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1 Introduction

One of the most fascinating facts in modern cosmology is that we can access the physics
of the primordial universe by measuring the correlation functions of large-scale inhomo-
geneities and anisotropies. Examples of such measurements include the temperature and
the polarizations of the cosmological microwave background [1, 2], the large-scale structure
survey [3], and the more futuristic 21cm tomography [4, 5]. Based on existing observational
data, it is now widely believed that the large-scale inhomogeneities originated from a period
of inflation in the primordial universe. During this almost exponentially fast expansion,
the quantum fluctuations of fields were generated through processes similar to Schwinger
pair production. They were then quickly redshifted to super-horizon scales, and sourced
the large-scale fluctuations we see today [6].

The central objects that bridge the observations and the theory are the n-point corre-
lation functions of quantum fields produced during inflation. In this work, we collectively
call them inflation correlators. Inflation correlators are, on the one hand, calculable from a
quantum field theory in an inflationary spacetime [7], and, on the other hand, measurable
through the various cosmological probes mentioned above. Examples of inflation correla-
tors include the n-point functions of the inflaton fluctuations and the tensor modes of the
metric fluctuation γ. Depending on models, n-point functions of isocurvature modes, such
as the dark-matter isocurvature fluctuation, may also be observable.

From a theoretical point of view, the inflationary spacetime is close to the Poincaré
patch of 3 + 1 dimensional de Sitter spacetime (dS), one of the three maximally symmetric
spacetimes. The inflation correlators can be thought of as correlation functions of bulk
quantum fields, with all external points pinned onto the future boundary of the dS. Hence,
the inflation correlators are natural dS counterparts of scattering amplitudes in Minkowski
spacetime and boundary correlators in anti-de Sitter spacetime (AdS). It is thus of both
theoretical and phenomenological interest to study inflation correlators.

In recent years, it was realized that the inflation correlators can be used as probes of
new heavy particles and their interactions at the inflation scale [8–15], which is presumably
much higher than any terrestrial collider experiments. This program has been dubbed
“cosmological collider (CC) physics” [15]. In particular, heavy particles can leave distinct
oscillatory shapes in various soft limits of n-point inflation correlators, known as CC signals.
The rich particle phenomenology of the CC has been actively explored recently [16–57].
From these studies, it is now clear that many properties of heavy particles can leave distinct
signatures in signals, including the mass, the spin, the sound speed, the chemical potential,
and the interaction types.
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In many particle models of CC physics, the leading CC signal appears at the 1-loop level
rather than the tree level. See, e.g., [18, 19, 28, 34, 36–38, 41, 45, 50, 54, 55]. This happens
in particular when the signal-generating states have to be produced and annihilated in
pairs, such as fermions and states carrying conserved charges. In such cases, the tree-level
process is simply absent. There are also cases in which the 1-loop processes are more
enhanced relative to the tree-level process (but higher loops remain subdominant so that
the perturbation theory still works). The 1-loop-dominant CC signals cover a large range of
models, including most of the Standard Model states in the symmetric phase, the chemical-
potential-enhanced signals in the 3-point functions, and new physics states such as heavy
neutrinos, Kaluza-Klein states, etc.

It is thus desirable to have analytical expressions for 1-loop inflation correlators, both
for a better understanding of the analytical structure of dS correlators and for phenomeno-
logical applications. However, the computation of inflation correlators is difficult, due to
the lack of symmetries, the build-in time ordering in the computation of inflation cor-
relators, and the complicated mode functions (usually Hankel functions and Whittaker
functions). Recent years have witnessed considerable progress toward the analytical and
numerical computation of inflation correlators [58–87]. Analytical results for general mas-
sive exchanges at the tree level have been worked out in various ways, including the simpler
dS covariant case and the more complicated boost-breaking cases. The techniques devel-
oped in recent years allow us to compute many tree-level inflation correlators with massive
exchanges.

In comparison, general 1-loop massive exchanges remain challenging, and full analytical
results are very rare in the literature.1 Known nontrivial examples include the 1-loop bubble
correction to the 2-point function from scalar fields of arbitrary mass in Euclidean dS [88],
the 4-point function with 1-loop exchange of conformal scalar (m2 = 2H2, H being the
inflationary Hubble scale) in the position space [83].2 However, these examples contain no
CC signals: the 2-point function is free from any oscillatory signal by the scale symmetry
of the problem. The conformal scalar mediation does not generate any CC signals, because
the conformal scalar has a real scaling dimension ∆ = 3/2 −

√
9/4− (m/H)2 = 1, while

the oscillatory CC signals require complex scaling dimensions, namely, m > 3H/2.
Currently, we are unaware of any complete analytical results for 1-loop inflation corre-

lators containing CC signals, although partial results do exist. For example, the complete
analytical results for 1-loop nonlocal CC signals were worked out in [71] using the partial
Mellin-Barnes representation. There are also full numerical results for a class of signal-
carrying 1-loop 3-point functions [73]. It turns out that numerical computation is nontrivial
as well, and fast numerical computation has not been achieved yet at the moment.

The lack of full results for massive 1-loop exchange has been a problem for particle
model buildings and phenomenological studies of CC physics. To assess observable param-
eter space, one has to resort to unjustified approximations such as a late-time expansion

1There is a relatively long history in the study of massless loops in dS. In particular, massless loops with
non-derivative couplings have been extensively studied due to their peculiar infrared properties. In general,
massless loops are more tractable relative to massive loops, and we do not consider them in this work.

2There are also examples such as 1-loop seagull diagram which are trivial to compute.
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1Figure 1. Computing 1-loop inflation correlator via spectral decomposition. The diagrammatic
notation follows [25].

of loop propagators. The physical reason to take late-time expansion is that the CC sig-
nal is typically generated from a resonant process in the soft limit of the correlator. At
the resonant point, the massive mode carries the soft momentum and is well outside the
horizon. Therefore, the time integral is expected to receive most of its contribution from
the late-time part of the massive mode. From this argument, it is clear that the late-time
expansion is only useful for estimating the oscillatory signal in the squeezed limit; it can-
not be used to estimate the non-oscillatory “background” of the correlator. Worse still,
in most frequently encountered 3-point functions (figure 2), it is known that the resonant
argument applies only to one of the two time integrals, and thus the late-time expansion is
conceptually flawed. Indeed, if one insists on working with the late-time expansion, as in
most previous studies, the resulting strength of the CC signal would have a slightly wrong
parameter dependence.3

In this work, we start a program of bootstrapping inflation correlators with massive 1-
loop exchanges via spectral decomposition. As a first step, we compute the 1-loop diagram
mediated by a pair of scalar fields σ of the same massm. By defining and working out a loop
seed integral, we can generate complete analytical results for many 1-loop correlators with
massive scalar exchanges with various types of couplings. Furthermore, by taking appropri-
ate folded limits, we can also obtain full results for 3-point functions with massive 1-loop
bubble exchange. For simplicity, we focus on non-derivatively coupled massive scalars.
Generalizations to derivatively coupled loop modes will be considered in a future work.

We choose to work in dSd+1 with general d spatial dimensions. This makes it easier to
regularize the ultraviolet (UV) divergences. Also, the massive loop correlators in general
dSd+1 might be of theoretical interest. In dSd+1, it is more convenient to use the parameter
ν̃ ≡

√
m2/H2 − d2/4 for scalar fields, instead of the mass m. We shall call ν̃ the mass

parameter.4 In this work, we only consider massive scalars that are capable of generating
oscillating CC signals. Such fields have mass m > dH/2, or equivalently, ν̃ > 0. Following

3More precisely, we expect that the CC signal strength scales with the intermediate mass m as ν̃ae−b̃ν ,
where ν̃ =

√
(m/H)2 − 9/4 for scalar fields, and (a, b) are parameters to be determined. It was known that

a naïve late-time expansion would yield correct b but wrong a. See the appendix of [45] for a discussion of
this issue.

4We shall also use term like “a scalar field of mass ν̃.” We hope this does not confuse the readers. Also,
we add a tilde for ν̃ to distinguish it from a more conventionally defined parameter ν ≡

√
d2/4−m2/H2.
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the terminology of the representation theory, we call them principal scalars. (On the
contrary, scalars with 0 < m < dH/2 do not generate oscillatory signals, and are called
complementary scalars.) [89, 90]

As mentioned, we circumvent the difficulty of loop integral by doing spectral decompo-
sition. This is not a new idea; rather, it is very close to the Källen-Lehmann representation
found in many ordinary quantum field theory textbooks. It has also been used to com-
pute bubble 1-loop correction to 2-point function in dS [88]. The essential idea is best
explained in the position space, where the 1-loop integral is nothing but a bubble function
B(x, y) = 〈σ2(x)σ2(y)〉. The spectral decomposition suggests that we rewrite the bubble
function B(x, y) as a superposition of free scalar propagators Dν̃′(x, y) of different masses
ν̃ ′. Correspondingly, the loop correlator can be written as a spectral integral of tree-level
correlators mediated by scalars of masses ν̃ ′, weighted by a spectral function ρdS

ν̃
(ν̃ ′). Our

modest new observation in this work is that, with the analytical structure of the spectral
integrand known, we can finish the spectral integral by closing the contour on the complex
ν̃ ′-plane and applying the residue theorem, and thereby get the complete analytical result
for the loop correlators. We illustrate this procedure in figure 1.

As we shall see, the loop seed integral Jν̃(r1, r2) for the 4-point correlator in figure 1
depends on the four external momenta ki (i = 1, 2, 3, 4) only through two momentum ratios
r1 ≡ ks/(k1 +k2) and r2 ≡ ks/(k3 +k4), where ks ≡ k1 +k2, and ki ≡ |ki| (i = 1, · · · , 4, s).
Furthermore, it breaks into four distinct pieces according to the analytical behavior in the
squeezed limit r1,2 → 0. Schematically, for r1 < r2, we have:5

Jν̃(r1, r2) ∼ GNS(r1, r2)(r1r2)±2ĩν +GLS(r1, r2)
(
r1
r2

)±2ĩν
+GLT(r1, r2) log r2 +GBG(r1, r2).

(1.1)
Here the four terms are called the nonlocal signal (NS), the local signal (LS), the logarithmic
tail (LT), and the background (BG), respectively. We shall explain the meaning of these
terms later. Here we only note that the four functions denoted by G are fully analytic at
r1,2 = 0, and all non-analytic behaviors have been explicitly spelled out in each term. The
nonlocal and local signals are of the main interest of CC physics, which already appear at
the tree level. On the contrary, the logarithmic tail is a special feature of loop correlators,
which does not exist for tree-level correlators. However, the logarithmic tail vanishes in
(3 + 1)-dimensional dS. The background part of the loop correlators in (3 + 1)-dimensional
dS is expected to possess the usual ultraviolet (UV) divergence. We use dimensional
regularization to regulate the divergence, and use the familiar modified minimal subtraction
(MS) as our renormalization condition.

With the analytical results for the loop seed integral, we can efficiently study the
properties of loop correlators. In this work, we consider the 1-loop 4-point and 3-point
correlators of the inflaton fluctuations as examples. We shall provide their full analytical
results, as well as simple approximations in the squeezed limit and the large mass limit. We
show that the CC signals dominate over the background in the single squeezed limit of the
4-point correlator, namely r1 � 1 with r2 fixed. On the contrary, there is no configuration

5The result for r1 > r2 is obtained by switching r1 with r2.
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of 3-point correlators where the CC signals are guaranteed to be dominant. Therefore, the
single squeezed limit of the 4-point correlators can be a golden channel for discovering CC
signals at the 1-loop level.

Outline of this work. The rest of the paper is organized as follows. In section 2, we
discuss several examples of inflation correlators with massive 1-loop exchanges. Motivated
by these examples, we define the loop seed integral which is the central object of this work.
We then introduce the idea of spectral decomposition for computing the loop seed integral.

In section 3, we compute the loop seed integral by carrying out the spectral integral.
We first introduce the two essential ingredients for this computation, namely the spectral
function and the tree seed integral in general d spatial dimensions. We then carry out the
spectral integral using the residue theorem. The result is summarized and briefly discussed
in section 3.5.

In section 4, we study the properties of the loop seed integral in several limits, including
the d→ 3 limit where d is the spatial dimension, the large mass limit, the squeezed limit,
and the folded limit. The behavior of the loop seed integral in these limits can be either
calculated by other means or inferred on physical grounds. Therefore, these limits can be
used as consistency checks of our results.

In section 5, we apply the result of the loop seed integral to compute the 4-point and
3-point inflaton correlators with massive 1-loop exchanges. These processes have direct
applications in CC physics. We provide their full analytical results and discuss the squeezed
limit and the large-mass limit. The conclusion and outlooks are given in section 6.

There are six appendices following the main text. Apart from appendix A which
collects a couple of useful formulae, these appendices contain discussions and results that
are essential for our study of 1-loop correlators. We put these materials in the appendix
only because of the many technical details involved, which may become distractions had
we put them in the main text.

In appendix B, we collect more discussions on the dS spectral function ρdS
ν̃

(ν̃ ′). We first
reproduce the derivation of the spectral function ρdS

ν̃
(ν̃ ′) following the treatment of [88].

Then we present the pole structure and residues of the spectral function on the complex
ν̃ ′ plane. Next, we discuss the d→ 3 limit of the spectral function, with a focus on its UV
divergence. Finally, we collect discussions about the Π function, which is a variation of the
spectral functions and appears at several places in the loop seed integral.

In appendix C, we study the asymptotic behavior of the spectral function ρdS
ν̃

(ν̃ ′) in
either the large ν̃ limit or the large ν̃ ′ limit. The large ν̃ limit enables us to study our result
in the flat-space limit, and the large ν̃ ′ limit is essential to apply the residue theorem when
computing the spectral integral.

In appendix D, we compute the tree seed integral, which is the basis for our bootstrap-
ping loop correlators. We follow the method of partial Mellin-Barnes representation in [71,
72]. In appendix E, we prove the equivalence between the tree seed integral computed from
the partial Mellin-Barnes method and the one from solving the bootstrap equation in [72].

Finally, in appendix F, we bootstrap the massive 1-loop correlator in Minkowski space-
time, also using the spectral decomposition. This illustrates our method with a relatively
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simple setup, and the result obtained here is also useful for our consistency check of loop
seed integral in dS.

Notations and conventions. In this work, the spacetime metric is fixed to be ds2 =
a2(τ)(−dτ2 + dx2) where τ ∈ (−∞, 0) is the conformal time, x is the comoving spatial
coordinates of Rd slices, a(τ) = −1/(Hτ) is the scale factor, and H is the Hubble parameter
and is a constant in dS. In most of this work we shall take H = 1.

A scalar 4-point correlator as in figure 1 is specified by the four external spatial mo-
menta ki (i = 1, 2, 3, 4). Their magnitudes are denoted by ki ≡ |ki|. The s-channel mo-
mentum is defined by ks ≡ k1 + k2. Also, we use shorthand notations such as kij = ki +kj
(i, j = 1, 2, 3, 4) and k1234 = k1 + k2 + k3 + k4. We shall frequently use the momentum
ratios r1 ≡ ks/k12 and r2 ≡ ks/k34. Other similar shorthands include n12 = n1 + n2,
p12 = p1 + p2, p̄12 = p1 − p2, etc.

2 Loop seed integral and its spectral decomposition

In this section, we motivate and define the loop seed integral, which is a double-layer integral
over bulk dS time variables, and is the key quantity to be computed in this work. We then
introduce the spectral decomposition, which converts the loop seed (time) integral into a
spectral integral over the mass parameter.

Examples of 1-loop correlators. Let us begin with the 1-loop correlator shown in the
left diagram of figure 1. With the field species and interaction types known, it is straight-
forward to build an expression for this diagram with the standard Schwinger-Keldysh (SK)
formalism. See [25] for a pedagogical introduction. We also follow the diagrammatic nota-
tions of [25]. In particular, the four external (black) legs represent the bulk-to-boundary
propagators of the nearly massless inflaton field ϕ. As in most previous works on this topic,
we choose to Fourier-transform the d spatial coordinates x to corresponding momenta k,
but leave the (conformal) time τ untransformed. In this representation, and specialized to
d = 3, the bulk-to-boundary propagator Ga(k; τ) of a massless scalar field reads:6

Ga(k; τ) = 1
2k3 (1− iakτ)eiakτ . (2.1)

Here k ≡ |k| is the 3-momentum carried by the propagator, τ is the time variable of the
bulk point, and a = ± is the SK index of the bulk point. On the other hand, the two (blue)
loop lines denote the bulk propagators of a real scalar field σ of mass ν̃. We only consider
the case of principal scalars (ν̃ > 0) for σ in this work. In this case, the bulk-propagator
Dν̃,ab(k; τ1, τ2) in general d spatial dimensions reads:

Dν̃,±±(k; τ1, τ2) = Dν̃,≷(k; τ1, τ2)θ(τ1 − τ2) +Dν̃,≶(k; τ1, τ2)θ(τ2 − τ1), (2.2)

Dν̃,±∓(k; τ1, τ2) = Dν̃,≶(k; τ1, τ2). (2.3)
6The bulk-to-boundary massless scalar propagator in general d spatial dimensions involves the Hankel

function and is considerably more complicated. Fortunately, we will only need the d = 3 result when
the dimensional regularization and the counterterms are properly introduced. See the discussion and the
footnote below (2.18).
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Here we have introduced two “homogeneous” propagators, which are related by
Dν̃,<(k; τ1, τ2) = D∗

ν̃,>
(k; τ1, τ2), and,

Dν̃,>(k; τ1, τ2) = π

4 e
−πν̃(τ1τ2)d/2H(1)

ĩν (−kτ1)H(2)
−ĩν(−kτ2), (2.4)

where H(1)
ν (z) and H(2)

ν (z) are the Hankel functions of the first and second kinds, respec-
tively.

It remains to specify the interaction vertices in figure 1. Normally, we require the
coupling to be invariant under a constant shift of the inflaton field ϕ, which is always true
when the inflaton is coupled to other fields through its derivatives. Direct couplings are
of course possible, as the shift symmetry is only approximate. Our treatment here can be
applied to either case, but for definiteness, let us consider the following simple example
with derivative coupling:

∆L = −1
4a

d−1ϕ′2σ2. (2.5)

We omit coupling constants throughout this work, which are trivial to recover. Here and
below, a prime denotes conformal time derivative: ϕ′ ≡ dϕ/dτ . The factor ad−1 is included
to ensure that the Lagrangian has the correct scaling. This operator is naturally derived
from a Lorentz invariant operator √−g(∂µφ)2σ2 when evaluated with the dS and inflaton
background, although in this case, it is always accompanied by a spatial derivative coupling
a2(∂iϕ)2σ2. It is possible to generate (2.5) alone by integrating out a heavy degree in the
underlying Lorentz invariant theory. See [71] for more discussions.

With the couplings given in (2.5) and all propagators known, it is straightforward to
write down the expression for the 1-loop 4-point function in figure 1, following the dia-
grammatic rule [25]. Throughout this work, we shall only consider the s-channel exchange
unless otherwise stated. The corresponding t- and u-channel contributions can be ob-
tained by permuting external momenta as usual. Then, we can parameterize the s-channel
contribution as

〈ϕk1ϕk2ϕk3ϕk4〉ϕ,s = (2π)dδ(d)(k1 + k2 + k3 + k4)Lϕ,̃ν(k1,k2,k3,k4), (2.6)

where the loop amplitude Lϕ,̃ν is:

Lϕ,̃ν = −1
2
∑

a,b=±
ab
∫ τf

−∞

dτ1
(−τ1)d−1

dτ2
(−τ2)d−1

× ∂τ1Ga(k1, τ1)∂τ1Ga(k2, τ1)∂τ2Gb(k3, τ2)∂τ2Gb(k4, τ2)Qν̃,ab
(
ks; τ1, τ2

)
. (2.7)

Here the pre-factor 1/2 is a symmetric factor, and Qν̃,ab is the loop momentum integral:

Qν̃,ab
(
ks; τ1, τ2

)
≡
∫ ddq

(2π)dDν̃,ab

(
q; τ1, τ2

)
Dν̃,ab

(
|ks − q|; τ1, τ2

)
. (2.8)

As our second example, let us take the four external states in figure 1 to be conformal
scalars φc. By a conformal scalar, we simply mean a scalar field with mass m2

c = (d2−1)/4
in dSd+1, and we do not make any assumptions about the origin of this mass. The conformal
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1Figure 2. The 3-point function of inflaton fluctuations ϕ mediated by a massive scalar σ at 1-loop
order.

scalar has the nice properties that its “untilded”mass parameter ν =
√
d2/9−m2 = 1/2 is

independent of the spatial dimension d and that its mode function is particularly simple.
We denote the bulk-to-boundary propagator of a conformal scalar by Ca, and it is given by

Ca(k; τ) = (ττf )(d−1)/2

2k eiakτ , (2.9)

where we have introduced a final-time cutoff τf . To couple the conformal scalar φc with
the massive loop field σ, we can simply introduce a non-derivative coupling:

∆L = −1
4a

d+1φ2
cσ

2, (2.10)

where, again, we omit the coupling constant for simplicity. Then, the 4-point correlator
of conformal scalars of s-channel loop in figure 1 can be written as:

〈φc,k1φc,k2φc,k3φc,k4〉s,̃ν = (2π)dδ(d)(k1 + k2 + k3 + k4)Lφc ,̃ν(k1,k2,k3,k4), (2.11)

where the loop amplitude is:

Lφc ,̃ν = −1
2
∑

a,b=±
ab
∫ τf

−∞

dτ1
(−τ1)d+1

dτ2
(−τ2)d+1

× Ca(k1, τ1)Ca(k2, τ1)Cb(k3, τ2)Cb(k4, τ2)Qν̃,ab
(
ks; τ1, τ2

)
, (2.12)

with the loop momentum integral Qν̃,ab given in (2.8).
As the last example, let us consider a 3-point function of inflaton ϕ mediated by a

massive scalar loop, as shown in figure 2. For convenience, we parameterize the 3-point
function in the following way:

〈ϕk1ϕk2ϕk3〉3,̃ν = (2π)dδ(d)(k1 + k2 + k3)Bϕ,̃ν(k1,k2,k3). (2.13)

Here the label 〈· · ·〉3,̃ν means that we only consider the diagram with the total loop momen-
tum being k3, as in figure 2. The complete result should also include two other diagrams
which can be obtained from figure 2 by permutations k3 ↔ k1 and k3 ↔ k2, respectively.

