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1 Introduction

Anyone familiar with the cover of [1] knows that interactions between mathematicians and
physicists involve an aspect of translation: while the former start with global data that may
have some local presentation in a set of coordinates or representatives, the latter happily
construct quantities from a combination of greek and latin letters, large and small. Yet
the two have much to say to each other, and over the years the language has remarkably
converged. Now physicists are happy to write papers on differential cohomology, and
mathematicians write texts on renormalization in quantum field theory.

In this work we will be mostly concerned with structures where the usual physics
methodology is of no avail, and the gauge fields that we might typically write will all be
zero. Nevertheless, the global topological data will have a profound effect on the physics.
The examples that we study are particularly simple: toroidal orbifold conformal theories
and the associated string compactifications.

Much of the fascination with orbifold compactification on Y/G comes from the presence
of singular points, which correspond to points in Y fixed by the action of G [2, 3]. Despite
these singularities, the string theory on Y/G can be well-behaved, and computations of
various quantities from the worldsheet perspective have lead to important insights into
geometry, such as the notion of stringy Hodge numbers and finer cohomological structures
on orbifolds and algebraic varieties (e.g. see [4] for an introduction).

The study of orbifolds has also led to insights into the moduli space of string com-
pactifications, for example by showing that certain limits of compactification on smooth
manifolds such as K3 surface or a Calabi-Yau 3-fold where the geometry becomes singular
can nevertheless be understood entirely in perturbative string theory. In addition, orbifolds
have provided insights into non-trivial dualities such as mirror symmetry. They have also
been used extensively in string phenomenology, and there are impressive classification
results, including the description of all symmetric orbifolds of the six-torus T6 that preserve
spacetime supersymmetry [5].

In recent years orbifolds of toroidal compactifications have received renewed interest
in relation to the swampland program; see, for example, [6–11]. This recent work involves
asymmetric orbifolds that act on the toroidal geometry by shifts, while having a non-trivial
action on the gauge sector. The results provide insights into the structure of disconnected
components in the moduli space of toroidal compactification that generalize the CHL
construction [12, 13] and are intimately related to the study of heterotic compactifications
with non-trivial flat connections [14, 15] and related type II/M-theory/F-theory constructions
with background RR fluxes and frozen singularities [16, 17]. It will be useful to extend
these efforts to cases with less spacetime supersymmetry, where classification will be even
more challenging, but also the physics will be richer. Our work is just a small indication of
some of the structures that emerge in this larger setting.

In this paper we begin our study with 5-dimensional compactifications on X5 = T5/G

that preserve half of spacetime supersymmetry, and where G = ZN acts freely on T5.1 To
1As the recent work [18] indicates, if one is willing to abandon spacetime supersymmetry, then compact

flat manifolds already become interesting in compactifications to 7 dimensions.
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obtain a free and supersymmetric action, we write T5 = T4 × S1 and choose G to have a
supersymmetric action on T4, so that T4/G has holonomy ZN ⊂ SU(2). The orbifold X5 is
nevertheless smooth because the action on T4 is combined with an order N shift on the
5-th circle.

Since these quotients lack fixed points, we can usefully discuss their physics from
both supergravity and worldsheet perspectives. For example, we can interpret these
compactifications from a six-dimensional spacetime point of view: it is possible to think of
the theories as S1 compactifications of a 6-dimensional theory, where a holonomy is turned
on for a discrete ZN gauge symmetry; the holonomy breaks half of the supersymmetry and
modifies the spectrum in other ways. This point of view should be useful in fitting these
compactifications in the framework of F-theory/type II — heterotic duality, for example
along the lines explored in [19, 20].

Second, we show that in heterotic string theory these compactifications are dual to
more familiar compactifications on T4/G× S1 and are therefore connected to conventional
compactification on K3. That this should be the case was already suggested in [21], and
we establish the claim at the level of worldsheet CFT. In particular, we show that a small
radius limit of the X5 compactification develops additional massless states and a Higgs
branch invisible in the supergravity description. We also note that the duality exchanges
spaces with different topologies, thus providing another example of stringy geometry relating
topologically distinct geometries.

The equivalence is based on the observation that there are orbifold actions on the
T5 worldsheet CFT, G1 ' G and G2 ' G that are related by a conjugation: there is
an element t ∈ O(21, 5,Z) that gives an isomorphism t : G1 → G2, with t : g 7→ t−1gt.
While the quotient by G1 leads to the smooth geometry X5, the quotient by G2 leads to
T4/G× S1. The induced isomorphism on the moduli of the two CFTs acts as a T-duality
on the radius of the non-trivial S1 in combination with a shift of the Wilson line parameters
by a lattice vector.

It is then natural to interpret the isomorphism as a T-duality of the X5 CFT, but there
is a subtlety in applying the standard paradigm of Buscher rules for a non-linear sigma
model, despite the fact that the X5 CFT can be perfectly well described by a large radius
non-linear sigma model. The trouble is that the natural circle fibration structure

S1 X5

M

has M = T4/G, i.e. the base is singular! Our results indicate that T-duality extends to
such singular fibrations, with the benefit of enlarging the possibilities for topology change
via T-duality beyond those discussed in the context of principal torus bundles over smooth
manifolds, e.g. in [22, 23].

Next, we consider these backgrounds in the context of type II string theory compactifi-
cation and find that compactification on X5 is T-dual to compactification on T4/G× S1

equipped with a topologically non-trivial flat B-field gerbe. This duality belongs to a
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class of T-dual theories, where the geometry is a (possibly singular) principal circle bundle
Pg → M , while the choice of gerbe is encoded in a second circle bundle Pb → M . The
product bundle Pg ×M Pb →M is then the correspondence space [22] for T-duality along
the circle: the action of T-duality exchanges the two circle bundles, so that the geometric
fibration data is exchanged with the flat gerbe data.

