding values K = Kλ where they appear.

There is another situation which leads to degeneracies. If there exists a symmetry of P−

that acts as an outer automorphism of the current algebra or of the underlying Lie algebra,4

then the P− blocks corresponding to the Kac-Moody irreps that are exchanged under the
outer automorphism will have degenerate eigenvalues. For us, the charge conjugation C
acting as

CψijC−1 = ψji , CJ+
ij C
−1 = J+

ji (5.8)

is an outer automorphism of su(N) of order 2 (for N ≥ 3) that commutes with P−, thus
leading to doubly degenerate eigenvalues between the blocks corresponding to any complex
irrep λ and its conjugate λ̄. Of course, complex representations occur only for N ≥ 3.

From table 4, we see that for SU(3), we expect exact degeneracies among the bosons
that are part of the 10 and 10 blocks. For SU(4), we expect degeneracies among the bosons
that are part of the 45 and 45, and also degeneracies between the fermions that are part of
the 35 and 35.

We did not include any information about degeneracies in figure 1, but a closer look
indeed reveals that some of the states are doubly degenerate while others are non-degenerate.
As an example, let us focus on SU(3). Consistent with the discussion above, we do not find
any degeneracies in the fermionic spectrum, but we do find degeneracies between Z2-even
and Z2-odd bosons. In figure 6, we plot the bosonic spectrum of the SU(3) theory for a
small range of masses, split according to their charge under the Z2 charge conjugation
symmetry. Some of the masses are repeated in the Z2-even and Z2-odd spectra; we identify
these as part of the 10 and 10 blocks. All the other eigenvalues are not repeated (they
appear either in the Z2-even or Z2-odd part of the spectrum, but not both), and hence
must belong to the only other bosonic block, the 1.

After labeling the states by the block to which they belong, a trajectory of vacuum
descendants becomes apparent among the Z2-odd bosons. This is the state ofM2 ≈ 25.6g

2N
π

shown in figure 1. We can thus use this method of degeneracies and current blocks to isolate
this state from the nearby two-particle continuum, a task that would have been hard to
accomplish otherwise.

The exact degeneracies mentioned above can be used to argue for the presence of a
continuum of states that survives to finite N and is not explained in terms of a two-body
continuum. Since for all N ≥ 3, the spectrum in figure 1 exhibits a massive fermion of

4The outer automorphisms of a classical Lie algebra corresponds to the symmetries of the corresponding
Dynkin diagram. The outer automorphisms of the current algebra correspond to the symmetries of the
corresponding extended Dynkin diagram that do not leave invariant the extra node.
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Figure 6. Part of the bosonic SU(3) spectrum shown in figure 1, here split between Z2-even and
Z2-odd states and with states labeled by the current block they belong to.

squared mass M2
f ≈ 5.7g

2N
π , one expects a two-body continuum to start at 4M2

f in the
bosonic spectrum. However, as we can see from figure 6 in the SU(3) case, the trajectories
that form this continuum are exactly doubly degenerate even at finite K, which implies
that the states of the continuum are doubly degenerate too. This double degeneracy is very
surprising, but it follows from charge conjugation symmetry and the Kac-Moody structure.
At large N this degeneracy becomes a degeneracy between single trace and multi-trace
states [22, 26].

6 Discussion

In this work, we studied the low-lying spectrum of SU(N) adjoint QCD2 numerically using
DLCQ for N = 2, 3, and 4. With the adjoint fermion massless, we found a few bound states
followed by a continuum. Surprisingly, we found that the masses of the bound states receive
very small 1/N2 corrections. We also found that the states forming the continuum starting
at twice the mass of the lowest fermion exhibit some double degeneracies for N ≥ 3 even
at finite resolution parameter. When the adjoint fermion is massive, there are no double
degeneracies but we again find that the 1/N2 corrections to the low-lying spectrum are
surprisingly small. The main challenge we had to overcome was to figure out an efficient
way of constructing a basis of linearly-independent states after taking into account all
finite-N trace relations. As explained in section 3.2, we determined the trace relation using
a method based on the Cayley-Hamilton theorem.