For the two vertices in figure 2, we choose the following couplings:

∆L = −1
4a

d−1ϕ′2σ2 − 1
2a

dϕ′σ2. (2.14)
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Then, the loop amplitude Bν̃ is given by:

Bϕ,̃ν = −1
2
∑

a,b=±
ab
∫ τf

−∞

dτ1
(−τ1)d−1

dτ2
(−τ2)d

× ∂τ1Ga(k1, τ1)∂τ1Ga(k2, τ1)∂τ2Gb(k3, τ2)Qν̃,ab
(
k3; τ1, τ2

)
, (2.15)

where the loop momentum integral Qν̃,ab is again given in (2.8).

Loop seed integral. One can go on and consider more examples of 1-loop bubble dia-
grams with various interaction types. However, so long as the external states are massless
or conformal, the resulting loop amplitudes all have similar structures. These examples
thus motivate us to define a loop seed integral J p1p2

ν̃
, with the hope that many massive

1-loop correlators can be easily generated from J p1p2
ν̃

. The computation of these 1-loop
correlators is then reduced to the computation of the loop seed integral. We define the
loop seed integral J p1p2

ν̃
in the following way:

J p1p2
ν̃

(r1, r2)≡−1
2
∑

a,b=±
abkd+2+p12

s

∫ 0

−∞
dτ1dτ2(−τ1)p1(−τ2)p2eiak12τ1+ibk34τ2Qν̃,ab

(
ks;τ1, τ2

)
.

(2.16)
Several explanations are in order. First, the piece −1

2
∑

ab follows directly from the Feyn-
man rules: the minus sign comes from the two i’s for the two vertices, and the factor 1/2 is
the symmetric factor. Second, we have inserted a factor kd+2+p12

s to make the whole integral
dimensionless. As a result, the loop seed integral depends on various external momenta
only through two ratios r1 ≡ ks/k12 and r2 ≡ ks/k34. Third, the powers (−τ1)p1(−τ2)p2 are
introduced to account for various types of couplings and various choices of spatial dimen-
sions. Here p1 and p2 are two arbitrary numbers that normally take integer values. Fourth,
the factor eiak12τ1+ibk34τ2 comes from the bulk-to-boundary propagators of the conformal
scalars; see (2.9). This factor also appears in massless bulk-to-boundary propagators in
d = 3; see (2.1). When d deviates from 3, the massless bulk-to-boundary propagators could
develop new terms that contribute to a finite part of the loop amplitude. This part can be
subtracted by a proper choice of counterterms, and thus we do not include this part in the
definition of the loop seed integral. Finally, Qν̃,ab

(
ks; τ1, τ2

)
is the loop momentum integral

that appears in all examples we are considering, and its explicit formula is given in (2.8).
Now, with the loop seed integral J p1p2

ν̃
(r1, r2) known, we can easily write down ex-

pressions for many 1-loop correlators. Here we show some examples from previously con-
sidered cases. First, let us consider the conformal-scalar correlator, which is the simplest
one. Comparing (2.16), (2.12), and (2.9), we have:

Lφc ,̃ν = (−τf )2(d−1)

16k1k2k3k4k
d−2
s

J −2,−2
ν̃

(r1, r2). (general d) (2.17)

The inflaton correlators can be expressed in terms of the loop seed integral only in d = 3.
By comparing (2.16), (2.7), and (2.1), we have:

Lϕ,̃ν = 1
16k1k2k3k4k5

s

[
J 00
ν̃

(r1, r2)
]

MS
. (d = 3) (2.18)
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Here the notation [· · · ]MS means that we subtract the divergence of the loop seed integral
at d = 3 by the MS scheme.7 Similarly, by comparing (2.15), (2.12), and (2.9), we see that
the 3-point loop amplitude Bϕ,̃ν in d = 3 can be written as:

Bϕ,̃ν = 1
8k1k2k4

3

[
J 0,−2
ν̃

(
k3
k12

, 1−
)]

MS
, (d = 3) (2.19)

where 1− means approaching 1 from below.
In similar ways, one can consider more general couplings. One potentially important

example is the 4-point correlator in figure 1 with the following Lorentz covariant coupling
in dS3+1:

∆L = −1
4a

2(∂µϕ)2σ2, (2.20)

in which the Lorentz indices are contracted with the Minkowski metric ηµν . In terms of
the loop seed integral, we can write down the corresponding correlator as:

Lϕ,̃ν = 1
16k3

1k
3
2k

3
3k

3
4
O12O34

[
J −2,−2
ν̃

(r1, r2)
]

MS
, (d = 3) (2.21)

where the differential operator Oij is defined by

Oij ≡ −k2
i k

2
j∂

2
kij −

1
2(k2

s − k2
i − k2

j )(1− ki∂kij )(1− kj∂kij ). (2.22)

Spectral decomposition. It is the presence of the loop momentum integral Qν̃,ab that
makes the computation of the loop seed integral difficult. Therefore we seek for a spectral
function ρdS

ν̃
(ν̃ ′) which satisfies the following property:

Qν̃,ab
(
ks; τ1, τ2

)
=
∫ +∞−iε

−∞−iε
dν̃ ′ ν̃

′

πiρ
dS
ν̃

(ν̃ ′)Dν̃′,ab
(
ks; τ1, τ2

)
. (2.23)

The insertion of the factor ν̃ ′/(πi) is conventional and can be understood as part of the
definition of ρdS

ν̃
(ν̃ ′). Also, as explained in appendix B, the integral goes over the whole

real axis on the complex ν̃ ′ plane. The −iε term in the integral limits means that we bypass
any possible poles on the real axis from below. We shall usually neglect this −iε term when
writing the integral.

If we can find a spectral decomposition as in (2.23), then it follows that the loop seed
integral J p1p2

ν̃
(r1, r2) can be fully expressed as a superposition of tree seed integrals Ip1p2

ν̃′

with continuously varying mass parameter ν̃ ′. Here by the tree seed integral, we mean the
following object:

Ip1p2
ν̃

(r1, r2) ≡ −
∑

a,b=±
abkd+2+p12

s

∫ 0

−∞
dτ1dτ2(−τ1)p1(−τ2)p2eiak12τ1+ibk34τ2Dν̃,ab

(
ks; τ1, τ2

)
.

(2.24)
7When taking the d→ 3 limit, one might worry that the O(3− d) part of the massless bulk-to-boundary

propagator would be combined with the 1/(3− d) part of the loop seed integral, and thus would contribute
a finite piece to L

ϕ,̃ν
that was not considered in (2.18). However, we can remove this finite part by

introducing the counterterm also in d spatial dimensions. In this work, we always make this “d-dimensional
counterterm” prescription.
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This is a direct d-dimensional generalization of the scalar seed integral introduced in [72].
Now, we further assume that the spectral integral over ν̃ ′ commutes with the time integrals.
Then, we have:

J p1p2
ν̃

(r1, r2) =
∫ +∞−iε

−∞−iε
dν̃ ′ ν̃

′

2πiρ
dS
ν̃

(ν̃ ′)Ip1p2
ν̃′

(r1, r2). (2.25)

Therefore, if we have the explicit results for the spectral function ρdS
ν̃

(ν̃ ′) and the tree seed
integral Ip1p2

ν̃′
(r1, r2), we can try to carry out the spectral integral (2.25) directly. This will

be the topic of the next section.

3 Computation of the loop seed integral

In this section, we compute the loop seed integral, defined in (2.16), by carrying out
the spectral integral (2.25). This is the most technical section of this work. Readers
uninterested in technical details can directly go to section 3.5 for the final result.

Our strategy is that we insert the explicit expressions for the spectral function ρdS
ν̃

(ν̃ ′)
and the tree seed integral Ip1p2

ν̃′
in to (2.25), properly close the integral contour on the

complex ν̃ ′ plane, and then evaluate the integral with the residue theorem.

3.1 Ingredients

To successfully bootstrap the loop seed integral from the tree seed integral, we need explicit
analytical expressions for the spectral function and the tree seed integrals. Fortunately,
both of them have been worked out in previous works. Here we present the full results as
the starting point of our calculation.

Spectral function. First, we need an analytical expression for the spectral function
ρdS
ν̃

(ν̃ ′) that satisfies the relation (2.23) in dSd+1. Such a spectral function can be extracted
from the 1-loop bubble diagram D2(x, y) formed by two massive scalar lines. The 1-loop
bubble diagram can be evaluated in either the Euclidean dSd+1 or in AdSd+1. The spectral
function in dSd+1 can then be obtained by proper analytical continuations of these results.

Both the Euclidean dS approach and the AdS approach have been investigated in the
literature. In [88], the spectral function was computed in Euclidean dS (EdS). The Eu-
clidean dSd+1 is simply the (d+1)-dimensional sphere Sd+1. The spectral function can thus
be computed by exploiting various relations of the (d+1)-dimensional spherical harmonics.
On the other hand, as shown in [81] and [65], the dS spectral function can be obtained by
the analytical continuation of the AdS 1-loop bubble function [91, 92]. Both approaches
lead to spectral functions expressed in terms of a generalized hypergeometric function 7F6
of argument unity, but with a slightly different appearance in their parameters. Owing to
the existence of a large number of connection formulae that transform the generalized hy-
pergeometric function of argument unity, we suspect that both results are mathematically
equivalent for the parameter domain where both results are well defined. The equivalence
of the two results can also be checked by simplified expressions in certain dimensions such as
d = 2, while the equivalence can be conveniently verified numerically for other dimensions.

It turns out that the result from the EdS approach [88] is easier to implement in our
computation, in part because the UV divergence of the spectral function in d = 3 is made
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explicit by the Euler Γ factor. Here we quote the final result and present the details of the
derivation in appendix B.

ρdS
ν̃

(ν̃ ′) = 1
(4π)(d+1)/2

cos[π(d2− iν̃)]
sin(−πiν̃) Γ

[
3−d

2 , d2− iν̃
2−d

2 − iν̃

]

×7F6

2−d
2 +iν̃ ′− iν̃, 3−d/2+ĩν′−ĩν

2 , 2−d
2 , 2−d

2 − iν̃, 2−d
2 +iν̃ ′, ĩν′−2ĩν+d/2

2 , ĩν′+d/2
2

1−d/2+ĩν′−ĩν
2 ,1+iν̃ ′− iν̃,1+iν̃ ′,1− iν̃, 4+ĩν′−3d/2

2 , 4+ĩν′−2ĩν−3d/2
2

∣∣∣∣∣∣1


+(ν̃→−ν̃). (3.1)

Here 7F6 is a dressed (generalized) hypergeometric function, defined in (A.6) in appendix A.
When evaluating the spectral integral (2.25) using the residue theorem, we shall need the
pole structure of the spectral function, which we review in appendix B as well.

Tree seed integral. The tree seed integral (2.24) for arbitrary (p1, p2, d) is not directly
available, although several special cases have been worked out in the literature using various
methods. In [58], the integral with p1 = p2 = −2 and d = 3 was computed by solving the
bootstrap equations. In [61] a result with p1 = p2 = −2 and arbitrary d was obtained
by working in the Mellin space. In [72], a result with arbitrary (p1, p2) and d = 3 was
computed using the partial Mellin-Barnes representation. We compute the most general
case with arbitrary (p1, p2, d) in appendix D using the method of partial Mellin-Barnes
representation introduced in [71], and here we quote the final result.

In general, the tree seed integral Ip1p2
ν̃

defined in (2.24) is a function of two independent
momentum ratios r1 = ks/k12 and r2 = ks/k34. It is often convenient to break the tree
seed integral into three distinct pieces according to their analytic properties at r1,2 = 0:

Ip1p2
ν̃

(r1, r2) = Ip1p2
NL,̃ν(r1, r2) + Ip1p2

L,̃ν (r1, r2) + Ip1p2
BG,̃ν(r1, r2). (3.2)

The three terms on the right-hand side correspond to the nonlocal-signal piece (NL), the
local-signal piece (L), and the background piece (BG), respectively. When r1 < r2, the
explicit expressions for the three pieces are given below. The result with r1 > r2 can be
obtained by switching r1, p1 ↔ r2, p2 in the following expressions.

Ip1p2
NL,̃ν(r1,r2)=Cp1p2

ĩν,d Fp1
ĩν,d(r1)Fp2

ĩν,d(r2)(r1r2)+ĩν+c.c., (3.3)

Ip1p2
L,̃ν (r1,r2)=−Cp1p2

ĩν,d Fp1
ĩν,d(r1)Fp2

−ĩν,d(r2)
(
r1
r2

)+ĩν
+c.c., (3.4)

Ip1p2
BG,̃ν(r1,r2)=

∞∑
`,m=0

(−1)`+1sin[π2 (p12+d)](`+1)2m+d+p12+1

22m+1( `−ĩν+p2+1
2 + d

4
)
m+1

( `+ĩν+p2+1
2 + d

4
)
m+1

r2m+d+p12+2
1

(
r1
r2

)`
, (3.5)

where the coefficient Cp1p2
ĩν,d and the function Fp

ĩν,d(r) are defined by:8

Cp1p2
ĩν,d ≡

1
8 csc2(πiν̃)

{
cos πp̄12

2 + cos
[
π

(
iν̃ + p12 + d

2

)]}
, (3.6)

Fp

ĩν,d(r) ≡ (2r)p+d/2+1 × 2F1

[
d
4 + 1

2 + p
2 + ĩν

2 ,
d
4 + 1 + p

2 + ĩν
2

1 + iν̃

∣∣∣∣∣r2
]
, (3.7)

8Note that our definitions of Cp1p2

ĩν,d
and Fp

ĩν,d
(r) are slightly different from the ones given in [72].
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and we have introduced the shorthands p12 ≡ p1 + p2 and p̄12 ≡ p1 − p2. Again, the
function 2F1 is a dressed hypergeometric function as defined in (A.6). Therefore, we see
that, apart from the unimportant factor (2r)p+d/2+1 in Fp

ĩν,d, the nonlocal piece behaves like
INL ∼ (r1r2)±ĩν in the squeezed limit r1,2 → 0, and the local piece behaves like (r1/r2)±ĩν .
That is, the nonlocal and local signals are nonanalytic in r1r2 and r1/r2, respectively. Given
that ν̃ > 0 for principal scalars (m > dH/2), we see that the nonlocal and local pieces give
rise to terms of the form cos[ν̃ log(r1r2)+ϑNL] and cos[ν̃ log(r1/r2)+ϑL], and this oscillatory
behavior is what we call the signal. On the other hand, the background piece is written as
a Taylor series in r1 and r1/r2 (when r1 < r2), or in r2 and r2/r1 (when r1 > r2). Therefore
we see that the background piece is analytic in both r1 and r2 when r1,2 → 0.

As shown in appendix D, the background piece Ip1p2
BG,̃ν obtained by the partial Mellin-

Barnes representation has a form in which the r1/r2 series is resummed into a hyperge-
ometric function. See (D.12). However, for our analysis of ultraviolet divergence in the
1-loop process, it turns out useful to have an expression with r1/r2 series fully expanded, as
shown in (3.5). Such a series can be more directly obtained by solving the inhomogeneous
bootstrap equation for general (p1, p2, d), as was done for special cases in [58] and [72].
However, it is possible to derive (3.5) by directly expanding the hypergeometric function
in the partial Mellin-Barnes result (D.12). This would be a direct proof of the equivalence
between the bootstrapped series (3.5) and the partial Mellin-Barnes series (D.12). We give
the details of this proof in appendix E.

Strategy. With the explicit expressions for the spectral function and the tree seed in-
tegral at hand, we are now ready to perform the spectral integral (2.25). Since the tree
seed integral is broken into three pieces, we will compute the spectral integral for the three
pieces separately. Thus we define the following three integrals:

J(1) ≡
∫ +∞

−∞
dν̃ ′ ν̃

′

2πiρ
dS
ν̃

(ν̃ ′)Ip1p2
NL,̃ν′(r1, r2), (3.8)

J(2) ≡
∫ +∞

−∞
dν̃ ′ ν̃

′

2πiρ
dS
ν̃

(ν̃ ′)Ip1p2
L,̃ν′ (r1, r2), (3.9)

J(3) ≡
∫ +∞

−∞
dν̃ ′ ν̃

′

2πiρ
dS
ν̃

(ν̃ ′)Ip1p2
BG,̃ν′(r1, r2). (3.10)

Here we have suppressed all indies for J integrals to avoid unnecessary complications of
notations. Also, we use (J(1),J(2),J(3)) instead of the more obvious choice (JNL,JL,JBG),
because the analytic properties of these integrals are unclear for the moment. We devote
the next subsection to the computations of these three integrals.

3.2 Contributions from the nonlocal tree integral

In this subsection, we compute the integral J(1) in (3.8). Note that all the momentum
dependence comes from the nonlocal tree seed integral, which is the sum of two terms
as shown in (3.3). The term proportional to (r1r2)+ĩν′ is explicitly spelled out in (3.3),
while the term proportional to (r1r2)−ĩν′ is contained in the complex conjugate, namely
“c.c.” in (3.3). For physical configurations, we have 0 < r1, r2 < 1 and thus 0 < r1r2 < 1.
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Thus, for the term proportional to (r1r2)+ĩν′ , we should close the integral contour with a
large semi-circle in the lower-half ν̃ ′-plane. On the contrary, for the term proportional to
(r1r2)−ĩν′ , we should close the contour with a large semi-circle in the upper-half ν̃ ′-plane.
It is thus necessary to treat (r1r2)+ĩν′ term and (r1r2)−ĩν′ term separately. Below, we list
all the poles on the lower-half ν̃ ′-plane in the integrand of (3.8) involving the (r1r2)+ĩν′

term, and all the poles on the upper-half ν̃ ′-plane in the integrand of (3.8) involving the
(r1r2)−ĩν′ term. These poles can be conveniently classified into the following three sets:

Poles (r1r2)+ĩν′ term (r1r2)−ĩν′ term
Set 1A: - ν̃ ′ = id/2± 2ν̃ + 2in, (3.11)
Set 1B: - ν̃ ′ = id/2 + 2in, (3.12)
Set 1C: ν̃ ′ = −in, (n 6= 0) ν̃ ′ = +in. (3.13)

In all these expressions n goes over all nonnegative integers, except for the Set 1C poles
ν̃ ′ = −in for the (r1r2)+ĩν′ term, in which case the pole at n = 0 is outside the integral
contour, due to the “−iε” prescription of the integral contour in (2.23). Poles in Set 1A
and Set 1B are from the spectral density ρdS

ν̃
(ν̃ ′), and poles in Set 1C are from the factor

csc2(πiν̃ ′) in the non-local part of the tree seed integral Ip1p2
NL,̃ν′ . See (3.3) and (3.6). There

are also poles from the dressed hypergeometric functions in (3.3), as shown in (3.7), but
these poles are not inside the integral contour, and thus do not contribute to the integral.

Set 1A: nonlocal signal. The poles in Set 1A are all simple poles, coming from an Euler
Γ factor in the spectral function. At these poles, the residue of the spectral function is given
in (B.34). Only the (r1r2)−ĩν term in (3.3) makes nonzero contributions since the poles are
in the upper-half ν̃ ′ plane. The summation of residues at these poles is straightforward,
and the result is:

J(1A)=−
(r1r2)d/2±2ĩνsin[π(d2+2iν̃)]

8πd/2Γ
(
d
2
)
sin2(πiν̃)

∞∑
n=0

(1+n) d
2−1

[
(1+iν̃+n) d

2−1
]2(1+2iν̃+n) d

2−1

(1+2iν̃+2n)d−1
(3.14)

×
(
d

2+2iν̃+2n
)
Cp1p2

2ĩν+d/2+2n,dF
p1
2ĩν+d/2+2n,d(r1)Fp2

2ĩν+d/2+2n,d(r2)(r1r2)2n+c.c..

The poles of Set 1A give rise to terms proportional to (r1r2)±2ĩν . In the terminology of CC
physics, they correspond to the nonlocal signal of the 1-loop process.

Set 1B: background. Similarly, the poles in Set 1B are all simple poles, coming from an
Euler Γ factor in the spectral function. At these poles, the residue of the spectral function is
given in (B.35). Again, only the (r1r2)−ĩν term in (3.3) makes nonzero contributions, since
the poles are in the upper-half ν̃ ′ plane. The result of summing the residues of these poles is:

J(1B) =
(r1r2)d/2 sin πd

2
4πd/2Γ

(
d
2
)

sin2(πiν̃)

∞∑
n=0

[
(1 + n) d

2−1
]2(1 + iν̃ + n) d

2−1(1− iν̃ + n) d
2−1

(1 + 2n)d−1

×
(
d

2 + 2n
)
Cp1p2
d/2+2n,dF

p1
d/2+2n,d(r1)Fp2

d/2+2n,d(r2)(r1r2)2n. (3.15)
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We see that this result is analytic in r1 and r2 as r1,2 → 0, apart from the unimportant
prefactor (r1r2)d/2 and similar factors in F functions. Therefore, this result belongs to the
background piece of the loop seed integral.

Set 1C: background and nonlocal logarithmic tail. The poles in Set 1C are from
the factor csc2(πiν̃ ′) in Ip1p2

NL,̃ν , as is clear from (3.3) and (3.6). The pole at ν̃ ′ = 0 is present
only for the (r1r2)−ĩν′ term, since our prescription of the integral contour requires that we
bypass any poles on the real axis from the negative imaginary direction. Therefore, the
ν̃ ′ = 0 pole is outside the integral contour for the (r1r2)+ĩν′ term, which is entirely in the
lower-half plane. Also, the ν̃ ′ = 0 pole is a simple pole, since there is a factor of ν̃ ′ in the
integrand of (3.8). On the other hand, the poles at ν̃ ′ = ±in with n 6= 0 are of second
order and are present for both of (r1r2)±ĩν′ terms. So, we treat n = 0 and n 6= 0 cases
separately. The contribution of ν̃ ′ = 0 is

J(1C0) = −
ρdS
ν̃

(0)
8π2

{
cos πp̄12

2 + cos
[
π

(
p12 + d

2

)]}
Fp1

0,d(r1)Fp2
0,d(r2). (3.16)

As we shall see, this result will be canceled by a similar term from the integration of the
local tree seed integral.