At the level of the orbifold CFT this illustrates, along the lines described in [24], that
the gerbe data gives a natural geometric meaning to certain shift orbifold phases. One
example of such phases is a choice of discrete torsion [25, 26], but these are absent in all of
our examples. As emphasized in [24], the gerbe encodes more than the choice of discrete
torsion, and our work explores the physical consequences of this additional data.

The plan of the rest of the paper is as follows. We begin with a discussion of the
geometry of X5 and construct the massless spectrum for heterotic compactification on X5
from a spacetime point of view. Next we study of the details of the heterotic worldsheet
and the duality between compactification on X5 and that on T4/G × S1. We then turn
to the type II string, where we study principal circle bundles over T4/G with flat gerbe
structure and explore T-dualities between them. We end with a summary and discussion of
future directions. Several technical discussions are given in the appendix.

2 Compactification on flat manifolds: a spacetime perspective

2.1 Essentials of compact flat geometries

A compact flat Riemannian manifold X of dimension n has Rn as its universal cover, so that
X = Rn/π1, where π1 is the fundamental group of X. It is a classic result (reviewed in, for
example, [28]) that π1 is a discrete and co-compact2 subgroup of Rn o O(n), the isometry
group of Rn, with the following properties: π1 is discrete, contains no finite subgroups, and
it contains a free abelian normal subgroup N ⊂ π1 generated by n linearly independent
translations, and G = π1/N is a finite group. G is the Riemannian holonomy group of X,
and it can be shown that every finite group G can be the holonomy of some compact flat
Riemannian manifold [29].3

Since π1 is a crystallographic group, it is possible to classify all compact flat manifolds
of dimension n. Reviews of the relevant computational tools and algorithms are given
in [5, 30]. As one might expect, the classification becomes fairly elaborate for large n, and,
as far as we are aware, has only been carried out for n ≤ 6. Fortunately, for our purposes
of finding supersymmetric compactifications, we need only consider a much smaller class
of manifolds.

The reason for the restriction is that while the spaces are flat, they in general have
non-trivial characteristic classes despite vanishing curvature. There are classification results,
complete through dimension n ≤ 6, of compact flat spin manifolds [31], as well as of compact

2A subgroup H ⊂ G of a Hausdorff topological group G is said to be co-compact if the coset G/H is
compact in the quotient topology.

3It is also possible to show that a finitely generated group π1 is the fundamental group of some compact
flat manifold if and only if π1 has no finite subgroups, and there is a normal subgroup N ⊂ π1 that is
maximal abelian such that π1/N is a finite group.
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flat Kähler manifolds [32], which are defined to be manifolds with π1 ⊂ Cn/2 o U(n/2).
The latter work also characterizes the compact flat Kähler manifolds with holonomy
G ⊂ SU(n/2), i.e. the flat Calabi-Yau manifolds.4 The results of the classification include
the following:

1. for n = 4 there are 8 topological types of Kähler manifolds, with G ∈ {1,Z2,Z3,Z4,Z6},
and the only Calabi-Yau manifold is T4 with G = 1;

2. for n = 6 there are 174 topological types of flat compact Kähler manifolds, and 13
types of Calabi-Yau manifolds with G ∈ {1,Z2,Z3,Z4,Z6,Z2 × Z2, D8}, where D8 is
the dihedral group of order 8.

The Hodge numbers of these manifolds are also determined in [32]. For example, the authors
obtain the following result for Calabi-Yau X with b1(X) = 2:

G 1 Z2 Z3 Z4 Z6
#of types 1 2 2 2 1

(2.1)

Each of these manifolds can be used as a background for supersymmetric compactifications
of string theory or supergravity, and although the class is not large, the relative simplicity
makes such compactifications interesting, especially, as we will see, in the realm of stringy
geometry where the volume of some cycle becomes comparable to the string scale.

From the classification results we see that n = 6 is the smallest dimension with
non-trivial compact flat Calabi-Yau manifolds, and these have a natural sub-class, where
X is isometric to X = X5 × S1, and X5 is compact flat manifold with G = ZN for
N ∈ {1, 2, 3, 4, 6}. It is easy to construct examples of such X5, as we now discuss.

Let (z1, z2; θ) denote coordinates on T2 × T2 × S1 with the familiar identifications

(z1, z2; θ) ∼ (z1 +m1 + n1τ1, z2 +m2 + n2τ2, θ + 2πm3) (2.2)

for m1,2,3, n1,2 ∈ Z, and with τ1, τ2 being the complex structure parameters for the T2

factors. Every T2 has a reflection symmetry Z2 : z 7→ −z; when τ = i the T2 admits a Z4
action Z4 : z 7→ iz, and when τ = e2πi/6 there is a Z3 action z 7→ e2πi/3z. In this latter case
there is also a Z6 = Z2 × Z3 action z 7→ e2πi/6z. Using these symmetries (after tuning the
τi appropriately), we obtain some familiar ZN quotients of T4 that are consistent with its
hyper-Kähler structure:

(z1, z2) 7→ (ζNz1, ζ
−1
N z2) , (2.3)

where ζN = e2πi/N . Of course such a quotient leads to a singular orbifold T4/ZN , and the
corresponding CFTs have been studied extensively in the literature, e.g. [33–35], with a
focus on 6 dimensional heterotic vacua and aspects of string duality. All of these can be
understood as degenerations of a K3 surface [36, 37], giving a connection between these
orbifold CFTs and compactification on a smooth large radius geometry.

