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1 Introduction

Symmetry is one of the basic principles in contemporary physics and quantum field theory
in particular. A modern definition of symmetry, pioneered in [1], identifies symmetry with
the topological sector of the theory. This is precisely what makes it a universal notion that
helps classify quantum field theories and is robust under smooth deformations such as the
RG flow. In more detail, the symmetry of a theory is given by the set of all topological
operators and their fusion rules. In the most general definition one allows for topological
operators of any codimension and fusion rules that may not obey a group law. The usual
symmetries such as baryon number are generated by topological operators of codimension
1, Ug(Σd−1), hence acting on Hilbert space, that obey a group-law fusion Ug1(Σd−1) ×
Ug2(Σd−1) = Ug1·g2(Σd−1). Allowing for topological operators of different codimensions
gives rise to higher-form symmetries. A prototypical example is the 1-form symmetry of free
Maxwell theory acting on Wilson loops. Allowing for non group-laws brings non-invertible
symmetries into the game. These are generated by topological operators that need not have
an inverse, hence the name. In this work we will be interested in p-form symmetries gener-
ated by codimension p+1 operators with various p′s and obeying non-invertible fusion rules.

While non-invertible symmetries may look exotic at first, in recent years it has been
understood that they are essentially ubiquitous. In fact, theories as simple as free Maxwell
in 4d are plagued with non-invertible symmetry operators. For a partial list of these recent
developments see [2–38]. For a partial list of earlier results in 2d see [39–50]. While
these symmetries have been extensively studied in quantum field theory, they are almost
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uncharted territory in supergravity.1 In this work we make a first, if superficial, approach
to these new lands by studying some non-invertible defects in 11d, 10d Type IIA and Type
IIB supergravity. The core idea is that Chern-Simons terms, which are usually believed
to imply explicit breaking of the higher form symmetries of the gauge fields [51], are
many times just a signal of their non-invertibility. Let us illustrate the argument, already
formulated in [21] by building on earlier work [16, 17]. In the absence of Chern-Simons
terms, gauge theories typically have equations of motion and Bianchi identities of the form,

d ? F = 0, dF = 0 (1.1)

These equations imply the existence of higher-form electric and magnetic symmetries.
Adding Chern-Simons terms generically spoils these symmetries, particularly the electric
one, as the equation of motion now takes the form of a non-conservation equation, for
instance:

d ? F = F ∧ F (1.2)

However, as we discuss in more detail in the following section, in many cases the non-
conservation is mild enough, since the right hand side vanishes in trivial topology, that one
can still define topological operators implementing the symmetry. The price to pay is that
one needs to dress the operator with some topological degrees of freedom that generate
a non-invertible fusion rule. Given that supergravity theories are plagued with Chern-
Simons terms2 one expects a very rich set of non-invertible symmetries! These symmetries
will naturally act on probe branes.

An important lesson from Quantum Gravity is that exact global symmetries are in-
compatible with it [52–59]. This implies that all the symmetries described in this work
must be broken by the UV completion, be it M-theory or Type II String Theory. As we will
see this is easily achieved by the presence of dynamical branes, in analogy to what happens
with less exotic symmetries [60]. For further discussions on non-invertible symmetries and
Quantum Gravity see [2, 3, 12].

The remainder of this note is organised as follows. In section 2 we review non-invertible
symmetries in quantum field theories with Chern-Simons terms. In section 3 we present
infinite families of non-invertible defects for 11d supergravity and the 10d Type II super-
gravities. We study their action on probe branes in some detail. In section 4 we elaborate
in a different approach to the same question. We find a different set of topological opera-
tors and comment on their connection to the former ones. We conclude in section 5 with
comments on our results, their implications and an outlook of future work. We leave for
the appendices A and B the explicit construction of the TQFT’s that are used in the main
text to construct the general topological operators.

2 Review of QFT examples

Chern-Simons terms typically turn the equations of motion for gauge fields into non-
conservation equations for the currents they carry. Until recently, it was believed that

1See [38] for a noteworthy exception.
2Many times these Chern-Simons terms are actually absorbed in modified Bianchi identities.
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these non-conservation equations implied the explicit breaking of the symmetry obtained
by integrating the no longer conserved current. However, when the non-conservation is
mild enough, one may construct topological operators for the symmetry by appropriately
dressing them with gaped degrees of freedom. More concretely, consider a non-conservation
equation for a U(1) current Jp of the form,

d ? Jp = Gd−p+1 (2.1)

where Gd−p+1 is a wedge product of gauge field strengths. If Gd−p+1 is locally exact
Gd−p+1 = dKd−p and its integral vanishes in manifolds of trivial topology,3 one can safely
improve the current,

d(?Jp −Kd−p) = 0 (2.2)
This improved current is conserved but may be non gauge invariant. The integrated charge
for such a current is known as a Page charge [61] and we can use it to write an operator,

e
2πiα

∫
Σd−p

?Jp−Kd−p (2.3)

For simple enough spacetime manifolds (trivial topology) this operator is actually topolog-
ical and well defined. In fact, in most cases4 a new operator can be introduced with Kd−p
modified to be also topological and gauge invariant in arbitrary manifolds. Let us consider
a particularly simple example, 5d Chern-Simons Maxwell theory [21],