Then we consider the second-order poles at ν̃ ′ = ±in with n = 1, 2, · · · for the (r1r2)∓ĩν′

term. The residues at these poles are a little more complicated, as they necessarily involve
the derivatives of the integrand (with the pole-generating function csc2 removed) with
respect to ν̃ ′. Combining contributions from both of (r1r2)∓ĩν′ terms, the result is:

J(1C) = 1
8π2

∞∑
n=1
Zp1p2
n,d

{
Πn,d(ν̃)

[
log(r1r2) + Gp1

n,d(r1) + Gp2
n,d(r2)− Yp1p2

n,d + 1
n

]
− Ξn,d(ν̃)

}
× Fp1

n,d(r1)Fp2
n,d(r2)(r1r2)n. (3.17)

Here we have defined the following functions:

Gp
µ,d(r) ≡

d
dµ log Fp

µ,d(r), (3.18)

Πn,d(ν̃) ≡ ρdS
ν̃

(−in)− ρdS
ν̃

(+in), (3.19)

Ξn,d(ν̃) ≡ i
[dρdS

ν̃
(ν̃ ′)

dν̃ ′
∣∣∣∣
ν̃′=−in

+
dρdS

ν̃
(ν̃ ′)

dν̃ ′
∣∣∣∣
ν̃′=+in

]
, (3.20)

as well as the following coefficients:

Zp1p2
n,d ≡ n

[
cos πp̄12

2 + (−1)n cos π(p12 + d)
2

]
, (3.21)

Yp1p2
n,d ≡

n(−1)nπ sin[π2 (p12 + d)]
Zp1p2
n,d

. (3.22)

As we show in appendix B.4, the function Πn,d(ν̃) is free from the UV divergence for any
d. In several even spatial dimensions such as d = 2 and d = 4, Πn,d(ν̃) is an exponentially
small function which scales as e−2πν̃ . In d = 3 which is our main interest, the function
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Πn,d(ν̃) vanishes when n is an integer. On the other hand, the function Ξn,d(ν̃) in (3.20)
does not vanish in d = 3 for integer n, but it is still an exponentially small quantity, and
drops out in the final result for the loop seed integral. The explicit expression for Ξn,3(ν̃)
with integer n is given in (B.53).

In J(1C), both F(r) and G(r) are regular as r → 0. Therefore, no “signals” are present
in J(1C). However, there is a notable logarithmic tail ∝ log(r1r2) that is present is J(1C),
which has no counterpart in the tree seed integral. This logarithmic tail is absent in d = 3
due to the vanishing of Πn,3 for n ∈ Z.

3.3 Contributions from the local tree integral

Next, we consider the spectral integral J(2) in (3.9) with the local tree seed integral, which
is quite similar to the computation of J(1) in the last subsection. The local tree seed integral
Ip1p2

L,̃ν also consists of two terms, one proportional to (r1/r2)+ĩν′ and the other proportional
to (r1/r2)−ĩν′ . Here we concentrate on the case with 0 < r1 < r2 < 1. So, we close the
contour from the lower half ν̃ ′-plane for the (r1/r2)+ĩν′ term which is explicitly displayed
in (3.4), and we should close the contour from the upper-half ν̃ ′-plane for the (r1/r2)−ĩν′

which is contained in the “c.c.” term in (3.4). The relevant poles of the integrand of (3.9)
can be classified into the following four sets:

Poles (r1/r2)+ĩν′ term (r1/r2)−ĩν′ term
Set 2A: - ν̃ ′ = id/2± 2ν̃ + 2in, (3.23)
Set 2B: - ν̃ ′ = id/2 + 2in, (3.24)
Set 2C: ν̃ ′ = −in, (n 6= 0) ν̃ ′ = +in, (3.25)
Set 2D: ν̃ ′ = −i(d/2 + p2 + 1 + n), ν̃ ′ = i(d/2 + p2 + 1 + n). (3.26)

Again, in all these expressions n goes over all nonnegative integers, except in Set 2C for
(r1/r2)ĩν′ , where n = 0 should be excluded. Similar to the previous subsection, the poles
in Set 2A and Set 2B are from the spectral function, and the poles in Set 2C are from the
csc2(πiν̃ ′) function in the local tree seed integral through the Cp1p2

ĩν′,d factor. However, a new
set of poles emerge, marked as Set 2D, from the dressed hypergeometric function in the F
function in (3.4), which is absent in J(1). The computation of J(2) is thus very similar to
that of J(1) in the previous subsection, and we present the result below.

Set 2A: local signal. The residues at poles in Set 2A give rise to the 1-loop local signal.
Explicitly,

J(2A) =
(r1/r2)d/2+2ĩν sin[π(d2 +2iν̃)]

8πd/2Γ
(
d
2
)
sin2(πiν̃)

∞∑
n=0

(1+n) d
2−1

[
(1+iν̃+n) d

2−1
]2(1+2iν̃+n) d

2−1

(1+2iν̃+2n)d−1
(3.27)

×
(
d

2 +2iν̃+2n
)
Cp1p2

2ĩν+d/2+2n,dF
p1
2ĩν+d/2+2n,d(r1)Fp2

−2ĩν−d/2−2n,d(r2)(r1/r2)2n+c.c..
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Set 2B: background. The contribution of the second group of poles is

J(2B) = −
(r1/r2)d/2 sin πd

2
4πd/2Γ

(
d
2
)

sin2(πiν̃)

∞∑
n=0

[
(1 + n) d

2−1
]2(1 + iν̃ + n) d

2−1(1− iν̃ + n) d
2−1

(1 + 2n)d−1

×
(
d

2 + 2n
)
Cp1p2
d/2+2n,dF

p1
d/2+2n,d(r1)Fp2

−d/2−2n,d(r2)(r1/r2)2n. (3.28)

Set 2C: background and local logarithmic tail. The poles of Set 2C are from the
csc2(πiν̃ ′) factor in Ip1p2

L,̃ν . Similar to the poles of Set 1C in the last subsection, the ν̃ ′ = 0
pole is a simple pole, together with the (r1/r2)−ĩν′ term, it contributes the following result:

J(2C0) =
ρdS
ν̃

(0)
8π2

{
cos πp̄12

2 + cos
[
π

(
p12 + d

2

)]}
Fp1

0,d(r1)Fp2
0,d(r2). (3.29)

As has been mentioned in the last subsection, J(2C0) is canceled by J(1C0) in (3.16), so
these two terms do not appear in the final result. On the other hand, the poles at ν̃ ′ = ±in
with n 6= 0 are second-order poles. Their contributions to the integral can be found to be:

J(2C) = − 1
8π2

∞∑
n=1
Zp1p2
n,d

{
Πn,d(ν̃)

[
log r1

r2
+ Gp1

n,d(r1)−Gp2
−n,d(r2)− Yp1p2

n,d + 1
n

]
− Ξn,d(ν̃)

}

× Fp1
n,d(r1)Fp2

−n,d(r2)
(
r1
r2

)n
. (3.30)

The various quantities in this expression have been defined in (3.18)–(3.22). Similar to the
result of Sec 1C poles, we find a term ∝ log(r1/r2) which is nonanalytic in r1/r2 when
r1/r2 → 0. We call it the local logarithmic tail, as it is from the spectral integral of the
local scalar seed integral. Again, all terms in J(2C) except the one proportional to Ξn,d(ν̃)
vanish when d = 3.

Set 2D: background. Finally, there are poles arising from the Euler Γ factors in the
dressed hypergeometric function in Fp2

∓ĩν′,d(r2). See (3.4). These are simple poles that have
no counterparts in the integrand of J(1). The contribution from these poles is:

J(2D) = (2r1)d/2+1+p2
∞∑
n=0

(−1)n21+n√π
(
d
2 + p2 + 1 + n

)
n! Πd/2+p2+1+n,d(ν̃)

× Cp1p2
d/2+p2+1+n,dF

p1
d/2+p2+1+n,d(r1) 2F̃1

[
−n

2 ,
1−n

2
−d

2 − p2 − n

∣∣∣∣∣r2
2

](
r1
r2

)n
. (3.31)

3.4 Contributions from the background tree integral

Finally, we consider the integral (3.10). Unlike all the previous integrals, in (3.10), the
powers of r1 and r2 are independent of the integral variable ν̃ ′, and thus we cannot use the
power of r1,2 to decide on which side of the complex ν̃ ′-plane to close the integral contour.
On the other hand, as we show in appendix C.2, the spectral function ρdS

ν̃
(ν̃ ′) behaves for

large ν̃ ′ like |ν̃ ′|d−3, while the background tree seed integral Ip1p2
BG,̃ν′ behaves like |ν̃

′|−2. So,
the integrand of (3.10) dies away for large ν̃ ′ like |ν̃ ′|d−4, and we can close the contour from
either the upper-half or lower-half plane, so long as d < 3.
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It turns out simpler to close the contour from the lower-half ν̃ ′ plane, where the poles
are entirely from the background tree seed integral (3.5) through the Pochhammer symbol
( `−ĩν′+p2+1

2 + d
4)m+1 in the denominator. We assume that the spectral integral commutes

with the summations over m and `. Then, for each fixed m and `, the poles of integrand
of J(3) are:

Set 3: ν̃ ′ = −2in− i
(1

2d+ p2 + 1 + `

)
, (n = 0, 1, · · · ,m) (3.32)

Summing the residues at these poles, we get the following result:

J(3) =
∞∑

`,m=0

m∑
n=0

(−1)`+n sin[π2 (p12 + d)](`+ 1)2m+d+p1+p2+1

22mn!(m− n)!
(
p2 + 1 + d

2 + `+ n
)
m+1

(1
2d+ p2 + 1 + `+ 2n

)

× ρdS
ν̃

(
− id

2 − ip2 − i− i`− 2in
)
r2m+d+p12+2

1

(
r1
r2

)`
. (3.33)

3.5 Final result

At this point we have finished the computation of the loop seed integral by working out
all three contributions in (3.8), (3.9), and (3.10). The final result for the loop seed integral
J p1p2
ν̃

(r1, r2) in (2.16) can thus be found by summing up all contributions obtained from
the previous three subsections, including (3.14), (3.15), (3.17), (3.27), (3.28), (3.30), (3.31),
and (3.33). We find it helpful to regroup the many terms in the final result in terms of their
analytic properties in the squeezed limit r1,2 → 0. From the explicit results in the previ-
ous three subsections, we can identify four types of terms with distinct analytic properties
in the squeezed limit, including a nonlocal signal piece J p1p2

NS (r1, r2), which is propor-
tional to (r1r2)±2ĩν in the squeezed limit; a local signal piece J p1p2

LS (r1, r2), proportional to
(r1/r2)±2ĩν ; a logarithmic tail piece J p1p2

LT (r1, r2), proportional to log r2; and, finally, a back-
ground piece J p1p2

BG (r1, r2), which is analytic in the squeezed limit. In summary, we have:

J p1p2
ν̃

(r1, r2) = J p1p2
NS (r1, r2) + J p1p2

LS (r1, r2) + J p1p2
LT (r1, r2) + J p1p2

BG (r1, r2). (3.34)

Below we give the explicit expressions for the four pieces defined here. Similar to the
expressions for the tree seed integral, the expressions below apply to the case of r1 < r2.
The result for r1 > r2 can be found from the following expressions by switching the
variables r1, p1 ↔ r2, p2.

Nonlocal signal. The nonlocal signal J p1p2
NS (r1, r2) comes totally from the spectral in-

tegral (3.8) over the nonlocal tree seed integral through the Set-1A poles. See (3.11)
and (3.14). The nonlocal signal features a pair of terms proportional to (r1r2)±2ĩν in the
squeezed limit r1,2 → 0. The full expression is:

J p1p2
NS =−

(r1r2)d/2+2ĩνsin[π(d2+2iν̃)]
8πd/2Γ

(
d
2
)
sin2(πiν̃)

∞∑
n=0

(1+n) d
2−1

[
(1+iν̃+n) d

2−1
]2(1+2iν̃+n) d

2−1

(1+2iν̃+2n)d−1
(3.35)

×
(
d

2+2iν̃+2n
)
Cp1p2

2ĩν+d/2+2n,dF
p1
2ĩν+d/2+2n,d(r1)Fp2

2ĩν+d/2+2n,d(r2)(r1r2)2n+c.c..
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Here the coefficient C is defined in (3.6) and the function F is defined in (3.7). For in-
termediate scalars with m > dH/2, we have ν̃ > 0. So, in the squeezed limit, the
nonlocal signal piece gives rise to oscillatory functions of r1r2 in the form of J p1p2

NS ∝
(r1r2)2+3d/2+p12 cos[2ν̃ log(r1r2) + ϑNS]. Here we see that the frequency of the oscillation
is precisely 2ν̃ at the 1-loop level, which is twice the frequency for a tree-level mediation
by a single scalar line of mass parameter ν̃. This confirms the observation originally made
in [15]. Here we have worked out the size and also the phase ϑNS associated with this
signal. Also, we have found all the subleading corrections to the squeezed-limit result, in
the form of power series in r1r2 and also in the two F functions. We note that this part
has also been found analytically in [71]. The result in [71] was expressed as a four-layer
summation, while our result here has only one layer of summation. An analytical proof of
the equivalence of the two results would be nontrivial. We have checked that the two results
agree perfectly numerically. Also, we have checked that the two results agree analytically
at several leading terms in the powers of r1 and r2.

Local signal. The local signal is completely from the spectral integral (3.9) over the
local tree seed integral through the Set-2A poles. See (3.23) and (3.27). The local signal
J p1p2

LS (r1, r2) contains a factor (r1/r2)±2ĩν in the squeezed limit, and thus is nonanalytic in
either r1 and r2, but is analytic in the intermediate momentum ks (since ks is canceled in
the ratio r1/r2). The full result is:

J p1p2
LS =

(r1/r2)d/2+2ĩν sin[π(d2 +2iν̃)]
8πd/2Γ

(
d
2
)
sin2(πiν̃)

∞∑
n=0

(1+n) d
2−1

[
(1+iν̃+n) d

2−1
]2(1+2iν̃+n) d

2−1

(1+2iν̃+2n)d−1
(3.36)

×
(
d

2 +2iν̃+2n
)
Cp1p2

2ĩν+d/2+2n,dF
p1
2ĩν+d/2+2n,d(r1)Fp2

−2ĩν−d/2−2n,d(r2)(r1/r2)2n+c.c..

Again, the local signal generates an oscillatory behavior ∝
(r1/r2)2+3d/2+p12 cos[2ν̃ log(r1/r2) + ϑLS]. To our best knowledge, the local CC sig-
nals in 1-loop processes have not been worked out in the literature, and we believe that
our result for JLS is new.

Logarithmic tail. The logarithmic tail is from the spectral integrals over the nonlocal
and local tree seed integral, namely (3.8) and (3.9), through the poles in Set 1C and Set
2C. The “nonlocal” tail ∝ log r1r2 and the “local” tail ∝ log(r1/r2) can be combined into
a single term, which we call the logarithmic tail:

J p1p2
LT = 1

4π2

∞∑
n=1
Zp1p2
n,d Πn,d(ν̃)Fp1

n,d(r1)Fp2
n,d(r2)(r1r2)n log r2. (3.37)

Recall that r2 = ks/k34. Thus the logarithmic tail is nonanalytic in ks as ks → 0 but does
not exhibit any oscillatory behavior in momentum ratios. The existence of the logarithmic
tail is a special feature of the 1-loop correlator, which has no counterparts in tree-level
correlators. However, as we show in appendix B.4, in the case of d = 3, the function
Πn,3(ν̃) = 0 when n ∈ Z. Therefore, the logarithmic tail vanishes identically in (3 + 1)-
dimensional dS, although it does not vanish in general d. For example, the logarithmic tail
is nonzero in d = 2.
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Background. Finally, the background piece J p1p2
BG is fully analytic in r1 and r2 around

r1,2 = 0. It receives contributions from all three integrals in (3.8)–(3.10). We can put it in
the following way:

J p1p2
BG = J(3) + J(B) + J(C) + J(2D). (3.38)

Here J(3) is from the integral (3.10), namely, it is from the background tree integral (3.5).

J(3) =
∞∑

`,m=0

m∑
n=0

(−1)`+n sin[π2 (p12 + d)](`+ 1)2m+d+p1+p2+1

22mn!(m− n)!
(
p2 + 1 + d

2 + `+ n
)
m+1

(1
2d+ p2 + 1 + `+ 2n

)

× ρdS
ν̃

(
− id

2 − ip2 − i− i`− 2in
)
r2m+d+p12+2

1

(
r1
r2

)`
. (3.39)

As we shall see, J(3) is the only term in the loop seed integral that is divergent when d→ 3.
Next, J(B) comes from the Set 1B and Set 2B poles of J(1) and J(2), respectively:

J(B) =
sin πd

2 csc2(πiν̃)
4πd/2Γ

(
d
2
) ∞∑

n=0

[
(1+n) d

2−1
]2(1+iν̃+n) d

2−1(1− iν̃+n) d
2−1

(1+2n)d−1

(
d

2 +2n
)
Cp1p2
d/2+2n,d

×Fp1
d/2+2n,d(r1)r2n+d/2

1

[
Fp2
d/2+2n,d(r2)r2n+d/2

2 −Fp2
−d/2−2n,d(r2)r−2n−d/2

2

]
. (3.40)

The third piece J(C) comes from the Set 1C and Set 2C poles of J(1) and J(2), respec-
tively. Most terms in (3.17) and (3.30) combine to zero, and we end up with the following
result:

J(C) = 1
8π2

∞∑
n=1
Zp1p2
n,d Πn,d(ν̃)Fp1

n,d(r1)

×
{

Gp2
n,d(r2)Fp2

n,d(r2)(r1r2)n + Gp2
−n,d(r2)Fp2

−n,d(r2)
(
r1
r2

)n}
. (3.41)

When d→ 3, this result also vanishes since Πn,d(ν̃) = 0 when d = 3 and n ∈ Z.
Finally, the piece J(2D) comes from the Set 2D poles of the integral J(2):

J(2D) = (2r1)d/2+1+p2
∞∑
n=0

(−1)n21+n√π
(
d
2 + p2 + 1 + n

)
n! Πd/2+p2+1+n,d(ν̃)

× Cp1p2
d/2+p2+1+n,dF

p1
d/2+p2+1+n,d(r1) 2F̃1

[
−n

2 ,
1−n

2
−d

2 − p2 − n

∣∣∣∣∣r2
2

](
r1
r2

)n
. (3.42)

In d = 3 and integer p2, this piece involves the Πn,d function with n+ 1/2 ∈ Z. As we can
see from the explicit expression of Πn,3 in (B.51), Π1/2,3 is finite when n = 1/2; Πn,3 = 0
when n = 2k+ 1/2 with k = 1, 2, · · · , and is divergent as a simple pole when n = 2k+ 3/2
with k = 0, 1, 2, · · · . However, these poles happen to be zeros of the second degree of
the factor Cp1p2

d/2+p2+1+n,d when p1,2 are even integers, which is always true for the special
examples considered in this work. Therefore, when d = 3 and p1, p2 being even integers,
J(2D) vanishes unless p2 taking a value equal to or smaller than −2. When p2 = −2, there
will be a single term with n = 0 in (3.42) that contributes to the background. This happens
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in several examples considered in section 2; see (2.17), (2.19), and (2.21). On the other
hand, we shall never encounter p2 < −2 in this work.

At this point, we have finished the computation of the loop seed integral. The result is
rather complicated in general d dimensions, as is summarized in (3.34). We shall examine
its property and make several consistency checks in the next section, at least to make sure
that our result reduces to known results in certain limits. Then, in section 5, we shall
use the loop seed integral to compute several realistic 1-loop inflaton correlators in d = 3.
There we shall get significantly simplified expressions.

4 Properties and consistency checks

In this section, we discuss the properties of the loop seed integrals in several limits, including
the d → 3 limit, the large mass (ν̃ � 1) limit, the squeezed limit where r1, r2 → 0, the
folded limit where r1 or r2 → 1, and the r1 = r2 limit. In these limits, either the loop
seed integral can be (at least partially) computed using other methods, or it should have
expected properties on physical grounds. Therefore, examining these limits can serve as
consistency checks of our results.

4.1 Divergence in 3+1 dimensions

While the seed integral is computed in arbitrary d spatial dimensions, we are ultimately
interested in the case of d = 3. In dS3+1, the UV divergence is expected to appear in the
1-loop correlator. In the loop seed integral J p1p2

ν̃
in (3.34), the nonlocal signal J p1p2

NS and
the local signal J p1p2

LS are manifestly finite when d→ 3, as one can directly see from (3.35)
and (3.36). The logarithmic tail J p1p2

LT vanishes when d→ 3, due to the vanishing of the Π
function: Πn,d(ν̃) = 0 at d = 3 and integer n. So any possible UV divergence must come
from the background piece J p1p2

BG , as we should expect.
For the background piece J p1p2

BG in (3.38), we can see that the last three terms, including
J(B), J(C), and J(2D), all remain finite or vanish at d → 3. Therefore, the only potential
UV divergence comes from the first term J(3), which is explicitly given in (3.39). Closer
examination shows that the divergence of J(3) comes from the spectral density ρdS

ν̃
(ν̃ ′). As

we show in appendix B.3, when d→ 3, the spectral density behaves like:

lim
d→3

ρdS
ν̃

(ν̃ ′) ∼ − 1
(4π)2

2
3− d + finite terms. (4.1)

As expected, the divergent part is independent of either ν̃ or ν̃ ′, as UV physics should be
insensitive to physics at finite scales. Now, we insert (4.1) back into J(3) in (3.39), and find:

J(3) = 1
(4π)2

2
3− d

∞∑
`,m=0

m∑
n=0

(−1)`+n cos πp12
2 (`+ 1)2m+p12+4

22mn!(m− n)!
(
p2 + 5

2 + `+ n
)
m+1

×
(
p2 + 5

2 + `+ 2n
)
r2m+p12+5

1

(
r1
r2

)`
+O

(
(3− d)0

)
. (4.2)
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At this point, the summation in (4.2) can be completed, because the n-sum is zero except
when m = 0. To see this, consider the following slightly more general summation:

M∑
n=0

(−1)n(p2 + 5
2 + `+ 2n)

n!(m− n)!
(
p2 + 5

2 + `+ n
)
m+1

= (−1)M
m

Γ
[

p2 + 7
2 + `+M

1 +M,m−M,p2 + 7
2 + `+M +m

]
.

