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1 Introduction

The dynamics of out-of-equilibrium many body quantum systems is an area of enormous
current interest and scientific activity. Over the past few years there have been many
developments, with experimental and theoretical work both influencing, inspiring and
stimulating each other. In this context, a key quantity of interest has been the entanglement
entropy and its time evolution following a quantum quench. The latter is understood as a
sudden change of the evolution hamiltonian as introduced in [1, 2] (see also the reviews [3–
7]). Since the famous Quantum Newton’s Cradle experiment [8] it has been known that
integrability (i.e. the presence of a large number of conservation laws) in one-dimensional
systems leads to a distinct post-quench dynamics, which has later been understood in terms
of a Generalized Gibbs Ensemble (GGE) [9, 10]. This means that the partition function of
the generic stationary state involves all local and quasi-local conserved charges in the system

Z “ Tr
´

e´
ř

i βiQi
¯

. (1.1)

Therefore integrable systems do not thermalize in the usual sense but they do relax towards
a GGE. In particular, the role of quasi-local and semi-local conserved quantities in the
GGE has been the subject of a lot of investigation [11–18]. A good summary of many
results in this area can be found in the special issues [5, 19]. The fact that, after sufficiently
long times, every integrable system settles to a stationary state characterised by a GGE
implies that such a state and, subsequently, all related observables, can be obtained from the
knowledge of all expectation values of conserved quantities in the initial, pre-quench state.
However, the full description of all conserved local and quasi-local charges is sometimes
very challenging, as shown in the pioneering works [12, 13].

Several alternative ways of obtaining the stationary values of dynamical quantities have
been proposed and employed successfully in recent years. Particularly successful approaches
are generalised hydrodynamics (GHD) [20–22], Quantum Transfer Matrix (QTM) [23–27]
and the quench action method (QAM) [28, 29]. The latter will be employed in this paper.
The basis of this method is the intuitive idea that, no matter how complicated the post-
quench states is, there will always be a “dominant” pure state that will provide the leading
large-time contribution to the stationary value of any local observable. Identifying and
describing such a state allows us to then carry out explicit computations. This has been
done very successfully for a variety of models: in Heisenberg spin chains [12, 13, 30–36],
interacting Bose gases [37–45], the Hubbard model [46, 47], transport problems [48], and
interacting quantum field theories [49, 51]. The latter are most closely related to the work
presented in this paper.

In many-body quantum integrable models, exact computations are facilitated by a
mathematical description of the quasiparticle content. Such a formulation has been known
for a long time and comes through the (thermodynamic) Bethe ansatz approach [52–55].
This lies at the heart of both the GHD and QAM approaches.

In particular, the QAM admits a manageable formulation when the pre-quench state
can be expressed as a “squeezed coherent state” of the eigenstates of the post-quench theory.
When such an expression exists [56–58], then the overlaps between pre- and post-quench
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states can act as input to generalised versions of the TBA equations [28, 29], from which
the Yang-Yang entropy of the stationary state can be read off. More generally, such a
representation of the state can be employed in conjunction with form factor techniques to
obtain the full time-evolution following a quench, as done, e.g., for the Ising model [28, 59, 60],
for the interacting Bose gas [41, 42] and for other interacting integrable models [49–51].

In this paper we carry out a study which is similar in spirit to the works [49–51]
where the QAM approach was employed for two interacting integrable QFTs, the sine-
and sinh-Gordon models, respectively. Unlike those papers however, we want to focus
only on features of the stationary (entanglement) entropy. Our aim is to explore the
imprints of instability that can be seen in the stationary values of the entropy and related
functions, when unstable particles are present in the spectrum. We focus on a very simple
integrable QFT known as the SUp3q2-homogeneous sine-Gordon (HSG) model [61–64]. This
is a theory whose spectrum contains two stable particles p˘q of the same mass m. The
two-particle scattering matrix S`´pθq, characterised by the rapidity difference θ has a pole
in the unphysical sheet at θ “ σ ´ iπ{2. This can be interpreted as associated with the
creation of an unstable particle, with a finite decay width and mass which are functions of
the resonance parameter σ.

The free parameter σ introduces an energy scale related to the mass of the unstable
particle so that below this energy, the unstable particle is too massive and cannot be formed.
In this regime the theory is identical to two free fermions, with UV limit characterised by
a conformal field theory of central charge c “ 1. For energies above the unstable particle
mass, the latter is formed and the theory flows in the UV limit to a conformal field theory of
central charge c “ 6{5 “ 1.2. As a result, all quantities that can be analysed for the model,
including the entropy, can be usually understood as exhibiting three regimes with respect
to the parameter σ, corresponding to the free, interacting and transition regime. This
transition regime corresponds to the threshold for the formation of the unstable particle.

Some of the dynamical properties of the model have been studied in [65–67] employing
the GHD approach. In those works the focus was on the particle densities, effective velocities
and state densities associated to the stable particles. It was found that all these functions
display new features in the presence of the unstable particle so that despite it not being part
of the asymptotic spectrum, its formation and decay can still be dynamically observed. As
we shall see in this work, also the stationary value and growth rate of the entropy display
interesting new properties when unstable excitations come into play. The qualitative and
quantitative understanding of these properties for different global quenches are the main
focus of this paper.

Although all our computation are performed for the manageable “squeezed coherent
states”, we do not believe that such a restriction generically implies qualitative difference
for larger classes of initial states. Based on the results for this class of states, our main
observations go as follows:

• The stationary state spectral particle densities and effective velocities of the stable
excitations display, as expected, many features already found in previous work [65–67].
For the densities, that is an additional local maximum (whose area is related to a
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persistent density of unstable particles in the stationary state) and for the velocities
an additional plateau (whose presence signals the slowdown of stable particles that
precedes the formation of unstable ones), respectively.

• The stationary entanglement entropy per unit length S{L displays, as a function of the
unstable particle’s mass (or the parameter σ), a double-plateau structure, where the
transition between plateaux is determined by the energy threshold for the formation
of the unstable particle and the relative height of the plateaux is given by the ratio of
UV central charges in the interacting and non-interacting regimes.

• This threshold can be determined exactly for each quench and corresponds to a precise
relationship between the resonance parameter σ and a quench parameter, which
we call α (related to an effective inverse temperature βFF, a measure of the energy
injected by the quench).

• Close to the threshold, we observe the emergence of a local minimum in the entangle-
ment entropy production rate, a feature that has previously been argued to precede
the formation of stable excitations (this is described as the dynamical manifestation
of Gibbs’ paradox in [68]). Our work suggests that a similar signature, albeit less
pronounced, is found before the emergence of the unstable particle and that it is
fundamentally linked to the increase of the number of effective degrees of freedom.

• This minimum coincides with a plateau of the effective velocities of stable excitations
around the value zero, indicating that the formation of the unstable particle requires
stable particles to slow down first, which in turn leads to depleted entropy growth.

This paper is organised as follows: in section 2 we introduce the model and the
equilibrium TBA equations. In section 3 we review the theory of global quenches and
squeezed coherent states. In section 4 we review the quench action method and the
quasiparticle picture of entanglement evolution after a quench, and apply them to our
model. The core of our paper is section 5 in which we present analytic results and their
numerical analysis for the entanglement entropy and other auxiliary quantities. Our
calculations and analyses provide a qualitative and partially quantitative explanation of
the entanglement dynamics, in line with the bullet points above. We conclude in section 6.
A simple derivation of some scaling properties of the entropy per unit length and entropy
growth rate of free fermions is presented in appendix A. In appendix B we analyse the
properties of the entropy and related quantities for an additional quench not discussed in
the main text.

2 The model at thermal equilibrium

In this section we introduce the basic description of our model: the two-particle scattering
matrix, first derived in [64], and the thermal equilibrium properties of the theory as described
by its TBA equations, solved and analysed in [71–73].
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2.1 The scattering matrix

The HSG models are a family of integrable quantum field theories possessing a diagonal
scattering matrix and both stable and unstable bound states. These models were first
studied in a series of papers in the late 90s where their classical and quantum integrability
were established [61, 62], the particle spectrum determined [63], and a scattering matrix
proposed [64]. The scattering matrix was then extensively tested through the TBA [71–73]
and form factor approaches [74–79]. The mass-coupling relation for the SUp3q2-homogeneous
sine-Gordon model was studied in [80, 81].

Each HSG model is associated with a simply-laced algebra g and an integer k, called
the level. The models may be seen as massive perturbations of a critical Wess-Zumino-
Novikov-Witten model [82–86] associated to the coset Gk{Up1qr, where the level k is a
parameter of the model, r is the rank of g and G is the group associated to the algebra
g. The HSG models are part of the Toda family. Indeed, each HSG model can be seen as
r copies of Ak´1 minimal Toda field theory which interact with each other non-trivially,
giving rise in the process to the formation of unstable excitations. The simplest model in
this large family is the SUp3q2-HSG model which we consider in this paper.

The SUp3q2-HSG model has a two-particle spectrum. It is convenient to label the
particles as (˘). The scattering matrices are:

S˘˘pθq “ ´1, S˘¯pθq “ ˘ tanh 1
2

ˆ

θ ˘ σ ´
iπ

2

˙

, (2.1)

where σ is a free parameter of the theory. Note that lim|σ|Ñ8 S˘¯pθq “ 1, which means
that in this limit parity symmetry is restored and a theory of two Majorana fermions is
recovered. An important consequence of this property is that the behaviour of any quantity
we compute at or out of equilibrium should reduce to the free fermion case if |σ| is large
compared to the overall energy scale in the system (i.e. temperature, if at equilibrium or
the quench parameter in the present work).

For finite σ, the theory is interacting and the scattering amplitudes S˘¯pθq have a pole
outside the physical sheet at θ “ ¯σ ´ iπ{2, in the strip ´π ď Impθq ď 0. As discussed
in [78], the mass M and decay width Γ of this unstable particle can be obtained from the
Breit-Wigner formula. It is particularly useful to note that

M „
1
?

2
me

|σ|
2 and Γ „

?
2me

|σ|
2 for |σ| " 1 , (2.2)

so that, the larger the value of |σ|, the more massive and short-lived the unstable excitation
becomes. For general values of σ (not necessarily large) the mass is given by

M “ m
?