S = 2π
∫
−1

2F2 ∧ ?F2 + 1
6A1 ∧ F2 ∧ F2 (2.4)

Note that we have chosen to stick to the conventions in the supergravity literature. In
particular, we have chosen field strengths to have integer periods,

∫
F ∈ Z. In the absence

of a Chern-Simons term, this theory would have U(1)(1)
e × U(1)(2)

m electric and magnetic
symmetries with currents je = F2, jm = ?F2. These currents are conserved due to the
equation of motion and the Bianchi identity, respectively. However, the Chern-Simons
term seems to break the electric symmetry: the equation of motion becomes,

d ? F2 = 1
2F2 ∧ F2 (2.5)

This equation implies that F2 is not conserved anymore, so the naive operator,

Uα(Σ3) = exp
(

2πiα
∫

Σ3
?F2

)
(2.6)

is no longer topological. However, F2 ∧ F2 is locally exact and, since there is no U(1)
instanton number in S4, its integral vanishes in manifolds of trivial topology.5 We may
then improve the current,

d

(
?F2 −

1
2A1 ∧ F2

)
= 0 (2.7)

3With trivial topology we refer to manifolds homeomorphic to R4 or S4.
4An exception is the case of Gd−p+1 being a single field strength, as in 3d Chern-Simons theory or 4d

BF theory. For these theories however,
∫
M2

Gd−p+1 =
∫
M2

F 6= 0, so our assumptions are not satisfied.
5This statement is sensitive to the UV completion of the quantum field theory at hand. For instance,

there are stringy instantons in single D-branes in String Theory [62] and there are also U(1) instantons in
non-commutative spacetimes [63]. We thank Iñaki García-Etxebarria for raising this point.
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Figure 1. A deformation of the naive operator Uα(Σ3) generates an anomalous phase in the region
swept by it.

which is conserved but not gauge invariant. The corresponding topological operator, only
valid for simple enough topology, is,

Ũα(Σ3) = exp
(

2πiα
∫

Σ3
?F2 −

1
2A1 ∧ F2

)
(2.8)

While this operator is not valid for arbitrary topology, if α ∈ [0, 1) is rational, one can
define an improved operator which is topological and gauge invariant for arbitrary Σ3. For
the particular case of α = 1/N , with N ∈ Z, the corresponding operator is,

D1/N (Σ3) =
∫
Dc1

∣∣∣
Σ3
exp

(
2πi

∮
?F2
N

+ N

2 c1 ∧ dc1 − c1 ∧ F2

)
(2.9)

where c1 is a U(1) gauge field localized in the topological defect. That this operator is the
gauge invariant version of (2.8) can be morally seen by integrating out c1 = A1/N . While
this integration is not a correct equation for A1, c1 which are both U(1) gauge fields, it gives
the correct result. For more details, including an explicit construction of the defect using
higher half-space gauging see [21]. For a general α = p/N , p,N ∈ Z, a good topological
operator can also be written in terms of the minimal An,p TQFT as in equation (A.3). For
more details on An,p, see [64]. What we have done is to dress the naive operator in (2.6)
in such a way that the new degrees of freedom cancel the anomalous phase it generates as
it is deformed,

Uα(Σ′3) = Uα(Σ3)e
2πiα

2

∫
Σ4

F2∧F2 (2.10)

For a pictorial representation see figure 1. The upshot is that the rational α = p/N

subgroup of the U(1) electric 1-form symmetry survives and is generated by (A.3). The
price to pay is that the symmetry becomes non-invertible, as can be seen by explicitly
computing the fusion rules of the topological operators. These operators act on Wilson
lines as the naive operators would have, but they also act on ’t Hooft surfaces by attaching a
fractional flux to them. The action is completely analogous to what we will describe for 11d
supergravity in section 3.1. We will denote these non-invertible symmetries with rational
valued parameters as Γ(1)

Q . The above construction generalizes to mixed Chern-Simons
terms [21]. Consider for instance,

S = 2π
∫
−1

2F2 ∧ ?F2 −
1
2G2 ∧ ?G2 + 1

2C1 ∧ F2 ∧ F2 (2.11)
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Where F2 = dA1, G2 = dC1. In the absence of the Chern-Simons coupling, this theory has
electric and magnetic symmetries

U(1)(1)
e,A ×U(1)(2)

m,A ×U(1)(1)
e,C ×U(1)(2)

m,C (2.12)

Yet again, the Chern-Simons coupling spoils the conservation equations of the electric
symmetries, which become,

d ? F2 = G2 ∧ F2, d ? G2 = 1
2F2 ∧ F2 (2.13)

In the same vein as before, these two currents can be improved to Page currents. In turn,
topological operators corresponding to the Page charge can be appropriately defined. For
α = 1/N these operators can be written as,

DG1/N (Σ3) =
∫
Dc1

∣∣∣
Σ3
exp

(
2πi

∮
?G2
N

+ N

2 c1 ∧ dc1 − c1 ∧ F2

)
(2.14)

DF1/N (Σ3) =
∫
Dc1Dv1

∣∣∣
Σ3
exp

(
2πi

∮
?
F2
N

+Nv1 ∧ dc1 − c1 ∧G2 − v1 ∧ F2

)
(2.15)

These two constructions can once again be extended to any rational α = p/N by using the
An,p theories. The upshot is that the electric symmetries are turned non-invertible by the
Chern-Simons terms and the true symmetry of the theory is,

Γ(1)
Q,A ×U(1)(2)

m,A × Γ(1)
Q,C ×U(1)(2)

m,C (2.16)

In the remainder of this note we explore similar constructions in supergravity, where Chern-
Simons terms are ubiquitous.