(4.3)
The n-sum in (4.2) is obtained by setting M = m, which gives zero when m 6= 0, due to
an Euler Γ factor Γ(m−M) in the denominator. However, when m = 0, the two factors,
m and Γ(m −M), are combined to give a finite result. Therefore, we see that we only
need to retain the m = 0 term in the summation in (4.2), and the result is:

J(3) = 1
(4π)2

2
3− d cos

(
πp12

2

)
Γ(5 + p12)

(
r1r2
r1 + r2

)5+p12

+O
(
(3− d)0

)
. (4.4)

Note that the combination r1r2/(r1 + r2) = ks/k1234 is nothing but the factor we would
expect to see from the 4-point correlator generated by a contact interaction. This shows
that the UV divergence of the 1-loop correlator is completely local and can be subtracted
by a local counterterm.

To be more specific, we can take an example with four conformal scalars directly
coupled to the massive scalars. As shown in (2.17), this corresponds to p1 = p2 = −2. So,
the above expression gives

Lφc ,̃ν
∣∣∣
s,div.

=
τ4
f

16k1k2k3k4ks
J −2,−2

(3) = 1
(4π)2

2
3− d

τ4
f

16k1k2k3k4k1234
+O

(
(3− d)0

)
. (4.5)

There are two identical divergent contributions from the t-channel and u-channel exchanges.
So the total result for the UV divergence is the above expression multiplied by three. On
the other hand, we can directly compute the 4-point correlator of conformal scalars with
direct quartic interaction ∆L = − 1

24δλφ
4
c , with δλ understood as the coefficient of the

counterterm. It is straightforward to find the result from a bulk calculation:

〈φc,k1φc,k2φc,k3φc,k4〉
′ = −iδλ

∑
a=±

a
∫ τf

−∞

dτ
τ4 Ca(k1, τ)Ca(k2, τ)Ca(k3, τ)Ca(k4, τ)

=
−δλτ4

f

8k1k2k3k4k1234
. (4.6)

Therefore, we see that the UV divergence can be subtracted by a local counterterm − 1
24δλφ

4
c

with δλ = 3/[(4π)2(3 − d)], just as what we would expect from a flat-space computation.
The reason for this agreement is clear: for a massive loop, the divergence at d = 3 is
totally from the physics in the ultraviolet region of the momentum space, where the finite
curvature of the spacetime should be negligible.

4.2 Large mass limit

As shown in the previous subsection, the flat-space intuition applies to the UV divergent
part of the 1-loop correlator. Moreover, when the mass m running in the loop is much
greater than the Hubble scale H, we should also expect that the finite part of the dS
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1-loop correlator approaches the corresponding result in the flat space. The easiest way
to see this is that there are only two scales involved in our problem, namely the mass m
and the Hubble scale H. Therefore, taking the large mass limit m/H � 1 is equivalent to
sending H → 0, which is just the flat-space limit.

Even in the Minkowski space, the 1-loop in-in correlator is not a very familiar result.
It turns out that a direct computation via the standard diagrammatic rule in the SK
formalism is not trivial in flat space. In appendix F, we use the spectral decomposition
method to compute the same 1-loop correlator in figure 1 with the direct coupling −1

4ϕ
2σ2

but in Minkowski spacetime. Here we quote the result in the d→ 3 limit:

LMink
m = 1

256π2E1E2E3E4E1234

[ 2
3− d − γE + log 4π + 2 (4.7)

+ 2
E12 − E34

∫ 1

0
dξ
(
E34 log E12 + Emin

µR
− E12 log E34 + Emin

µR

)]
.

Here Ei ≡
√

k2
i +m2

i with i = 1, 2, 3, 4, (It does not bring any pain to add nonzero masses
to external fields in this case.) and Emin ≡

√
k2
s +m2/[ξ(1− ξ)]. The mass scale µR is a

renormalization scale, and can be thought of as coming from the mass dimension of the
coupling constant in d spatial dimensions. In the large mass limit m→∞,[

LMink
m

]
MS

= 1
256π2E1E2E3E4E1234

[
log µ

2
R

m2 −
E12E34 + k2

s

6m2 +O
( 1
m3

)]
. (4.8)

Now let us return to the dS case. Let us define a renormalized spectral function under
the modified minimal subtraction scheme (MS):

ρ̂dS
ν̃

(ν̃ ′) ≡ lim
d→3

[
ρdS
ν̃

(ν̃ ′) + 1
(4π)2

( 2
3− d − γE + log 4π

)]
. (4.9)

In appendix C, we show that the large mass limit (ν̃ � 1) of the renormalized spectral
function ρ̂dS

ν̃
(ν̃ ′) with ν̃ ′ held fixed is given by (C.22). Specialized to d = 3, the result is:

lim
ν̃→∞

ρ̂dS
ν̃

(−iν ′) ∼ 1
(4π)2

[
log(ν̃2) +O(ν̃−2)

]
, (4.10)

where the logarithmic term is obtained from explicit analytical derivations, while the 1/ν̃2

term can be obtained from a numerical fit. To get a loop correlator that can be directly
compared with the flat-space result (4.8), we again take the example of the non-derivatively
coupled conformal scalar in (2.17). We replace the spectral function ρdS

ν̃
in J(3) by (4.10),

and take p1 = p2 = −2. Then, we get:

lim
ν̃→∞

τ4
f

16k1k2k3k4ks
J −2,−2

(3) ∼ − 1
16k1k2k3k4k1234

1
(4π)2

[
log m

2

µ2
R

+O(ν̃−2)
]
. (4.11)

Here we have set ν̃ ' m/H in the final expression. Also, we have introduced a renormal-
ization scale µR, which comes from the dimension of the coupling constant in general d
dimensions. It is clear that the coefficient of log(m2/µ2

R) in (4.11) matches exactly the
coefficient of log(m2/µ2

R) in (4.8), as expected.
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4.3 Squeezed limit

Now we consider a particular kinematic configuration, called the squeezed limit, where
r1,2 � 1, namely, the momentum ks mediated by the loop is much smaller than any of the
external momenta ki. This is the limit of most interest to CC physics, where we expect
to see oscillatory signals. From a bulk perspective, the signal is contributed dominantly
by the superhorizon modes of the loop particles, and therefore it is possible to compute at
least the nonlocal signal by taking the late-time expansion of the loop propagator. Below
we shall perform this late-time computation directly in the bulk, and compare the resulting
nonlocal signal with the leading term in J p1p2

NS in (3.35).
It turns out that the late-time computation is most easily done in position space.

Therefore, we Fourier-transform the loop momentum integral (2.8) back to position space:9

Qν̃,ab
(
ks; τ1, τ2

)
=
∫ ddq

(2π)dDν̃,ab

(
q; τ1, τ2

)
Dν̃,ab

(
|ks − q|; τ1, τ2

)
=
∫

ddx eiks·x
[
Dν̃(τ1,x; τ2,0)

]2
, (4.12)

where Dν̃(τ1,x1; τ2,x2) is the position-space massive scalar propagator in d spatial dimen-
sions:

Dν̃(τ1,x1; τ2,x2) = 1
(4π)(d+1)/2 2F1

[
d
2 + iν̃, d2 − iν̃

d+1
2

∣∣∣∣∣(τ1 + τ2)2 − |x1 − x2|2

4τ1τ2

]
. (4.13)

The good thing is that the loop momentum integral reduces to the square of a single
propagator. Therefore, we can simply make the late-time expansion of the propagator at
τ1,2 → 0, from which we get:

[
Dν̃(τ1,x; τ2,0)

]2
NL
∼ 1

16πd+2 Γ2
[
d

2 + iν̃,−iν̃
](
τ1τ2
x2

)d+2ĩν
+ c.c.. (4.14)

Here the notation [· · · ]NL means that we only retain nonlocal terms, i.e., terms of noninteger
powers of x2, with the anticipation that such terms are the only source of the nonlocal
signal.

Then the nonlocal part of the loop momentum integral can be directly got by substi-
tuting (4.14) back into (4.12), and the result is:

[
Qν̃
]
NL ∼

(k2
sτ1τ2)d+2ĩν

8π(d+5)/2kds
cos

[
π

2 (d+ 4iν̃)
]
Γ2
[
d

2 + iν̃,−iν̃
]
Γ
[

1+d
2 + 2iν̃,−d− 4iν̃

d+ 2iν̃

]
+ c.c..

(4.15)
Note in particular that the nonlocal part of the loop momentum integral is independent of
the SK indices, a feature we should expect. Then, the bulk time integral in (2.16) can be

9After the Fourier transformation, the SK indices ab of the momentum-space propagator D
ν̃,ab are

translated to various types of iε-prescriptions for the coordinates. The detail is irrelevant here, since the
required nonlocal part of the propagator is real and is independent of SK indices. See (4.14).
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Figure 3. The convergence of the loop seed integral. In the left panel, we show the convergence of
the signals J−2,−2

NS +J−2,−2
LS (magenta) and the background J−2,−2

BG (blue) separately. In each of the
two classes of curves, the three curves from lighter to darker colors show the sums of the series up
to n’th power of r1/r2, with n = 5, 15, 25, respectively. In the right panel, we show the sum of the
signals and the background, again, with three choices of n. The grey dotted curve shows the interpo-
lated function of the whole seed integral. In this plot we fix d = 3, p1 = p2 = −2, r2 = 0.3, and ν̃ = 2.

directly finished, and we get:

[
J p1p2
ν̃

]
NL∼

rp1
1 r

p2
2 (r1r2)1+d+2ĩν

21+d+2ĩνπ2+d/2
cos

[
π

2 (d+p1 +2iν̃)
]

cos
[
π

2 (d+p2 +2iν̃)
]

cos
[
π

2 (d+4iν̃)
]

×Γ2(−iν̃)Γ
[
1+d+p1 +2iν̃,1+d+p2 +2iν̃,−d−4iν̃, 1+d

2 +2iν̃, d2 +iν̃
1+d

2 +iν̃

]
+c.c.. (4.16)

This agrees exactly with the leading (n = 0) term of the nonlocal signal in (3.35).
We note that the computation of the local signal and the background from the late-time

expansion would be nontrivial, in part because these pieces are contributed by the “local”
terms of the propagator D(τ1,x, τ2,0), namely, the terms analytic in x2. When Fourier-
transforming such terms back to the momentum space, one encounters a divergence, which
is essentially the UV divergence of the original loop momentum integral. In comparison,
the nonlocal signal is automatically free from such divergences and thus is more tractable
in the late-time calculation.

4.4 Folded limit and r1 = r2 limit

Now we briefly comment on the two limits where our expressions exhibit superficial diver-
gences. One is the folded limit, the other is the r1 = r2 limit.

The folded limit of the loop seed integral means that one or both of r1 and r2 go to 1
from below. (Note that the momentum conservation at both vertices of the 1-loop diagram
requires that 0 ≤ r1,2 ≤ 1.) All terms in our final result for the loop seed integral (3.34) are
expressed as series or partially resummed power series in r1 and r2, and we would expect
many of these series to be divergent as r1,2 → 1. On the other hand, we expect that the 1-
loop correlator is free from any divergences in the folded limit, as a consequence of choosing
Bunch-Davies initial state for all the modes under consideration. Therefore, it would be use-
ful to show that all superficial divergences in the folded limit cancel in (3.34). Our procedure
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of spectral decomposition suggests that we can check the cancelation of folded divergences
directly at the tree level, which was done in previous works [58, 72]. Then, so long as taking
the folded limit commutes with the spectral integral which we shall assume, it would follow
automatically that the loop correlator is also free from folded divergence. We also note
that sending the single-side folded limit (r2 → 1− while keeping r1 fixed) is simple enough.
We shall do this explicitly in the next section when computing a 3-point inflaton correlator.

Finally, let us look at the r1 = r2 limit. Physically, we expect our result of the loop
seed integral to be smooth at this point. Also, the tree seed integral is smooth at r1 = r2,
although some pieces (the local signal and the background) in the tree seed integral may
exhibit non-smooth behavior at r1 = r2. This non-smooth behavior is purely an artifact
of our definition of the local signal and the background. See the comments below (3.2).
On the other hand, the various terms of the loop seed integral in (3.34) are expressed in
power series of r1/r2 whose convergences at r1/r2 = 1 are far from clear. This superficial
discontinuity may be resolved by resumming the series, as we can do for the tree correlators
with the Partial Mellin-Barnes representation. (See appendix D.) We leave this for a future
work. For the moment, we only note that this superficial discontinuity does not bring any
obstacle to numerical implementation. This is shown in figure 3, where we show the
convergence of the various series in (3.34), and in particular, the discontinuity as r1 goes
across r2. From this figure, we see that the signal series in (3.35) and (3.36) converge very
quickly. On the other hand, the background series J −2,−2

BG in (3.39) converges rather slow
around r1 = r2. However, it is easy to get an interpolated function that smoothly joins the
two sides of r1 = r2 where the series converges quickly. This shows that our result can be
easily implemented in numerical computations.

5 Applications to cosmological collider physics

With the full result for the loop seed integral at hand, we can directly compute many 1-loop
inflaton correlators mediated by massive scalar fields with various types of couplings. In
this section, we provide full results for two examples that are most relevant to the study
of CC physics. One is the 1-loop trispectrum Lϕ,̃ν in (2.18), and the other is the 1-loop
bispectrum Bϕ,̃ν in (2.19).

5.1 1-loop trispectrum

Here we present the result for the 1-loop inflaton correlator in figure 1, with the coupling
given in (2.5). As suggested by the expression (2.18), the result can be found from (3.34)
by setting p1 = p2 = 0, and then taking the d → 3 limit. Many terms in (3.34) drop
out in this limit, and the result is much simplified compared to the full seed integral. In
particular, the logarithmic tail vanishes identically for this process.

It turns out that the result can be more conveniently written in the following way:

Lϕ,̃ν = 1
16k1k2k3k4(k12k34)5/2

[
ĴNS(r1, r2) + ĴLS(r1, r2) + ĴBG(r1, r2)

]
. (5.1)
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Here ĴNS ≡ (r1r2)−5/2J 00
NS with the unhatted J p1p2

NS given by (3.35). This part represents
the nonlocal signal:

ĴNS = 2(r1r2)3/2+2ĩν

π2 cos(2πiν̃)

∞∑
n=0

(1 + n) 1
2

[
(1 + iν̃ + n) 1

2

]2(1 + 2iν̃ + n) 1
2

(1 + 2iν̃ + 2n)2

(3
2 + 2iν̃ + 2n

)
(5.2)

× 2F1

[
2 + iν̃ + n, 5

2 + iν̃ + n
5
2 + 2iν̃ + 2n

∣∣∣∣∣r2
1

]
2F1

[
2 + iν̃ + n, 5

2 + iν̃ + n
5
2 + 2iν̃ + 2n

∣∣∣∣∣r2
2

]
(r1r2)2n + c.c..

Similarly, ĴLS ≡ (r1r2)−5/2J 00
LS with the unhatted J p1p2

LS given by (3.36). This part repre-
sents the local signal:

ĴLS =−2(r1/r2)3/2+2ĩν

π2 cos(2πiν̃)

∞∑
n=0

(1+n) 1
2

[
(1+iν̃+n) 1

2

]2(1+2iν̃+n) 1
2

(1+2iν̃+2n)2

(3
2 +2iν̃+2n

)
(5.3)

×2F1

[
2+iν̃+n, 5

2 +iν̃+n
5
2 +2iν̃+2n

∣∣∣∣∣r2
1

]
2F1

[
1
2− iν̃−n,1− iν̃−n
−1

2−2iν̃−2n

∣∣∣∣∣r2
2

](
r1
r2

)2n
+c.c..

Finally, ĴBG ≡ (r1r2)−5/2J 00
BG with the unhatted J p1p2

BG given by (3.38). It turns out that
all terms in (3.38), except J(3), vanish in d → 3 limit with p1 = p2 = 0. On the contrary,
the term in J(3) possesses the usual UV divergence as d → 3. Therefore we use the MS
spectral function ρ̂dS

ν̃
(ν̃ ′) in (4.9) in place of the original spectral function, and get the

following expression for the background ĴBG under the MS scheme:

ĴBG =
∞∑

`,m=0

m∑
n=0

(−1)`+n+1(`+ 1)2m+4(5
2 + `+ 2n)

22mn!(m− n)!
(5

2 + `+ n
)
m+1

×
[
ρ̂dS
ν̃

(
−5i

2 − i`− 2in
)
− 1

(4π)2 logµ2
R

]
r2m

1

(
r1
r2

)5/2+`
. (5.4)

An explicit expression for the MS spectral function ρ̂dS
ν̃

(ν̃ ′) is given in (B.43), which we
find useful for numerical implementation. Here we also restore the renormalization scale
µR, which comes from the change of the mass dimension of the coupling constant when the
spatial dimension deviates from d = 3.10

Squeezed limit. The squeezed limit is of most interest for CC applications, and therefore
it would be useful to have an explicit result for the trispectrum in the squeezed limit. Here
we take a “hierarchical” squeezed limit r1 � r2 � 1 in (5.1). Then we can keep the leading

10More explicitly, in d dimensions, the mass dimensions of scalar fields are given by [ϕ] = [σ] = (d−1)/2,
and the Lagrangian has mass dimension [L ] = d + 1. Thus, the coupling term in the Lagrangian should
be written as µ3−d

R ϕ′2σ2/(4Λ2) where Λ is a dim-1 cutoff scale, while the counterterm should be written
as µ3−d

R ϕ′4/(24Λ4
c) where Λ4

c is another dim-1 cutoff scale. When d → 3, the two couplings in the 1-loop
diagram produce a finite piece −[2/(4π)2] log µ2

R when combined with the divergent term −2/[(4π)2(3− d)]
of the spectral function. See (4.1). The counterterm gives another finite piece +[1/(4π)2] log µ2

R. Combining
the two pieces, we get the total dependence on µR as −[1/(4π)2] log µ2

R.
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Figure 4. The 1-loop inflaton trispectra of 1-loop scalar exchange with mass parameter ν̃. The
magenta, blue, and black curves show the signal ĴNS+ĴLS, the background ĴBG, and the total result
ĴNS+ĴLS+ĴBG, respectively. In this figure we fix r2 = 0.9 and vary r1 ∈ (10−4, 10−1/2). We use the
dimensional regularization and the MS scheme, with the renormalization scale chosen at µR = ν̃H.

terms in both r1 and r2, and also in r1/r2 for all three terms in (5.1). The result is:

lim
r1�r2�1

ĴNS = 41+2ĩν sec(2πiν̃)
π2

(1 + iν̃)Γ2[3
2 + iν̃, 5

2 + iν̃]
Γ(4 + 4iν̃) (r1r2)3/2+2ĩν + c.c., (5.5)

lim
r1�r2�1

ĴLS = −sec(2πiν̃)
4
√
π

Γ
[

3
2 + iν̃, 5

2 + iν̃, 1− 2iν̃
1 + iν̃, 1 + iν̃,−1

2 − 2iν̃

](
r1
r2

)3/2+2ĩν
+ c.c., (5.6)

lim
r1�r2�1

ĴBG = −24
[
ρ̂dS
ν̃

(−5i
2 )− 1

(4π)2 logµ2
R

](
r1
r2

)5/2
. (5.7)

An interesting observation here is that, if we take the single squeezed limit, i.e., we keep
r2 fixed, and take the r1 � r2 limit, then the overall sizes of both the nonlocal and local
signals decay as r3/2

1 , while the background decays as r5/2
1 . Therefore, the signals dominate

over the background in the single squeezed limit even at the 1-loop level. Although we
made this observation from the squeezed-limit results (5.5)–(5.7), this conclusion holds for
any fixed r2 which is not necessarily small.
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Squeezed and large mass limit. It is often useful to further take the large mass limit
ν̃ � 1 on top of the squeezed limit. In this case, we get

lim
ν̃�1

lim
r1�r2�1

ĴNS =
√

2
π
e−iπ/4ν̃7/2e−2πν̃

(
r1r2

4

)3/2+2ĩν
+ c.c., (5.8)

lim
ν̃�1

lim
r1�r2�1

ĴLS = −
√

2
π
e+iπ/4ν̃7/2e−2πν̃

(
r1
r2

)3/2+2ĩν
+ c.c., (5.9)

lim
ν̃�1

lim
r1�r2�1

ĴBG = − 3
2π2

(
log ν̃2

µ2
R

+ 1
ν̃2

)(
r1
r2

)5/2
. (5.10)

This result is simple enough and can be used for quick estimates of the signal size and
observability in phenomenological CC studies.

With the above analytical expressions, we can nicely reproduce several previously
known properties of 1-loop correlators: the signals are suppressed by a factor of e−2πν̃

due to the doubled Boltzmann suppression of the “on-shell” loop mode in the large mass
limit. The background piece, on the other hand, is not exponentially suppressed. Apart
from a renormalization-dependent logarithmic term, the background piece scales as 1/ν̃2.
At the same time, our result provides new information that cannot be revealed by a bulk
computation with late-time expansion. For example, besides the exponential factor e−2πν̃ ,
we have also fixed the power dependence ν̃7/2 in the signals for both the nonlocal and the
local signal. In particular, our result explicitly shows that the local signal, although being
analytic in ks, is still free from any UV divergence, a fact we should expect but very hard
to see directly from the late-time expansion. Also, if we take a late-time expansion of the
loop propagator, one would naively suspect that there would be “singly oscillated” signals
proportional to (r1r2)±ĩν or (r1/r2)±ĩν . Our results show that no such oscillatory terms
appear in the final result. Therefore, if such terms are generated in any intermediate step
of the late-time calculation, they must be canceled out in the final answer.