1` cosh σ . (2.3)

A very clear picture then emerges, namely that at thermal equilibrium in a Gibbs ensemble
with temperature T and for σ sufficiently large, the variable

κ :“ logp2T q ´ σ

2 , (2.4)
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characterises three distinct regimes: κ ă 0, is the free fermion regime, where the energy
is not large enough for unstable particles to be formed, κ “ 0 is the threshold for the
formation of unstable particles and κ ą 0 is the interacting regime, where the unstable
particle is present. In this paper we will always choose σ ą 0.

In accordance with this separation of energy scales, many TBA functions develop
staircase patterns, where the position and size of the steps are related to the value of σ. For
κ ! ´1 the theory reaches the UV limit of a two free fermion theory, with central charge
c “ 1. In contrast, for κ " 1, the UV fixed point is determined by the coset SUp3q2{Up1q2
and corresponds to c “ 6{5 “ 1.2. As we shall see, the role of these central charges as
counting degrees of freedom at high energies will also become apparent when we study the
entropy per unit length in the stationary state. The natural role played by the variable κ is
also seen in the TBA equations, as we discuss below.

2.2 The thermodynamic Bethe ansatz equations

Since there are two stable particles, there are also two TBA equations, which are related
to each other by a parity transformation. Let ε˘pθq be the pseudoenergies and L˘pθq “
logp1` e´ε˘pθqq the L-functions, then the TBA equations can be written as

ε˘pθq “ ωpθq ´ pϕ˘¯ ‹ L¯qpθq with ε`pθq “ ε´p´θq , (2.5)

ϕ˘¯pθq “ sechpθ ˘ σq is the logarithmic derivative of the scattering matrix (scattering
phase) and ‹ indicates the convolution:

pa ‹ bqpxq “
1

2π

ˆ 8
´8

apx´ yqbpyqdy . (2.6)

At equilibrium, the driving term, ωpθq is given in terms of the one-particle eigenvalue of
the energy Epθq “ m cosh θ (the same for both particles, as they have the same mass) as
ωpθq “ βEpθq, where β is the inverse temperature. More generally, in a GGE, ωpθq is a sum
over one-particle eigenvalues of any conserved charges involved in the GGE with coefficients
which are generalised inverse temperatures.

An important operation is the “dressing” of a generic function hpθq. This is defined
by differentiating the TBA equations above with respect to one of the generalised inverse
temperatures involved in ωpθq. This gives the equation

hdr
˘ pθq “ hpθq ` pϕ˘¯ ‹ g¯qpθq , (2.7)

where g˘pθq “ n˘pθqh
dr
˘ pθq and

n˘pθq “
1

1` eε˘pθq
, (2.8)

are the occupation (or filling) functions. hpθq represents a function that is independent
of particle type, typically the single particle eigenvalue of a particular conserved charge.
Many important thermodynamic quantities are defined through the dressing operation. For
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instance, the spectral particle densities ρ˘pθq which represent the density of occupied states
can be written as

ρ˘pθq “
1

2πn˘pθqE
dr
˘ pθq , (2.9)

and the effective velocity, which will play an important role later on is defined as

veff
˘ pθq “

pE1˘q
drpθq

pP 1˘q
drpθq

, (2.10)

where the prime indicates differentiation with respect to θ and P˘pθq “ m sinh θ are the
momenta. An interesting feature of these equations is that if we define the shifted functions
ε̂˘pθq “ ε˘pθ ¯

σ
2 q and similarly for the L-functions, the TBA equations become

ε̂˘pθq “ ωpθ ˘
σ

2 q ´ pϕ ‹ L̂¯qpθq , (2.11)

with the difference that ϕpθq “ sechθ no longer depends on σ and the full σ dependence is
now in the driving term. Then if ωpθq “ mβ cosh θ and σ is large, the driving term can be
approximated by a function of κ only (2.4), so that all TBA functions are functions of this
scale. In other words, irrespective of the values of T and σ any TBA functions will “collapse”
to a single curve, when plotted against the scale κ. A generalisation of this kind of collapse
will also be seen later in our study of the entropy (especially in the figures for S{Smax),
where the role of temperature is instead played by a function of the quench parameter.

3 Global quenches and squeezed coherent states

Let us start by recalling the definition of a global quench, as given in [1, 2]. A model
described by a hamiltonian Hpαq depending on some global parameter α is initially in its
ground state |Ψ0y. At time t “ 0 the parameter α is suddenly changed to a new value α̂.
Henceforth, the model evolves in time with the hamiltonian Hpα̂q whose eigenstates do not
generically include |Ψ0y. The question is then, what is the long-term stationary state this
system will reach?

As mentioned in our introduction, for integrable models we expect the long-term
stationary values of any local observables to be described by some GGE. The challenge is
then to characterise this GGE. In the QAM, the main assumption is that in the large-time
limit one particular state will come to dominate the dynamics of the model. Identifying
such a state is not easy in general, but it becomes easier when the initial state |Ψ0y has
the structure of an squeezed coherent state. This means that the state |Ψ0y can be written
in terms of eigenstates of the post-quench hamiltonian in a systematic fashion. In order
to explain this in more detail we need to introduce some basic definitions first, and then
specialise them to our model.

3.1 States and charges

In integrable quantum field theories we characterise quasiparticles by means of the
Zamolodchikov-Faddeev algebra [87–91]. This algebra consists of particle creation and
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annihilation operators satisfying

Z:apθ1qZ
:

a1pθ2q “ Saa1pθ1 ´ θ2qZ
:

a1pθ2qZ
:
apθ1q ,

Zapθ1qZa1pθ2q “ Saa1pθ1 ´ θ2qZa1pθ2qZapθ1q ,

Zapθ1qZ
:

a1pθ2q “ Sa1apθ2 ´ θ1qZ
:

a1pθ2qZapθ1q ` δaa12πδpθ1 ´ θ2q1 , (3.1)

where, for our model, a, a1 “ ˘ and the operator Z:apθq creates a (a) particle excitation
with rapidity θ. The scattering matrices were given in (2.1). Starting with these operators,
asymptotic states can be constructed by their repeated action on the vacuum |0y. In
particular, the incoming and outgoing states can be written as

|θ1, θ2, . . . , θny
in
a1,...,an “ Z:a1pθ1qZ

:
a2pθ2q . . . Z

:
anpθnq|0y,

|θn, θn´1, . . . θ1y
out
a1,...,an “ Z:anpθnqZ

:
an´1pθn´1q . . . Z

:
a1pθ1q|0y, θ1 ą θ2 ą . . . ą θn (3.2)

where the particular ordering in the rapidities ensures the normalisation
out

a11,a
1
2
xθ11, θ

1
2|θ1, θ2y

in
a1,a2 “ Sa1a2pθ1 ´ θ2q δa1a11

δa2a12
2πδpθ1 ´ θ

1
1q 2πδpθ2 ´ θ

1
2q , (3.3)

for θ1 ą θ2 and θ11 ą θ12 and similarly for higher particle states.
In massive relativistic IQFT, the action of conserved charges on asymptotic states is

the sum of the one-particle eigenvalues introduced earlier, that is

Qe
s|θ1, . . . θnya1,...,an “

n
ÿ

i“1
qsai cosh psθiq |θ1, . . . θnya1,...,an (3.4)

for even charges and

Qo
s|θ1, . . . θnya1,...,an “

n
ÿ

i“1
qsai sinh psθiq |θ1, . . . θnya1,...,an (3.5)

for odd charges, where s is the Lorentz-spin and qsa coshpsθq, qsa sinhpsθq are the one-particle
eigenvalues of the charges. This means that the charges themselves admit representations
of the form

Qe
s “

ÿ

i

ˆ
dθ

2π q
s
ai cosh psθiqZ:aipθqZaipθq , (3.6)

Qo
s “

ÿ

i

ˆ
dθ

2π q
s
ai sinh psθiqZ:aipθqZaipθq . (3.7)

3.2 Integrable quenches

Integrable quenches are defined as quenches in integrable models from initial states where
the expectation values of all the parity-odd charges vanish [24]. They can generally be
written as squeezed coherent states, such as those explicitly constructed in [56–58], which
means that they either take the form,

|Ψ0y “ N exp

¨

˝

1
2
ÿ

a,b

ˆ
dθ

2πKabpθqZ
:
ap´θqZ

:

b pθq

˛

‚|0y , (3.8)
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or

|Ψ0y “ N exp

¨

˝

ÿ

a

ga
2 Z

:
ap0q `

1
2
ÿ

a,b

ˆ
dθ

2πKabpθqZ
:
ap´θqZ

:

b pθq

˛

‚|0y . (3.9)

These types of states have been previously studied in the context of boundary integrable
quantum field theory, where the functions Kabpθq are related to boundary reflection ampli-
tudes [92].

For the HSG model we will only consider integrable initial states in which K˘˘p0q “ 0
and no one-particle state is present in the exponential. Such states can be specifically
written in terms of K-functions K˘¯pθq which satisfy the consistency equations (boundary
crossing equations)

K˘¯pθq “ S˘¯p2θqK¯˘p´θq , (3.10)

giving

|Ψ0y “ N exp
ˆ

1
2

ˆ
dθ

2πK`´pθqZ
:
`p´θqZ

:
´pθq `

1
2

ˆ
dθ

2πK´`pθqZ
:
´p´θqZ

:
`pθq

˙

|0y

“ N exp
ˆˆ

dθ

2πK`´pθqZ
:
`p´θqZ

:
´pθq

˙

|0y (3.11)

The S-matrices S˘¯pθq can be written in terms of the scattering phases δ˘¯pθq as S˘¯pθq “
eiδ˘¯pθq with (note that the kernels ϕ˘¯pθq “ δ1˘¯pθq, where the prime means differentiation
w.r.t. θ)

δ˘¯pθq “ ˘
π

2 ¯ 2 arctan
ˆ

tanh θ ˘ σ2

˙

. (3.12)

From this structure, it is easy to find a solution of the boundary crossing equation (3.10),
namely

K˘¯pθq “
a

S˘¯p2θq “ e
iδ˘¯p2θq

2 . (3.13)

Other solutions can be obtained from the above, by multiplying with CDD factors fpθq.
Explicitly, we then have

K˘¯pθq “ fpθq exp
«

˘
iπ

4 ¯ i arctan
ˆ

tanh 2θ ˘ σ
2

˙

ff

, (3.14)

where fpθq “ fp´θq is an arbitrary even function. Except for this function fpθq, the
solution above is a pure phase. As it turns out, only the function fpθq plays a role in our
analysis as all quantities of interest are functions of |K`´pθq| only. The task is then to find
real functions fpθq that give rise to a sensible dynamics. This can be done very explicitly
for free models [57] but is much more difficult for interacting theories [58].