There are many interesting questions that we leave for the future. As we saw in
section 5, the Kac-Moody algebra provides a good way of classifying the states when
madj = 0. Intriguingly, from a representation theoretic perspective, the decomposition
into Kac-Moody blocks involves decomposing the trivial and vector representations of
ŝo(N2 − 1)1 into representations of ŝu(N)N . The exact same decomposition appears in the
related question of determining the vacua of the same theory in equal time quantization [15].
It would be very interesting to investigate the relation between these two calculations and
determine the precise connection between our mass spectra and the N flux tube sectors of
the theory.
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While in section 5.3 we performed the decomposition of the states into Kac-Moody
blocks explicitly in the N = 3 case, it would be interesting to perform a similar analysis in
the N = 4 case. More generally, instead of constructing the states by acting with fermionic
oscillators on the Fock vacuum, as we do, one can construct a basis of states directly by
acting with the modes of the SU(N) currents on the Kac-Moody primaries, and compute
P− for each Kac-Moody block separately. Such an approach was taken at large N in [43, 44]
for the trivial and adjoint ŝu(N)N blocks. It would be useful to generalize this approach to
finite N .

From a practical point of view, in the SU(2) case we were able to attain much larger
values of K partly because the SU(2) adjoint theory can also be viewed as an SO(3) gauge
theory with a fundamental Majorana fermion, and in the latter description, we constructed
the physical states in a non-redundant way. This construction involved contracting the
fermionic oscillators with the SO(3) invariant tensors δab and εabc. It is possible that a
similar, more efficient approach for constructing physical states could be generalized to
the SU(N) case, where one can directly contract the fermionic oscillators with the more
complicated invariant tensors of SU(N).

It would also be interesting to consider various generalizations of the SU(N) adjoint
theories considered here. One generalization would be to add fermions in the fundamental
representation of SU(N) (quarks). Then one can study the spectrum of baryons and its
dependence on the adjoint and fundamental masses. One can also consider the quarks as
probes of the adjoint QCD theory by taking their masses to be very large. From the meson
spectrum, one can hopefully extract the quark-antiquark potential, and, following the large
N analysis of [22], provide further evidence that massless adjoint QCD exhibits screening
also at finite N . Another interesting generalization is based on the fact the SU(2) adjoint
theory can also be viewed as an SO(3) gauge theory with a fundamental Majorana fermion.
This latter theory can be generalized to an SO(N) gauge theory with a fundamental fermion,
and, just like the SO(3) case, it exhibits a Z2-valued baryon number symmetry.
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A Alternate method for SU(2)

The method outlined in section 3.2 is based on the premise that inner products of states
are expensive to compute. However, for SU(2), there is an alternate approach that allows
us to find a physical basis constructively, without needing to compute the null relations in
the large-N basis, and moreover to efficiently calculate inner products of these states. This
method allows us to compute P− at higher K for SU(2) than we could with the method in
section 3.2.
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m 1 2 3 4 5 6 7 8 9 10
Rm 0 1 1 3 6 15 36 91 232 603
Tm 0 1 1 3 10 15 105 105 315 945

Table 5. Given m copies of the SU(2) adjoint, the Riordan number Rm is the number of independent
singlets in their tensor product, while Tm is the number of expressions we could construct by
contracting with SO(3) invariant tensors as described in the main text.

Moreover, as shown in table 2, the size of the physical basis for SU(2) is vastly smaller
than the basis at large N . It is thus possible to diagonalize P− at significantly higher K for
SU(2). Overall, then, the method we describe here enables us to obtain spectra for SU(2)
substantially closer to the continuum limit. The following discussion is based on [30].

We start from the fact that the SU(2) adjoint can also be framed as the SO(3)
fundamental. Indeed, we can define

B†a(n) = 1√
2
σija B

†
ji(n) , (A.1)

such that {
B†a(n), Bb(m)

}
= δn,mδab . (A.2)

As discussed in section 3.1, if we have two copies of the same B† operator then they
form an antisymmetric product that also transforms in the SO(3) fundamental, namely
εabcB†b(n)B†c(n). Likewise, if we have three copies of the same operator, they are combined
in a singlet as εabcB†a(n)B†b(n)B†c(n). There is no nonzero combination of four or more
copies of the same operator, so these are all the cases we need to consider.