In figure 4, we plot the 1-loop trispectrum in (5.1) with the full expressions (5.2)–(5.4)
for several choices of the mass parameter ν̃. In this figure, we fix r2 = 0.9 and vary r1 on a
logarithmic scale from 10−4 to 10−1/2. Here the signal represents the sum of the nonlocal
signal and the local signal ĴNS+ĴLS while the background is given by ĴBG. The dominance
of the signal in the squeezed limit (the right side of each panel) is evident in all cases.

5.2 1-loop bispectrum

As the second example of this section, we now look at the 3-point correlator in figure 2.
With the interactions given in (2.14), the corresponding bispectrum Bϕ,̃ν can be written
as (2.15). Then, with the explicit result for the loop seed integral (3.34), we can compute
the bispectrum Bϕ,̃ν according to (2.19).

The evaluation of (2.19) involves the folded limit r2 → 1− in the second argument
of the loop seed integral. Similar to what we would find from a tree-level process, the
folded limit of the local and nonlocal signals diverges, but the divergent pieces cancel
themselves. On the other hand, the background part remains finite in the r2 → 1 limit.
The cancelation of divergence can be checked term by term in the series expressions for
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JNS and JLS. Alternatively, one can also cancel the divergence directly at the tree level,
and then perform the spectral integral over the tree-level 3-point function.11 Either way,
we find the result to be:

Bϕ,̃ν = 1
8k1k2k4

3

[
SS(r) + SBG(r)

]
. (5.11)

Here and below, the momentum ratio r ≡ k3/k12. The signal SS(r) is given by the sum
SS(r) = J 0,−2

NS (r, 1−) + J 0,−2
LS (r, 1−), and the explicit result is:

SS(r) = r4+2ĩν

8π sin(−2πiν̃)

∞∑
n=0

(3 + 4iν̃ + 4n)
(1 + n) 1

2
(1 + 2iν̃ + n) 1

2

(1
2 + iν̃ + n) 1

2
(3

2 + iν̃ + n) 1
2

× 2F1

[
2 + iν̃ + n, 5

2 + iν̃ + n
5
2 + 2iν̃ + 2n

∣∣∣∣∣r2
]
r2n + c.c. (5.12)

The background part is given by SBG(r) = J 0,−2
BG (r, 1−). This can be obtained from (3.38)

by setting p1 = 0, p2 = −2, r2 = 1 and taking the limit d → 3. Once again, most terms
vanish in this limit, except J(3) in (3.39) and the n = 0 term of J(2D) in (3.42). For the
UV divergent term, we again use the renormalized spectral function ρ̂dS

ν̃
(ν̃ ′) in the MS

scheme. Also, when taking d→ 3 limit, it is essential to know the d = 3 result for the Πn,d

function for integer and half-integer n, which we work out in appendix B.4. After a bit of
calculation, we find the result of the background to be:

SBG(r) = −r
3ν̃ csch(2πν̃)
2π(1− r2)2 +

∞∑
`,m=0

m∑
n=0

(−1)`+n (`+ 1)2m+2(1
2 + `+ 2n)

22mn!(m− n)!(1
2 + `+ n)m+1

×
[
ρ̂dS
ν̃

(
− i

2 − i`− 2in
)
− 1

(4π)2 logµ2
R

]
r3+2m+`. (5.13)

Here, we also restore the renormalization scale µR as in the previous example. As expected,
the nonlocal and local signal of the 4-point function become degenerate in the 3-point limit,
and both contribute the signal piece SS. Therefore, we see that it is not quite right to use
the late-time expansion method to compute the signal in the 3-point correlator, since this
late-time calculation can only capture the signal in the r1,2 → 0 limit. However, the actual
signal in the 3-point function comes from both the nonlocal and local signals with r1 → 0
but r2 → 1.

It is again useful to look at the squeezed limit r → 0, where the bispectrum simplifies to:

lim
r�1
SS(r) = 2 csc(−2πiν̃)(1 + iν̃) 1

2
(1 + iν̃) 3

2

(
r

2

)4+2ĩν
+ c.c.,

lim
r�1
SBG(r) = 2

[
ρ̂dS
ν̃

(
− i

2

)
− 1

(4π)2 logµ2
R −

ν̃csch(2πν̃)
2π

]
r3. (5.14)

Here we see that, in the squeezed limit r → 0, the loop signal decays as r4 while the
background decays as r3. Therefore, the signal decays faster than the background. This

11See eq. (256) in [72] for an explicit result of tree-level 3-point function mediated by a massive scalar
field.
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Figure 5. The 1-loop inflaton bispectra of 1-loop scalar exchange with mass parameter ν̃. The
magenta and black curves show the signal and the total result, respectively. We multiply the signal
by a factor of 5 for ν̃ = 1 and a factor of 100 for ν̃ = 2 to make it visible. We use the dimensional
regularization and the MS scheme, with the renormalization scale chosen at µR = ν̃H.

shows that, if we want to look for signals from 1-loop 3-point correlators, we should look
at the moderately large momentum ratio k12/k3 instead of the deep squeezed limit. In
other words, there is no parameter space where the signals are dominant. Comparing this
behavior with the single squeezed limit of the trispectrum as discussed above, we see that
it may be more advantageous to look at the 4-point function if we want to discover CC
signals from 1-loop processes.

Finally, we take the large mass limit on top of the squeezed limit. The result is:

lim
ν̃�1

lim
r�1
SS(r) = −4iν̃2e−2πν̃

(
r

2

)4+2ĩν
+ c.c., (5.15)

lim
ν̃�1

lim
r�1
SBG(r) = 1

8π2

(
log ν̃2

µ2
R

+ 1
25ν̃2

)
r3. (5.16)

Again, the signal is suppressed by e−2πν̃ and the background is suppressed by 1/ν̃2, as
expected. Furthermore, we can pin down the power dependence ν̃2 in the signal besides
the exponential factor.

In figure 5, we show two examples of the bispectrum from 1-loop scalar exchange with
the mass parameter ν̃ = 1 and 2, respectively. Contrary to the case of the trispectrum,
the signals in the bispectrum are always too small to be directly visible. This is consistent
with what was found from a full numerical approach in [73]. In figure 5, we multiply the
signals by a factor indicated in each panel to make them visible. In practice, when there
is a small signal buried in the background, we can use appropriate filtering techniques to
dig it out, as demonstrated in [73].

6 Conclusions and outlooks

The inflation correlators at the 1-loop order belong to a largely unexplored area. On the
other hand, complete analytical results for these 1-loop correlators can help us to better
understand the analytical structures of loop correlators in dS. At the same time, they are
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also useful for the study of cosmological collider physics. In this work, we have obtained
the analytical results for a class of inflation correlators mediated by massive scalar fields at
1-loop order. We use the spectral decomposition to bootstrap the loop correlators directly
from tree-level correlators, and thus bypass the difficulty of computing the loop momentum
integral. By defining and computing a loop seed integral, we can obtain complete analytical
expressions for many correlators with 1-loop massive exchange. We have also identified the
single squeezed limit of the 4-point function as a preferred configuration for detecting CC
signals from 1-loop processes, where the signals dominate over the background.

There are several directions to be pursued along the line of this work, listed below.
We shall address some of them in the next publication, and leave more open questions for
future works.

• In this work, we only considered intermediate states of principal series (m > dH/2),
which is most relevant to CC physics. It is in principle straightforward to apply our
method to fields of complementary series, namely 0 < m < dH/2 for scalar fields.
We do not expect to see oscillatory signals in this case, and the analytic structure of
the spectral integrand is also very different from the principal fields. However, we do
expect to see some enhancements of the result for small mass. Therefore they could be
of interest to phenomenological studies of inflation physics. See [52] for an example.

• We have assumed in this work that the masses of the two loop propagators are
equal. Although this is the most encountered case, the two masses in the loop can
certainly be different, and it will be interesting to generalize our method to that
case as well. An interesting new feature of the 1-loop with masses ν1 6= ν2 is that
we can have two classes of oscillatory signals, one with frequency ν̃1 + ν̃2, and the
other with frequency ν̃1 − ν̃2. The phenomenology of unequal-mass loop processes
has also been explored previously; see, e.g., [54].

• It should be straightforward to generalize our method to 1-loop diagrams with
nonzero spin exchanges. These are the most relevant 1-loop processes in CC physics.
Another technically related case is the derivatively coupled loop mode, which could
generate nontrivial angular dependences even when the loop particle is a scalar.
This is because the angular dependence of the correlator is sensitive to the total
angular momentum mediated by the loop, and a pair of scalars in the loop can
contribute nonzero orbital angular momentum when they are derivatively coupled
to the external modes. It is also interesting to include boost-breaking effects, such
as the helicity-dependent chemical potential, the non-unit sound speed, and the
slow-roll corrections. The spectral decomposition technique used in this work relies
heavily on the full dS isometry. Thus it would be very interesting to see whether
this method can be generalized to boost breaking scenarios.

• The spectral decomposition used in this work can in principle be applied recursively.
With the 1-loop bubble correlator obtained in this work, it is in principle possible
to bootstrap multi-loop diagrams, such as the sunset diagram at the 2-loop level.
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• The results presented in this work are expressed as series, or partially resummed
series, in several momentum ratios r1 = ks/k12, r2 = ks/k12, and r1/r2 = k34/k12.
Although the convergence of the series is guaranteed by construction when these
ratios approach 1, many individual terms in the result are superficially divergent,
which is inconvenient for numerical implementation. Therefore it would be helpful
if we can resum at least part of these power series, as was done in [72] using the
partial Mellin-Barnes representation. We leave these questions for future work.
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A Useful formulae

In this appendix, we collect definitions and formulae frequently used in the main text and
the rest of the appendix. First, we use the following shorthand notations for the products
of Euler Γ functions:

Γ [z1, · · · , zm] ≡ Γ(z1) · · ·Γ(zm), (A.1)

Γ
[
z1, · · · , zm
w1, · · · , wn

]
≡ Γ(z1) · · ·Γ(zm)

Γ(w1) · · ·Γ(wn) . (A.2)

The expression Γ[· · · , {z}(n), · · · ] means that the entry z is repeated n times in the Γ
products, namely, it represents a factor of Γn(z).

The Pochhammer symbol (z)n is frequently used, which is defined by

(z)n ≡ Γ
[
z + n

z

]
. (A.3)

In this work, we use various types of (generalized) hypergeometric functions. The original
generalized hypergeometric function of (p, q)-type is defined by

pFq
[
a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣z
]

=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n! . (A.4)

We shall also use the regularized hypergeometric function pF̃q:

pF̃q
[
a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣z
]

= 1
Γ [b1, · · · , bq]p

Fq
[
a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣z
]
. (A.5)
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The regularized hypergeometric function has the nice property that it is an entire function
of all its parameters (a1, · · · , ap, b1, · · · , bq) when z is away from the singular points such
as z = 1 and z =∞.

We also frequently use the “dressed” hypergeometric function to simplify expressions,
which is defined below.

pFq

[
a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣z
]

= Γ
[
a1, · · · , ap
b1, · · · , bq

]
pFq

[
a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣z
]
. (A.6)

We occasionally need to take derivatives of the hypergeometric functions with
respect to their parameters. The first derivative of the hypergeometric function
pFq(a1, · · · , ap; b1, · · · , bq; z) with respect to ai and bi has been worked out in the liter-
ature. See, for instance, [93]:

∂

∂a1
pFq

[
a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣z
]

= z

a1

a1 · · · ap
b1 · · · bq

pΘ(1)
q

[
1, 1
a1 + 1

∣∣∣∣∣a1, a1 + 1, · · · , ap + 1
2, b1 + 1, · · · , bq + 1

∣∣∣∣∣z, z
]
, (A.7)

∂

∂b1
pFq

[
a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣z
]

= − z

b1

a1 · · · ap
b1 · · · bq

pΘ(1)
q

[
1, 1
b1 + 1

∣∣∣∣∣b1, a1 + 1, · · · , ap + 1
2, b1 + 1, · · · , bq + 1

∣∣∣∣∣z, z
]
, (A.8)

where pΘ(1)
q is a type of hypergeometric function of two variables defined as below.

pΘ(1)
q

[
α1, α2
γ1

∣∣∣∣∣β1, β2, · · · , βp+1
δ1, δ2, · · · , δq+1

∣∣∣∣∣z1, z2

]
(A.9)

≡
∞∑

m1,m2=0

(α1)m1(α2)m2(β1)m1

(γ1)m1

(β2)m1+m2 · · · (βp+1)m1+m2

(δ1)m1 · · · (δq+1)m1+m2

zm1
1 zm2

2
m1!m2! .

Many relations and theorems regarding hypergeometric functions are employed in this
work, and we introduce them when they are needed.

B More on the spectral function in dS

The spectral function ρdS
ν̃

(ν̃ ′) is of central importance in our bootstrap program for 1-loop
diagrams. In this appendix, we provide more discussions about the spectral function in
dS. First, for completeness, we reproduce the derivation of the bubble function BEdS in
Euclidean dS, namely the d-dimensional sphere Sd. following the treatment of [88]. Then,
we make an analytic continuation from EdS to dS to obtain the spectral function ρdS

ν̃
(ν̃ ′) in

dS. Then, we present the pole structure of the spectral function on the complex ν̃ ′ plane,
which is useful for our evaluation of the spectral integral. We then discuss the divergence
of the spectral function in 3 spatial dimensions. Finally, we derive some useful properties
of the Π function defined in (3.19).

B.1 Derivation of the spectral function

The derivations in this subsection closely follow [88].
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Bubble function on a sphere. On a (d + 1)-dimensional sphere Sd+1, the 2-point
function D(x, y) of the massive scalar field can be decomposed in terms of spherical har-
monics Y~L(x). Here ~L = (L,Ld, Ld−1, · · · , L1) are a vector of d+1 integer entries satisfying
L ≥ Ld ≥ · · · ≥ L2 ≥ |L1|.

Dν̃(x, y) =
∑
~L

1
λLν̃

Y~L(x)Y ∗~L (y) =
∞∑
L=0

Γ(d/2)(L+ d/2)
2πd/2+1λLν̃

Cd/2
L (Z), (B.1)

where λLν̃ = (L+ d/2)2 + ν̃2, Z is the imbedding distance between x and y, Cα
m(z) is the

Gegenbauer polynomial, and we have used the following summation formula:

∑
L1,··· ,Ld

Y~L(x)Y ∗~L (y) = Γ(d/2)(2L+ d)
4πd/2+1 Cd/2

L (Zxy), (B.2)

On the other hand, the products of two propagators D2(x, y) is again a rotational
invariant 2-point function. Suppose we can decompose it in the following way

D2
ν̃
(x, y) =

∑
~L

ρEdS
ν̃

(L)Y~L(x)Y ∗~L (y) = Γ(d/2)
2πd/2+1

∞∑
L=0

(L+ d/2)BEdS
ν̃

(L)Cd/2
L (Zxy) (B.3)

= Γ(d/2)
2πd/2+1

∞∑
L=0

(−1)L(L+ d/2)BEdS
ν̃

(L)Cd/2
L (−Zxy),

where BEdS
ν̃

is the bubble function in the L space. Using the orthogonality of the Gegen-
bauer polynomials:

∫ 1

−1
dx (1− x2)α−1/2Cα

m(x)Cα
n(x) = 21−2απ

n+ α
Γ
[
n+ 2α

n+ 1, α, α

]
δmn, (B.4)

we can find

BEdS
ν̃

(L) = (4π)d/2Γ
[
L+ 1, d/2
L+ d

] ∫ 1

−1
dZ (1− Z2)(d−1)/2Cd/2

L (Z)D2
ν̃
(Z)

= (4π)d/2Γ
[
L+ 1, d/2
L+ d

] ∫ 1

−1
dZ (1− Z2)(d−1)/2

×
∞∑

M,N=0

Γ2(d/2)(M + d/2)(N + d/2)
4πd+2λMν̃λNν̃

Cd/2
L (Z)Cd/2

M (Z)Cd/2
N (Z)

= 4d/2−1

πd/2+2 Γ
[
L+ 1, {d/2}(3)

L+ d

] ∞∑
M,N=0

(M + d/2)(N + d/2)
λMν̃λNν̃

×
∫ 1

−1
dZ (1− Z2)(d−1)/2Cd/2

L (Z)Cd/2
M (Z)Cd/2

N (Z). (B.5)
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Here we need to quote a result for the integral of three Gegenbauer polynomials of the
same degree:∫ 1

−1
dZ (1− Z2)α−1/2Cα

L(Z)Cα
M (Z)Cα

N (Z) (B.6)

=


21−2απΓ

[
K + 2α,K − L+ α,K −M + α,K −N + α

{α}(4),K + α+ 1,K − L+ 1,K −M + 1,K −N + 1

]
;

(when L,M,N ∈ N0 satisfy the triangle inequalities and K ≡ 1
2(L+M +N) ∈ N0)

0. (otherwise)

where K ≡ (L+M +N)/2. Using this formula, we get

BEdS
ν̃

(L) = 1
8πd/2+1 Γ

[
L+ 1
L+ d, d2

] ∑
(M,N)

ΛMν̃ΛNν̃

× Γ
[
K + d,K − L+ d

2 ,K −M + d
2 ,K −N + d

2
K + d

2 + 1,K − L+ 1,K −M + 1,K −N + 1

]
, (B.7)

where ΛMν̃ ≡ (2M + d)/λMν̃ , and the notation (M,N) means that the summation goes
over all values satisfying the triangle inequality. The next step is to remove the constraint
on the variables (M,N). Following the method in [88] , we define new variables:

I = K − L, J = K −N. (B.8)

Then

M = I + J, N = I − J + L, K = I + L. (B.9)

Then the summation becomes
∞∑
I=0

L∑
J=0

ΛI+J,̃νΛI−J+L,̃νΓ
[
I + L+ d, I + d

2 , L− J + d
2 , J + d

2
I + L+ 1 + d

2 , I + 1, L− J + 1, J + 1

]
(B.10)

First, consider the J sum:
L∑
J=0

ΛI+J,̃νΛI−J+L,̃νΓ
[
L− J + d

2 , J + d
2

L− J + 1, J + 1

]
. (B.11)

Due to the factor Γ[L − J + 1, J + 1] in the denominator, the summand automatically
vanishes when J takes integer values in the range J < 0 and J > L. Therefore, we can
expand the summation range to entire real integers:

∞∑
J=−∞

ΛI+J,̃νΛI−J+L,̃νΓ
[
L− J + d

2 , J + d
2

L− J + 1, J + 1

]
. (B.12)

Then we can rewrite this summation as an integral:∮ dJ
2πiπ cot(πJ)ΛI+J,̃νΛI−J+L,̃νΓ

[
L− J + d

2 , J + d
2

L− J + 1, J + 1

]

=
∮ dJ

2πi (− cosπJ)ΛI+J,̃νΛI−J+L,̃νΓ
[
L− J + d

2 , J + d
2 ,−J

L− J + 1

]
. (B.13)
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At large J , the integrand goes as |J |d−4. So if we choose the contour to be a circle around
the complex infinity, the whole integral is zero. Now, let us evaluate the same integral with
the residue theorem. The integrand has the following set of poles:

1. J = 0, · · · , L, coming from Γ(−J)/Γ(L−J +1), which simply gives the original sum.

2. J = d/2 + L+ n, n = 0, 1, 2, · · · , coming from Γ(L− J + d/2).

3. J = −d/2− n, n = 0, 1, 2, · · · , coming from Γ(J + d/2).

4. J = −I − d/2± iν̃, coming from ΛI+J,̃ν .

5. J = I + L+ d/2± iν̃, coming from ΛI−J+L,̃ν .

The second set and the third set of poles give identical results. Each of the two contributions
reads:

− cos(πd/2)
∞∑
n=0

ΛI+L+d/2+n,̃νΛI−d/2−n,̃νΓ
[

n+ L+ d, n+ d
2

n+ 1, n+ L+ d
2 + 1

]
. (B.14)

The fourth and fifth sets of poles again give identical contributions. Each of the two sets
gives:

π cos[π(d/2− iν̃)]
sin(−iπν̃) Λ2I+L+d/2−ĩν,̃νΓ

[
L+ I + d− iν̃, I + d/2− iν̃

L+ I + d/2− iν̃ + 1, I + 1− iν̃

]
+ (ν̃ → −ν̃). (B.15)

Therefore, we get:

L∑
J=0

ΛI+J,̃νΛI−J+L,̃νΓ
[
L− J + d

2 , J + d
2

L− J + 1, J + 1

]

=
{2π cos[π(d/2− iν̃)]

sin(iπν̃) Λ2I+L+d/2−ĩν,̃νΓ
[

L+ I + d− iν̃, I + d/2− iν̃
L+ I + d/2− iν̃ + 1, I + 1− iν̃

]
+ (ν̃ → −ν̃)

}

+ 2 cos(πd/2)
∞∑
n=0

ΛI+L+d/2+n,̃νΛI−d/2−n,̃νΓ
[

n+ L+ d, n+ d
2

n+ 1, n+ L+ d
2 + 1

]
. (B.16)

Next, consider the I sum. There are two types of contributions from the J sum. First,
there is a n sum which contributes the following terms:

∞∑
I=0

∞∑
n=0

ΛI+L+d/2+n,̃νΛI−d/2−n,̃νΓ
[

I + L+ d, I + d
2 , n+ L+ d, n+ d

2
I + 1, I + L+ 1 + d

2 , n+ 1, n+ L+ d
2 + 1

]
. (B.17)

As observed in [88], the Γ products and ΛI+L+d/2+n,̃ν is invariant under the change of
variables I ↔ n, but ΛI−d/2−n,̃ν changes sign. So this part of the I sum vanishes. Next,
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consider the rest contributions from the J sum:

∞∑
I=0

Λ2I+L+d/2−ĩν,̃νΓ
[

I + L+ d, I + d
2 , L+ I + d− iν̃, I + d

2 − iν̃
I + 1, I + L+ 1 + d

2 , L+ I + d
2 − iν̃ + 1, I + 1− iν̃

]

=
∞∑
I=0

Γ
[

I + L+d−ĩν
2 + 1, I + L+d

2 , I + L+d
2 − iν̃

I + L+d−ĩν
2 , I + L+d

2 + 1, I + L+d
2 − iν̃ + 1

]