4In this definition of “Calabi-Yau” we allow for both G ⊂ SU(n/2− 1) and b1(X) 6= 0 — properties that
are often explicitly excluded by definition in discussion of Calabi-Yau 3-folds.
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Now it is a simple matter to construct our smooth X5. For each N ∈ {2, 3, 4, 6} (and
tuning τi appropriately for N > 2), we take the G = ZN action on X5 with generator

g(z1, z2, θ) =
(
ζNz1, ζ

−1
N z2, θ + 2π

N

)
. (2.4)

The Calabi-Yau flat geometries naturally fit into a larger class of spaces, the super-
symmetric orbifolds of T6 classified in [5]. The authors of [5] provided us with the list
of orbifolds that preserve N = 2 spacetime supersymmetry, and when we further restrict
attention to freely-acting orbifolds that leave one S1 invariant, we recover exactly the class
of geometries just described, and these geometries will play a key role in our investigation.

Two fibration structures. There are two useful perspectives on the geometry of X5 as
a fibration. First, we can think of the projection µcir : X5 → S1, with µcir(z1, z2, θ) = Nθ,
where the fiber µ−1

cir (ϕ) ' T4, and the fibers µ−1
cir (ϕ) and µ−1

cir (ϕ+ 2π) are related by the ZN
action on T4. This structure will be useful when we think of compactification on X5 in two
steps: first, we compactify string theory on T4, and then we compactify the resulting theory
further on an additional circle with a non-trivial holonomy for the G = ZN action.

Second, we have the projection µorb : X5 → T4/ZN , where the map simply forgets
the last coordinate and maps the torus coordinates to the corresponding equivalence class:
µorb(z1, z2, θ) = [z1, z2]. In this case, the fiber is a circle, but with an identification that
jumps at the fixed points of the T4/ZN orbifold: for a generic point in the base we identify
θ ∼ θ + 2π, while at each fixed point p ∈ T4/ZN we have θ ∼ θ + 2π/n(p), where n(p) is
the order of the stabilizer subgroup of the point p.

2.2 Heterotic compactification to six dimensions: set up

We begin our study of heterotic compactification on X5 with a review of the well-known
construction of heterotic theory compactified on T4. This compactification yields a d =
6 (1,1) supergravity theory with massless content consisting of the (1,1) supergravity
multiplet and a number of vector multiplets. Each vector multiplet contains 4 scalars that
transform in the adjoint of the gauge algebra. At a generic point in the scalar moduli space
Gr(20, 4)/O(Γ20,4) the gauge algebra is u(1)⊕20.5 At special points the gauge algebra can
be enhanced, and the enhanced symmetries and the corresponding loci in the moduli space
have been recently studied in [7]. For our purposes it will be sufficient to consider the
locus where the gauge algebra is e8⊕ u(1)⊕4⊕ e8: this locus has a standard RNS worldsheet
realization, which will make it easy to describe the constructions we wish to consider. In
this section we will summarize some of the relevant details, and in the next section we will
apply them to some classic examples.

We work in light-cone gauge on a Euclidean worldsheet with coordinates z, z, with
worldsheet supersymmetry on the right (anti-holomorphic) side of the string. In addition to
the degrees of freedom for the Minkowski directions, the internal CFT consists of the scalar
fields Φi(z, z) and their right-moving Majorana-Weyl superpartners, 8 left-moving Weyl
fermions, and a level 1 e8 current algebra for the “hidden E8” that will play a spectator
role in our analysis.

5Here Gr(20, 4) is the coset SO(20, 4,R)/ SO(20,R) × SO(4,R), and O(Γ20,4) is the group of lattice
isomorphisms of the even self-dual lattice Γ20,4, often written as O(20, 4,Z).
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We find it convenient to break up the left-moving fermions into 2 Weyl fermions γ1,2(z)
and their conjugates γ1,2(z), and 6 more Weyl fermions ξI(z), ξI(z); similarly, we organize
the right-moving fermions into a Weyl pair ψ1,2(z), with conjugates ψ1,2(z). This gives a
decomposition of the corresponding level 1 current algebras

so(16)L ⊃ so(12)L ⊕ su(2)L ⊕ su(2)′L , so(4)R ' su(2)R ⊕ su(2)′R . (2.5)

The fermions transform in the following representations. On the holomorphic side

ξ ∈ (12,1,1) , γ, γ ∈ (1,2,2) , (2.6)

while on the anti-holomorphic side we have ψ, ψ ∈ (2,2) of su(2)R ⊕ su(2)′R.
This structure is a special case of a (0,4) SCFT necessary [38] for the preservation of

(1,0) supersymmetry in R1,5. As our ultimate aim will to study compactifications with 8
supercharges, we will now describe some features in this more general setting, focusing on
the identification of states in the worldsheet theory with massless fermions in spacetime.

The connection is established through the current algebra. The key ingredient is su(2)R,
which we identify as the R-symmetry of the N=4 superconformal algebra (SCA), and it
contains u(1)R, an R-symmetry for an N=2 subalgebra of the N=4 SCA with current J
and operator charges labeled by q. We will also choose u(1)L ⊂ su(2)L with current J and
charges q to label our states, and we similarly define the currents and charges J ′, q′ for
u(1)′L ⊂ su(2)′L and J ′, q′ for u(1)′R ⊂ su(2)′R. The conserved charges J0 and J0 associated
to u(1)L ⊕ u(1)R give simple expressions for the internal left- and right-fermion numbers
that are necessary for the GSO projections: we have (−1)Fγ = eiπJ0 , while (−1)Fψ = eiπJ0 .

We can now use the familiar rules — see e.g. [39, 40]—to identify worldsheet states
with massless multiplets in spacetime.