Given a set of B† operators, we can then count how many of them appear with
multiplicity one or two. These correspond to free SO(3) fundamental indices, which must
then be contracted with SO(3) invariant tensors to form a gauge-invariant state. The
invariant tensors are δab and εabc, and we can rewrite εabcεdef as a sum of products of δ-
tensors, so we can restrict to at most one ε. Using these rules, the number of gauge-invariant
states we can write down starting from m SO(3) fundamentals is

Tm =


m!

(m/2)!×2m/2 if m even ,
m!

3×((m−1)/2)!×2(m−1)/2 if m odd .
(A.3)

In section 3.1, we saw that the number of independent singlet states coming from the
tensor power of m SU(2) adjoints is the Riordan number Rm. Table 5 compares the number
of tensor expressions we can write down, Tm, with the Riordan number Rm. Up to m = 10,
which would appear first at K = 100, the disparity is not too great.

To identify a physical basis among the Tm tensor contractions for some set of operators,
we can in this case just compute the Gram matrix. When calculating the inner product
of two such states, we only get nonzero terms when anticommuting two B†’s of the same
momentum. For a single B† we use (A.2), and for two of them, we have{

εacdB†c(n)B†d(n), εbefBe(m)Bf (m)
}

= 2δm,nδab . (A.4)
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ε

ε

Figure 7. Computing the inner product of two m = 7 states. The gray dots represent either a
SO(3) index coming from either one or two B† operators. Solid lines represent contractions in the
individual states, and dotted lines represent δ-tensors coming from (A.2). Calculating the inner
product reduces to counting SO(3) traces and possibly computing a contraction of two ε-symbols,
which can be accomplished quickly.

Thus, after anticommuting all B’s to the right, we have a single term given by a product
of ε and δ symbols, with at most two ε’s since each state can have at most one. We can
visually represent the contraction as in figure 7. Calculating the contraction amounts to
counting loops in a graph, each of which contribute a factor of 3, and possibly computing a
contraction of two ε-symbols, which gives ±6.

With the Gram matrix, we can easily identify a subset of Rm of the Tm contractions
that are linearly independent, and use those as our basis for the given set of B† operators.
It then remains to compute the action of P− on that basis. To do so, we should first rewrite
P− in terms of the SO(3) indices by substituting (A.1) into (2.13). The result is

P− = P−1→1 + P−2→2 +
(
P−1→3 + h.c.

)
, (A.5)

where

πP−1→1
g2L

=
∑

odd ni

(
2yadj
n

+ 8
n−2∑
m odd

1
(n−m)2

)
B†a(n)Ba(n) ,

πP−2→2
g2L

=
∑

odd ni

[(
3

2n2
13
− 1

2n2
14
− 1
n2

+

)( n1

n3

n2

n4

)
+
(

2
n2

14
− 2
n2

+

)( n1

n3

n2

n4

)]
,

πP−1→3
g2L

=
∑

odd ni

( 1
n2

34
− 1
n2

14

)[( n1 n3n2

n4

)
−
( n1 n3n2

n4

)
+
( n1 n3n2

n4

)]
.

(A.6)

The line notation indicates a contraction of B† and B operators in normal order,
for instance,  n1 n3n2

n4

 = B†a(n1)B†b(n2)B†b(n3)Ba(n4) . (A.7)

We act with P− on a state simply by writing the state in terms of B† operators,
left-multiplying by P−, and anticommuting all the B operators all the way to the right. At
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the end of this process, we generically have many terms that are not of the form we have
specified, that is, with pairs and triples all combined under an ε-symbol. One can derive the
following rules that allow us to appropriately recombine operators into the forms we desire:

B†a(n)B†b(n)B†c(n)δadδbeδcf = 1
6ε

abcB†a(n)B†b(n)B†c(n)εdef ,

B†a(n)B†b(n)B†c(n)εabdδce = 1
3ε

abcB†a(n)B†b(n)B†c(n)δde ,

B†a(n)B†b(n)δacδbd = 1
2ε

eabB†a(n)B†b(n)εecd .