× Γ
[

I + L+ d, I + d
2 , L+ I + d− iν̃, I + d

2 − iν̃
I + 1, I + L+ 1 + d

2 , L+ I + d
2 − iν̃ + 1, I + 1− iν̃

]

= 7F6

[
L+d−ĩν

2 + 1, L+d
2 , L+d

2 − iν̃, L+ d, d2 , L+ d− iν̃, d2 − iν̃
L+d−ĩν

2 , L+d
2 + 1, L+d

2 − iν̃ + 1, L+ 1 + d
2 , L+ d

2 − iν̃ + 1, 1− iν̃

∣∣∣∣∣1
]
. (B.18)

At this point, we make use of a connection formula between two generalized hypergeometric
functions [94]:

7F6

[
A
B

∣∣∣∣∣1
]

= Γ
[
C
D

]
7F6

[
E
F

∣∣∣∣∣1
]
, (B.19)

where

A =
{
a,
a

2 + 1, b, c, e, f, g
}
,

B =
{
a

2 , 1 + a− b, 1 + a− c, 1 + a− e, 1 + a− f, 1 + a− g
}
,

C = {1 + a− f, 1 + a− g, 2 + 2a− b− c− e, 2 + 2a− b− c− e− f − g},
D = {1 + a, 1 + a− f − g, 2 + 2a− b− c− e− f, 2 + 2a− b− c− e− g},

E =
{

1 + 2a− b− c− e, 3
2 + a− b

2 −
c

2 −
e

2 ,

1 + a− c− e, 1 + a− b− e, 1 + a− b− c, f, g
}
,

F =
{1

2 + a− b

2 −
c

2 −
e

2 , 1 + a− b, 1 + a− c, 1 + a− e,

2 + 2a− b− c− e− f, 2 + 2a− b− c− e− g
}
. (B.20)

Now, we can make the following assignment of parameters:

a = L+ d− iν̃, b = d

2 − iν̃, c = L+ d, (B.21)

e = d

2 , f = L+ d

2 − iν̃, g = L+ d

2 .
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Then, we can rewrite the hypergeometric function in (B.18) as:
∞∑
I=0

Λ2I+L+d/2−ĩν,̃νΓ
[

I + L+ d, I + d
2 , L+ I + d− iν̃, I + d

2 − iν̃
I + 1, I + L+ 1 + d

2 , L+ I + d
2 − iν̃ + 1, I + 1− iν̃

]

= 1
2Γ
[

d
2 , 2− d,

d
2 − iν̃, L+ d, 2 + L− iν̃, L+d

2 − iν̃, L+d
2

1− iν̃, L+ d
2 + 1, L+ 1 + d

2 − iν̃, 2 + L−d
2 − iν̃, 2 + L−d

2

]

× 7F6

[
1 + L− iν̃, 3+L−ĩν

2 , 1− d
2 , 1− iν̃ − d

2 , 1 + L, L+d
2 − iν̃, L+d

2
1+L−ĩν

2 , L+ 1 + d
2 − iν̃, 1 + L+ d

2 , 1− iν̃, 2 + L−d
2 − iν̃, 2 + L−d

2

∣∣∣∣∣1
]
. (B.22)

It seems that we are making the expression more complicated. The reason for using the
connection formula (B.19) is the following. We anticipate that the spectral function is
divergent when d = 3, which is nothing but the familiar UV divergence of the 1-loop bubble
diagram. In (B.18), this divergence is somewhat hidden in the complicated parameter
dependence in the hypergeometric function, making it difficult to isolate and subtract the
UV divergence. After using the connection formula (B.19), we see that the divergence is
manifested through the Γ(2− d) factor, which is particularly easy to deal with.

Now, combining (B.7) and (B.22), we get the final expression for the bubble function
Bν̃ (L) as:

BEdS
ν̃

(L) = 1
8πd/2

cos [π (d/2− iν̃)]
sin(iπν̃) Γ

[
2−d, d2− iν̃,L+1,2+L− iν̃, L+d

2 − iν̃, L+d
2

1− iν̃,L+ d
2 +1,L+1+ d

2− iν̃,2+ L−d
2 − iν̃,2+ L−d

2

]

×7F6

[
1+L− iν̃, 3+L−ĩν

2 ,1− d
2 ,1− iν̃− d

2 ,1+L, L+d
2 − iν̃, L+d

2
1+L−ĩν

2 ,L+1+ d
2− iν̃,1+L+ d

2 ,1− iν̃,2+ L−d
2 − iν̃,2+ L−d

2

∣∣∣∣∣1
]

+(ν̃→−ν̃) . (B.23)

From the sphere to de Sitter. Next, we derive the spectral function ρdS
ν̃

(ν̃ ′) in dS from
the bubble function in EdS as obtained above. Following [88], we use a Watson-Sommerfeld
transformation to recast the summation in (B.3) into an integral:[

Dν̃(x, y)
]2

=
∫
γ

dL
2πi

π

sin(πL)
Γ(d/2)
2πd/2+1 (L+ d/2)BEdS

ν̃
(L)Cd/2

L (−Zxy), (B.24)

where the contour γ surrounds all the poles of 1/ sin (πL) at non-negative integer values of
L. At large |L| � 1 the integrand decays like e−π|ImL|, so the contour γ can be deformed
to run along the imaginary axis with Re [L] = −d/2. Now, using the following formula for
the Gegenbauer polynomial,

Cd/2
L (−Zxy) = (d)L

L! 2F1

[
−L, d+ L

d+1
2

∣∣∣∣∣1 + Zxy
2

]
, (B.25)

we find the following relation:

(L+ d/2)Γ(d/2)Cd/2
L (−Zxy)

2πd/2 sin(πL)

∣∣∣∣
L=−d/2+ĩν′

= −2iν̃ ′Dν̃′(x, y). (B.26)

So equation (B.24) can be written as[
Dν̃(x, y)

]2
= −

∫ ∞+i(−d/2+ε)

−∞+i(−d/2+ε)
dν̃ ′ ν̃

′

πiB
EdS
ν̃

(
− d

2 + iν̃ ′
)
Dν̃′(x, y). (B.27)
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Now, the propagator in EdS Dν̃(x, y) can be analytically continued to the SK propagators
Dν̃,ab(x, y) in dS:

[
Dν̃,ab(x, y)

]2
= −

∫ ∞−iε

−∞−iε
dν̃ ′ ν̃

′

πiB
EdS
ν̃

(
− d

2 + iν̃ ′
)
Dν̃,ab(x, y) + poles from iν̃ ′ ∈

(
0, d2

)
.

(B.28)
Here we are moving the integration contour from Im ν̃ ′ = −d/2+ε to Im ν̃ ′ = −ε. Therefore,
we need to include any poles in the region iν̃ ′ ∈ (0, d2), as indicated in the last term of (B.28).
Below we shall show that there is actually no pole from this region for the parameters of
our interest.

Therefore, the spectral density function ρν̃ (ν̃ ′) in dSd is the opposite of which in the
d-dimensional sphere Sd, −BEdS

ν̃
(−d/2 + iν̃ ′).

ρdS
ν̃

(ν̃ ′) = −BEdS (−d/2 + iν̃ ′
)
. (B.29)

More explicitly,

ρdS
ν̃

(ν̃ ′)= 1
8πd/2

cos[π(−d
2 +iν̃)]

sin(−πiν̃) Γ

2−d, d2−iν̃,1− d
2 +iν̃ ′,2− d

2 +iν̃ ′−iν̃, ĩν′−2ĩν+d/2
2 , ĩν′+d/2

2
1−iν̃,1+iν̃ ′,1+iν̃ ′−iν̃, 4+ĩν′−2ĩν−3d/2

2 , 4+ĩν′−3d/2
2


×7F6

1− d
2 +iν̃ ′−iν̃, 3−d/2+ĩν′−ĩν

2 ,1− d
2 ,1−

d
2−iν̃,1− d

2 +iν̃ ′, ĩν′−2ĩν+d/2
2 , ĩν′+d/2

2
1−d/2+ĩν′−ĩν

2 ,1+iν̃ ′−iν̃,1+iν̃ ′,1−iν̃, 4+ĩν′−3d/2
2 , 4+ĩν′−2ĩν−3d/2

2

∣∣∣∣∣∣1


+(ν̃→−ν̃). (B.30)

To analyze the analytical property of this spectral function, it is useful to rewrite it in
terms of the regularized hypergeometric function 7F̃6 as defined in (A.5):

ρdS
ν̃

(ν̃ ′)= 1
8πd/2

cos[π(−d
2 +iν̃)]

sin(−πiν̃)
×Γ

[
2−d, d2−iν̃,1− d

2 +iν̃ ′,2− d
2 +iν̃ ′−iν̃, ĩν′−2ĩν+d/2

2 , ĩν′+d/2
2 , 1−d/2+ĩν′−ĩν

2

]
×7F̃6

1− d
2 +iν̃ ′−iν̃, 3−d/2+ĩν′−ĩν

2 ,1− d
2 ,1−

d
2−iν̃,1− d

2 +iν̃ ′, ĩν′−2ĩν+d/2
2 , ĩν′+d/2

2
1−d/2+ĩν′−ĩν

2 ,1+iν̃ ′−iν̃,1+iν̃ ′,1−iν̃, 4+ĩν′−3d/2
2 , 4+ĩν′−2ĩν−3d/2

2

∣∣∣∣∣∣1


+(ν̃→−ν̃). (B.31)

It is possible to further simplify this expression by absorbing a lot of Euler Γ factors into
the generalized hypergeometric function, using the dressed hypergeometric function 7F6
defined in (A.6). This result is shown in (3.1).

B.2 Pole structure of the spectral function

In the main text, we use the contour integral and the residue theorem to compute the spec-
tral integral. Therefore, the pole structure of the spectral function ρdS

ν̃
(ν̃ ′) in the complex

ν̃ ′ plane is needed. In this subsection, we present the poles and the corresponding residues.
In the expression (B.31) for ρdS

ν̃
(ν̃ ′), the regulated (generalized) hypergeometric func-

tion 7F̃6 is an entire function of all its 7 + 6 parameters, and therefore all possible poles

– 41 –



J
H
E
P
0
4
(
2
0
2
3
)
1
0
3

come from the Euler Γ factors and sine function in the denominator. Therefore, we see that
there are superficially 5 sets of poles from the Euler Γ factors, but 3 of them are canceled
by the zeros in 7F̃6. As a result, we have two sets of poles at the following positions:

(Set A) ν̃ ′ = id/2± 2ν̃ + 2in, (B.32)
(Set B) ν̃ ′ = id/2 + 2in. (B.33)

The residues at these poles are:

Res
[
iρdS
ν̃

(ν̃ ′)
]
ν̃′=id/2∓2ν̃+2in

= 1
8πd/2Γ(d2)

sin[π(−d
2 ∓ 2iν̃)]

sin2(πiν̃)

×
(1 + n) d

2−1
[
(1± iν̃ + n) d

2−1
]2(1± 2iν̃ + n) d

2−1

(1± 2iν̃ + 2n)d−1
, (B.34)

Res
[
iρdS
ν̃

(ν̃ ′)
]
ν̃′=id/2+2in

= 1
4πd/2Γ(d2)

sin πd
2

sin2 πiν̃

×
[(1 + n) d

2−1]2(1 + iν̃ + n) d
2−1(1− iν̃ + n) d

2−1

(1 + 2n)d−1
. (B.35)

Because there are no poles when Im ν̃ ′ < 0, the second term of equation (B.28) disappears.

B.3 Spectral function in 3+1 dimensions

The spectral function ρdS
ν̃

(ν̃ ′) in 3 spatial dimensions is of special interest to us. As men-
tioned above, ρdS

ν̃
(ν̃ ′) is divergent when d = 3. The divergence appears as a simple pole,

which comes from the factor Γ(2−d). Here we want to compute the residue of the spectral
function at this simple pole. Therefore, we need to compute ρdS

ν̃
(ν̃ ′)/Γ(2− d), namely, the

spectral function with the factor Γ(2− d) removed.
As shown in (B.30), the spectral function ρdS

ν̃
(ν̃ ′) consists of two parts, one explicitly

in (B.30), and the other represented by “ν̃ → −ν̃.” After removing Γ(2−d) and then taking
d = 3, the term explicitly displayed in (B.30) reads:

1
8π3/2 Γ

3
2 − iν̃,−1

2 + iν̃ ′, 1
2 + iν̃ ′ − iν̃, ĩν′−2ĩν+3/2

2 , ĩν′+3/2
2

1− iν̃, 1 + iν̃ ′, 1 + iν̃ ′ − iν̃, ĩν′−2ĩν−1/2
2 , ĩν′−1/2

2


× 7F6

−1
2 + iν̃ ′ − iν̃, 3/2+ĩν′−ĩν

2 ,−1
2 ,−

1
2 − iν̃,−1

2 + iν̃ ′, ĩν′−2ĩν+3/2
2 , ĩν′+3/2

2
−1/2+ĩν′−ĩν

2 , 1 + iν̃ ′ − iν̃, 1 + iν̃ ′, 1− iν̃, ĩν′−1/2
2 , ĩν′−2ĩν−1/2

2

∣∣∣∣∣∣ 1
 . (B.36)

To further simplify this expression, we use the following relation [94]:12

3F2

[
x, y, z

v, w

∣∣∣∣∣1
]
n−1

= Γ
[
v + w + n− 1, x+ n, y + n, z + n

n, y + z + n, z + x+ n, x+ y + n

]

× 7F6

[
a, 1

2a+ 1, w + n− 1, v + n− 1, x, y, z
1
2a, v, w, y + z + n, z + x+ n, x+ y + n

∣∣∣∣∣1
]
, (B.37)

12The corresponding formula in [94] may have a typographical error.
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where a = x+ y + z + n− 1, and

pFq
[
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣∣z
]
N

≡
N∑
n=0

(a1)n(a2)n · · · (aq)n
(b1)n(b2)n · · · (bq)n

zn

n! . (B.38)

With the following parameter assignment:

a = −1
2 + iν̃ ′ − iν̃, v = iν̃ ′ − 1/2

2 , w = iν̃ ′ − 2iν̃ − 1/2
2 ,

x = −1
2 , y = −1

2 − iν̃, z = −1
2 + iν̃ ′, n = 2, (B.39)

we can simplify (B.36) as

1
8π3/2 Γ

−1
2 + iν̃ ′, ĩν′−2ĩν+3/2

2 , ĩν′+3/2
2

3
2 ,

3
2 + iν̃ ′, ĩν′−2ĩν−1/2

2 , ĩν′−1/2
2

 3F2

[
−1

2 ,−
1
2 − iν̃,−1

2 + iν̃ ′
ĩν′−1/2

2 , ĩν′−2ĩν−1/2
2

∣∣∣∣∣1
]

1
= 1

(4π)2 . (B.40)

The “ν̃ → −ν̃” part of ρdS
ν̃

(ν̃ ′)/Γ(2− d) in (B.30) can be simplified in the same way when
d = 3. The result is again 1/(4π)2. With these results, we see that the whole spectral
function ρdS

ν̃
(ν̃ ′) diverges at d→ 3 as13

lim
d→3

ρdS
ν̃

(ν̃ ′) ∼ − 1
8π2(3− d) +O

(
(3− d)0

)
. (B.41)

As is familiar in flat-space loop calculations, the dimensional regularization is often cou-
pled with the modified minimal subtraction scheme (MS scheme). This is not a physical
renormalization scheme but turns out particularly convenient. Therefore, we define a
“renormalized” spectral function ρ̂dS

ν̃
(ν̃ ′) under the MS scheme as in (4.9). It is possible

to work out an explicit expression for ρ̂dS
ν̃

(ν̃ ′) by using the two-argument hypergeometric
function. The result is rather complicated and uninspiring, but it could be useful for nu-
merical studies. (See the end of appendix C.1 for an example.) Here we present this result
for completeness. To this end, it is useful to define the following shorthand:

ϑ(a) ≡ 1
a7Θ(1)

6

[
1, 1
a1 + 1

∣∣∣∣∣a, a1 + 1, · · · , a7 + 1
2, b1 + 1, · · · , b6 + 1

∣∣∣∣∣z, z
]
, (B.42)

where the function pΘ(1)
q is defined in (A.9), and the parameters (a1, · · · , a7, b1, · · · , b6) are

13This result is slightly different from the one given in [88], which may have a typographical error.
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the same as the ones appearing in the 7F6 function in (B.30). Then:

ρ̂dS
ν̃

(ν̃ ′) =
[ 1

16π2

{
−1−cot(πiν̃)+ 1

2 log(16π)+ 1
2

[
ψ

(3
2− iν̃

)
−ψ

(
−1

2 +iν̃ ′
)

−ψ
(1

2 +iν̃ ′− iν̃
)

+ 1
2ψ
( iν̃ ′−2iν̃+3/2

2

)
+ 1

2ψ
( iν̃ ′+3/2

2

)
+ 3

2

( iν̃ ′−1/2
2

)
+ 3

2

( iν̃ ′−2iν̃−1/2
2

)]}

−
(3/2+ĩν′−ĩν

2 )(−1
2− iν̃)( ĩν′−2ĩν+3/2

2 )( ĩν′+3/2
2 )

8π3/2 Γ
[

3
2− iν̃, 1

2 +iν̃ ′, 1
2 +iν̃ ′− iν̃

2− iν̃,2+iν̃ ′,2+iν̃ ′− iν̃

]

×
{
− 1

2ϑ(−1/2+iν̃ ′− iν̃)− 1
4ϑ
(3/2+iν̃ ′− iν̃

2

)
− 1

2ϑ
(
−1

2

)
− 1

2ϑ
(
−1

2− iν̃
)

− 1
2ϑ
(
−1

2 +iν̃ ′
)

+ 1
4ϑ
( iν̃ ′−2iν̃+3/2

2

)
+ 1

4ϑ
( iν̃ ′+3/2

2

)
+ 1

4ϑ
(−1/2+iν̃ ′− iν̃

2

)
+ 3

4ϑ
( iν̃ ′−1/2

2

)
+ 3

4ϑ
( iν̃ ′−2iν̃−1/2

2

)}]
+(ν̃→−ν̃). (B.43)

B.4 More on the Π function

At several places in the final result for the loop seed integral, the spectral function ρdS
ν̃

(ν̃ ′)
appears through the combination Πν′,d(ν̃) ≡ ρdS

ν̃
(−iν ′) − ρdS

ν̃
(+iν ′) where ν ′ = iν̃ ′ is an

integer or half-integer. In this appendix, we derive an alternative expression for Πν′,d for
general d which is more convenient for some purposes. We also derive a closed form formula
for Πν′,d for d = 3, and show that Πn,d = 0 when n is an integer.

Our starting point here is the original expression for the spectral function (3.1). We
apply the following connecting formula for the generalized hypergeometric function 7F6 [95]:

7F6

[
A
B

∣∣∣∣∣1
]

= Γ
[C
D

]
− Γ

[E
F

]
7F6

[
G
H

∣∣∣∣∣1
]
, (B.44)

where

A =
{
a, 1 + a

2 , b, c, e, f, g
}
,

B =
{
a

2 , 1 + a− b, 1 + a− c, 1 + a− e, 1 + a− f, 1 + a− g
}
,

C = {1 + a− c, 1 + a− e, 1 + a− f, 1 + a− g, b+ c− a, b+ e− a, b+ f − a, b+ g − a},
D = {1 + a, b− a, 1 + a− e− f, 1 + a− c− f, 1 + a− c− e,

1 + a− c− g, 1 + a− e− g, 1 + a− f − g},
E = {1 + 2b− a, b+ c− a, b+ e− a, b+ f − a, b+ g − a, a− b,

1 + a− c, 1 + a− e, 1 + a− f, 1 + a− g},
F = {1 + b− c, 1 + b− e, 1 + b− f, 1 + b− g, b− a, 1 + a, c, e, f, g},

G =
{

2b− a, 1 + b− a

2 , b, b+ c− a, b+ e− a, b+ f − a, b+ g − a
}
,

H =
{
b− a

2 , 1 + b− a, 1 + b− c, 1 + b− e, 1 + b− f, 1 + b− g
}
. (B.45)
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The formula (B.44) has the effect of transforming the 7F6 function in ρdS
ν̃

(−iν̃ ′) into the
7F6 function in ρdS

ν̃
(+iν̃ ′). Therefore, we apply it to the ρdS

ν̃
(−iν̃ ′) term in the Π function,

through the following assignment of parameters:

a = 1− d

2 + iν̃ ′ ∓ iν̃, b = 1− d

2 , c = 1− d

2 ∓ iν̃,

e = 1− d

2 + iν̃ ′, f = iν̃ ′ ∓ 2iν̃ + d/2
2 , g = iν̃ ′ + d/2

2 . (B.46)

Meanwhile, we keep the ρdS
ν̃

(+iν̃ ′) term in the Π function intact. As a result, the various
generalized hypergeometric functions in the Π function can be combined. With some
further simplifications, we get the following result:

Πν′,d(ν̃) =− 1
8πd/2

[cot[π2 (d−2iν̃)] sin[π(iν̃−ν ′)] sin[π2 (−ν ′−2iν̃+d/2)]
sin(πiν̃)sin[π2 (ν ′−2iν̃+d/2)]

−
cot[π2 (d+2iν̃)] sin[π(−iν̃−ν ′)] sin[π2 (−ν ′+2iν̃+d/2)]

sin(πiν̃)sin[π2 (ν ′+2iν̃+d/2)]

]

×Γ
[
1− d

2−ν
′, −ν

′+d/2
2 , −ν

′+2ĩν+d/2
2 , −ν

′−2ĩν+d/2
2 ,1− d

2 +ν ′, ν
′+d/2

2
−ν′+2−d/2

2 , d2 ,
ν′+2−d/2

2 , −ν
′−2ĩν+2−d/2

2 , −ν
′+2ĩν+2−d/2

2

]

+
{ 1

8πd/2

[cot[π2 (−d+2iν̃)] sin[π2 (d+2iν̃)]
sin(πiν̃) −

cos[π2 (d+2iν̃)]
sin(πiν̃)