3 Non-invertible symmetries in supergravity

3.1 11d supergravity

The construction of the non-invertible defects in the previous examples is only possible
thanks to the existence of a particular 3d TQFT with the appropriate 1-form symmetry
and anomaly. For would-be U(1) actions with phase α = 2π/N the full topological operator
is (2.14) and the TQFT that is stacked on top of the naive operator (2.6) takes the form,

AN,13 (Σ3) =
∫
Dc1

∣∣∣
Σ3
exp

(
2πi

∮
Σ3

N

2 c1 ∧ dc1 − c1 ∧ F2

)
(3.1)

where c1 is an auxiliary U(1) gauge field living in Σ3 and F2 is the magnetic current in
the bulk that needs to be gauged to obtain the defect. This TQFT, and its generalizations
AN,p3 (Σ3), are called fractional quantum Hall states, or FQHE states, and are particular to
3d. In 7d an analog FQHE construction con be made,6 where one can write the following
TQFT,

AN,17 (Σ7) =
∫
Dc3

∣∣∣
Σ7
exp

(
2πi

∮
Σ7

N

2 c3 ∧ dc3 − c3 ∧ F4

)
(3.2)

6See, for instance [65].
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As we now argue, this TQFT precisely arises in 11d supergravity. Consider its action,

S = 1
2κ2

11

∫
Σ11

√
−gR− 1

2F4 ∧ ?F4 −
1
6A3 ∧ F4 ∧ F4 (3.3)

Where 2κ2
11 = (2π)−1(2πlp)9. If the Chern-Simons coupling is turned off, this theory has

2 symmetries U(1)(3)
e × U(1)(6)

m with currents je = F4, jm = ?F4 conserved thanks to the
equation of motion and the Bianchi identity of F4. As discussed in [60] it also has a Chern-
Weil symmetry with current F4 ∧ F4, which will not be relevant for our purposes. Once
one includes the CS interaction the conservation equation of U(1)(3)

e is modified to,

d ? F4 = 1
2F4 ∧ F4 (3.4)

Hence the CS term explicitly breaks U(1)(3)
e and gauges the Chern-Weil current. By now

the game we must play is clear, this current fulfills the conditions to be improved to a U(1)
Page current,

d

(
?F4 −

1
2A3 ∧ F4

)
= 0 (3.5)

which is conserved but not gauge invariant. The naive operator, which is only valid for
trivial topology is,

Uα(Σ7) = exp
(

2πiα
∫

Σ7
?11F4 −

1
2A3 ∧ F4

)
(3.6)

Writing the corresponding good topological operator is straightforward. For α = 1/N ∈
U(1) we just need to stack the 7d FQHE theory. The resulting operator is,

D1/N (Σ7) =
∫
Dc3

∣∣∣
Σ7
exp

(
2πi

∮
Σ7

?11F4
N

+ N

2 c3 ∧ dc3 − c3 ∧ F4

)
(3.7)

In fact, we can make use of the A(N,p)
7 [b4] theory defined in appendix A to build a topological

operator for any α ∈ [0, 1) of the form α = p/N , with p,N ∈ Z,

Dp/N (Σ7) = exp
(2πip

N

∫
Σ7
?11F4

)
×A(N,p)

7

[
F4
N

]
(3.8)

These defects can be explicitly constructed by higher gauging the magnetic U(1)(6)
m sym-

metry, as detailed in appendix B. The upshot of the discussion above is that, contrary to
expectations, the electric U(1)(3)

e symmetry is not completely broken, but a non-invertible
rational discrete subgroup remains. The symmetries associated to F4 in M-theory are then,

Γ(3)
Q ×U(1)(6)

m (3.9)

Of course we expect these two symmetries to be broken by the UV-completion of 11d super-
gravity. This is indeed the case in M-theory, as inclusion of dynamical M2- and M5-branes
breaks them explicitly. In fact, given that one needs to gauge the magnetic symmetry to
build the electric defects, the presence of dynamical M5-branes is enough to break both
symmetries. A consequence is that Γ(3)

Q must be broken at an energy scale lower or equal
than U(1)(6)

m .
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Figure 2. A magnetic source for F4 crosses the topological defect and picks up a fractional F4 flux
attached to it.