One natural way to further constrain the set of functions fpθq is to require that they
decay rapidly for large θ. In fact, many known solutions such as those for the free boson [57]
and sinh-Gordon [50, 51] model decay as fpθq „ e´2θ for θ " 1 in order to ensure that the
injected energy density (due to the quench) is finite.

A property that all these solutions also generally share is that |Kpθq| ď 1 as long as they
have no singularity at zero rapidity. Nevertheless as was shown in [93], the singularity of
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the K-functions implies the presence of a 1-particle overlap, which we chose to be vanishing
for simplicity. This requirement seems natural from several points of view, including the
fact that the Kpθq functions are solutions of equations for boundary reflection amplitudes,
which must clearly satisfy this property. In this paper we consider three solutions which
are compatible with all the above properties.

Although the properties just discussed do constrain the set of possible solutions K`´pθq
they are not sufficient to entirely fix them. As mentioned earlier finding the functions Kpθq
that correspond to a particular global quench is generally difficult for interacting theories.
A general structure for mass quenches in diagonal theories is known (i.e. sinh-Gordon) but
this takes as input a solution of the boundary reflection equation. Such a solution is still
outstanding for the present model. In addition, for our model the mass is not the only
parameter that might be changed in a global quench. We also have σ and here we know
even less about what the amplitude K`´pθq should look like.

For these reasons, our strategy in the present paper is to consider the three K-functions
listed below. These are all functions that have appeared previously in the literature but
which cannot be linked explicitly to an specific global quench in the current model. Instead,
they should be seen as representing types of solutions, which have all the main functional
properties required and are expected to lead to results whose main features will be common
to a large family of global quenches. In other words, we expect that we will still be able to
find some universal properties for the entanglement density and related quantities (which
are the focus of this paper) starting from the functions below.

1. “Free Boson Solution”:

|KBpθq| “

ˇ

ˇ

ˇ

ˇ

ˇ

a

α2 sinh2 θ ` 1´ |α cosh θ|
a

α2 sinh2 θ ` 1` |α cosh θ|

ˇ

ˇ

ˇ

ˇ

ˇ

, (3.15)

which is the K-function for a mass quench in the massive free boson QFT (see [57]
for a derivation and alternative representation) and α “ m0{m in this case, i.e., the
ratio of the pre-quench mass m0 and the post-quench mass m. A useful property is

|KBpθq| „ CBpαqe
´2|θ| with CBpαq :“ |1´ α

2|

α2 for |θ| " 1 . (3.16)

2. “Squared Solution”:

|KSpθq| “
sinhp2| logα|q

2 coshpθ ` | logα|q coshpθ ´ | logα|q , (3.17)

which, for α ! 1 is very similar in shape to the free boson solution and is characterised
by a large plateau of width 2| logα| centered around θ “ 0. The asymptotics of this
function is:

|KSpθq| „ CSpαqe
´2|θ| with CSpαq :“ |1´ α

4|

α2 for |θ| " 1 . (3.18)

– 9 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
1

-10 -5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

θ

|KB(θ)|,|KS(θ)|,|K0(θ)|

Figure 1. The functions |K0pθq| (black), |KSpθq| (blue) and |KBpθq| (red, dashed) for α “ 0.01. In
this case | logα| « 4.6 which is half the size of the plateau of the second function and also gives the
location of the maxima of |K0pθq| at θ “ ˘ logα. Reducing the value of α all functions become
increasingly square-shaped, with K0pθq preserving its zero at the origin.

3. “Modified Squared Solution”:

|K0pθq| “ |KSpθq| ´
tanh | logα|

coshp2θq , (3.19)

which is very similar to |KSpθq| but incorporates a zero at zero rapidity. The asymp-
totics in this case reads:

|K0pθq| „ 2psinhp2| logα|q ´ tanh | logα|qe´2|θ|

“ C0pαqe
´2|θ| with C0pαq :“ p1` α

4q|1´ α2|

α2p1` α2q
for |θ| " 1 . (3.20)

In all examples α is a quench parameter related to pre- and post-quench features of the
model. However, because the K-functions above are not derived from first principles for
our model, this parameter α can not be easily linked to any of the known parameters
in the theory. Instead, we will think of α as an effective variable whose value gives a
measure of the energy that is injected in the system by the quench. Note also that our
amplitudes KBpθq,KSpθq and K0pθq can not be interpreted as reflection amplitudes, even
if they characterise a state that has the form of a boundary state. As we have seen, all
three amplitudes decay for large |θ| whereas reflection amplitudes usually tend to a finite
constant for large energies (see for instance the integrable boundary reflection matrices
which were studied in [92] for the Ising model).

In all our numerical and analytical results we have taken α ă 1. The smaller α is, the
larger the quench, that is the larger the amount of energy that is injected in the system
at t “ 0. A plot of the three K-functions for α “ 0.01 is presented in figure 1. Another
feature of all K-functions is that they vanish identically for α “ 1, that is, when there is no
quench and the pre- and post-quench ground states coincide |Ψ0y “ |0y.

– 10 –
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4 The quench action method

The quench action method (QAM) or overlap TBA method [28, 29, 49, 94, 95] was pri-
marily developed to characterise the stationary expectation values of local operators after
(integrable) quantum quenches. Under certain, yet often natural assumptions, the QAM can
be used to compute the von Neumann [96, 97] and Rényi [98–102] entanglement entropies,
both in the stationary state and their time evolution. In particular, the computation of
the time evolution of von Neumann entropies requires an additional ingredient, namely the
applicability of the quasiparticle picture [103] which we review at the end of this section. For
certain initial states the time evolution of Rényi entropies can be computed by space-time
duality techniques [102] that, for integrable models, generalise the QAM [102].

The central quantity in this method is an effective free energy or quench action functional
(QAF) from which various quantities can be computed. Following the logic of the original
literature [28], the starting point is the post-quench time-dependent expectation value of a
local operator. This expectation value can be written as

xΨ0|Optq|Ψ0y “
1

xΨ0|Ψ0y

ÿ

Φ,Φ1
e´ε

*
Φ´εΦ1eipωΦ´ωΦ1qtxΦ|Optq|Φ1y , (4.1)

where |Ψ0y is the pre-quench state, Optq is the time-evolved operator in the Heisenberg
picture, Φ and Φ1 label eigenstates of the post-quench Hamiltonian with energies ωΦ and
ωΦ1 respectively, εΦ is the logarithmic overlap

εΦ “ ´ logxΦ|Ψ0y , (4.2)

and ε‹Φ its complex conjugate. The main idea is to take a continuum or thermodynamic
limit in which summation over eigenstates is replaced by a functional integral over the root
densities ρ giving

xΨ0|Optq|Ψ0y “
1

xΨ0|Ψ0y

ˆ
DrρseSrρs

ÿ

Φ

”

e´ε
*
Φ´εrρseipωΦ´ωrρsqtxΦ|Optq|ρy ` Φ Ø ρ

ı

,

(4.3)
where Srρs is the Yang-Yang entropy, which is equal to the logarithm of the number of
micro-states corresponding to a given macro-state. If O is a local operator, the matrix
element xΦ|Optq|Φ1y is non zero if Φ and Φ1 correspond to the same macro-state in the
thermodynamic limit up to microscopic differences or in other words a finite number of
excitations [94]. A key assumption is that the functional integral is dominated by a single
saddle-point root density ρsp. This saddle-point density can be determined by minimising
an effective free energy functional Frρs which is defined through

xΨ0|Ψ0y “

ˆ
DrρseFrρs with Frρs “ ´2Repεrρsq ` Srρs (4.4)

which ensures the normalisation of xΨ0|Optq|Ψ0y by the condition

δFrρs
δρ

“ 0 . (4.5)
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An important observation is that the characterisation of the saddle point by (4.4) is also
valid for the expansion (4.3) as long as the matrix elements of O do not grow exponentially
with system size. Since matrix elements of local operators are usually of order 1 in system
size, the insertion of a local operator does not change the saddle point (4.4) (a remarkable
example for which this is not true consists of the Rényi entropies with index different from
1 [98–100], a fact that also reflects into a very unusual time evolution [102]). To calculate
the saddle-point density ρsp by eq. (4.5), we then just need to know the overlaps, or more
precisely, the extensive part of the logarithm of the overlaps. Once the overlaps are known,
the construction of the root density is relatively straightforward.

Having computed the saddle-point density ρsp, operator expectation values can be
computed, and in particular, the von Neumann entropy of the stationary state can be imme-
diately obtained as well, since, as we shall see, the Yang-Yang entropy of the representative
state is the thermodynamic entropy which corresponds to the stationary entanglement
entropy [96].

4.1 Finite volume initial state and logarithmic overlap

In order to compute the saddle-point density we need to express the logarithmic overlaps
as functions of the density ρ. To do so, we follow the logic of [35, 49, 51, 109, 110] and
consider the theory and the initial state in finite volume. In finite volume, the eigenstates
of the theory are characterised by solutions of the Bethe-Yang equations, which for a set
if integers tIku specify the allowed rapidites of the stable particles. In our case having
two different particle species and a non-trivial S-matrix only between the two species, the
equations can be written as

Q`k “ML sinh θk `
m
ÿ

j“1
δ`´pθk ´ θ

1
jq “ 2πIk , k “ 1, . . . , n

Q´l “ML sinh θ1l `
n
ÿ

j“1
δ´`pθ

1
l ´ θjq “ 2πJl , l “ 1, . . . ,m

, (4.6)

where the set of rapidities tθku and tθ1lu as well as the set of quantum numbers tIku and tJlu
correspond to the p`q and p´q particles respectively and we also defined the functions Q˘k
which can be general functions of rapidites. ϕ˘¯pθq are the scattering phases introduced
in section 2. In contrast to the Bethe Ansatz solution on spin chains [104], this scattering
state is just an approximate solution of the model in which finite size effects that decay
exponentially in the volume are neglected [105].