1. The identity operator of the internal CFT gives rise to a (1,0) supergravity multiplet
and a (1,0) tensor multiplet.6

2. The spacetime gauge bosons arise in two ways: every GSO-even holomorphic current
gives rise to a spacetime gauge boson, and every anti-holomorphic operator with
weight h = 1/2 (i.e. a free fermion) gives rise to an abelian gauge boson. The latter,
when present, complete the (1,0) gravity multiplet and the (1,0) tensor multiplet to a
(1,1) supergravity multiplet, while each of the former corresponds to a (1,0) vector
multiplet.
In all of our examples the holomorphic current algebra will be of the form e8⊕ u(1)⊕k⊕
g, and in most of our examples g ⊃ e7⊕ u(1)′L. Note that the “linearly realized”
currents of so(12) ⊕ su(2)L are completed to e7 by additional currents from the
left-moving Ramond sector in the (32,2) representation.
In T4 compactification the u(1)′L current is enhanced to su(2)′L, and there are h = 1/2
holomorphic operators transforming in 2 of su(2)′L, and additional currents

(32,2,1)⊕ (12,2,1)⊕ (32′,1,2)⊕ (12,1,2) , (2.7)

that complete g to g = e8.
6Details of the multiplet structure can be found in the recent pedagogical review [41].
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Finally, the u(1)⊕k factor arises from additional currents neutral with respect to g.
For example in T4 compactification, k = 4 with the currents i∂Φi.

3. The remaining spacetime massless fields reside in (1,0) 1
2 -hypermultiplets. These

are in one to one correspondence with the NS chiral primary states with q = 1
and holomorphic weight h = 1. Their gauge transformations are determined by
the left-moving sector: each worldsheet state with q = 0 leads to an e7-neutral 1

2 -
hypermultiplet, while each worldsheet state with q = 1 leads to a state transforming
in 56 of e7.

Let us apply these rules to the T4 example, focusing on the (1,0) vector and hypermultiplets.
The R-charge assignments to the right-moving fermions are

ψ1 ψ2 ψ
1

ψ
2

q +1 +1 −1 −1
q′ +1 −1 −1 +1

(2.8)

We can easily see that the spectrum is consistent with (1,1) spacetime supersymmetry:
for every holomorphic current J we have the operators Jψ1 and Jψ2 that together give
rise to a (1,0) hypermultiplet transforming in the same way as the current J under the
gauge symmetry.

2.3 T4/ZN compactifications

We now turn our attention to (1,0) theories that are built by considering symmetric
orbifolds T4/ZN . In each case, we take the ZN action to be just the action described
in (2.3), extending it to act on the worldsheet fermions in the standard left-right–symmetric
fashion: the generator g of the ZN action is set to be

g = exp
[

2πi
N J ′0

]
︸ ︷︷ ︸

=gγ

exp
[

2πi
N J

′
0)
]

︸ ︷︷ ︸
=gψ

. (2.9)

The ZN action is diagonally embedded in U(1)′L×U(1)′R. For N = 2 the action is contained
in the center of each corresponding SU(2) factor, so that the su(2)′L ⊕ su(2)′R algebra is
left invariant, while for N > 2 the invariant subalgebra is u(1)′L ⊕ u(1)′R. We are of course
by no means the first to consider these orbifolds — see, for example [33–35, 42, 43] and
references therein for earlier work and some asymmetric generalizations. However, we will
recall some of the details and give a view that will be useful for what follows.

Untwisted massless states. To describe the untwisted massless states, we just need
to apply the projection onto ZN -invariant states. We first observe that for all N > 0
the special anti-holomorphic states with h = 1/2 are projected out, and therefore the
spacetime supersymmetry is reduced. However, since the projection keeps the su(2)R
current algebra and leaves the vacuum of the internal theory invariant, we are guaranteed
(1,0) supersymmetry. This makes the preceding discussion of the multiplet structure
well-adapted to understand the projection.
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The invariant content of the (1,1) supergravity multiplet is exactly the (1,0) supergravity
and tensor multiplets. To analyze the invariant content of the (1,1) vector multiplets, we
use the decomposition

(1,1) vector = (1,0) vector⊕ (1,0) hyper . (2.10)

The ZN action on each multiplet is a combination of an SU(2)′L gauge symmetry, an
SU(2)′R R-symmetry, as well as Gab ' ZN , which acts on the abelian (1,1) vector multiplets
corresponding to the u(1)⊕4 factor according to (2.3). To describe that action, we package
the 4 vector multiplets into two complex combinations that transform according to

1ζN ⊕ 1ζ−1
N

(2.11)

under the action of Gab.
Consider first the (1,1) vector multiplets corresponding to the hidden e8 symmetry.

While the (1,0) vector submultiplets of these are left invariant, every 1
2 -hyper is projected

out, so we are left with just the (1, 0) vector multiples of e8.
Next, we examine the (1, 1) abelian vectors: now each (1, 0) vector is projected out,

but because of the additional action in SU(2)′R, the (1, 0) hypermultiplet content is more
interesting: under SU(2)′R ×Gab the 1

2 -hypermultiplets transform as

2ζN ⊕ 2ζ−1
N
, (2.12)

or decomposing further with respect to U(1)′R, as

11,ζN ⊕ 1−1,ζN ⊕ 11,ζ−1
N
⊕ 1−1,ζ−1

N
. (2.13)

Thus, if N = 2, then all of these are invariant, while if N > 2 half of these are invariant.
So, we find 4 neutral hypers for N = 2 and 2 neutral hypers for N > 2.