(A.8)

After applying these rules as many times as required, all the operators are combined
appropriately, but we may have created additional ε-symbols. We could expand the product
of ε’s into a sum of many products of δ’s, but it is more efficient to simply compute inner
products with the several ε’s in place. One can show that at most four ε symbols are added
when we apply the rules above, so when we compute an inner product, we could have a
graph of at most six ε’s. There are only a few possibilities, which we can precompute:

= ±6 , = ±6 , = ±12 ,

= 0 , = ±6 , = ±24 , = ±24 .
(A.9)

The sign has to be determined in each case by looking in detail at how the indices
are contracted.

In summary, for SU(2) we can efficiently construct a basis of physical states by working
in terms of SO(3) indices. It is then possible to act with P− directly on this basis, and
efficiently compute inner products, allowing us to calculate matrix elements of P−. We
can also efficiently calculate the Gram matrix, so that we can find physical mass-squared
eigenvalues by solving a problem of the form (2.14). This allows us to reach higher values
of K for SU(2) than we could via the method described in section 3.2.

B Characters and asymptotics

In section 5, we discussed the Kac-Moody algebra and some of its consequences for the
particle spectrum. A key ingredient in this reasoning is the decomposition of the states
into Kac-Moody blocks. In particular, before imposing the gauge-invariance constraint,
the states transform in a representation of the ŝo(N2 − 1)1 algebra with two irreducible
components (singlet and vector), and these states can then be decomposed under the
ŝu(N)N algebra of the gauged su(N) currents. As mentioned in section 5.2, the result of
this decomposition can be checked using Kac-Moody characters. Thus, in section B.1 below
we give relevant definitions and known formulas for the characters of Kac-Moody algebras.
In section B.2 we use these characters to extract the asymptotic behavior of the state counts
in table 2.
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B.1 Characters of affine algebras

The character of a representation λ of an affine algebra ĝk is given by

χĝk
λ (q, z) = Trλ

(
qL0− c

24 eh·z
)
, (B.1)

where z is a vector of fugacities of dimension rk g, and h denotes a basis for the Cartan subal-
gebra of g, the underlying Lie algebra of ĝ. The trace is over all states in the representation
λ. The operator L0 is the zero mode of the Sugawara stress tensor, constructed as

T = 1
2(k + h∨g ) : jaja : , (B.2)

where a = 1, . . . , dim g and h∨g is the dual Coxeter number of g. The central charge of the
Virasoro algebra generated by the modes of T is

c = k dim g

k + h∨g
. (B.3)

For both ŝu(N)N and ŝo(N2 − 1)1, we have c = N2−1
2 .

The characters can be computed by the Kac-Weyl formula. For ŝu(N)k, this takes
the form

χ
ŝu(N)k

λ (q, z) =
∑
w∈W ε(w)Θk+N (AN−1, w(λ+ ρ) | q, z)∑

w∈W ε(w)ΘN (AN−1, w(ρ) | q, z) , (B.4)

where W is the Weyl group of su(N) (which is the permutation group SN ), ε(w) is the
signature of an element of this group, and AN−1 is the coroot lattice of su(N). The theta
functions are defined by

Θκ(Λ, v | q, z) =
∑
x∈Λ

q
1
2κ(x+κ−1v)2

eκ(x+κ−1v)·z , (B.5)

where Λ is any lattice and v is a shift vector in the same space as Λ. At level k, the only
weights λ = [λ1, . . . , λN−1] that can be the highest weight of a unitary representation are
those for which

∑N−1
i=1 λi ≤ k.