The state corresponding to quantum numbers tI1, . . . , In, J1, . . . , Jmu is denoted by

|tI1, . . . , In, J1, . . . , Jmuy
pn,mq
L , (4.7)

and is independent (up to a possible phase ambiguity) of the ordering of I-s and J-s. Such
states are normalised so that their scalar products are

pn,mq
L xtI1, . . . , In, J1, . . . , Jmu|tI

1
1, . . . , I

1
n1 , J

1
1, . . . , J

1
m1uy

pn1,m1q
L “ δnn1δmm1

n
ź

k“1
δIjI 1j

m
ź

l“1
δJlJ 1l ,

(4.8)
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with the quantum numbers ordered by convention as I1 ă ¨ ¨ ¨ ă In, J1 ă ¨ ¨ ¨ ă Jm and
similarly for the primed indices. The total energy and momentum can be expressed as

E“
n
ÿ

k“1
M coshθk`

m
ÿ

l“1
M coshθ1l`Ope´µLq , P “

n
ÿ

k“1
M sinhθk`

m
ÿ

l“1
M sinhθ1l`Ope´µLq

(4.9)
up to exponential corrections governed by some mass scale µ. A systematic treatment of
exponential corrections to excitation energies can be found in [105–108].

It is useful to introduce the rapidity space density of n-particle states, which is given
by the determinant of the Jacobian

ρn`mpθ1, . . . , θn, θ
1
1, . . . , θ

1
mq :“ det J , Jkl “

BQ̃k

Bθ̃l
, (4.10)

with

Q̃κ “

$

&

%

Q`k if k P r1, ns
Q´l if k P rn` 1, n`ms

, θ̃l “

$

&

%

θl if l P r1, ns
θ1l if l P rn` 1, n`ms .

(4.11)

Let us further characterise the integrable initial state (3.11) in finite volume. In infinite
volume, the state consists only of pairs of p`´q particles with opposite momentum. This
feature is present in the finite volume state as well, if properly defined. We can consider a
general set of integers tIku for the p`q particles: then the quantum numbers for the p´q
particles are fixed, and the corresponding set is

tJlu
m
1 “ t´I1, . . . ,´Inu , m “ n . (4.12)

It is easy to check, that with this choice the solutions of the Bethe-Yang equations (4.6) are
such that for all k “ 1, . . . ,m “ n

θk “ ´θ
1
k , (4.13)

in other words, all parity-odd conserved charges annihilate such finite volume states, that is

Qo
s|θ1, . . . , θn,´θ1, . . . ,´θny

pn,nq
L “

˜

n
ÿ

i“1
qs sinh psθiq `

n
ÿ

i“1
qs sinh p´sθiq

¸

|θ1, . . . , θn,´θ1, . . . ,´θny
pn,nq
L “ 0 .

(4.14)

This is in fact a natural definition of integrable states in finite volume given the fact that in
infinite volume the squeezed coherent form of the state and annihilation by all odd charges
are completely equivalent. For such a state we define the restricted Q-functions and the
restricted density of states, which incorporate the above constraint

Q̄
pnq
k “ML sinh θk `

m
ÿ

j“1
δ`´pθk ´ θ

1
jq “ 2πIk , k “ 1, . . . , n (4.15)

and
ρ̄npθ1, . . . , θnq “ det J , Jkl “

BQ̄j
Bθk

. (4.16)
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Then the complete initial state in finite volume reads

|Ψ0yL “NL

ÿ

n

ÿ

tIku
n
1

Nnpθ1,...,θn;Lq

¨

˝

n
ź

k“1
Kpθkq

˛

‚|tI1, . . . , In,´I1, . . . ,´Inuy
pn,nq
L , (4.17)

where the 1{n! factor from the expansion of the exponential function is absent, since the
summation is over the set tIkun1 , in which all possible quantum numbers appear but in an
ordered way. The normalisation factors Nn were determined in [109] up to finite size effects
with exponential decay. Their general expression reads

Nnpθ1,...,θn;Lq “
a

ρn`npθ1, . . . , θn,´θ1, . . . ,´θnq

ρ̄npθ1, . . . , θnq
“ 1`OpL´1q . (4.18)

The functions Kpθq :“ K`´pθq are any of the three K-functions discussed earlier. In order
to describe the initial state as a representative state in terms of continuous densities, we
can first exploit the parity relation

ρ`pθq “ ρ´p´θq :“ ρpθq , (4.19)

so that the logarithmic overlap ´2Replog Lxρ|Ψ0yLq can be computed as

´ 2Replog Lxρ|Ψ0yLq “ ´2Re

»

–log
n
ź

k“1
Kpθkq

fi

fl` C “ ´
n
ÿ

k“1
log |Kpθkq|2 ` C , (4.20)

where |ρyL is one particular and appropriate realisation of the macro-state dictated by the
density ρpθq and C is an unknown constant coming from the normalisation of the state. In
the thermodynamic limit, this formula becomes

lim
LÑ8

´2Replog Lxρ|Ψ0yLq “ ´L

ˆ 8
´8

dθ ρpθq log |Kpθq|2 ` C. (4.21)

4.2 Quench action functional

We have now constructed all the ingredients to write the QAF of interest that reads

Frρs “ ´L
ˆ 8
´8

dθ ρpθq log |Kpθq|2 ` C`

´ L

ˆ 8
´8

dθ
“

ρtpθq log ρtpθq ´ ρpθq log ρpθq ´ ρhpθq log ρhpθq
‰

, (4.22)

where we have explicitly written the Yang-Yang entropy of the macro-state (second line).
An important fact is, as already mentioned, that due the pair structure, the densities ρ˘pθq
are not independent and so the Yang-Yang entropy can be written in terms of just one
density. As defined earlier, ρpθq “ ρ`pθq is the density of occupied states, whereas ρhpθq

represents the density of holes or unoccupied states and ρtpθq is the total density, that is
their sum.
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The functional (4.22) is completely equivalent to that of a Gibbs ensemble if ´ log |Kpθq|2
is replaced by the usual energy term mβ coshpθq. This means that the saddle-point equations
for Frρs are exactly given by (2.5) with driving term

ωpθq “ ´ log |Kpθq|2 . (4.23)

It follows that the densities ρpθq, ρhpθq and ρtpθq are related in the usual way, namely

ρpθq

ρtpθq
“ n`pθq and ρhpθq

ρtpθq
“ 1´ n`pθq , (4.24)

where n`pθq that is the occupation function defined in (2.8).

4.3 Quasiparticle picture for entanglement evolution

The Yang-Yang entropy of the representative state equals, by definition, the thermodynamic
entropy. The latter is also the long-time limit of the extensive part of the stationary
entanglement entropy associated with the equilibrated state [7, 96, 97]. However, a first
principle analytic computation of the out-of-equilibrium time evolution of the entanglement
entropy and related quantities is a notoriously difficult problem even for cases tractable by
methods like QAM (see, e.g., refs. [111, 112] for some recently proposed truncated conformal
space approaches). From a phenomenological viewpoint, indeed a great variety of different
behaviours have been detected ranging from a linear growth of entanglement and Rényi
entropies to its suppression and the onset of oscillatory patterns associated with particle
confinement [119] or the presence of 1-particle overlaps in the post-quench expansion of
the initial state [124–126]. Despite the enormous difficulties, when one is interested in the
evolution of the von Neumann entropy associated with pure initial states an intuitive and
extremely accurate technique has been proposed in ref. [103] and further justified in [96].
This is based on the quasiparticle picture, which is applicable when quantum systems
admit stable quasiparticles with purely elastic scattering and when the initial state is a
low-entangled state (for instance the ground state of a gapped system) whose expansion in
the post-quench basis is made up of pairs of quasiparticles with opposite momentum. These
criteria are naturally fulfilled for the quenches we study in this work (obviously many of
these assumptions can be relaxed [113–118], but this is not of interest here). Given these
considerations the evolution of the entanglement entropy for an interval of length L in an
infinite system can be written as [96, 103]

SpL, tq “ 2t
ˆ
pą0

dp spairppq2vppqΘpL´ 2vppqtq ` 2L
ˆ
pą0

dp spairppqΘp2vppqt´ Lq

(4.25)
in a model consisting of one particle species. In the above formula, vppq is the velocity of the
quasiparticles and is assumed to be a parity odd function of p with vppq ą 0 if p ą 0; and
spairpθq is a spectral entropy density, which accounts for the amount of entanglement carried
by one pair of particles. The interpretation of eq. (4.25) is very natural: the entanglement
between the subsystem and its complement is generated by particle pairs where one particle
is in the subsystem and the other in its complementary region. In this reasoning we think
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of the particles with fixed trajectories and velocities ˘vppq created at single points equally
distributed over space. Eq. (4.25) predicts linear growth in time followed by saturation
proportional to the subsystem’s length L. To give quantitative predictive power to eq. (4.25),
it has been pointed out that (i) vppq must be identified with the effective velocity of particles,
as defined in (2.10); (ii) spairppq is the spectral entropy density sppq of the stationary state.

More precisely, in the long time and large subsystem limit, we end up with

lim
LÑ8

SpL, tq

L
“ 2
ˆ
pą0

dp spairppq “
ˆ

dp spairppq “
1
2

ˆ
dp sppq (4.26)

where we exploited that the spectral entropy associated with a pair satisfies spairppq “
spairp´pq and that due to the pair structure, the single particle spectral entropy density sppq
eventually characterises the entire entropy contribution of a pair with opposite velocities.
That is, spairppq “ 1

2sppq as long as one intends to keep the whole real axis as the range of
integration. In fact, it is often possible to obtain sppq via methods like QAM which gives
information about the long time stationary state.

It is important to stress that the validity and applicability of this set of ideas have
been checked for the case of the XXZ chain as well in [96], that is also in an interacting
integrable system for quenches that fulfil the requirements discussed above. A surprising
observation of [96] was that the predictions of the QPP regarding the initial time evolution
are remarkably accurate already at very short times. Nevertheless, one generally expects
that QPP becomes applicable at intermediate times and it may not capture the physics
of very short times. This expectation is partially confirmed by [60] in which besides an
initial growth additional power-law corrections with negative exponents were found in a free
system, although for Rényi entropies. For this reason we can rephrase (4.25) in a slightly
more precise way (already suggested in [96]) and use an appropriate scaling of our space-time
variables, i.e., the subsystem size L and the time t elapsed after the quench, yielding

lim
LÑ8

1
L
SpL,t“ τLq“ 2τ

ˆ
pą0

dpspairppq2vppqΘp1´2vppqτq`2
ˆ
pą0

dpspairppqΘp2vppqτ´1q .