Let us now study more carefully the action of the topological defect (3.8) on electric
and magnetic probes, which we call probe M2- and M5-branes for obvious reasons. On
probe M2-branes, which source ?F4, the action is invertible and given by the first term
in (3.8). The action is indistinguishable from the one we expected for the electric 3-form
symmetry. The second term in (3.8) can detect magnetic charges, sources for F4. In order
to find the precise action consider the construction of the topological defect in Σ7 via higher
gauging of the magnetic symmetry as explained in appendix B. Take 11d spacetime to be
R11 with coordinates x1, . . . , x11 such that Σ7 spans x1, . . . , x7 and the gauging is defined
for x8 > 0 such that Σ8 = R7 ×R>0

x8 . Denote by HF4
m a 6-dimensional source of m units of

F4 flux, which could be a bunch of probe M5-branes, spanning directions x5,6,7,9,10,11. If we
displace HF4

m from x8 < 0 to x8 > 0 it enters into the region where the magnetic symmetry
is gauged and it stops being gauge invariant. In more detail, the 3-dimensional part of
the probe M5 worldvolume that is inside the submanifold where the symmetry is gauged,
Σ3 ≡ R3

x5,x6,x7 = WV (M5) ∩ Σ8, transforms under b4 → b4 + dΛ3 gauge transformations
by picking up a phase,

HF4
m → HF4

m e
2πim

∫
Σ3

Λ3
, for x8 > 0 (3.10)

Hence, in the x8 > 0 region the gauge invariant object is,

HF4
m e
−2πim

∫
Σ4

b4 = HF4
m e

2πipm
N

∫
Σ4

F4 (3.11)

where Σ4 is such that ∂Σ4 = Σ3. To write the right hand side we have used the equation
of motion for b4 in B mod N . We conclude that the defect acts on the magnetic source by
attaching a fractional F4 flux along Σ4, as depicted in figure 2,

Dp/N (Σ7)HF4
m = HF4

m e
2πipm
N

∫
Σ4

F4
. (3.12)

An important consequence of this action is that, if m 6= 0modN , the symmetry defect
annihilates the magnetic source, as argued in [66]. Consider again figure 2. The idea is

– 7 –
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that, since Dp/N (Σ7) is topological, it may be shrunk to a point and removed, giving rise to

a topological endpoint for V (Σ4) pm
N
≡ e

2πipm
N

∫
Σ4

F4 . This endpoint is local and its existence
implies that V (Σ4) pm

N
can develop a hole and disappear. However, V (Σ4) pm

N
is a generator

of the magnetic symmetry U(1)(6)
m which acts faithfully, so it better be that it can’t just

go away! The only solution is that correlation functions with this endpoint give zero. We
conclude that the topological operator annihilates HF4

m sources unless,
pm

N
∈ Z (3.13)

However, if m = 0modN , V (Σ4) pm
N

becomes trivial except at the boundary of Σ4 and the
action of the topological operator leaves an operator insertion in Σ3. We leave the study
of this junction in detail for future work.

3.2 Type IIA supergravity

The existence of non-invertible symmetries in 11d supergravity suggests the existence of
appropriate counterparts in Type IIA supergravity, which arises when dimensionally reduc-
ing on a circle. We will not attempt direct dimensional reduction of the symmetries in this
work. We study instead the non-invertible symmetries directly from the 10 formulation.
Consider the low energy action of type IIA string theory in 10d [67],

SIIA = 1
2κ2

∫
M10

√
−g

[
e−2Φ

(
R+ 4|dΦ|2 − 1

2 |H3|2
)
− 1

2 |F2|2 −
1
2 |F̃4|2

]
− 1

2κ2

∫
M10

1
2B2 ∧ F4 ∧ F4

(3.14)

where F̃4 = dA3 +A1 ∧H3 is invariant under the gauge transformation (A1, A3)→ (A1 +
dλ0, A3 − λ0 ∧H3). The equations of motion for F2, F̃4 and H3 are,

d ? F2 = H3 ∧ ?F̃4 (3.15)
d ? F̃4 = H3 ∧ F4 = H3 ∧ F̃4 (3.16)

d ? H3 = 1
2 F̃4 ∧ F̃4 + F2 ∧ ?F̃4 (3.17)

The Bianchi Identities are,

dH3 = 0, dF2 = 0, dF̃4 = F2 ∧H3 (3.18)

The Bianchi identities for F2, H3 imply that there are two conserved currents: ?H3, ?F2.
These generate two magnetic symmetries U(1)(6)

m ×U(1)(7)
m which are well understood, see

for instance [60]. The remaining equations can be rewritten by introducing Hodge dual
field strengths F̃p = ?F̃10−p as,

dF̃4 = F2 ∧H3, dF̃6 = F̃4 ∧H3, dF̃8 = F̃6 ∧H3, (3.19)

d ? H3 = 1
2 F̃4 ∧ F̃4 + F2 ∧ F̃6 (3.20)

– 8 –
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The newly introduced gauge invariant field strengths are defined as F̃p = dAp−1 + Ap−3 ∧
H3. From the equations above we see that there are three candidates for non-invertible
symmetries. Indeed, the right hand side in equations (3.19) can be shown to be locally
exact and its integral to vanish in manifolds with trivial topology, so we may write the
following conserved but gauge variant Page currents,

d
(
F̃4 −A1 ∧H3

)
= 0 (3.21)

d
(
F̃6 −A3 ∧H3

)
= 0 (3.22)

d
(
F̃8 −A5 ∧H3

)
= 0 (3.23)

At this point the strategy seems clear: we can dress the would-be topological operators
with some gaped degrees of freedom to obtain a good topological operator. However, for
eqs. (3.22) and (3.23) things are not so simple. Let us focus first in eq. (3.21). We consider a
U(1) transformation with α = 1/N and in analogy to (2.15) propose the following operator,