To discuss the e8 vectors, we decompose

e8 ⊃ e7⊕ u(1)′L
248 = 1330 ⊕ 10 ⊕ 56+1 ⊕ 56−1 ⊕ 1+2 ⊕ 1−2 . (2.14)

From this we see that for N > 2 the invariant (1, 0) vectors transform in the adjoint of
e7⊕ u(1)′, while for N = 2 we find the adjoint of e7⊕ su(2)′L. To obtain the invariant
1
2 -hypers, we tensor this with 2 of su(2)′R, or equivalently with 1+1 ⊕ 1−1 of u(1)′R:

248 = 1330,+1 ⊕ 1330,−1 ⊕ 10,+1 ⊕ 10,−1

⊕ 56+1,+1 ⊕ 56+1,−1 ⊕ 56−1,+1 ⊕ 56−1,+1

⊕ 1+2,+1 ⊕ 1+2,−1 ⊕ 1−2,+1 ⊕ 1−2,−1 . (2.15)

The invariant 1
2 -hypers are those with q′ + q′ = 0 mod N . The result is the following

invariant spectrum from the untwisted sector (as promised, we ignore the hidden e8):

ZN gauge symmetry hypers
Z2 e7⊕ su(2)′L 1⊕4

0 ⊕ (56,2)
Z3 e7⊕ u(1)′L 1⊕2

0 ⊕ 12 ⊕ 561

Z4,6 e7⊕ u(1)′L 1⊕2
0 ⊕ 561 (2.16)
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Twisted sector contributions. A simple approach to work out the twisted sector
contributions is to model each fixed point of the orbifold by C2/ZN and use free field
techniques to calculate the quantum numbers of states in the twisted sector. It is then not
too difficult to read off the twisted sector states that yield spacetime massless states. We
will not have need for details of the construction, so we will simply quote the results from
the literature [33, 35]. The twisted sectors make no contribution to the gauge symmetry,
but they do produce additional hypermultiplets arranged as follows:

ZN twisted hypers

Z2 (2,1)⊕32 ⊕ (1,56)⊕8

Z3 56⊕9
−1/3 ⊕ 1⊕45

2/3 ⊕ 1⊕18
−4/3

Z4 56⊕4
−1/2 ⊕ 1⊕8

3/2 ⊕ 1⊕24
1/2 ⊕ 56⊕5

0 ⊕ 1⊕32
1

Z6 1⊕8
1/3 ⊕ 1⊕2

−5/3 ⊕ 56−2/3 ⊕ 1⊕22
2/3 ⊕ 1⊕10

−4/3 ⊕ 56⊕5
−1/3 ⊕ 1⊕22

1 ⊕ 56⊕3
0

The reader can check that in all cases the six-dimensional anomaly cancelation condition
Nhyper −Nvector = 244 is satisfied.

Each of these theories has a Higgs branch: we can Higgs the su(2)′L for N = 2 and the
u(1)′L for N > 2 to obtain a spectrum with gauge algebra e7 and hypermultiplets in (56)⊕10

— which is exactly the massless spectrum of heterotic compactification on K3 with standard
embedding. We expect this result since each of these singularities is a degeneration limit of
the K3 surface.7

2.4 Compactification on T4/ZN × S1

Having obtained the d = 6 theory, it is a simple matter to compactify further on a circle.
If we treat the circle as completely decoupled, then the massless spectrum is obtained by
standard Kaluza-Klein reduction [41]:

1. the reduction of the (1,0) supergravity and tensor multiplets leads to a (minimal)
d = 5 supergravity multiplet and 2 abelian vector multiplets;8

2. each d = 6 vector multiplet in representation r of the gauge algebra reduces to a d = 5
vector multiplet, which now has a real scalar transforming in the same representation;

3. similarly, each d = 6 hypermultiplet reduces to a d = 5 hypermultiplet in the same
representation of the gauge algebra.

All in all, the gauge algebra is now u(1)⊕2 ⊕ e8⊕ g, where the first factor is due to the
vector multiplets obtained from the reduction of supergravity and tensor (1,0) multiplets,
and the hypermultiplet spectrum is unmodified.

The new feature in d = 5 is the existence of a Coulomb branch. Giving a generic set of
expectation values to the scalars in the vector multiplets breaks the gauge group to u(1)⊕18

7The limit in the non-linear sigma model’s moduli space is subtle due to a choice of B-field on the
collapsing two-cycles of the degenerating K3 surface: see [36, 37] for further discussion.

8One of these is obtained by dualizing a d = 5 abelian tensor multiplet.
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and leaves 4 neutral hypermultiplets in the Z2 orbifold and just 2 neutral hypermultiplets
for Z3,4,6. Observing that under e7 ⊃ e6⊕ u(1)

56 = 27+1 ⊕ 27−1 ⊕ 1+3 ⊕ 1−3 , (2.17)

we see that for the Z3,4,6 compactifications there is a Coulomb branch with unbroken
g = u(1)2 ⊕ e8⊕ e6⊕ u(1)′ where all of the twisted sector matter is lifted, and there are 2
neural massless hypermultiplets. A special feature of the Z3 example is that it is possible
to lift all of the twisted sector states by just going on the u(1)′ Coulomb branch, where the
full gauge algebra g is preserved.

2.5 Compactification on X5

Having reviewed the well-known compactifications on T4/ZN × S1, we now consider com-
pactification on X5. From the worldsheet point of view, the new ingredient relative to the
preceding discussion is a ZN shift orbifold of the circle. By itself this theory is easy to
understand: starting with a CFT for a circle of radius r, the shift orbifold is a CFT of
radius r/N [44]. In the full quotient CFT for X5 = (T4 × S1)/ZN , we just need to combine
the twisted sectors of the T4/ZN and S1/ZN CFTs and impose the orbifold projection.
With a view to later developments, we will first describe the construction of the S1 shift
orbifold in some detail.