For example, in ŝu(2)2, there are three unitary representations with λ = 0, ω, 2ω, where
ω is the fundamental weight. Since all our states are built from adjoint fermions, we can
only have representations of N -ality 0, so we can focus on λ = 0, the singlet, and λ = 2ω,
the adjoint. The characters of these representations according to (B.4) is

q1/16χ
ŝu(2)2
1 = 1 + 3q + (1 + 3 + 5) q2 + (1 + 3(3) + 5) q3 + (3(1) + 4(3) + 3(5)) q4 + . . . ,

q1/16χ
ŝu(2)2
3 = 3q1/2 + (1 + 3) q3/2 + (1 + 2(3) + 5) q5/2 + (2(1) + 3(3) + 2(5)) q7/2 + . . . ,

(B.6)

where we used the shorthand notation r to denote the su(2) representation of dimension r.
A formula very similar to (B.4) holds for other affine algebras, but for ŝo(N2 − 1)1 we

will not need such a formula. Indeed, we construct the ŝo(N2 − 1)1 algebra by forming
currents from the adjoint fermion components ψi, with i = 1, . . . , N2 − 1:

ja = 1
2ψ

iT aijψ
j , (B.7)
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with T aij the fundamental representation matrices of so(N2 − 1). We then see that

〈
0
∣∣∣ ja(2)jb(−2)

∣∣∣ 0〉 = 1
4T

a
ijT

b
kl

(
δilδkj − δikδjl

)
= 1

2 Tr
(
T aT b

)
= δab , (B.8)

which shows that the algebra is at level 1. The stress tensor (B.2) is normalized so that the
currents have dimension 1, meaning

[L0, j
a(n)] = −n2 j

a(n) . (B.9)

Comparing this with P+, we see that L0 = P+L, where L is the circle length. This is the
quantity we denote by K

2 . Hence, the characters of ŝo(N2 − 1)1 are simply counting the
states appearing at each level K, which can be accomplished by the method outlined in
section 3.1. The states fall into two blocks, descendants of the vacuum and of an so(N2− 1)
vector formed by acting with the lowest Fourier mode of ψi on the vacuum. The characters
are given by [25]

χ
ŝo(N2−1)1
sing (q, z)± χŝo(N2−1)1

vec (q, z) = q−(N2−1)/48
∞∏
r=1

∏
λ∈adj

(
1± eλ·zqr−1/2

)
. (B.10)

For example, we have

q1/16χ
ŝo(3)1
sing (q,z) = 1+3q+(1+3+5)q2+(1+3(3)+5)q3+(3(1)+4(3)+3(5))q4+. . . ,

q1/16χŝo(3)1
vec (q,z) = 3q1/2+(1+3)q3/2+(1+2(3)+5)q5/2+(2(1)+3(3)+2(5))q7/2+. . . .

(B.11)

From (B.6) and (B.11), we see that

χ
ŝo(3)1
sing = χ

ŝu(2)2
1 , χ

ŝo(3)1vec = χ
ŝu(2)2
3 . (B.12)

This is an example of the character decomposition given for general N in section 5.2.

B.2 Asymptotic state counts

Let us now use the characters introduced above to obtain the asymptotic state counts
given in (3.5). We will do this by first deriving generating functions for the state counts at
finite N . Separately, we will also derive a generating function for the counts in the large
N limit. Analyzing the asymptotics of these generating functions demonstrates that the
growth is substantially faster in the large N case.

We start with the simplest case, SU(2). The generating function for all the states is
given by (B.10), which in this case reads

q1/16
(
χ
ŝo(3)1
sing (q, z) + χŝo(3)1

vec (q, z)
)

=
∞∏
r=1

(
1 + qr−1/2

) (
1 + ezqr−1/2

) (
1 + e−zqr−1/2

)
.