(4.27)

The quasiparticle picture reviewed above can be easily applied to our particular model
and to the quench protocols we consider, due to the integrability of the theory and the
imposed pair structure between the (`) and (´) particles. To do so, we first replace the
integration variable with the rapidity θ, which is more convenient for interacting integrable
models. Nevertheless, some little care has to be taken since in our case particles of different
species form a pair. Additionally, the effective velocities satisfy veff` pθq “ ´veff´ p´θq. For
simplicity, we set veffpθq :“ veff` pθq, which, therefore, can be unambiguously attributed to a
pair. For the sake of brevity, in the equations below, we do not yet make the scaling limit
explicit, nevertheless it is implicitly assumed. Given these considerations, eq. (4.25) can be
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rewritten as

SpL, tq “ t

ˆ
veffpθqą0

dθ s`´pθq2veffpθqΘpL´ 2veffpθqtq

` t

ˆ
veffpθqă0

dθ s´`pθq2|veffpθq|ΘpL´ 2|veffpθq|tq

` L

ˆ
veffpθqą0

dθ s`´pθqΘp2veffpθqt´ Lq

` L

ˆ
veffpθqă0

dθ s´`pθqΘp2|veffpθq|t´ Lq

(4.28)

where s˘¯ is the associated spectral entropy density of a pair with a right-moving ˘
particle and a left-moving ¯ particle. Based on the infinite time behaviour of the entropy
in the thermodynamic limit, we can similarly relate the spectral entropy density of a pair
with the single particle entropy densities of the stationary state. In particular, we have
spθq :“ s`pθq “ s´p´θq, where s˘pθq are the spectral densities associated to each individual
particle. Due to the pair structure, these two contributions are not independent. The long
time entropy of the infinite system reads

lim
LÑ8

SpL,8q

L
“

1
2

ˆ
dθ s`pθq `

1
2

ˆ
dθ s´pθq “

ˆ
dθ spθq , (4.29)

where spθq is the same spectral entropy function that characterises the Yang-Yang entropy
in eq. (4.22). This means that eq. (4.28) can be rewritten as

SpL, tq “ 2t
ˆ

dθ spθq|veffpθq|ΘpL´ 2|veffpθq|tq ` L
ˆ

dθ spθqΘp2|veffpθq|t´ Lq , (4.30)

or

lim
LÑ8

1
L
SpL, t “ τLq “ 2τ

ˆ
dθ spθq|veffpθq|Θp1´ 2|veffpθq|τq `

ˆ
dθ spθqΘp2|veffpθq|τ ´ 1q ,

(4.31)
when the restriction of excluding short times is explicitly imposed. The initial linear growth
of the entanglement entropy is implied by the above formula. It is therefore useful to
characterise the initial entropy growth rate by the entropy production rate

lim
τÑ0

lim
LÑ8

dSpL, τLq
dτ “: dS

dt “ 2
ˆ

dθ spθq|veffpθq| . (4.32)

5 Quench dynamics with unstable quasiparticles: results

In this section we present the core part of our paper, namely the explicit solution of the
quench action TBA equations and the characterisation of the entanglement dynamics. We
stress that although the solutions of TBA equations are numerical, all our results are exact.

As detailed in section 2, all quantities of interest can be obtained by solving the
basic equations

ε˘pθq “ ´ log |Kipθq|
2 ´ pϕ˘¯ ‹ L¯qpθq with ε`pθq “ ε´p´θq. (5.1)
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The different functions Kipθq, cf. section 3.2, with i “ B,S, 0 provide a useful way of
parametrising certain families of GGEs with desirable properties and, in our case, dependent
on a single quench parameter α. Let us start by discussing briefly how the energy injected
in the system depends on α.

5.1 Three energy regimes

Following on from the discussion at the end of section 2, we can rewrite the equations (5.1)
as in eq. (2.11) so that all the σ dependence is incorporated into a shifted driving term.
Then, given the large θ asymptotics of the K-functions (see subsection 3.2), we have that
for large σ

´ log |Kpθ ` σ

2 q| „ 2θ ` σ ´ logCipαq , with i “ B, S, 0 , (5.2)

where Cipαq are the coefficients of e´2|θ| in the large θ asymptotics of the K-functions (see
again subsection 3.2). In other words, quantities such as the entropy density and growth
rate, that are obtained from the solutions of the TBA equations, will be functions of the
universal scale

κipσ, αq :“ logCipαq ´ σ , with i “ B, S, 0, (5.3)

which now plays a role similar to an RG parameter. In particular, for α ! 1 which is the
regime we are considering in most of our numerics, all functions Cipαq « ´2 logα so that
the energy injected by the quench grows logarithmically with α. This implies the existence
of three regimes:

• For κipσ, αq " 1, the energy injected by the quench is sufficient to form unstable par-
ticles.

• For κipσ, αq « 0, we are exactly at the threshold for the formation of unstable particles.

• For κipσ, αq ! ´1, the energy injected by the quench is not sufficient to excite unstable
bound states and so the particles (˘) do not interact. In fact, they behave as a system
of two free fermions.

We should therefore expect to observe clear changes in all quantities of interest as
the energy is varied, either by tuning the quench parameter α or the resonance parameter
σ. We will study these changes for several physical quantities and for different choices of
K-function. The quantities of interest are listed below:

1. The stationary entanglement entropy per unity length S
L .

2. The entanglement entropy production rate dS
dt .

3. The total particle density Nst
L where

Nst “ N` `N´ and N˘ “

ˆ 8
´8

ρ˘pθqdθ , (5.4)

with ρ˘pθq defined in eq. (2.9).
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Figure 2. S{L, Nst{L and dS{dt as functions of logα after quenches with different K-functions
and fixed resonance parameter σ (reported in the legend). Note the log scale on the vertical axis.
The bottom and top of the labels are respectively the values of logα and of κS,Bpσ, αq (we dropped
the indices tS,Bu because κpσ, αq » ´2 logα´ σ for α ! 1).

4. The entropy normalised by the total particle number S
Nst

.

5. The entropy production rate normalised by the total particle density L
Nst

dS
dt .

6. The spectral densities ρ˘pθq and effective velocities veff
˘ pθq.

Our aim is to highlight any features of these functions that signal the presence of unstable
particles in the steady state.

Although many properties such as (5.2) and (5.3) are common to our three examples
KS,B,0pθq, for the rest of the paper we will focus on the (simpler) quenches KS,Bpθq only.
As we shall see, these quenches encapsulate the main new properties of the model, whilst
the additional zero of K0pθq at the origin, somewhat complicates the analysis. Therefore,
to improve readability, we leave the analysis of the K0pθq quench to appendix B.

5.2 Changing the quench magnitude

In the following we analyse the quantities listed above for fixed σ and varying the quench
parameter α. We focus on two particular values of the resonance parameter, σ “ 14 and 22,
but our results are qualitatively generic. As we will see below, there is a marked difference
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in the behaviour of quantities 1,2 and 3 in our bullet points above and quantities 4, 5, i.e.
those that involve normalisation by Nst. We split our discussion accordingly.

5.2.1 Linear scaling

We start our analysis considering the functions S{L, dS{dt, and Nst{L. They can be
computed from the QAM as explained above and the resulting curves as a function of α are
shown in figure 2. It is striking that all these functions (in log scale) have an approximately
linear dependence on logα which holds for a wide range of values of α. Furthermore there
is only a little dependence on σ and on the initial state i “ B, S. To elucidate this property,
let us first focus on the quench with KBpθq whose asymptotics is determined by (3.16) so
that, for any σ, we have

logCBpαq “ logp1´ α2q ´ logα2 « ´2 logα for α ! 1. (5.5)

Exactly the same expansion holds for logCSpαq, cf. eq. (3.17). Therefore we explained why
the dependence on σ and i “ B,S disappears for α ! 1. However, as figure 2 shows, all
functions depend algebraically on α (linear behaviour in log-log scale), with a power (slope
in the plot) that is compatible with 1 and is independent of the value of σ and the choice of
K-function. This algebraic scaling can be derived analytically in the free fermion regime,
where it follows from the fact that KS,Bpθq are piecewise constant functions equal to 1 for
´| logα| ă θ ă | logα| and 0 otherwise. A simple derivation is presented in appendix A
that however is difficult to extend to the interacting regime.

Although we cannot prove the algebraic behaviour with α, we can strengthen this
conjecture by more extensive numerical analysis that we present in tables 1 and 2. In these
table we report the results of the numerical fits of the α-dependent steady state entropy
density S{L and the entropy production rate dS{dt. The fitting function is

Cpκiqα´1 for i “ S,B, (5.6)

where Cpκiq is the only fitting parameter. It turns out that Cpκiq depends significantly only
on the sign of κi. Hence, we denote with κ˘i values of κipσ, αq that are either positive p`q or
negative p´q, associated with the interacting and non-interacting regimes, respectively. In
the tables, we report the value of Cpκiq and also the ratio Cpκ´i q{Cpκ

`
i q. This ratio reveals

a universal property of our quench protocol: in all cases we find that it is very close to
5{6 “ 0.8333 . . ., that is the ratio of the two central charges associated with the UV physics
of the theory depending on the presence (c “ 6{5) or absence (c “ 1) of the resonance.
The value 5{6 is better achieved for σ large (i.e. α ! 1 in the interacting regime), as this
is the limit where the dependence of TBA quantities on the universal scale (5.3) works
more precisely.

This very interesting finding can be explained as follows. For the quenches considered
here, energies are high enough as for the theory to reach the two UV fixed points. Hence
the entropy and its growth rate are both well described by the conformal formula [103]

S “
πc

3βeff
minp2vt, Lq (5.7)
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σ 12 14 16 18 20 22
Cpκ´Bq 0.1574 0.1547 0.1530 0.1536 0.1526 0.1530
Cpκ`Bq 0.1825 0.1825 0.1825 0.1825 0.1825 0.1825

Cpκ´Bq{Cpκ
`
Bq 0.863 0.848 0.839 0.842 0.836 0.838

Cpκ´S q 0.1828 0.1834 0.1795 0.1818 0.1792 0.1807
Cpκ`S q 0.2143 0.2143 0.2143 0.2143 0.2143 0.2143

Cpκ´S q{Cpκ
`
S q 0.853 0.856 0.837 0.848 0.836 0.843

Table 1. The values of Cpκ˘
i q and the ratios Cpκ´

i q{Cpκ
`
i q for i “ B,S for the steady state

entropy density S{L. We note that the relative error of the fitted parameter Cpκ˘
i q is typically of

order 10´3 ´ 10´4.