]
×Γ

[
2−d, d2 +iν̃,1− d2−ν

′,2− d2−ν
′+iν̃,−ν

′+2iν̃+d/2
2 ,

−ν ′+d/2
2 ,

1−d/2−ν ′+iν̃
2

]

×7F̃6

1− d
2−ν

′+iν̃, 3−d/2−ν′+ĩν
2 ,1− d

2 ,1−
d
2 +iν̃,1− d

2−ν
′, −ν

′+2ĩν+d/2
2 , −ν

′+d/2
2

1−ν ′+iν̃,1−ν ′,1+iν̃, 4−ν′−3d/2
2 , 4−ν′+2ĩν−3d/2

2

∣∣∣∣∣∣1


+(ν̃→−ν̃)
}
. (B.47)

We are particularly interested in the case of d = 3. For the two terms in (B.47), the
d→ 3 limit of the first term (without 7F6) is straightforward, and the result is:

− 1
8π

sin(πν ′)
sin(πν ′)− cosh(2πν̃)Γ

[
−1

4 −
ν′

2 ,−
1
4 + ν′

2 ,
−ν′+2ĩν+3/2

2 , −ν
′−2ĩν+3/2

2
1
4 −

ν′

2 ,
1
4 + ν′

2 ,
−ν′−2ĩν+1/2

2 , −ν
′+2ĩν+1/2

2

]
. (B.48)

More care is needed to take the d→ 3 limit of the second term in (B.47), namely the whole
term within the curly bracket. Due to the factor Γ(2−d), this term is seemingly divergent;
however, the divergence is canceled by another divergent term in the “(ν̃ → −ν̃)” term.
To see this, we note that we can isolate part of terms in the curly bracket of (B.47) that
is identical to (B.36) upon the replacement ν̃ → −ν̃ and iν̃ ′ → −ν ′. Therefore, we can
use the same treatment for (B.36) to compute the d → 3 limit of this curly-bracket term.
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Comparing with (B.40), we see that
1

8πd/2 Γ
[
d

2 +iν̃,1− d2−ν
′,2− d2−ν

′+iν̃,−ν
′+2iν̃+d/2

2 ,
−ν ′+d/2

2 ,
1−d/2−ν ′+iν̃

2

]

×7F̃6

1− d
2−ν

′+iν̃, 3−d/2−ν′+ĩν
2 ,1− d

2 ,1−
d
2 +iν̃,1− d

2−ν
′, −ν

′+2ĩν+d/2
2 , −ν

′+d/2
2

1−ν ′+iν̃,1−ν ′,1+iν̃, 4−ν′−3d/2
2 , 4−ν′+2ĩν−3d/2

2

∣∣∣∣∣∣1


= 1
(4π)2 . (B.49)

Therefore, the whole term inside the curly bracket in (B.47) vanishes when d = 3:
Γ(2− d)

(4π)2

[cot[π2 (−d+ 2iν̃)] sin[π2 (d+ 2iν̃)]
sin(πiν̃) −

cos[π2 (d+ 2iν̃)]
sin(πiν̃)

]
+ (ν̃ → −ν̃) = 0. (B.50)

Therefore, we have got the following explicit expression for Πn,3:

Πn,3(ν̃) = 1
8π

sin(πn)
cosh(2πν̃)− sin(πn)

(1
4 −

n
2 − iν̃

)
1
2

(1
4 −

n
2 + iν̃

)
1
2

(−1
4 −

n
2 ) 1

2
(−1

4 + n
2 ) 1

2

. (n ∈ R) (B.51)

Note that this result applies for general n, which is not required to be an integer. For
our computation of loop seed integral in 3 spatial dimensions, it is worth noting that
Πn,3(ν̃) = 0 when n is an integer. The case of half-integer n is also useful but is a bit
complicated. First, when n = 1/2, Π1/2,3(ν̃) is finite:

Π1/2,3(ν̃) = ν̃

4π sinh(2πν̃) . (B.52)

Next, when n = 2k + 1/2 with k = 1, 2, · · · , Πn,3(ν̃) = 0. Finally, when n = 2k + 3/2 with
k = 0, 1, 2, · · · , Πn,3 is divergent like a simple pole.

It is also straightforward to find an expression for the Ξn,3(ν̃) function defined in (3.20).
This time we require n to be an integer. The result is:

Ξn,3(ν̃) = (−1)n
8

(1
4 −

n
2 − iν̃

)
1
2

(1
4 −

n
2 + iν̃

)
1
2

(−1
4 −

n
2 ) 1

2
(−1

4 + n
2 ) 1

2

sech(2πν̃). (n ∈ Z) (B.53)

C Asymptotic behavior of the spectral function

In several places of the main text, we need the asymptotic behavior of the spectral function
ρdS
ν̃

(ν̃ ′) when either ν̃ or ν̃ ′ is large. We examine these two limits in this appendix.

C.1 Large ν̃ limit

The spectral function ρdS
ν̃

(ν̃ ′) as given in (3.1) contains two terms, each of which is a
product of a generalized hypergeometric function 7F6 and many Euler Γ and trigonometric
functions. To find the large ν̃ limit of this function, therefore, we should take the large ν̃
limit of all these factors.

It turns out that the leading result of the large ν̃ limit is canceled between the explicitly
displayed term and the (ν̃ → −ν̃) term in (3.1). To find the leading nonvanishing result,
therefore, we need to know the first two leading terms of all these functions in the large ν̃
expansion. Below, we discuss them in turn.
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Large argument limit of the Γ ratio. First, we shall need the large z limit of the
ratio of two Euler Γ functions [95]:

Γ(z + a)
Γ(z + b) ∼ z

a−b
∞∑
n=0

1
zn

(
a− b
k

)
B(a−b+1)
k (a), (C.1)

which holds so long as z is away from the negative real axis. Here B(l)
n are generalized

Bernoulli polynomials [95]. We shall need the first two of them:

G0(a, b) = 1, G1(a, b) = 1
2(a− b)(a+ b− 1). (C.2)

With (C.1), we can easily find the following expansion for the products and ratios of Euler
Γ functions in (3.1):

1
8πd/2

cos[π(−d
2 + iν̃)]

sin(−πiν̃) Γ
[
2− d, d2 − iν̃, 1− d

2 + iν̃ ′, 2− d
2 + iν̃ ′ − iν̃, ĩν′−2ĩν+d/2

2 , ĩν′+d/2
2

1− iν̃, 1 + iν̃ ′, 1 + iν̃ ′ − iν̃, 4+ĩν′−2ĩν−3d/2
2 , 4+ĩν′−3d/2

2

]

∼ − i
8πd/2 Γ

[
2− d, 1− d

2 + iν̃ ′, ĩν′+d/2
2

1 + iν̃ ′, 4+ĩν′−3d/2
2

]
ν̃d−2 +O

(
ν̃d−4). (C.3)

As mentioned above, we need to keep the first two orders in ν̃ in the expansion. How-
ever, it turns out that the next-to-leading order term, namely the O(ν̃d−3) term, vanishes
identically. Therefore, the omitted terms in (C.3) start from O(ν̃d−4).

Large parameter limit of the generalized hypergeometric function. It is not
so trivial to get the large ν̃ expansion of the generalized hypergeometric function in (3.1).
Here we provide some details. To avoid unnecessarily lengthy expressions, we introduce
the following four groups of parameters:

a =
{

1− d

2 , 1−
d

2 + iν̃ ′, iν̃ ′ + d/2
2

}
, (C.4)

b(ζ) =
{

1− d

2 + iν̃ ′ − i
ζ
,

3− d/2 + iν̃ ′ − i/ζ
2 , 1− d

2 −
i
ζ
,

iν̃ ′ − 2i/ζ + d/2
2

}
, (C.5)

c =
{

1 + iν̃ ′, 4 + iν̃ ′ − 3d/2
2

}
, (C.6)

d(ζ) =
{1− d/2 + iν̃ ′ − i/ζ

2 , 1 + iν̃ ′ − i
ζ
, 1− i

ζ
,

4 + iν̃ ′ − 2i/ζ − 3d/2
2

}
. (C.7)

Here and below, for a group of parameters a = {a1, · · · , ap}, we use the shorthand notation
(a)` ≡ (a1)` · · · (ap)`, and (a + n)` ≡ (a1 + n)` · · · (ap + n)`. The group labels such as a
and b(ζ) can also freely appear in the hypergeometric functions or the products of Euler
Γ functions, which should be self-explanatory.

Now, if we take ζ = 1/ν̃, then the hypergeometric function in (3.1) can be written and
expanded in the following way around ζ = 0:

7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= lim
ζ→0

7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

+ ζ lim
ζ→0

∂

∂ζ
7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

+O(ζ2). (C.8)
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First, consider the ζ0-term:

lim
ζ→0

7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= 3F2

[
a
c

∣∣∣∣∣1
]

= π1/2Γ
[ 4+ĩν′−3d/2

2 , 1 + iν̃ ′, 3+ĩν′−d/2
2

3−d
2 , 2+ĩν′−d/2

2 , 2− d
2 + iν̃ ′, 1+ĩν′+d/2

2

]
. (C.9)

Then, consider the ζ1-term. Here we need to take derivatives of the hypergeometric
function with respect to its parameters, as summarized in (A.7) and (A.8). To save some
space, we again use the following shorthand:

ϑ(a) ≡ 1
a7Θ(1)

6

[
1, 1
a1 + 1

∣∣∣∣∣a, a1 + 1, · · · , a7 + 1
2, b1 + 1, · · · , b6 + 1

∣∣∣∣∣z, z
]
, (C.10)

where the parameters (a1, · · · , a7, b1, · · · , b6) are given by (a,b(ζ), c,d(ζ)), respectively.
Then,
∂

∂ζ
7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= i
ζ2

(a)1(b(ζ))1
(c)1(d(ζ))1

.

[
ϑ

(
1− d

2 + iν̃ ′ − i
ζ

)
+ 1

2ϑ
(3− d/2 + iν̃ ′ − i/ζ

2

)
+ ϑ

(
1− d

2 −
i
ζ

)
+ ϑ

( iν̃ ′ − 2i/ζ + d/2
2

)
(C.11)

− 1
2ϑ
(1− d/2 + iν̃ ′ − i/ζ

2

)
− ϑ

(
1 + iν̃ ′ − i

ζ

)
− ϑ

(
1− i

ζ

)
−
(4 + iν̃ ′ − 2i/ζ − 3d/2

2

)]
.

Now, we use the definition of the two-argument hypergeometric function pΘ(1)
q in (A.9).

Then we get
∂

∂ζ
7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= i
ζ2

(a)(b(ζ))
(c)(d(ζ))

∞∑
`1,`2=0

(1)`1(1)`2(a + 1)`1+`2(b(ζ) + 1)`1+`2
`1!`2!(2)`1+`2(c + 1)`1+`2(d(ζ) + 1)`1+`2

[(2− d/2 + iν̃ ′ − i/ζ)`1−1
(2− d/2 + iν̃ ′ − i/ζ)`1

+ ((5− d/2 + iν̃ ′ − i/ζ)/2)`1−1
2((5− d/2 + iν̃ ′ − i/ζ)/2)`1

+ (2− d/2− i/ζ)`1−1
(2− d/2− i/ζ)`1

+ ((2 + iν̃ ′ − 2i/ζ + d/2)/2)`1−1
((2 + iν̃ ′ − 2i/ζ + d/2)/2)`1

− ((3− d/2 + iν̃ ′ − i/ζ)/2)`1−1
2((3− d/2 + iν̃ ′ − i/ζ)/2)`1

− (2 + iν̃ ′ − i/ζ)`1−1
(2 + iν̃ ′ − i/ζ)`1

− (2− i/ζ)`1−1
(2− i/ζ)`1

− ((6 + iν̃ ′ − 2i/ζ − 3d/2)/2)`1−1
((6 + iν̃ ′ − 2i/ζ − 3d/2)/2)`1

]
. (C.12)

With a bit of simplification, the above expression can be rewritten in the following way:
∂

∂ζ
7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= i
ζ2

(a)(b(ζ))
(c)(d(ζ))

∞∑
`1,`2=0

(a + 1)`1+`2(b(ζ) + 1)`1+`2
(2)`1+`2(c + 1)`1+`2(d(ζ) + 1)`1+`2

×
[

d/2
(1− d/2 + iν̃ ′ − i/ζ + `1)(1 + iν̃ ′ − i/ζ + `1) + d/2

(1− d/2− i/ζ + `1)(1− i/ζ + `1)

+ 2− d
((iν̃ ′ − 2i/ζ + d/2)/2 + `1)((4 + iν̃ ′ − 2i/ζ − 3d/2)/2 + `1)

− 1
2((3− d/2 + iν̃ ′ − i/ζ)/2 + `1)((1− d/2 + iν̃ ′ − i/ζ)/2 + `1)

]
. (C.13)
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Now, if we directly take the limit ζ → 0, the above result will reduce to a “0 × ∞”-
type expression. To regulate this singular behavior, we introduce a positive infinitesimal
parameter ε through the following redefinition of the parameter sets:

b(ζ)→bε(ζ) =
{

1− d2 +iν̃ ′− i
ζ
−ε, 3−d/2+iν̃ ′− i/ζ

2 ,1− d2−
i
ζ
,
iν̃ ′−2i/ζ+d/2

2

}
, (C.14)

c→ cε =
{

1+iν̃ ′+ε,
4+iν̃ ′−3d/2

2

}
. (C.15)

With this ε-regulator, the ζ → 0 limit can be properly taken:

lim
ζ→0

∂

∂ζ
7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= lim
ε→0+

lim
ζ→0

∂

∂ζ
7F6

[
a,bε(ζ)
cε,d(ζ)

∣∣∣∣∣1
]

= − lim
ε→0+

iε (a)
(cε)

∞∑
`1,`2=0

(a + 1)`1+`2
(2)`1+`2(cε + 1)`1+`2

= − lim
ε→0+

iε (a)
(cε)

∞∑
`=0

(`+ 1)(a + 1)`
(2)`(cε + 1)`

= − lim
ε→0+

iε (a)
(cε)

∞∑
`=0

(a + 1)`
`!(cε + 1)`

= − lim
ε→0+

iε (a)
(cε)3F2

[
a + 1
cε + 1

∣∣∣∣∣1
]
. (C.16)

It is possible to further simplify this result by applying a generalization of Dixon’s theo-
rem [94]:

3F2

[
a, b, c

e, f

∣∣∣∣∣1
]

= Γ
[

e, f, s

a, b+ s, c+ s

]
3F2

[
e− a, f − a, s
s+ b, s+ c

∣∣∣∣∣1
]
, (C.17)

where s = e + f − a − b − c. Comparing the 3F2 function in the last expression of (C.16)
with (C.17), together with (C.4) and (C.15), we see that we can make the following assign-
ment:

a = 2− d

2 , b = 2− d

2 + iν̃ ′, c = 2 + iν̃ ′ + d/2
2 ,

e = 2 + iν̃ ′ + ε, f = 6 + iν̃ ′ − 3d/2
2 , (C.18)

then we have s = ε. Using (C.17), we finally get the coefficient of the O(ν̃) term in the
large ν̃ expansion:

lim
ζ→0

∂

∂ζ
7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= −iΓ
[c
a

]
. (C.19)

Combining the above results, we see that the hypergeometric function has the following
asymptotic behavior in the large ν̃ limit:

7F6

[
a,b(ζ)
c,d(ζ)

∣∣∣∣∣1
]

= 3F2

[
a
c

∣∣∣∣∣1
]
− i
ν̃

Γ
[c
a

]
+O

(
ν̃−2

)
. (C.20)

Final result. Therefore, the asymptotic expression of spectral density is

lim
ν̃→∞

ρdS
ν̃

(ν̃ ′) ∼ − 1
4πd/2 Γ

[
2− d, 1− d

2 + iν̃ ′, ĩν′+d/2
2 , c

1 + iν̃ ′, 4+ĩν′−3d/2
2 ,a

]
ν̃d−3 +O

(
ν̃d−4

)
. (C.21)
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Figure 6. The renormalized spectral function ρ̂dS
ν̃

(−iν′) in (B.43) and its approximations in the
large ν̃ limit. The left panel compares the leading (logarithmic) order behavior for a range of ν̃,
the middle panel compares the subleading (inverse quadratic) order behavior, and the right panel
shows the dependence on ν′ for a fixed value of ν̃ = 30.

After further simplifications, we finally get:

lim
ν̃→∞

ρdS
ν̃

(ν̃ ′) ∼ − 1
(4π)(d+1)/2 Γ

(3− d
2

)
ν̃d−3 +O

(
ν̃d−4

)
. (C.22)

In particular, when d → 3, we find that the renormalized spectral function with MS, as
defined in (4.9), has the following asymptotic behavior in the large-mass limit:

lim
ν̃→∞

ρ̂dS
ν̃

(ν̃ ′) ∼ 1
16π2 log(ν̃2) +O(ν̃−1). (C.23)

Numerical fit of the spectral function at O(ν̃−2). It is satisfactory to see that the
leading order result (C.23) of the spectral function in the large ν̃ limit agrees with what we
would expect from the flat space. (See appendix F.) However, we know that this logarithmic
dependence on ν̃ is from the 1-loop renormalization, and can be subtracted by choosing
the renormalization scale properly. Therefore, it would useful to have the behavior of the
spectral function at the next order in ν̃. The flat-space result suggests that the O(ν̃−1)
contribution should be zero, and the first nonvanishing subleading contribution should
come from O(ν̃−2). To get the coefficient of this order requires us to take the derivative of
parameters of 7F6 function thrice, which is analytically nontrivial. Fortunately, it is easy
to do a numerical fit from the explicit expression of ρ̂dS

ν̃
(ν̃ ′) in (B.43). For large ν̃ (and not

too large ν ′), we find the following expression a perfect fit:

lim
ν̃→∞

ρ̂dS
ν̃

(−iν ′) ∼ 1
16π2

[
log(ν̃2) +

(2ν ′
5ν̃

)2]
. (C.24)

In figure 6, we show the full spectral function with the MS scheme against several analytical
approximations. We see good asymptotic agreements between the full spectral function
ρ̂dS
ν̃

(−iν ′), evaluated with the explicit formula (B.43), and the analytical approximations
given in (C.24).
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C.2 Large ν̃′ limit

The large ν̃ ′ limit of the spectral function ρdS
ν̃

(ν̃ ′) can be worked out similarly. We shall be
brief. First, the large ν̃ ′ limit of the 7F6 function can be worked out as:

7F6

1− d
2 + iν̃ ′ − iν̃, 3−d/2+ĩν′−ĩν

2 , 1− d
2 , 1−

d
2 − iν̃, 1− d

2 + iν̃ ′, ĩν′−2ĩν+d/2
2 , ĩν′+d/2

2
1−d/2+ĩν′−ĩν

2 , 1 + iν̃ ′ − iν̃, 1 + iν̃ ′, 1− iν̃, 4+ĩν′−3d/2
2 , 4+ĩν′−2ĩν−3d/2

2

∣∣∣∣∣∣1


∼ 2F1

[
1− d

2 , 1−
d
2 − iν̃

1− iν̃

∣∣∣∣∣1
]

+O(ν̃ ′−1). (C.25)

Next, the pre-factors of the 7F6 function in (3.1) have the following asymptotic behavior
for large ν̃ ′:

1
8πd/2

cos[π2 (−d+ 2iν̃)]
sin(πiν̃) Γ

[
2− d, d2 − iν̃, 1− d

2 + iν̃ ′, 2− d
2 + iν̃ ′ − iν̃, ĩν′−2ĩν+d/2

2 , ĩν′+d/2
2

1− iν̃, 1 + iν̃ ′, 1 + iν̃ ′ − iν̃, 4+ĩν′−2ĩν−3d/2
2 , 4+ĩν′−3d/2

2

]

∼ 1
22d−1πd/2

cos[π2 (−d+ 2iν̃)]
sin(πiν̃) Γ

[
2− d, d2 − iν̃

1− iν̃

]
(iν̃ ′)d−3 +O(ν̃ ′d−4). (C.26)

Combining the above two results, we conclude that the spectral density ρdS
ν̃

(ν̃ ′) ∼ (ν̃ ′)d−3

when |ν̃ ′| � 1.

D Tree seed integral in arbitrary dimensions

The 4-point function with tree-level massive exchange is one of the ingredients for our
bootstrap program of 1-loop correlators. To implement the dimensional regularization,
we need the result for the tree-level correlator in general d spatial dimensions. In this
appendix, we compute the tree seed integral defined in (2.24) for arbitrary (p1, p2, d).

We shall use the partial Mellin-Barnes representation to compute the integral and we
will compute the four terms in the summation in (2.24) one by one. The computation is
largely in parallel with the one given in [72], in which the readers can find more details
about the method. Here we shall be brief.

The four terms in the summation in (2.24) are given by: (We omit the label for the
mass ν̃.)

Ip1p2
ab (r1, r2) ≡ −ab kd+2+p1+p2

s

∫ 0

−∞
dτ1dτ2 (−τ1)p1 (−τ2)p2 eiak12τ1+ibk34τ2Dab (ks; τ1, τ2) .

(D.1)
In d spatial dimensions, the Mellin-Barnes representation for the two homogeneous prop-
agators in (2.4) are:

D≷ (ks; τ1, τ2) = 1
4π

∫ +i∞

−i∞

ds1
2πi

ds2
2πi e

±iπ(s1−s2)
(
ks
2

)−2s12

(−τ1)−2s1+d/2 (−τ2)−2s2+d/2

× Γ
[
s1 −

iν̃
2 , s1 + iν̃

2 , s2 −
iν̃
2 , s2 + iν̃

2

]
. (D.2)
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Together with (2.2) and (2.3), we can finish the time integrals in the seed integral. For the
two opposite-sign integrals Ip1p2

∓± , we have

Ip1p2
∓± (r1, r2) = 1

4π e
±iπ(p1−p2)/2r

d/2+1+p1
1 r

d/2+1+p2
2

∫ +i∞

−i∞

ds1
2πi

ds2
2πi

(
r1
2

)−2s1 (r2
2

)−2s2

× Γ
[
s1 −

iν̃
2 , s1 + iν̃

2 , s2 −
iν̃
2 , s2 + iν̃

2 ,−2s1 + d

2 + 1 + p1,−2s2 + d

2 + 1 + p2

]
. (D.3)

The two same-sign integrals Ip1p2
±± can be separated into two parts, one called the “factor-

ized” (F) and the other called the “time-ordered” (TO): (See [72] for the details.)