(B.13)
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We are ultimately interested in gauge singlet states; let A2,K be the number of SU(2) singlet
states at level K, and let

f2(q) =
∞∑
K=0

A2,Kq
K/2 . (B.14)

Using the fact that every non-trivial integer-spin irrep of su(2) has a unique state of charge
1, the gauge-invariant states can be read off from the character (B.13) by subtracting the
coefficients of terms independent of Z = ez and coefficients of the terms linear in Z. Using
the Jacobi triple product formula, we can neatly collect all the powers of Z:

q1/16χŝo(3)1(q, Z) =

∑
n∈Z

qn
2/2Zn

( ∞∏
r=1

1 + qr−1/2

1− qr

)
. (B.15)

It then follows that
f2(q) =

(
1− q1/2

) ∞∏
r=1

1 + qr−1/2

1− qr . (B.16)

We can calculate the growth of the coefficients of this generating function as follows.
The infinite product can be rewritten as

∞∏
r=1

1 + qr−1/2

1− qr =
∞∏
m=1

1(
1− qm/2

)am
, (B.17)

with am = 0 if m ≡ 2 (mod 4) and am = 1 otherwise. Thus, the coefficient of qK/2 counts
integer partitions of K where none of the constituents are congruent to 2 modulo 4. A
theorem by Meinardus [45–47] gives the asymptotic behavior for modified partition problems
of this form, in terms of analytic data of the Dirichlet series

D(s) =
∞∑
m=1

am
ms

. (B.18)

In our case, we have D2(s) = (1− 2−s + 4−s) ζ(s), so all necessary data is simple to compute.
For the coefficients of this infinite product, Meinardus’ theorem gives the asymptotic behavior

1
4
√

2K
−1 exp

(
π
√
K/2

)
. We then have to multiply by (1 − q1/2), which is equivalent to

differentiating with respect to K. Thus,

A2,K ∼
π

16K3/2 exp

π
√
K

2

 , (B.19)

where by f(K) ∼ g(K) we mean limK→∞ f(K)/g(K) = 1.
A similar argument gives generating functions for AN,K with N ≥ 2. For instance, take

N = 3. In the character for ŝo(8)1, we have three pairs of nonzero weights, which can be
written in terms of simple roots as ±α1, ±α2, and ±(α1 + α2). Using the Jacobi triple
product formula on each pair gives

q1/6χŝo(8)1(q,z) =∑
n1∈Z

qn
2
1/2en1z1

∑
n2∈Z

qn
2
2/2en2z2

∑
n3∈Z

qn
2
3/2en3(z1+z2)

( ∞∏
r=1

(1+qr−1/2)2

(1−qr)3

)
.

(B.20)
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From this we need to find the number of singlets. One can show using character orthogonality
that in SU(3) the number of singlet representations appearing in a character can be
computed by

n(3)
s = m(0,0) +m(1,2) +m(2,1) − 2m(1,1) −m(2,2) , (B.21)

where e.g. m(1,2) is the multiplicity of the weight α1 + 2α2 in the character. We can read
off these multiplicities from the product, and find

f3(q) =

∑
n∈Z

(
q3n2/2 + 2q(n+2)2/2+(n+1)2/2+n2/2 − 2q(n+1)2+n2/2 − q(n+2)2+n2/2

)
×
( ∞∏
r=1

(1 + qr−1/2)2

(1− qr)3

)
.

(B.22)

For SU(4), the procedure is analogous. We have six pairs of nonzero roots in the
product formula for q15/48χŝo(15)1(q, z), and we can apply the Jacobi triple product to each.
To extract the number of singlets at each level K, we use

n(4)
s =
m(0, 0, 0)−3m(1, 1, 1)+m(1, 2, 1)+2m(1, 2, 2)−m(1, 2, 3)+2m(2, 2, 1)−2m(2, 2, 2)−2m(2, 3, 2)

+2m(2, 3, 3)+m(2, 4, 2)−m(2, 4, 3)−m(3, 2, 1)+2m(3, 3, 2)−m(3, 3, 3)−m(3, 4, 2)+m(3, 4, 3) .

(B.23)

The generating function is then

f4(q) = f4,pre(q)×
∞∏
r=1

(
1 + qr−1/2

)3

(1− qr)6 , (B.24)

where f4,pre(q) is a prefactor obtained using (B.23) in a similar manner as for SU(3).
In general, for SU(N) the generating function for the number of singlets will take

the form

fN (q) = fN,pre(q)×
∞∏
r=1

(
1 + qr−1/2

)N−1

(1− qr)N(N−1)/2 . (B.25)

If we apply Meinardus’s theorem to the infinite product piece, the relevant Dirichlet series is

DN (s) = (N − 1)
(

1 + N − 4
2 2−s + 2−2s

)
ζ(s) . (B.26)

From this we find that the coefficients of the infinite product grow like exp
(
π
√

(N2−1)K
6

)
.