DF4
1/N (Σ4) =

∫
Dc1Dv2

∣∣∣
Σ4
exp

(
2πi

∮
Σ4

F̃4
N

+Nv2 ∧ dc1 − c1 ∧H3 − v2 ∧ dA1

)
(3.24)

This operator is gauge invariant and can be built explicitly by gauging a Z(6)
N ×Z

(7)
N subgroup

of the magnetic symmetry U(1)(6)
m × U(1)(7)

m with currents ?H3 and ?F2 in a manifold Σ5
such that ∂Σ5 = Σ4, as shown in appendix B. In fact, as discussed there, the operator can
be built for arbitrary α = p/N in a similar way, such that it is explicitly topological and
gauge invariant. We hence conclude that the would-be magnetic U(1)(5)

m symmetry of F̃4,
which is broken by the modified Bianchi identity, becomes a non-invertible Γ(5)

Q symmetry.
Let us describe how the topological operator acts on the different probe branes. Since this
discussion is a straightforward extension of the 11d supergravity we will be brief. A related
in-depth discussion for the case of axion electrodynamics is presented in [16, 68]. The defect
acts invertibly in probe D4-branes, as the naive magnetic symmetry of F̃4 would have, but
it also acts non-invertibly in probe NS5- and D6-branes. In particular, these probes are not
gauge invariant if they intersect the auxiliary higher-gauging submanifold and a flux needs
to be attached to them. The upshot is that the topological defect with α = p/N annihilates
the probe NS5- or D6-branes if their charge m does not satisfy the following relation,

pm

N
∈ Z (3.25)

If the relation above is satisfied, the action of the topological defect on the probe NS5-
or D6-brane leaves behind an operator stuck in their worldvolume of dimension 1 for the
NS5-brane and 2 for the D6-brane. While the study of these junctions is very interesting, it
goes beyond the scope of this work and we leave it for the future. We expect that anomaly
inflow from the bulk will impose the existence of certain worldvolume degrees of freedom
on the branes that will in turn be used to furnish the appropriate operators.

Consider now the Page currents in eqs. (3.22) and (3.23). As we now explain, the
would-be topological operator analogous to (3.24) can’t be built by higher gauging because

– 9 –
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there is a higher anomaly. For (3.22), for instance, one could propose the following operator,

DF6
1/N (Σ6) =

∫
Dc3Dv2

∣∣∣
Σ6
exp

(
2πi

∮
Σ6

F̃6
N

+Nv2 ∧ dc1 − c3 ∧H3 − v2 ∧ dA3

)
(3.26)

One immediately notices however, that the last term is not invariant under (A1, A3) →
(A1 + dλ0, A3 − λ0 ∧ H3) gauge transformations. One can gain further insight into this
issue by explicitly introducing ZN background gauge fields for ?H3 and ?dA3 in Σ7 such
that ∂Σ7 = Σ6. If correct, this higher gauging should generate (3.26). There is, at first
sight, nothing wrong in gauging the currents ?H3 and ?dA3 since they are both conserved,
the gauging is implemented by adding the following terms to the action,7

δS = 2πi
∫

Σ7
Np′b3 ∧ b4 +Nb3 ∧ dĉ3 +Nb4 ∧ dv̂2 − b4 ∧H3 − b3 ∧ dA3 (3.27)

The problem is that under an A1 gauge transformation the last term picks up an anomalous
piece,

2πi
∫

Σ7
b3 ∧ dλ0 ∧H3 (3.28)

We conclude that there is a higher anomaly8 encoded by inflow as 2πi
∫
b3∧dA1∧H3 which

precludes the higher gauging of the symmetry associated with the current ?dA3. A similar
statement holds for ?dA5. A different way of phrasing the problem is by noticing that there
is no magnetic symmetry associated to the would-be currents ?dA3 or ?dA5. We do not
have the necessary symmetries for the higher gauging procedure. An open possibility is to
gauge the 5-form non-invertible magnetic symmetry for F̃4 that we just built. This would
amount to performing an explicit sum over the non-invertible defects in Σ7 instead of the
coupling to the background field b3. We would in turn be able to do it for F̃8 by using
the newly found operators. It is not clear however how to perform this gauging, which we
leave for future work. In section 4 we comment on how this problem seems to be avoided
in the alternative approach presented in [36, 38].

3.3 Type IIB supergravity

The discussion above translates almost verbatim to Type IIB supergravity, which has the
following action,

SIIB = 1
2κ2

∫
M10

√
−g

[
e−2Φ

(
R+ 4|dΦ|2 − 1

2 |H3|2
)
− 1

2 |F1|2 −
1
2 |F̃3|2 −

1
2 |F̃5|2

]
− 1

4κ2

∫
M10

A4 ∧H3 ∧ F3 (3.29)

where gauge invariant field strengths F̃3 = F3−A0∧H3 and F̃5 = F5− 1
2A2∧H3 + 1

2B2∧F3
have been introduced. This action needs to be supplemented with the self-duality condition

7For more details on this procedure see appendix B.
8This anomaly is in fact inherited from a standard anomaly in the bulk theory given by inflow as

∼ B6 ∧ dA1 ∧H3, B6 being the background coupled to the would-be current ?dA3.
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for F̃5: F̃5 = ?F̃5. The equations of motion are:

d ? H3 = −F̃5 ∧ F̃3 + F1 ∧ ?F̃3 (3.30)
d ? F1 = −H3 ∧ ?F̃3 (3.31)
d ? F̃3 = F̃5 ∧H3 (3.32)
d ? F̃5 = −F̃3 ∧H3 (3.33)