The ZN shift orbifold of the circle. Consider a compact c = 1 boson at a generic
radius r. Splitting the worldsheet field Φ(z, z) into left- and right-moving components, we
have the defining OPEs

ΦL(z)ΦL(w) ∼ − 1
r2 log(z − w) , ΦR(z)ΦR(w) ∼ − 1

r2 log(z − w) . (2.18)

The theory enjoys a Kac-Moody U(1)shift
L ×U(1)shift

R symmetry with currents

J sh
L = ir∂ΦL , J sh

R = ir∂̄ΦR , (2.19)

and the (Kac-Moody) primary states |p〉 are labeled by the momentum and winding modes
n,w ∈ Z. More precisely,

p = we+ ne∗ ∈ Γ1,1 , (2.20)

with Γ1,1 ⊂ R1,1 the even self-dual lattice spanned by two lattice vectors e and e∗ satisfying
e.e = e∗.e∗ = 0 and e.e∗ = 1. Here a.b denotes the inner product on R1,1 induced by the
bilinear pairing on the lattice. Note that for our discussions of lattices here and in what
follows, we will take RnL,nR to have Lorentzian metric

η =
(
−1nL 0

0 +1nR

)
. (2.21)

Our theory has a one-dimensional moduli space, which we can think of as a specification of
a spacelike 1-plane Π ⊂ R1,1. We can always choose a basis vector for Π

π = e+ r2e∗ , (2.22)

so that π̃ = e− r2e∗ spans the orthogonal complement Π⊥.
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With that preparation, we write the operator corresponding to the state |p〉 as

Vp = : C(p) exp
[
i√
2(π.p)ΦR(z) + i√

2(π̃.p)ΦL(z)
]

: . (2.23)

C(p) is an operator constructed from the momentum zero modes that we will discuss
further below; this “cocycle operator” is necessary to ensure proper commutation relations
of the vertex operators. Using the OPEs, it is now straightforward to see that Vp carries
U(1)shift

L ×U(1)shift
R charges

qsh
L = π̃.p

r
√

2
, qsh

R = π.p

r
√

2
(2.24)

and weights

hL = 1
2(qsh

L )2 = 1
4r2

(
n− wr2

)2
, hR = 1

2(qsh
R )2 = 1

4r2

(
n+ wr2

)2
. (2.25)

The spin of the operator is

s(p) = hL − hR = −1
2p.p = −nw . (2.26)

Note that in these conventions the self-dual radius is r = 1, with the T-duality map being
r 7→ 1/r and (n,w) 7→ (w, n).

With this preparation, we define the action of the shift symmetry Zshift
N , taking its

generator gsh to act as

gsh|p〉 = e2πin/N |p〉 . (2.27)

Since the momentum quantum number n is conserved, this is clearly a symmetry of the spec-
trum, of the OPE, and of the correlation functions. Moreover, we can represent this action
in terms of the conserved shift currents (or, rather, the corresponding conserved charges):

gsh = e
2πi
N
Q , (2.28)

with the charge Q given by

Q = r√
2

(
J sh
L,0 + J sh

R,0

)
. (2.29)

The orbifold projection is then onto states with Q ∈ NZ.
This is a key simplification in the orbifold analysis, since it allows us to directly construct

the twisted Hilbert space — see [40] for a recent pedagogical discussion.9 To carry this out,
we find a twist field of the form

Σk(z, z) = exp
[
−i r2
√

2τkΦR − i r
2
√

2 τ̃kΦL

]
, (2.30)

where the parameters τk and τ̃k are chosen so that the OPE of Vp(z, z) and Σk(z, z) has
the correct monodromy, i.e. so that under a continuous rotation z → eiθz, we obtain

Vp(e2πiz, e−2πiz)Σk(0) = e
2πikn
N Vp(z, z)Σk(0) . (2.31)

9A recent discussion of the more general situation is given in [45].
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The field Σ then gives the k-th twisted ground state |0; k〉 = limz,z→0 Σ(z, z)|0〉, and the
full Hilbert space in the k-th twisted sector is constructed from |p; k〉 — obtained by acting
further with the Vp on the |0; k〉 — by acting with all possible oscillators.

In our example a quick computation shows that choosing

τk = − k
N , τ̃k = k

N (2.32)

produces the correct monodromy. Moreover, it is straightforward to read off the shifts in
the weights and charges due to the twist, i.e. the weights and charges of the state |p; k〉:

qsh
L (p; k) = π̃.p− τ̃kr2

r
√

2
, qsh

R (p; k) = π.p− τkr2

r
√

2
, (2.33)

and the weights are

hL(p; k) = 1
2(qsh

L (p; k))2 , hR(p; k) = 1
2(qsh

R (p; k))2 . (2.34)

Not only do we know the twisted Hilbert spaces, but we also know how to implement the
projection onto invariant states: we just need to project onto states with

Q(p; k) = r√
2

(
qsh
L (p; k) + qsh

R (p; k)
)
∈ NZ . (2.35)

For our circle shift orbifold it is easy to check that Q(p; k) = Q(p), and also that the
spin satisfies

s(p; k) = hL(p; k)− hR(p; k) = s(p)− k

N
Q(p; k) , (2.36)

so that ZN -invariant states are guaranteed to have integer spin.
Carrying out the construction for the N − 1 twisted sectors, we find the expected

structure: the projection sets the momentum modes to be valued in NZ, as is consistent
with a circle of radius r/N , while the k-th twisted sector adds in the winding modes with
w ∈ k

N + Z, which are the “extra” winding modes for a circle of radius r/N relative to that
of radius r.

The X5 orbifold. Having understood the shift orbifold in detail, we could easily construct
the full partition function for the X5 CFT. The only modification to our previous discussion
of the T4/ZN compactification is to treat the right-moving superpartner of Φ(z, z) as part of
the internal CFT rather than belonging to the CFT describing the R1,5 degrees of freedom.10

If our interest is in the massless spectrum, then the effect of the extra shift at generic
radius is simple to understand: the untwisted massless states are exactly those of the
T4/ZN × S1 CFT, while all of the twisted sector states are massive. This observation
was the starting point for our study, since it suggests a close relationship between the
two theories.

10There are some subtleties in applying the usual RNS rules in odd-dimensional compactification, but
they can be easily avoided by introducing an additional spectator circle with its superpartner; see e.g. [46].
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A spacetime picture. There is another way to think about the X5 compactification,
inspired by the µcir fibration described in section 2.1

T4 X5

S1

µcir .