Like in the case of SU(2), the prefactor should not change the exponential dependence, only
the polynomial piece, and so we can conclude

AN,K ∼ exp

π
√

(N2 − 1)K
6

× poly(K) . (B.27)

Noting that c = N2−1
2 and K = 2L0, we see that this is consistent with the Cardy formula

for the entropy S = 2π
√

c
6
(
L0 − c

24
)
.
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We can carry out a similar analysis for the large N state counts, which we denote
A∞,K . Here we have to count products of traces of the B† operators. To illustrate the
method, pretend for a moment that these operators were bosonic so that such products
could not vanish due to fermionic statistics. The single-trace states are then “cycles” of
odd numbers of length greater than one. It is well-known that if some combinatorial class
A has generating function A(z), then cycles of that class have the generating function [48]

CA(z) =
∞∑
s=1

φ(s)
s

log 1
1−A(zs) , (B.28)

where φ(s) is Euler’s totient function. We can use this formula with the generating function
for odd numbers, A(z) = z

1−z2 , keeping in mind that it will also include length-one cycles
that must eventually be removed.

To go from the single-trace generating function (B.28) to the multi-trace generating
function, we need to construct multisets of the single-trace states. This is again a well-known
problem with a straightforward solution; given a combinatorial class B with generating
function B(z), multisets of B are counted by

PE[B(z)] = exp
( ∞∑
k=1

B(zk)
k

)
. (B.29)

Applying this to CA(z), and using
∑
s|q φ(s) = q, we find

PE
[
CA(z)

]
=
∞∏
q=1

1
1−A(zq) . (B.30)

Finally, to correct for the fact that we included length-one cycles, we can divide this by∏
odd n(1 + zn).

A very similar argument follows for our case where the operators are fermionic. Following
the analysis in [48] but being careful to exclude cycles corresponding to null traces, we find
a generating function for fermionic cycles,

C̃A(z) =
∞∑
s=1

φ(s)
s

log 1
1 + (−1)sA(zs) . (B.31)

Likewise, to form multisets of fermionic objects, we can use a modified plethystic exponential

P̃E
[
B̃(z)

]
= exp

( ∞∑
k=1

(−1)k+1 B̃(zk)
k

)
. (B.32)

It follows that the generating function f∞(z) =
∑∞
K=0A∞,Kz

K of the large N states is
given by

f∞(z) = PE
[
C̃A(z) + C̃A(−z)

2

]
× P̃E

[
C̃A(z)− C̃A(−z)

2

] ∏
odd n

1
1 + zn

, (B.33)

where the last factor is again to correct for the one-cycle states appearing in (B.31).
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Remarkably, when A(z) is odd this product of plethystic exponentials simplifies almost
as much as in the bosonic case. Using various identities for the totient function, we find

f∞(z) =
∞∏
k=1

1
1 + (−1)kA(zk)

∏
odd n

1
1 + zn

. (B.34)

For our case with A(z) = z
1−z2 , the first factor in this product is

1 + z

1− z − z2 = 1 +
∞∑
k=1

Fkz
k , (B.35)

where Fk are the Fibonacci numbers with F0 = 0 and F1 = 1. This factor dominates the
asymptotic growth of the coefficients, and so we have

S∞,K ∼ exp ((log φ)K)× poly(K) , (B.36)

where φ = 1+
√

5
2 is the golden ratio. In particular, we see that these counts grow like eα∞K

while the counts for finite N grow like eαN

√
K . Thus, for any fixed N , at large enough K

almost all the gauge-invariant states we could write down are null. For instance, at K = 150
there are 59, 436, 131 physical states for SU(2) and 3,696,065,286,870,911,100,343,887,617,904
states for large N .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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