σ 12 14 16 18 20 22
Cpκ´Bq 0.1514 0.1515 0.1516 0.1519 0.1518 0.1519
Cpκ`Bq 0.1824 0.1824 0.1824 0.1824 0.1823 0.1820

Cpκ´Bq{Cpκ
`
Bq 0.830 0.830 0.831 0.833 0.833 0.834

Cpκ´S q 0.1774 0.1785 0.1783 0.1788 0.1787 0.1789
Cpκ`S q 0.2143 0.2143 0.2143 0.2142 0.2141 0.2138

Cpκ´S q{Cpκ
`
S q 0.828 0.833 0.832 0.835 0.835 0.836

Table 2. The values of Cpκ˘
i q and the ratios Cpκ´

i q{Cpκ
`
i q for i “ B, S for the entropy growth rate

dS{dt. We note that the relative error of the fitted parameter Cpκ˘
i q is typically of order 10´3´10´4.

which indeed show proportionality to the central charge (here βeff is the inverse effective
temperature related to the energy of the quench and v the sound velocity). In our case, the
result is particularly interesting because it is the presence of the unstable particle and the
additional tunable energy scale σ it introduces, which allows us to access two conformal
regimes in a single theory. Another consequence of the ratio 5{6 is that the presence of
unstable particles increases both the stationary state entropy per unit length S{L and the
entropy growth rate. This is consistent with the fundamental interpretation of the steady
state entropy as counting degrees of freedom in the theory.

5.2.2 Emergence of two plateaux and one local minimum

We now consider the normalised quantities S{Nst and pNst{Lq
´1 ˆ dS{dt. We report our

exact numerical results in figure 3 as a function of logα. These ratios are sensitive to the
fine details of the quench because the ratio of two linear functions in logα is no longer
a linear function. Furthermore, the scaling with logα is just the leading order for α ! 1
and there are corrections that play a role, especially when considering the ratios. Indeed,
both functions S{Nst and pNst{Lq

´1 ˆ dS{dt display a double plateau structure, where the
transition between plateaux happens monotonically for S{Nst and through the formation of
a local minimum for pNst{Lq

´1 ˆ dS{dt.
The arrows in figure 3 marks the energy scale corresponding to the onset of unstable

particles that, according to the discussion in subsection 5.1, occurs for

logα « ´σ2 . (5.8)
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Figure 3. S{Nst, L{Nst and dS{dt against α after quenches with different K-functions and fixed
resonance parameter σ (reported in the legend).

It is evident that this scale approximately marks also the midpoint between plateaux.
In addition, the left plateau, corresponding to the interacting regime is lower than the
right plateau, which corresponds to the free regime. At a superficial look, this may seem
inconsistent with our earlier discussion in terms of degrees of freedom; this is not the case
because we are dividing by particle density. Although the steady state entropy, the entropy
growth rate and the particle density are all larger in the presence of interactions, the particle
density grows faster so that the ratio is smaller in the presence of interaction. Notice that,
however, the ratio between plateau heights (left/right) is still well approximated by the
ratio of central charges 5{6. We also observe that the results corresponding to different
values of σ (like the two blue-dotted curves on the top row) look very similar up to a shift.
This feature is once more a consequence of the general dependence of our functions on the
universal scale κpσ, αq (we will discuss this further in subsection 5.3.2).

Turning our attention to the normalised production rate pNst{Lq
´1ˆdS{dt as a function

of the quench size (the bottom panels in figure 3), we observe a local minimum in the
production rates which can be linked to the formation of unstable excitations. This local
minimum is correlated with the emergence of an additional local maximum of the TBA
density of particle ρpθq and simultaneous reduction of the effective velocities of stable
quasiparticles at the threshold for the formation of unstable excitations. We will analyse
this further in subsection 5.4.
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Figure 4. The combination L
Nst

dS
dt

ˇ

ˇ

ˇ

α“0
´ min

α

!

L
Nst

dS
dt

)

as a function of σ for KBpθq and KSpθq.
This is a measure of the depletion of the normalised entropy production rate, defined as the difference
between its value in the interacting regime (lower plateau in the inset) and its local minimum
value (see the double arrowed segment in the inset). From both the main panels and the insets, we
conclude that the depth of the minimum is larger for σ Ñ 0.

5.2.3 Depletion as a function of the resonance parameter

We now consider again the figures in the second row of figure 3 and ask the question: how
does the shape and depth of the minimum change as functions of the resonance parameter?
The answer to this question is helped by figure 4. In the inset, we show several functions of
the same type seen in figure 3 for more values of σ P r2, 22s, while the main panels report
the depth of the minimum (the precise definition is given in the figure’s caption). There
are two main observations. First, the depth of the minimum stays constant for σ Á 5, as
seen both in the insets and in the main panel. Second, the depth of the minimum and its
shape start to change as σ Ñ 0 which is the limit where the lifetime of the unstable particle
becomes infinite, namely, it becomes a virtual particle. In this limit, the depth becomes
more pronounced.

It is in fact expected that the depth and the shape of the minimum should change for
small σ. First of all, we observe that, from the point of view of the minimum’s position,
small σ corresponds to α ! 1. We have previously noted that most functions depend on a
combination of the variables σ, α which we have called κipα, σq with i “ B,S and defined
in (5.3). We also noted in (5.5) that κipα, σq “ ´σ´ 2 logα when α ! 1. This is the reason
why many of the functions in the insets of figure 4 look identical under translation when
plotted against logα. However, this dependence on α no longer holds for values of α near 1,
which is where we clearly see a larger minimum in the inset of the right panel of figure 4
(the effect is more subtle on the left panel). Now the dependence in α is more involved,
and the shape and depth of the minimum are changed. Minima for such large values of α
correspond to σ small too and so when looking at the red dots we see an increase in depth
for σ small.

In summary, our discussion and the numerics on the last two subsections demonstrate
that the appearance of a local minimum and the formation of the unstable particle are
features that can be naturally linked. However, the fact that this minimum is more
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pronounced precisely when the unstable particle becomes virtual is an intriguing feature
that requires further study.

5.3 Changing the resonance parameter

We reconsider the functions KBpθq and KSpθq defined in (3.15) and (3.17) and vary the
resonance parameter σ or equivalently tune the mass of the unstable particle, while fixing
the energy injected in the system by the quench. In this section, we will introduce a new
energy scale, characterised by an effective inverse temperature at the free fermion point
βFF according to

1
L

Tr
”

HFF e
´βFFHFF

ı

Tr
“

e´βFFHFF
‰ “

x∆Ey
L

, (5.9)

that is, via equating the injected energy density during the quench x∆Ey{L and the energy
density of the free fermion (FF) theory in a Gibbs ensemble. This scale provides an
alternative measure of the quench magnitude and has the advantage of having a clearer
physical interpretation than the parameter α, while being closely related to it. This effective
temperature is uniquely determined via the expectation value of the injected energy density
after the quench. For simplicity, the forthcoming figures will show just two representative
values for the effective inverse temperatures, but our findings are qualitatively general.
More numerical data are presented in table 3.

5.3.1 Entropy and particle number densities: staircase patterns

We first briefly discuss the relatively simple behaviour of the steady state entropy S{L and
total particle number per unit length Nst{L. Figure 5 reports the data as a function of
σ for fixed injected energy densities (βFF-s). Both plotted quantities show two plateaux,
a lower one at high σ-s when the unstable particles are too heavy to form, and a higher
plateau at small σ-s when the unstable particles are present. This behaviour is reminiscent
of other TBA quantities at equilibrium, such as the TBA scaling function [65, 71]. The
reason for the formation of two plateaux is exactly the same as in figure 3, namely, the fact
that for varying α (σ) and fixed σ (α), there is a transition between the interacting and
non-interacting regimes.

In figure 5 we can see very clearly that the presence of unstable particles naturally
results into a higher stationary entropy density. We also confirm the similarity of functions
with different βFF: they are related to each other by a simple shift. Both these features are
further explored in the next subsection.

The presence of unstable particles is also linked to an increase in the stable particle
number density ρpθq, simply because creating unstable excitations requires a minimum
energy threshold to be met and the higher the energy scale, the higher the population of
stable particles too. For this reason, although S{Nst exhibits also two plateaux, it has the
relative height reversed with respect to S{L, just as observed in figure 3 when varying α.

5.3.2 Universal scaling of the steady state entropy

A feature that we have now observed repeatedly for many functions is that fixing α and
varying σ or viceversa give rise to figures which are qualitatively very similar. This similarity
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Figure 5. The entropy density S{L (top), the particle density Nst{L (middle) and their ratio
(bottom), against the resonance parameter σ for quenches with different K-functions and energy
densities (left smaller energy, right larger energy). The injected energy density depends on the free
fermion inverse temperature βFF and on the K-functions (KBpθq in blue, KSpθq in red).

is not unexpected, but a consequence of the fact that all functions depend solely on the
universal scale κipα, σq. This is very clearly illustrated in figure 6 for the function S{L

normalised by its local maximum value Smax{L. Similar plots can be done for Nst{L

and S{Nst.

The main feature of the figure 6 is the collapse of multiple curves along the kink
that separates the two plateaux. This collapse occurs because we are plotting functions
against κB,Spσ, αq. In all figures the value of σ varies while α is fixed to different values
corresponding to different symbols. Besides the double plateau structure, with a lower
plateau for the free regime and a higher plateau for the interacting regime, we also see that
after normalisation, the height of the lower plateau is once more well approximated by the
value 5{6, as predicted by CFT.
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Figure 6. The entropy normalised by its maximum value against the scale κipα, σq defined in (5.3)
for fixed α “ 10´k and k “ 2, 3, 4, 5, 6 and varying σ for KBpθq (left) and KSpθq (right). We
observe the collapse of curves, with the midpoint of the kink, located at κS,Bpα, σq « 0 signaling the
threshold for the formation of the unstable particle. In both panels the lower plateau is at around
5{6 “ 0.8333 . . . which is the ratio of CFT central charges.

5.3.3 Emergence of two plateaux and a local minimum

Another indication of the presence of unstable excitations is observed when studying the
entropy production rate. Both the production rate dS/dt and L{NstˆdS/dt develop a local
minimum at a specific value of σ as shown in figure 7. We denote this value by σmin and we
argue that it is related, once more, to the formation of the unstable particle. More precisely,
the values of σmin can be compared to the scale 2 log 2{βFF which in turn characterises the
energy available in the system. A comparison between σmin and 2 log 2{βFF can be found
in table 3.