We start in the d = 6 (1,1) obtained by heterotic compactification on T4. The worldsheet
symmetries we identified in our discussion of the T4/ZN orbifold are interpreted as spacetime
gauge symmetries, and in particular there is a discrete gauge symmetry G = ZN which is
a subgroup

G ⊂ Gab × SU(2)′L × SU(2)′R , (2.37)

the latter action being part of the spacetime R-symmetry group of the d = 6 (1,1) theory.
Given the presence of this discrete spacetime gauge symmetry, when we compactify the
theory on a circle with coordinate θ ∼ θ + 2π, we can choose to turn on a holonomy for G.
That is, we modify the periodicity conditions on the fields as

φ(x, θ + 2π) = g · φ(x, θ) . (2.38)

The holonomy will have the effect that only G-invariant fields will have zero modes in the θ
expansion, so that the low energy theory obtained in this way will have the same massless
spectrum as compactification on X5. Because G involves an SU(2)′R action, half of the
gravitinos will be lifted in the process, reducing supersymmetry from 16 to 8 supercharges.

Our point of view is that the orbifold construction of the heterotic string on X5 is a
UV completion of circle compactification of the spacetime theory with a G-holonomy. Note
we are not suggesting a spacetime interpretation relating compactification based on a CFT
to that based on the orbifold CFT. Instead, the relationship is between a compactification
based on a freely acting orbifold and a circle compactification of a theory from one dimension
higher. In the appendix we present a toy bosonic string model illustrating this structure for
the Z2 quotient.

It is clear that the existence of a UV completion is a non-trivial condition because not
every global discrete symmetry of the heterotic CFT leads to a modular-invariant orbifold,
yet we expect such symmetries to still correspond to gauge symmetries in the spacetime
theory. Thus, there should in general be obstructions to turning on non-trivial holonomy
for a discrete spacetime gauge symmetry G. We hope to return to a study of these in
the future.

3 The heterotic worldsheet and duality

In the previous section we presented two classes of d = 5 heterotic compactifications that
preserve 8 supercharges. While we saw that their spectra are closely related — in fact
identical when restricted to the massless untwisted states — in general the theories appear
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to be distinct. As a stark difference we noted that T4/ZN × S1 compactifications can be
deformed to K3× S1 by going on the Higgs branch, while no such Higgs branch appears to
be present in the X5 compactifications.

Nevertheless, we will now show that by enlarging the moduli space to include Wilson
lines we can establish an isomorphism between these classes of theories. Thus, not only are
these compactifications connected in moduli space, they are in fact identical.

3.1 Bosonic construction

Turning on Wilson line parameters is best described in the bosonized construction of the
heterotic worldsheet CFT on Td [47, 48]. Grouping the left-moving fermions into 16 Weyl
fermions ξa, ξa, so that the currents Ja = : ξaξa : generate a Cartan algebra of e8⊕ e8, we
bosonize these as Ja = i∂X aL. The bosonic OPEs now depend on the metric gij on Td:

Φi
L(z)Φj

L(w) ∼ −gij log(z − w) , Φi
R(z)Φj

R(w) ∼ −gij log(z − w) ,
X aL(z)X bL(w) ∼ −δab log(z − w) . (3.1)

The vertex operators are labeled by p ∈ Γd+16,d ⊂ Rd+16,d. The lattice isomorphism
Γd+16,d ' (Γ1,1)5 + Γ8 + Γ8 — see e.g. [7, 49] for details of the isomorphism relevant to the
relation between the E8×E8 and Spin(32)/Z2 heterotic strings — induces an isomorphism
Rd+16,d ' Rd,d ⊕ R8 ⊕ R8, and we can use this to pick a basis that isometrically respects
this splitting. For the Rd,d factor we choose lattice vectors ei, e∗i satisfying

ei.e
∗j = δji , ei.ej = 0 , e∗i.e∗j = 0 , (3.2)

while for each of the Γ8 factors we choose the set of simple roots αI , I = 1, . . . , 8, of e8, with
αI ·αJ the Killing metric, taken to be negative in our conventions. The αI are encoded in
the Dynkin diagram written in terms of the standard orthonormal basis for R8, denoted by
va, with a = 1, . . . , 8 and va · vb = −δab:

1
v1 − v2

2
v2 − v3

3
v3 − v4

4
v4 − v5

5
v5 − v6

6
v6 − v7

7 −v1 − v2

8 1
2 (v1 + · · · + v8)

γ
v7 − v8

To accommodate the second (our hidden) e8 factor, we will let the indices I, a run through
9, . . . , 16 as well, but this will play no role in our analysis.

With the lattice set up complete, a point in the Narain moduli space corresponds to
a choice of spacelike d-plane Π spanned by the vectors πi, which can be taken to be of
the form11

πi = ei + (gij + bij − 1
2Ai ·Aj)e

∗j +Ai , Ai = AIiαI = Aai va . (3.3)
11We follow, with some small adjustments, the presentation given in [37].
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In addition to the torus metric gij , this encodes the choice of constant B-field bij and Wilson
lines Aai valued the Cartan subalgebra of e8.