And the Bianchi Identities are,

dH3 = 0 (3.34)
dF1 = 0 (3.35)
dF̃3 = −F1 ∧H3 (3.36)
dF̃5 = −F̃3 ∧H3 (3.37)

Note that (3.33) and (3.37) are the same equation. There are two conserved currents, ?H3
and ?F1, which generate a U(1)(6)

m ×U(1)(8)
m magnetic symmetry. Armed with the experience

from the previous section we recognise that only the modified Bianchi identity F̃3 = −F1∧
H3 can give rise to a non-invertible symmetry.9 The corresponding topological operator is,

DF3
1/N (Σ3) =

∫
Dc0Dv2

∣∣∣
Σ3
exp

(
2πi

∮
Σ3

F̃3
N
−Nv2 ∧ dc0 + c0 ∧H3 + v2 ∧ dA0

)
(3.38)

which can be checked to correspond to the integral of the corresponding Page current upon
naive integration of c0 = A0/N and v2 = −B2/N . Once again we conclude that the U(1)(5)

m

with non-conserved current ?F̃3 is not completely broken, but a non-invertible Γ(5)
Q remains.

The discussion regarding the action of this operator on the different probe objects in the
theory is completely analogous as the one for Type IIA and we choose to free the reader
from it. Let us just mention that it acts invertibly in D5-branes and non-invertibly in NS5-
and D7-branes.

4 A different approach

We have so far seen how to explicitly build non-invertible topological defects in 11d and 10d
supergravity. In each of those cases, a would-be broken U(1) symmetry is still realized by
more exotic topological operators. The price to pay is that the topological operators only
exist for rational angles α = p/N and their fusion rules become non-invertible. As we have
discussed, the existence of the topological operators is intimately tied to the existence of
precise higher form symmetries, a discrete subgroup of which can be gauged in a particular
way. In this section we compare our approach to the one pioneered in [36, 38] and applied
to supergravity in [38]. The idea is elegant and simple, consider for instance the Page
charge associated to (3.21),

Uα(Σ4) = exp
(

2πiα
∫

Σ4
F̃4 −A1 ∧H3

)
(4.1)

9Similar comments as in previous section apply here. One may wonder whether other modified Bianchi
identities can give rise to non-invertible symmetries upon gauging the other non-invertible symmetries.
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This current is topological but not gauge invariant under A1 → A1 +dλ0. In the preceding
sections we saw that a gauge invariant version of (4.1) can be written for α = p/N by
stacking an appropriate TQFT. A simpler approach is to introduce a Stueckelberg-like
field that restores gauge invariance. A compact scalar θ transforming under A1 gauge
transformations as θ → θ + λ0 does the job,

U ′α(Σ4) =
∫
Dθ
∣∣∣
Σ4
exp

(
2πiα

∫
Σ4
F̃4 − (A1 − dθ) ∧H3

)
(4.2)

An immediate advantage of this approach is that α is not limited to be rational and the
whole U(1) symmetry is unbroken. Still this U(1) can be seen to act non-invertibly on
sources of H3 flux. Consider the following setup, Σ4 = S3 × S1 with m units of H3 flux∫
S3 H3 = m, which could be sourced by m NS5-branes, for instance. We wish to evaluate
the path integral with the insertion of the topological operator,

〈U ′α(S3 × S1)〉 =
〈∫

Dθ
∣∣∣
Σ4
exp

(
2πiα

∫
Σ4
F̃4 − (A1 − dθ) ∧H3

)〉
(4.3)

We can evaluate explicitly the term ∼ dθH3 by taking H3 to be a background:∫
Dθ exp

(
2πiα

∫
S3×S1

dθ ∧H3

)
=
∑
ω∈z

e2πiαmω (4.4)

where we have traded the integral over θ by a sum over its periods in S1. The resulting
sum is a delta function that is non-zero only for

αm ∈ Z (4.5)

An important remark is that this operator does not act on objects that only source dA1.
Indeed, if we consider a similar setup as before but with Σ4 = S2 × S1 × S1 and m units
of dA1 flux in S2, we find 〈U ′α(S2 × S1 × S1)〉 = 1. This is in sharp contrast with the
topological operator that we built previously, (3.24), which acts non-invertibly both on
sources of H3 and dA1. In order to better understand the connection between the two
approaches, let us define yet another operator,

Ûα(Σ4) =
∫
DθDc1

∣∣∣
Σ4
exp

(
2πiα

∫
Σ4
F̃4 −

1
2(A1 − dθ) ∧H3 −

1
2(B2 − dc1) ∧ dA1

)
(4.6)

Where (B2, c1)→ (B2+dΛ1, c1+Λ1). That this operator is gauge invariant and topological
on a closed manifold can be checked by extending it to 5d.10 This new operator acts non-
invertibly in sectors with either

∫
H3 = m or

∫
dA1 = m fluxes. The argument is analog

to the previous case and implies the vanishing of the partition function unless

αm ∈ 2Z.
10For further arguments on its topological nature one can formulate similar considerations as the ones

presented in appendix A of [38].
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We note that the action of this operator is hence not equivalent to (3.24) for which α has
to satisfy a less stringent condition in terms of m: (3.25).11 A further difference is that this
operator admits a straightforward generalization to arbitrary Page charges. Let us write
for completeness the one associated with the current in eq. (3.22):

Ûα(Σ6) =
∫
Dc1Dc2

∣∣∣
Σ6
exp

(
2πiα

∫
Σ6
F̃6 −

1
2(A3 − dc2) ∧H3 −

1
2(B2 − dc1) ∧ dA3

)
(4.8)

Gauge invariance is a bit trickier since dA3 transforms under A1 gauge transformations as
dA3 → dA3 − dλ0 ∧H3 but can be checked to hold in closed manifolds.