We always find σmin ă log 2{βFF: the minimum occurs slightly below the mass of the
unstable particle M «

?
2meσ2 . We should recall however, that this approximation of the

mass works only for large σ, thus explaining in part the difference (indeed, as σ is increased,
the relative difference between the values in the rows of the table decreases). It is also worth
pointing out that the separation between interacting and non-interacting regime is not sharp
with respect to the energy scale (the transition between free fermion and interacting regime
has a certain width, cf. figure 6). Comparing figure 5 with figure 7, we can see that the
values σmin (for dS/dt) approximately correspond to the top of the kink that connects the
first and second plateaux in figure 5, or to the end of the first plateau (for L{NstˆdS/dt)
whereas 2 log 2{βFF corresponds roughly to the midpoint of the kink.

5.3.4 Depletion as a function of quench magnitude

We finally take a closer look at the local minimum of the function pNst{Lq
´1 ˆ dS{dt, in

particular at its depth as a function of σ. The insets of figure 8 present several figures of the
type seen in the last row of figure 7 (up to a scaling that is explained in the caption). As
βFF is varied, there is hardly any change to the depth or shape of the minimum. However,
if we consider further values of βFF and plot the depth of the minimum (red dots) we see
that there is a change for small energies. There are two main properties worth highlighting:
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Figure 7. The entropy production rates dS/dt without and with normalisation by Nst{L against
the resonance parameter σ. We consider quenches with different K-functions (KBpθq in blue, KSpθq

in red) and various fixed injected energy densities against the resonance parameter σ. The injected
energy density corresponds to the same free fermion inverse temperatures as in figure 5. The bottom
and top labels show the values of σ and of κpσ, αq “ κBpσ, αq « κSpσ, αq, respectively, where the
largest difference between κB and κS is 0.05. A local minimum is seen at a value of σ “ σmin which
is slightly below σ “ 2 log 2{βFF. The precise numbers are reported in table 3.

KBpθq

2 log 2{βFF 8.2 12.8 17.4 22.0 26.6
σmin (dS/dt) 7.1 11.4 16.0 20.6 25.7

σmin (Nst{LˆdS/dt) 5.4 10.1 14.7 19.3 23.9

KSpθq

2 log 2{βFF 8.5 13.1 17.7 22.3 27.0
σmin (dS/dt) 7.3 11.7 16.3 20.9 25.5

σmin (Nst{LˆdS/dt) 6.2 10.8 15.4 20.0 24.6

Table 3. σmin for the quench with KBpθq and KSpθq.

– 27 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
1

-12 -10 -18 -6 -4
0.43

0.44

0.45

0.46

log(βFF)

D
ep
th
of
di
p

-12 -10 -18 -6 -4

0.443

0.453

0.463

log(βFF)

D
ep
th
of
di
p

Figure 8. The depletion of the normalised entropy production rate L
Nst

dS
dt

ˇ

ˇ

ˇ

FF
´ min

σ

!

L
Nst

dS
dt

)

is visualised as a function of βFF for KBpθq and KSpθq (left and right). The colours blue, cyan,
green and magenta in the insets correspond to ´ log βFF “ 3.38, 5.69, 7.99, 10.29 for KBpθq and
3.54, 5.85, 8.15, 10.45 for KSpθq.

(i) for ´ log βFF « ´ logα " 1, the depth of the minimum saturates to a maximum value
which is roughly the same for both K-functions (right and left figures are very similar); (ii)
the depth of the minimum and its shape start to change as βFF « αÑ 1 which is the limit
of no quench. In this case the depth of the minimum becomes slightly smaller. The reasons
for changes around α “ 1 are the same as discussed in subsection 5.2.3. In addition, it is
rather natural that the minimum should reduce as α approaches 1, since in the limit of no
quench there should be no minimum either.

5.4 Spectral densities and effective velocities

One of our main observations so far is that the entropy production rate is suppressed when
the unstable particle starts to form. In this subsection, we argue that this suppression is
explained at least in part by the slowdown of the stable particles that precedes the formation
of unstable ones. The slowdown can be understood by studying the effective velocities of
stable quasiparticles and various other spectral quantities, in particular the spectral entropy
density spθq and the spectral particle density ρpθq.

Let us consider, with the help of figure 9, the behaviour of the spectral particle density
ρpθq and the effective velocity veffpθq in a typical situation. We focus on the quench function
KBpθq, fix the injected energy to βFF “ 3 ˆ 10´5, that is 2 log 2{βFF “ 22.215, and vary
the resonance parameter σ. The behaviour that we observe is very similar to that of the
thermal case, analysed in ref. [65].

In particular the spectral density ρpθq (and also its normalised version, in figure 9)
exhibits either two or three peaks. The leftmost peak is referred to as the interaction peak,
the rightmost one as the free fermion peak. If present, the additional peak in between is
called the subsidiary peak. We observe that both at σ “ 0 and σ “ 8, the interaction and
the free fermion peaks are mirror images of each other. These are the two limits where the
parity symmetry of the model is restored at TBA level and correspond to either infinitely
lived unstable excitations or no unstable excitations at all, respectively. Increasing σ from
zero, first the size of these two peaks changes, and then the subsidiary peak forms and
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Figure 9. The spectral particle density divided by the total number of stable particles ρpθq{Nst
(left) and the effective velocity veffpθq (right) for fixed energy density and various σ parameters. We
considered a quench with KBpθq and βFF “ 3ˆ 10´5, i.e. 2 log 2{βFF “ 22.215.

emerges from the free fermion peak. Upon further increase of σ the peak move towards the
interaction peak and eventually merges with it for σ “ 8.

The behaviour of the effective velocity can also be easily described. At σ “ 0 and
σ “ 8, veffpθq is a parity-odd function. Increasing α, this function undergoes first a shift
towards the left and then develops an extra plateau for negative rapidity values. This
plateau then moves down towards the value ´1 restoring the parity-odd function at the
free fermion point.

We now turn back to the phenomenon of suppression in the entropy production rates
and take a closer look at spectral quantities in the vicinity of the local minimum. A first
fundamental observation is that the effective velocity veffpθq is zero (or at least much smaller
than 1) in a region where the spectral density of the stable particle has some support. This
is visualised in figure 10, especially in figure 10(d) for σ “ 21. Consequently, we can argue
that as soon as interaction starts and unstable particles are formed, pairs of stable particles
start to slow down and some of the energy goes into these particles which are more massive
and so slower, slowing down entropy growth.

In figure 10 we once more present the plots of the (normalised) spectral steady state
entropy and effective velocities. We notice that the structure of the spectral entropy density
is very similar to that of the spectral particle density and there is an overlap between the
intermediate plateau of the effective velocity and the extra peak of the spectral entropy,
which is associated with the formation of unstable particles.

Based on the behaviour of these spectral quantities, we conclude that the main mech-
anism responsible for the decrease in the entropy production rates is that some stable
particles are slowed down to form unstable ones. This is only possible due to the strong
separation of scales that is enabled by the free parameter σ and would not be observed for
a similar quench in a theory with only stable bound states in which all masses are fixed
and, typically, of the same order of magnitude.

6 Conclusions and outlook

In this paper we have used the quench action approach in conjunction with the quasiparticle
picture to study the stationary value of the thermodynamic entropy, its production rate
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Figure 10. The (normalised) spectral steady-state entropy density spθq{Nst P r0, 0.25s (left axis
in each panel) and the effective velocity veffpθq P r´1, 1s (right axis) for fixed injected energy
densities and various σ parameters near the local minimum of the production rates. We have
2 log 2{βFF “ 13.005 for the left figures and 2 log 2{βFF “ 22.215 for the right figures.

and other related quantities. We have done so in a theory which has the peculiarity of
including two stable excitations and one unstable quasiparticle. Following on from previous
works [65–67] we have established the presence of unstable particles in the steady state
resulting from equilibration after quite generic quantum quenches. We have found several
precise signatures of the onset and presence of unstable particles, which we summarise below.

The starting point of our analysis has been the choice of quench in the context of the
quasiparticle picture. Given that the model in question is non-trivially interacting, the
construction of a squeezed coherent state and the associated K-function from first principles
is rather difficult. Instead, we have chosen three known K-functions with standard features,
depending on a quench parameter α and used those as our starting point.

The quench protocols are the following: either keeping σ fixed and varying α or keeping
the injected energy fixed and varying the resonance parameter (this is not completely
equivalent to keeping α fixed but nearly so). The main observations, irrespective of the
choice of Kpθq, are as follows.

• When the unstable particles are present, there is an increase in the final steady-state
entropy density (SL) and on the number of stable particles (Nst

L ).

• As functions of the resonance parameter σ, these functions as well as their ratio
develop a staircase shape consisting of two steps and one connecting kink. The
position of this kink is directly related to the amount of energy injected in the system.
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The midpoint of the kink corresponds to matching this energy with the mass of the
unstable particle.

• We recover therefore a familiar picture for this model, namely that the increase in
degrees of freedom that occurs when the available energy is compatible with the
formation of unstable particles leads to many quantities “flowing” from their free
fermion values to a new value. For the entropy, this new value in the interacting
regime is higher, which confirms the intuition that increasing degrees of freedom leads
to increased thermodynamic entropy.

• Indeed the relative ratio of plateau height is given by the ratio of central charges in the
deep UV of the two regimes seen in the theory: a non-interacting regime, described
by two free fermions and an interacting regime described by a non-trivial CFT. The
respective central charges are c “ 1 and c “ 6

5 “ 1.2.

The above trends are also observed for the entropy production rates pdS{dtq and
related quantities, where dS{dt is in analogy with S{L, and pNst{Lq

´1 ˆ dS{dt with S{Nst.
However, these exhibit an additional feature, that is a local minimum which occurs when the
unstable particles start to appear in the system. The behaviour/presence of this minimum
is, nevertheless, more subtle and depends on the way the parameters change.

• When the injected energy density is kept fixed and the resonance parameter is varied
the minimum occurs both in dS

dt and L
Nst

dS
dt . In contrast, if the quench parameter α is

fixed and we vary σ a pronounced minimum occurs only in L
Nst

dS
dt .