Ip1p2
±± (r1, r2) = Ip1p2

±±,F,>(r1, r2) + Ip1p2
±±,TO,>(r1, r2). (r1 < r2) (D.4)

More explicitly,

Ip1p2
±±,F,>(r1, r2) = e−iπ(p12+d)/2

4π r
d/2+1+p1
1 r

d/2+1+p2
2

∫ i∞

−i∞

ds1
2πi

ds2
2πi e

2iπs1

(
r1
2

)−2s1(r2
2

)−2s2

× Γ
[
s1 −

iν̃
2 , s1 + iν̃

2 , s2 −
iν̃
2 , s2 + iν̃

2 ,−2s1 + d

2 + 1 + p1,−2s2 + d

2 + 1 + p2

]
, (D.5)

and,

Ip1p2
±±,TO,>(r1, r2) =−e∓iπ(p12+d)/2

4π rd+2+p12
1

∫ i∞

−i∞

ds1
2πi

ds2
2πi Γ

[
s1−

iν̃
2 ,s1 + iν̃

2 ,s2−
iν̃
2 ,s2 + iν̃

2

]
×(e±2iπs1−e±2iπs2)

(
r1
2

)−2s12

2F1

[
−2s2 + d

2 +p2 +1,−2s12 +d+p12 +2
−2s2 + d

2 +p2 +2

∣∣∣∣∣−r1
r2

]
. (D.6)

To finish the integration over the Mellin variables s1 and s2, we close the contours from
the left, since we are assuming r1 < r2 < 1. Then, the enclosed poles can be classified into
two groups:

s1 = −n1 ∓
iν̃
2 , s2 = −n2 ±

iν̃
2 , (D.7)

s1 = −n1 ∓
iν̃
2 , s2 = −n2 ∓

iν̃
2 . (D.8)

Using the residue theorem for all these poles, and also summing over the four integrals
in (D.1), we can find the final result for the tree seed integral. As shown in (3.2), the tree
seed integral can be broken into three parts:

∑
a,b=±

Ip1p2
ab (r1, r2) = Ip1p2

NL,̃ν(r1, r2) + Ip1p2
L,̃ν (r1, r2) + Ip1p2

BG,̃ν(r1, r2). (D.9)
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The three pieces are respectively given by:

Ip1p2
NL,̃ν= 1

4πr
d/2+1+p1
1 r

d/2+1+p2
2

∞∑
n1,n2=0

(−1)n12

n1!n2!
[
eiπp12/2+eπν̃−iπ(p12+d)/2

](r1
2

)2n1+ĩν(r2
2

)2n2+ĩν

×Γ
[
2n1+d

2+1+p1+iν̃,2n2+d

2+1+p2+iν̃,−n1−iν̃,−n2−iν̃
]
+c.c.

= 1
2π

[
cosπp12

2 +cosπ(2iν̃+p12+d)
2

]
r
d/2+1+p1
1 r

d/2+1+p2
2

(
r1r2

4

)ĩν

×Γ
[
d

2+1+p1+iν̃,d2+1+p2+iν̃,−iν̃,−iν̃
]

(D.10)

×2F1

[
d+2p1+2

4 + ĩν
2 ,
d+2p1+4

4 + ĩν
2

1+iν̃

∣∣∣∣∣r2
1

]
2F1

[
d+2p2+2

4 + ĩν
2 ,
d+2p2+4

4 + ĩν
2

1+iν̃

∣∣∣∣∣r2
2

]
+c.c.;

Ip1p2
L,̃ν = 1

4πr
d/2+1+p1
1 r

d/2+1+p2
2

∞∑
n1,n2=0

(−1)n12

n1!n2!
[
eiπp12/2+eπν̃−iπ(p12+d)/2

](r1
2

)2n1+ĩν(r2
2

)2n2−ĩν

×Γ
[
2n1+d

2+1+p1+iν̃,2n2+d

2+1+p2−iν̃,−n1−iν̃,−n2+iν̃
]
+c.c.

= 1
2π

[
cosπp12

2 +cosπ(2iν̃+p12+d)
2

]
r
d/2+1+p1
1 r

d/2+1+p2
2

(
r1
r2

)ĩν

×Γ
[
d

2+1+p1+iν̃,d2+1+p2−iν̃,−iν̃,+iν̃
]

(D.11)

×2F1

[
d+2p1+2

4 + ĩν
2 ,
d+2p1+4

4 + ĩν
2

1+iν̃

∣∣∣∣∣r2
1

]
2F1

[
d+2p2+2

4 − ĩν
2 ,
d+2p2+4

4 − ĩν
2

1−iν̃

∣∣∣∣∣r2
2

]
+c.c.;

Ip1p2
BG,̃ν=−1

iν̃ sin
[
π

2 (p12+d)
]
rd+p12+2

1

∞∑
n1,n2=0

{(−1)n12

n1!n2!

(
r1
2

)2n1+2n2

(−iν̃)−n1(iν̃)−n2

×2F1

[
2n2−iν̃+d

2+p2+1,2n12+p12+d+2
2n2−iν̃+d

2+p2+2

∣∣∣∣∣−r1
r2

]}
+c.c.. (D.12)

The nonlocal and local signal pieces, namely Ip1p2
NL,̃ν and Ip1p2

L,̃ν , can be written in more
compact forms, as shown in (3.3) and (3.4). On the other hand, the result for the back-
ground piece Ip1p2

BG,̃ν in (D.12) has resummed all r1/r2 dependence into a hypergeometric
function, which is typically what we would get from a partial Mellin-Barnes representa-
tion [72]. On the other hand, the result shown in (3.5) was expressed as a double series
in r1 and r1/r2, which is typically what we would find from recursively solving the boot-
strap equation [58, 72]. In [72], it was checked numerically that the partially resummed
result (D.12) agrees with the bootstrapped double series (3.5). We shall prove analytically
the equivalence of these two results in the next appendix.

E From partial Mellin-Barnes to bootstrapped series

As commented at the end of the previous appendix, the background piece of the tree seed
integral can be computed in two different ways, namely the partial Mellin-Barnes represen-

– 53 –



J
H
E
P
0
4
(
2
0
2
3
)
1
0
3

tation and solving the bootstrap equations. They yield two results of different looks, given
respectively by (D.12) and (3.5). In this appendix, we shall show the equivalence between
the two by deriving (3.5) from (D.12).

First, we use the definition of the (dressed) hypergeometric function (A.4) and (A.6)
to rewrite 2F1 in (D.12) as a series:

Ip1p2
BG,̃ν = −1

iν̃ sin
[
π

2 (p12 + d)
]
rd+p12+2

1

∞∑
n1,n2,`=0

(−1)n12+`

n1!n2!`!

(
r1
2

)2n12(r1
r2

)`
(−iν̃)−n1(iν̃)−n2

× Γ(`+ 2n12 + p12 + d+ 2)
`+ 2n2 − iν̃ + d

2 + p2 + 1
+ c.c.. (E.1)

Using the new summation variable m = n1 + n2, we can rewrite the summation as

Ip1p2
BG,̃ν=−1

iν̃ sin
[
π

2 (p12+d)
]
rd+p12+2

1

∞∑
m,`=0

m∑
n2=0

(
m

n2

)
(−1)m+`

m!`!

(
r1
2

)2m(r1
r2

)`
(−iν̃)n2−m(iν̃)−n2

×Γ(`+2m+p12+d+2)
`+2n2−iν̃+d

2+p2+1

+ 1
iν̃ sin

[
π

2 (p12+d)
]
rd+p12+2

1

∞∑
m,`=0

m∑
n2=0

(
m

n2

)
(−1)m+`

m!`!

(
r1
2

)2m(r1
r2

)`
(+iν̃)n2−m(−iν̃)−n2

×Γ(`+2m+p12+d+2)
`+2n2+iν̃+d

2+p2+1
(E.2)

There are two summations in this expression. For the second summation, we change the
summation variable n2 → m− n2:
∞∑

m,`=0

m∑
n2=0

(
m

n2

)
(−1)m+`

m!`!

(
r1
2

)2m(r1
r2

)`
(+iν̃)n2−m(−iν̃)−n2

Γ(`+2m+p12+d+2)
`+2n2+iν̃+ d

2 +p2+1
(E.3)

=
∞∑

m,`=0

m∑
n2=0

(
m

n2

)
(−1)m+`

m!`!

(
r1
2

)2m(r1
r2

)`
(+iν̃)−n2(−iν̃)n2−m

Γ(`+2m+p12+d+2)
`+2(m−n2)+iν̃+ d

2 +p2+1
.

Then, combining this result with the first summation in (E.2), we get:

Ip1p2
BG,̃ν=−1

iν̃ sin
[
π

2 (p12+d)
]
rd+p12+2

1

∞∑
m,`=0

m∑
n2=0

(
m

n2

)
(−1)m+`

m!`!

(
r1
2

)2m(r1
r2

)`
(−iν̃)n2−m(iν̃)−n2

× 2(m−2n2+iν̃)Γ(`+2m+p12+d+2)
(`+2n2−iν̃+d

2+p2+1)[`+2(m−n2)+iν̃+d
2+p2+1]

. (E.4)

Next, we finish the summation over n2. Isolating the terms dependent on n2, we have:
m∑

n2=0

(
m

n2

)
(n2 − m+ĩν

2 )(−iν̃)n2−m(iν̃)−n2

(n2 + `−ĩν+d/2+p2+1
2 )(n2 −m− `+ĩν+d/2+p2+1

2 )

=
m∑

n2=0

1
n2!

Γ(−m+ n2)
Γ(−m)

(−iν̃)(n2 − m+ĩν
2 )

(n2 + `−ĩν+d/2+p2+1
2 )(n2 −m− `+ĩν+d/2+p2+1

2 )
Γ
[
−m+ n2 − iν̃

1 + n2 − iν̃

]

= −iν̃
Γ(−m)5F4

−m,−m+ĩν
2 + 1, `−ĩν+d/2+p2+1

2 ,−m− `+ĩν+d/2+p2+1
2 ,−m− iν̃

−m+ĩν
2 , `−ĩν+d/2+p2+3

2 ,−m− `+ĩν+d/2+p2−1
2 , 1− iν̃

∣∣∣∣∣∣1
 . (E.5)
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The dressed hypergeometric function 5F4 in the last line can be simplified by using the
Rogers-Dougall very well-poised sum for 5F4 [94, 95]:

5F4

[
a, a2 + 1, b, c, e

a
2 , a− b+ 1, a− c+ 1, a− e+ 1

∣∣∣∣∣1
]

= Γ
[
a− b+ 1, a− c+ 1, a− e+ 1, a− b− c− e+ 1
a+ 1, a− b− c+ 1, a− b− e+ 1, a− c− e+ 1

]
, (E.6)

when Re(b + c + d − a) < 1, or when the series terminates with e = −n(n = 0, 1, 2, · · · ).
Here we can choose

a = −m− iν̃, b = `− iν̃ + p2 + 1
2 + d

4 , c = −m− `+ iν̃ + p2 + 1
2 − d4 , e = −m. (E.7)

Then, we get

Ip1p2
BG,̃ν = 1

2

∞∑
m,`=0

(−1)m+` sin[π2 (p12 + d)]
`!

(
r1
2

)2m(r1
r2

)`
rd+p12+2

1

× Γ
[
`−ĩν′+p2+1

2 + d
4 ,−m−

`+ĩν′+p2+1
2 − d

4 , 2m+ `+ d+ p12 + 2
− `+ĩν′+p2−1

2 − d
4 ,m+ `−ĩν′+p2+3

2 + d
4

]

=
∞∑

m,`=0

(−1)`+1 sin[π2 (p12 + d)](`+ 1)2m+d+p12+1

22m+1( `−ĩν′+p2+1
2 + d

4
)
m+1

( `+ĩν′+p2+1
2 + d

4
)
m+1

r2m+d+p12+2
1

(
r1
r2

)`
, (E.8)

which is nothing but the double series (3.5).

F Bootstrapping loop correlators in Minkowski spacetime

In this section, we compute the 4-point correlation with 1-loop massive scalar exchange
in the s-channel in Minkowski spacetime. The diagram is again given by the left-hand
side of figure 1. It turns out a direct computation of SK time integrals is already compli-
cated enough in (d+ 1)-dimensional Minkowski space. Therefore, we also take the spectral
decomposition approach here. Below, we first compute the corresponding tree-level corre-
lator, namely the right-hand side of figure 1, and then derive a spectral function in flat
space. Finally, we compute the 1-loop correlator by finishing the spectral integral over the
tree-level correlator.

F.1 Tree-level correlator

We again apply the SK diagrammatic method [25] to compute the correlator. In flat space,
algebra is much simplified. For instance, one of the homogeneous propagators for a scalar
of mass m is given by

Dm,>(k; t1, t2) = e−i
√

k2+m2(t1−t2)

2
√

k2 +m2
, (F.1)

andDm,< is the complex conjugation of Dm,>. The four SK propagatorsDab can be built as
in (2.2) and (2.3). Then, the s-channel diagram of the 4-point function can be computed as

T Mink
m,ab = −ab

∫ 0

−∞
dt1dt2Ga(k1; τ1)Ga(k2; τ1)Gb(k3; τ2)Gb(k4; τ2)Dm,ab(ks; τ1, τ2). (F.2)
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Here Ga(ki, τ) are boundary propagators for the four external legs, and Dm,ab is the bulk
propagator for the intermediate states. We take all these lines to be massive scalars. The
simple algebra of Minkowski space allows us to introduce (different) masses to all these
legs without any pain. So, we associate mi (i = 1, 2, 3, 4) to the four external legs and m to
the intermediate state. Then, we have Ei ≡

√
k2
i +m2

i and Es ≡
√

k2
s +m2. With these

quantities, the time integrals can be done directly. First, the two same-sign integrals read:

T Mink
m,±± = − 1

32E1E2E3E4Es

[ ∫ 0

−∞
dt1

∫ t1

−∞
dt2 e±i(E12−Es)t1±i(E34+Es)t2

+
∫ 0

−∞
dt1

∫ 0

t1
dt2 e±i(E12+Es)t1±i(E34−Es)t2

]
= 1

32E1E2E3E4Es(E12 + Es)(E34 + Es)

(
1 + 2Es

E1234

)
. (F.3)

Then, the two opposite-sign integrals read:

T Mink
m,s,±∓ = 1

32E1E2E3E4Es

∫ 0

−∞
dt1dt2 e±i(E12+Es)t1∓i(E34+Es)t2

= 1
32E1E2E3E4Es(E12 + Es)(E34 + Es)

. (F.4)

Summing up the four integrals, we get the final answer for the tree-level 4-point diagram
with s-channel massive scalar exchange:

T Mink
m ≡

∑
a,b=±

T Mink
m,ab = 1

8E1E2E3E4Es(E12 + Es)(E34 + Es)

(
1 + Es

E1234

)
. (F.5)

This will be the resource for us to bootstrap the 1-loop correlator.

F.2 Spectral function

Now we turn to the spectral decomposition in flat space. The goal is to find a spectral
function ρMink

m2 (m′ 2) in Minkowski spacetime such that[
Dm(x, y)

]2
=
∫ ∞

0
dm′m

′

πi ρ
Mink
m2 (m′ 2)Dm′(x, y), (F.6)

or, in spatial-momentum space,∫ ddq
(2π)dDm,ab

(
|q|; t1, t2

)
Dm,ab

(
|q − k|; t1, t2

)
=
∫ ∞

0
dm′m

′

πi ρ
Mink
m2 (m′ 2)Dm′,ab

(
|k|; t1, t2

)
.

(F.7)
It turns out convenient to start from the Euclidean version. Let us consider the product

of a pair of scalar propagators [DEuc
m (x, y)]2 in Euclidean space, and take the Fourier

transform: [
DEucl
m (x, y)

]2
=
∫ dd+1k

(2π)d+1 B
Eucl
m2 (k2)eikµ(x1−x2)µ , (F.8)

where BEucl
m2 (k2) is the 1-loop bubble function in Euclidean space. By the symmetry of the

theory, the bubble function BEucl
m2 (k2) depends only on the magnitude of the (Euclidean)

momentum k2 = kµk
µ.
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Now, suppose that we know the bubble function BEucl
m2 (k2). Then, it is straightforward

to express the spectral function ρMink
m2 (m′ 2) in terms of the bubble function. More explicitly,

we have:∫ dd+1k

(2π)d+1B
Eucl
m2 (k2)eikµ(x−y)µ

= 1
2dπd/2+1Γ(d2)

∫ ∞
0

dk kd
∫ π

0
dθ sind−1 θ eikr cos θBEucl

m2 (k2)

=
∫ ∞

0

dk
(2π)(d+1)/2

k(d+1)/2

r(d−1)/2 J(d−1)/2(kr)BEucl
m2 (k2)

=
∫ ∞

0

dm′
(2π)(d+1)/2

i
π

m′ (d+1)/2

r(d−1)/2 K(d−1)/2(m′r)
[
BEucl
m2 (m′ 2eiπ)−BEucl

m2 (m′ 2e−iπ)
]

=
∫ ∞

0
dm′ m

′

πi D
Eucl
m′ (x, y)

[
BEucl
m2 (m′ 2e−iπ)−BEucl

m2 (m′ 2eiπ)
]
, (F.9)

where Jν(z) is the Bessel function and Kν(z) is a modified Bessel function, r ≡
√

(x− y)2.
Here we have used the fact that the Euclidean propagator for a scalar of mass m is given by

DEucl
m (x, y) = 1

(2π)(d+1)/2

(
m

r

)(d−1)/2
K(d−1)/2(mr). (F.10)

Now we can Wick-rotate back to the Minkowski spacetime. Then, compar-
ing (F.8), (F.9), and (F.6), we find

ρMink
m2 (m′ 2) = BEucl

m2 (m′ 2e−iπ)−BEucl
m2 (m′ 2eiπ). (F.11)

It remains to find the bubble function BEucl
m2 (k2). To this end, we Fourier transform

each of the two propagators DEucl
m (x, y) separately:

[
DEucl
m (x, y)

]2
=
∫ dqd+1

1
(2π)d+1

dqd+1
2

(2π)d+1
ei(q1+q2)µ(x−y)µ

(q2
1 +m2)(q2

2 +m2)

=
∫ dpd+1

(2π)d+1
eipµ(x−y)µ

[(p− q)2 +m2](q2 +m2) , (F.12)

where p = q1 + q2 and q = q2. Comparing (F.12) with (F.8), we find:

BEucl
m2 (k2) =

∫ dd+1q

(2π)d+1
1

((k − q)2 +m2)(q2 +m2)

=
Γ(3−d

2 )
(4π)(d+1)/2

∫ 1

0

dξ
[m2 + ξ(1− ξ)k2](3−d)/2 , (F.13)

where we use the standard Feynman parametrization in the last step. Finally, using (F.11),
we get an expression for the 1-loop spectral function in Minkowski spacetime:

ρMink
m2 (m′2)=

Γ(3−d
2 )

(4π)(d+1)/2

∫ 1

0
dξ
{ 1

[m2+ξ(1−ξ)m′2e−iπ](3−d)/2−
1

[m2+ξ(1−ξ)m′2eiπ](3−d)/2

}

=
Γ(3−d

2 )
(4π)(d+1)/2

∫ 1

0
dξ2iIm 1

[m2−ξ(1−ξ)m′2−iε](3−d)/2 . (F.14)
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F.3 1-loop correlator

Now we are ready to bootstrap the 1-loop correlator. Using the Feynman rule in SK
formalism, the 1-loop correlator has the following form:

LMink
m ≡

∑
a,b=±

LMink
m,ab = −1

2
∑

a,b=±
ab
∫ 0

−∞
dt1dt2Ga(k1; τ1)Ga(k2; τ1)Gb(k3; τ2)Gb(k4; τ2)

×
∫ ddq

(2π)dDm,ab
(
|q|; t1, t2

)
Dm,ab

(
|q − ks|; t1, t2

)
. (F.15)

Comparing this expression with the tree amplitude (F.2) and using the spectral func-
tion (F.6), we have

LMink
m =

∫ ∞
0

dm′ m
′

2πiρ
Mink
m2 (m′ 2)T Mink

m′ . (F.16)

Now, with the explicit expressions for the tree-level correlator T Mink
m in (F.5) and the

spectral function ρMink
m2 (m′ 2) in (F.14), we can compute the 1-loop correlator as

LMink
m =

∫ ∞
0

dm′ m
′

2πi
(1 + Es/E1234)

8E1E2E3E4Es(E12 + Es)(E34 + Es)
ρMink
m2 (m′ 2). (F.17)

Change the integration variable from m′ to Es =
√

k2
s +m′ 2, we have dm′(m′/Es) = dEs.

Then,

LMink
m =

∫ 1

0
dξ
∫ ∞
Emin

dEs
π

(1 + Es/E1234)
8E1E2E3E4(E12 + Es)(E34 + Es)

×
Γ(3−d

2 )
(4π)(d+1)/2

− cos(πd/2)
[ξ(1− ξ)(E2

s − E2
min)](3−d)/2 . (F.18)

Here Emin ≡
√

k2
s +m2/[ξ(1− ξ)]. The Es integral can be finished directly. In the d→ 3

limit, the result is

LMink
m = 1

256π2E1E2E3E4E1234

[ 2
3− d − γE + log 4π + 2 (F.19)

+ 2
E12 − E34

∫ 1

0
dξ
(
E34 log E12 + Emin

µR
− E12 log E34 + Emin

µR

)]
.

This is the final result for the 1-loop correlator in Minkowski spacetime. We can now
directly use MS scheme to subtract the divergent piece ∝ 2/(3 − d) − γE + log 4π. It is
also of interest to have an expression for the renormalized loop correlator in the large mass
limit m→∞:[

LMink
m

]
MS

= 1
256π2E1E2E3E4E1234

[
log µ

2
R

m2 −
E12E34 + k2

s

6m2 +O
( 1
m3

)]
. (F.20)
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