5 Discussion

In this note we have started the exploration of non-invertible symmetries in supergravity,
the low energy limit of M-theory and String Theory. We have found that, in each case
studied, a U(1) higher form symmetry that seemed broken by Chern-Simons (or modified
Bianchi Identities) can be recovered in the form of a non-invertible topological operators for
each rational value of α ∈ [0, 1). We have described how these operators can be constructed
explicitly by higher gauging discrete subgroups of the invertible symmetries of the theory.
This construction automatically implies their topological nature and allowed us to deduce
their action on the different brane probes of the theory. Finally, we have constructed
alternative topological operators by using Stueckelberg-like fields. This approach has the
advantage of being defined for any irrational α. Another advantage is that it admits a
straightforward generalization to any Page charge, which is unclear how to do for the first
method. We conclude in this section by making some comments on the applications of
these symmetries, particularly in the context of the Swampland program [69, 70].

An interesting application of non-invertible symmetries of this kind is that they re-
quire the existence of auxiliary symmetries that need to be gauged for the non-invertible
topological operator to exist. This gives rise to a hierarchy between the scales of symmetry
breaking of the different symmetries of the theory.12 Consider the operator in (3.8) for
instance. The existence of the 3-form non-invertible symmetry requires the existence of an
exact 6-form magnetic symmetry. This implies a hierarchy between the energy at which
these symmetries are broken in a UV-completion.

E(Γ(3)
Q ) ≤ E(U(1)(6)

m ) (5.1)

In particular, if one assumes that Γ(3)
Q , U(1)(6)

m are broken explicitly by including dynamical
objects electrically charged under them, M2- and M5-branes, respectively, one concludes

11For the interest of simplicity we have avoided discussing the 11d supergravity topological operator in
this approach. In that case one must compare,

U ′α(Σ7) =
∫
Dc2

∣∣∣
Σ7

exp
(

2πiα
∫

Σ7

?11F4 − (A3 − dc2) ∧ F4

)
(4.7)

and (3.8). Again a factor 2 appears which implies that the two operators are not completely equivalent.
12This is clear for the operators constructed in section 3, while it is less clear for the ones in section 4.
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the following relation between their tension,

T
1/3
M2 . T

1/6
M5 (5.2)

which is true up to an order 1 factor with the values TM2 = (2π)−2l−3
p , TM5 = (2π)−5l−6

p .13

Similar considerations apply to the operator in (3.24). In that case, to build Γ(5)
Q defects

we need to gauge a subgroup of U(1)(6)
m ×U(1)(7)

m which implies,

E(Γ(3)
Q ) ≤ min

(
E(U(1)(6)

m ), E(U(1)(7)
m )
)

(5.3)

If we again assume that the symmetries are only broken by the presence of the minimal
branes charged under them we have,

T
1/5
D4 . min

(
T

1/6
NS5, T

1/7
D6

)
(5.4)

which again is fulfilled in Type IIA String Theory by the NS5-brane. A similar relation,
which is again satisfied, applies to the topological operator of Type IIB String Theory. The
assumption that the symmetries are only broken by their coupling to their minimal objects
is not true in either M-theory or Type II String Theory, so these relations needed not hold.
It is still amusing to see that they are indeed satisfied.

Let us now elaborate a bit on the relation between these symmetries and the complete-
ness hypothesis. The two simplest mechanisms by which a putative UV completion breaks
higher-form symmetries of the low energy theory is by the presence of Chern-Simons cou-
plings and the introduction of dynamical objects [3, 51, 60]. In this work we have argued
that Chern-Simons terms are generically not enough to effectively break the symmetries,
making the case for the need of adding dynamical objects. This makes more clear than
ever the connection between having a complete spectrum (The Completeness Hypothesis)
and the absence of generalized global symmetries.

We finish with an outlook of the future work.

• We have seen two different approaches to finding non-invertible symmetries for non-
conservation equations. It would be very interesting to better understand the con-
nection between the two approaches. In particular, it would help if we understood
how to construct the operators in section 4 explicitly, maybe from higher gauging.

• Relatedly, we have left for future work the understanding of whether more “rational
valued” non-invertible operators can be built in Type II supergravity by further
gauging the non-invertible symmetries.

• It would be very interesting to elaborate on the actions of the topological operators
in the different probe branes. We expect very rich fusion rules, in a similar spirit
to [66].

• We expect these results to have many applications and generalizations in string com-
pactifications. In particular, it would be very interesting to see if our methods can
be generalized to compactifications with generalized θ-terms, as studied in [71].