• When σ is kept fixed and the quench parameter α is varied the minimum occurs only
in L

Nst
dS
dt , whereas

dS
dt shows a completely monotonic behaviour. It is indeed possible

to show that dS
dt9α

´1 for all quenches considered here, with a coefficient which is
numerically different in the interacting and non-interacting regimes, with mutual ratio
once more given by the ratio of central charges.

• Once the K function and quantity of interest are chosen, the depth of the minimum
is constant for a wide range of parameters, although it is slightly larger when σ is
close to 0 (the unstable particle becomes a virtual particle) and slightly smaller when
α is close to 1 (small quench). The precise mechanism that leads to greater depletion
when the unstable particle is longer lived, eventually becoming a virtual particle, is
not fully understood.

• Dynamically, the minimum is associated to the slowdown of stable quasiparticles
that occurs exactly when unstable particles start to form. This can be explained
by considering the spectral density and effective velocity of the stable quasiparticles.
Namely one can observe that the spectral peak both in ρpθq and in spθq (spectral
entropy density) broadens in a range of rapidities for which the effective velocities are
close to zero.

A distinct feature of this model is that the position and relative height of plateaux as
well as the position and depth of the local minimum are universal with respect to a global
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parameter κipσ, αq with i “ B,S, 0. This parameter provides a natural RG scale, with
negative values associated with the free regime, positive values associated with interaction
and zero value corresponding to the threshold for the formation of unstable particles. The
existence of such a scale is due to the presence of the free parameter σ, so it is a distinct
consequence of the presence of unstable particles.

We close this paper by pointing out that the phenomenon of entropy growth depletion
followed by sharp increase has been connected to the increase in degrees of freedom in the
spectrum, e.g. the formation of bound states, for different theories [68–70] and termed the
“dynamical manifestation of the Gibbs paradox”. While there are many analogies between
the findings of refs. [68–70] and our results (most notably (i) the connection to counting
degrees, (ii) the formation of the minimum related to a reduction in velocities of the binding
particles), there are important differences related to the fact that our particles are unstable.
In refs. [68–70] it is pointed out that also virtual particles (i.e. stable excitations below the
threshold of formation) should be responsible of a reduction of the entropy. As observed
earlier, it seems that in our case too virtual particles play an interesting role since depletion
is maximised when the unstable particles become virtual.

There are several further extensions of this work that could be carried out, in particular
by considering other models of the same family where multiple unstable excitations of
tunable masses are present. More fundamentally, it would be very interesting, even for the
present model, to have a derivation of a K-function that we could associate to a physical
quench such as a mass or resonance parameter quench. Finally, improved understanding
of the entanglement dynamics in the presence of unstable bound states should also help
in the study of the breakdown of confinement of elementary excitations and the onset of
thermalisation [119–123, 125, 127–130].
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A Some analytical derivations for free theories

It is interesting to analytically derive some of the properties we have observed in the main
text, such as the formation of plateaux. Our model allows us to consider some of these
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properties, at least in the limit when the theory is free, namely consisting just of two free
fermions. In that case, the pseudoenergies are given by the driving term of the TBA, namely

εpθq “ ´ log |Kpθq|2 , (A.1)

and it is easy to show that the entropy per unit length becomes simply

S

L
“

1
2π

ˆ 8
´8

dθ
cosh θ

1` |Kpθq|2
´

p1` |Kpθq|2q logp1` |Kpθq|2q ´ |Kpθq|2 log |Kpθq|2
¯

.

(A.2)
We can now argue that the logarithm of this quantity should be linear in logα. In fact,
this is most obvious for the quench with KSpθq, but the same sort of argument can be
applied to the other cases. We can consider a very crude approximation of the function
|KSpθq|, namely that it is essentially 1 for ´ logα ď θ ď logα and zero otherwise. In this
approximation, the function (A.2) becomes

S

L
«

log 2
2π

ˆ ´ logα

logα
cosh θ dθ “ 1

2π

ˆ

1
α
´ α

˙

log 2. (A.3)

Thus, for α ! 1 we have that

log S
L
« logplog 2q ´ logp2πq ´ logα´Opα2q . (A.4)

Although this is of course a very simple argument for free theories, we believe that a similar
picture works for the interacting case too, which explains the linear scaling in logα seen in
the numerics. The piecewise constant approximation is less accurate for the other quenches,
although they also develop a central plateau for α ! 1 (even K0pθq that presents two
plateaux separated by a zero at θ “ 0, which merge for small α).

For free fermions, this argument extends automatically to the entropy production
rate, since this is given by the same integral with the extra factor |veffpθq|. Furthermore,
veffpθq “ tanh θ, can be approximated by 1 inside the integral, giving exactly the same
scaling (A.4).

For fixed α these results also imply that both S{L and dS{dt tend to saturate to the
value (A.3) which scales as 1{α for α ! 1. This is what we observed numerically as well.
However, the Op1q term logplog 2q ´ logp2πq of eq. (A.4) does not provide an accurate
prediction even in the free fermion regime. This is due to the fact that the piecewise
approximation of Kipθq approximation is very crude. In particular, the contributions from
the decaying part of the K-functions are not as negligible as for typical TBA functions
where the decay is often double exponential (like for L-functions). Here KSpθq decays only
exponentially and its logarithm only linearly in θ. Thus approximating either function by
just a box shape is a gross simplification which accurately predicts the α dependence but
not the normalisation constants.

B Results for K0pθq

In this appendix we investigate the quench with the K-function K0pθq. Although it
shares many similarities with the other quenches, some additional and pronounced features
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Figure 11. The normalised spectral particle density divided by the total number of stable particles
ρpθq{Nst (a) and the normalised spectral entropy density spθq{Nst with the effective velocity veffpθq
(b) for fixed energy density and various σ parameters. We take βFF “ 2.8944 ˆ 10´5, that is
2 log 2{βFF “ 22.28. The spectral densities now have a zero at θ “ 0 and the effective velocities
develop a vanishing plateau around σ “ 2 log 2{βFF. In inset (b) the left axis corresponds to
spθq{Nst P r0, 0.25s, and the right axis to veffpθq P r´1, 1s.

are present which are a direct consequence of the zero of the function K0pθq at θ “ 0.
Indeed, such zero of K0pθq imposes a constraint on the solution of the QA equations. More
specifically, this zero at θ “ 0 is inherited by both the spectral density of the particle number
ρpθq and the Yang-Yang entropy density Spθq{L. Following the logic of subsection 5.4, let us
present first the behaviour of ρpθq{Nst accompanied with veffpθq when the energy density is
fixed (βFF “ 2.8944ˆ10´5) and σ varies. The σ-dependence of these quantities is visualised
in figure 11. In fact, the main observation is that the subsidiary peak, when present, is
forced to be zero at θ “ 0, which results in a significant suppression of the spectral weight
of this peak and in a notable fingerprint in the thermodynamic quantities, as we shall see.
Otherwise the overall behaviour of ρpθq and veffpθq are similar to those seen earlier.

Consequently, the observations we made for quenches with KBpθq and KSpθq still apply
to the case of K0pθq. That is, when the unstable particles are not present in the system
after the quench, extended plateaux develop in Nst{L, S{L, S{Nst as well as in dS/dt and
pNst{Lq

´1 ˆ dS{dt if the energy density is fixed. This plateau is displayed by the quantity
S{Smax also when instead of the injected energy density, the quench parameter α is fixed
and σ varies and the plateau is present in S{Nst and pNst{Lq

´1 ˆ dS{dt as well if the
resonance parameter is fixed and the unstable particles are still not present. In addition for
a fixed resonance parameter, the other quantities Nst{L, S{L and dS/dt exhibit monotonic
linear behaviour which can be explained as in the previous section, namely, it is due to
the property

logC0pαq « ´2 logα for α ! 1 , (B.1)

and the fact that, for fixed σ, all thermodynamic functions are function of this scale.
See also the derivation in appendix A. Additionally, the local minimum in dS/dt and
pNst{Lq

´1ˆdS{dt for fixed energy density and in pNst{Lq
´1ˆdS{dt also for fixed resonance

parameter is also present in this case, for regimes when the unstable particles start to form.
The mechanism is exactly the same as we discussed in the previous subsection 5.4.
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Figure 12. The total entropy density S{L (a) and its production rate dS{dt (b) against σ after
quenches characterised by K0pθq and fixed injected energy density. The blue dots correspond to
2 log 2{βFF “ 13.08 or βFF “ 2.8944 ˆ 10´3 (left axis) and the red dots to 2 log 2{βFF “ 22.29 or
βFF “ 2.8944ˆ 10´5 (right axis).
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Figure 13. The total thermodynamic entropy density S{Nst (a) with respect to the total particle
number and the entropy production rate divided by the particle number density pNst{Lq

´1 ˆ dS{dt
(b) against σ after quenches characterised by K0pθq and fixed injected energy density. The blue
dots correspond to 2 log 2{βFF “ 13.08 or βFF “ 2.8944 ˆ 10´3 (left axis) and the red dots to
2 log 2{βFF “ 22.29 or βFF “ 2.8944ˆ 10´5 (right axis).

There is however one main difference between the K0pθq and other cases which we
now discuss. This occurs when the quench is such that the unstable particles are present
in the post-quench system. The plateau for σ small which we saw in previous cases with
KBpθq and KSpθq (in the corresponding quench regime) is now modified by a pronounced
local maximum or minimum depending on the specific quantity. In particular, Nst{L and
S{L as well as dS/dt develop a minimum for fixed energy densities. This is demonstrated
by figure 12 via S{L as well as dS/dt, and the minimum is naturally attributed to the
zero and suppression in ρpθq and spθq{L. The quantities divided by Nst such as S{Nst
and pNst{Lq

´1 ˆ dS{dt instead show a maximum as one can see in figure 13 together with
figure 14. The two behaviours (i.e maximum/minimum) are of course correlated and result
from the fact that if we consider quantities divided by Nst the suppression, i.e., the minimum
is slightly stronger in Nst{L than in S{L.
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Figure 14. The total thermodynamic entropy density S{Nst (a) with respect to the total particle
number density and entropy production rates divided by the particle number density pNst{Lq

´1 ˆ

dS{dt (b) against α after quenches characterised by K0pθq and fixed resonance parameters σ. The
blue dots correspond to σ “ 14, and the red ones for σ “ 22. The arrows show the particular α
values at which the associated scale variable κpσ, αq equals zero.
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