13Note that a similar relation is enforced by the 2-group structure.
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A The 7d ZN TQFT

In this appendix we define the 7d TQFT with 3-form ZN symmmetry and anomaly as
needed to render the 11d supergravity defects gauge invariant. We start by briefly reviewing
the 3d An,p theory. Consider a smooth deformation of the would-be topological defect
in (2.6) with α = p/N . The operators fails to be topological due to the equation of motion,
which gives it a phase,

exp
(
iπp

N

∫
M4

F2 ∧ F2

)
(A.1)

One looks for a TQFT that can cancel this phase. This is precisely what the AN,p[B2]
theory does. Indeed it is defined to have 1-form symmetry Z(1)

N and anomaly given by
inflow as,

S
(N,p)
3 = −iπpN

∫
M4

B2 ∧B2 (A.2)

Where B2 is a Z(1)
N background gauge field with holonomies in Z/N . We may now identify

the background B2 = F2/N to cancel the phase (A.1) so that,

U p
N

(Σ3)×A(N,p)
[
F2
N

]
(A.3)

is topological and gauge invariant, as reviewed in the main text. For further details on
how to define the A(N,p)[B2] theory the reader may check [16, 64]. Consider now the case
of 11d supergravity and the non-conservation equation in (3.4). The naive operator is not
topological, as it picks up a phase

exp
(
iπp

N

∫
M8

F4 ∧ F4

)
(A.4)

In analogy with the discussion above we define a 7d TQFT A(N,p)
7 [B4] with 3-form Z(3)

N

symmmetry and anomaly characterized by inflow as,

S
(N,p)
7 = −iπpN

∫
M8

B4 ∧B4 (A.5)

Where B4 is a Z(3)
N background gauge field with holonomies in Z/N .
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B Explicit construction of the non-invertible defects by half gauging

In this appendix we construct the rational valued non-invertible defects introduced in the
main text by using the technique of higher gauging [10]. Consider first the non-invertible
topological operator introduced for 11d supergravity (3.8). We choose an auxiliary manifold
Σ8 such that Σ7 = ∂Σ8 and gauge a Z(6)

N subgroup of the magnetic symmetry U(1)(6) with
appropriate discrete torsion. This gauging is described by adding the following terms to
the path integral,

δS = 2πi
∫

Σ8
Nb4 ∧ dĉ3 + b4 ∧ F4 + Np′

2 b4 ∧ b4 (B.1)

Where pp′ = 1 mod N . Let us unpack a bit the expression above. The second term
describes the coupling of the U(1)(6) current to a background b4 in Σ8. The first term is a
coupling to a U(1) Lagrange multiplier gauge field ĉ3 whose job is to restrict the holonomy
of b4 so that it is effectively a ZN gauge field. The third term is a discrete torsion that
one may always add. The equation of motion for b4 is Ndĉ3 + F4 +Np′b4 = 0. Making b4
dynamical implements the gauging. Consider a closed Σ8. If we use the equation of motion
and remove terms that are multiples of 2πi, we see that our gauging precisely cancels the
phase in (A.4), as needed. If we instead take p′ = 1 and Σ8 manifold with boundary
∂Σ8 = Σ7 we explicitly find,

δS = −iπN
∫
M8

b4 ∧ b4 +
∫
∂Σ7
A(N,1)

7 [B4] (B.2)

We thus conclude that the gauging above precisely generates A(N,p)
7 in Σ7 = ∂Σ8. This

explicit construction of the defect is a further check of its topological nature. An important
point for this gauging to work is that the theory must be self-dual under it, as emphasized
in [66]. In particular, if one p-gauges a discrete q-form symmetry in a d-dimensional theory,
for the symmetries to be the same before and after the gauging the following relation must
hold,

q = (d+ p− 2)/2 (B.3)

In the case at hand, q = 6, p = 3 and d = 11, the relation is fulfilled.
Consider now the topological defect introduced for type IIA supergravity (3.24). The

classical phase that one whises to cancel is now,

exp
(2πip

N

∫
M5

dA1 ∧H3

)
(B.4)

We have to gauge a Z(6)
N ×Z(7)

N subgroup of the magnetic symmetry U(1)(6)
m ×U(1)(7)

m in a 5-
dimensional manifold Σ5, so we introduce two background fields b2 and b3, respectively. We
also introduce Lagrange multipliers ĉ1, v̂2 enforcing ZN holonomies and a discrete torsion
term. The mixed gauging is hence implemented by adding the following term to the path
integral,

δS = 2πi
∫

Σ5
Np′b3 ∧ b2 +Nb3 ∧ dĉ1 +Nb2 ∧ dv̂2 − b3 ∧ dA1 − b2 ∧H3 (B.5)
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Direct computation in a closed manifold using the equations of motion of b2, b3 shows that
one precisely cancels the phase in (B.4). In a manifold with boundary and with p = 1
one recovers the TQFT in (3.24) as expected. This gauging allows us to generalize the
topological defect to arbitrary p. Note that in this gauging the quantum symmetries are
interchanged, in the sense that the quantum symmetry from gauging Z(6)

N becomes part of
U(1)(7)

m after gauging and viceversa. This ensures that the symmetry before and after the
gauging is the same. A similar construction applies with minor modifications to the Type
IIB defect in (3.38).
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