The spacelike vectors satisfy πi.πj = 2gij , and it is easy to find a basis for the orthogonal
complement Π⊥, a timelike (d+ 16)-plane. We take it to be spanned by

π̃i = πi − 2gije∗j , π̃a = va +Aai e
∗i . (3.4)

These two sets of vectors are orthogonal to the πi and each other, and satisfy π̃i.π̃j = −2gij
and π̃a.π̃b = −δab. Extending our discussion of the compact boson, we arrive at the
vertex operators

Vp = : C(p) exp
[
i√
2(πi.p)Φi

R(z) + i√
2(π̃i.p)Φi

L(z) + i(π̃a.p)X aL(z)
]

: (3.5)

for all

p = wiei + nie
∗i + λ ∈ Γ16+d,d , λ ∈ Γ8 + Γ8 . (3.6)

The weights of these operators are given by a generalization of (2.25):

hR(p) = 1
4(πi.p)gij(πj .p) , hL(p) = 1

4(π̃i.p)gij(π̃j .p) +
∑
a

1
2(π̃a.p)2 , (3.7)

and the spin satisfies

s(p) = hL(p)− hR(p) = −1
2p.p = −niwi − 1

2λ · λ . (3.8)

Since Γ8 is an even lattice the last term is an integer for all λ, so that s(p) ∈ Z.
Finally, to complete the heterotic construction we need to add the right-moving

superpartners of the Φi, the fermions ψi(z). For all of our applications we will be able
to group these into the two Weyl fermions ψ1,2, ψ1,2 for the T4 directions, and the extra
Majorana-Weyl ψ5 for the additional circle direction.

3.2 Two orbifolds

Starting with this presentation of the heterotic string on T5, we now consider the special
locus where the T4 factor admits a G = ZN symmetry with generator g. The ZN symmetry
leads to significant simplification in the CFT moduli: both gi5 and bi5 must be zero for
i 6= 5, and the Ai 6=5 may be set to zero as well.12

To understand how G acts on the states, we reconsider the actions described in our
RNS discussion. These were the geometric orbifold action on T4, accompanied by its
supersymmetric extension to the right-moving fermions, the translation on S1, and the
action on the left-moving fermions γ1,2. We will now translate each of these into the
bosonic description.

12Note the Ai 6=5 Wilson lines are not required to be set to zero by our ZN symmetry because there is an
accompanying action on the left-moving fermions, or equivalently on the Xa. In the orbifold theory these
symmetry-preserving Wilson line parameters describe hypermultiplet expectation values.
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First, the geometric action on the T4 bosons induces an action on the associated vectors
~p ∈ Γd,d. If the Φi coordinates transform as

gT · Φi = RijΦj , (3.9)

then

gT · wi = Rijw
j , gT · ni = (R−1)jini . (3.10)

This preserves the spin of every Vp, and, because it is a torus isometry, it preserves the
weights as well. The right-moving fermions also transform accordingly, and as we discussed
around equation (2.9), it is convenient to represent the action by gψ = exp[ 2πi

N J
′
0].

Second, the translation in the circle direction is precisely the shift symmetry gsh
described in section 2.5. It leaves the lattice vectors invariant and acts on states by a
ZN -valued phase.

Finally, we have the action on the γ fermions, represented by gγ = exp[2πi
N J ′0]. This is

the only one that is not quite obvious in the bosonized description, but because we can
write it in terms of the current J ′, finding the corresponding action on the X a is not too
difficult. Taking a look at our Dynkin diagram, we see that

J ′ = i∂X 7 − i∂X 8 , (3.11)

i.e. it is the current that corresponds to the extended root of the diagram. Thus, gγ turns
out to be another shift action in the bosonized description:

gγ |p〉 = e
2πi
N (v7−v8).p|p〉 . (3.12)

We can see this gives the expected structure for the unbroken symmetry with A = 0. In
this case the e8 currents that survive the projection are the Cartan currents i∂X a, as well
as the roots αI orthogonal to v7 − v8. For N > 2 this gives rise to the e7⊕ u(1)′ current
algebra, and in the special case of N = 2 the state corresponding to the v7 − v8 root is left
invariant as well, leading to the u(1)′ → su(2)′ enhancement.

As above, we have two ZN symmetries by which we can orbifold: G, generated by
g = gT gψgγgsh, leads to the X5 orbifold, while G′, generated by g′ = gT gψgγ , produces the
T4/ZN × S1 orbifold.

Both of the symmetries are consistent with turning on a Wilson line A5 along the
shift circle, and by including this degree of freedom, we will demonstrate that, despite
appearances, the two orbifolds are equivalent. We will do this by finding an element t of
the T-duality group O(Γ17,1) ⊂ O(Γ21,5) such that

g′ = t−1gt . (3.13)

To give this construction, we will have to delve a little bit into the structure of the heterotic
T-duality group.
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3.3 Elements of O(Γ17,1)

The T-duality group O(Γ16+d,d) arises from lattice isomorphisms, and each such isomorphism
induces a (possibly trivial) action on the moduli. A discussion of its generators is given
in [7, 50]. In our discussion two elements will play a role: the T-duality transformation
on the 5-th circle, as well as a shift of the Wilson line associated to the circle by a lattice
vector in Γ8.

Typically, the induced action on the moduli is complicated. For example, a T-duality on
a single circle usually involves a non-trivial action on the gij , bij and Ai components [7, 50].
However, since we assume the ZN symmetry, the moduli are restricted, so that we may as
well think of our transformations as living in O(Γ17,1).

A vector in Γ17,1 has the form

p = we+ ne∗ + λ , (3.14)

and using (3.7) with g55 = r2, and A5 = A, we find the weight and spin

hR(p) = 1
4r2 (π.p)2 , s(p) = hL(p)− hR(p) = −1

2p.p = −nw − 1
2λ · λ , (3.15)

with

π.p = n+
(
r2 − 1

2A ·A
)
w +A · λ . (3.16)

The T-duality action on the lattice is simply the exchange (n,w)→ (w, n). Let us call this
action g1(p). Clearly g1(p).g1(p) = p.p for all p, which is necessary and sufficient for g1 to
be a lattice isomorphism. Moreover, we can find an induced action on the moduli (r,A),
so that

(g∗1hR)(p) = hR(g1(p)) : (3.17)

(r′, A′) = g∗1(r,A) , r′ = r

r2 − 1
2A ·A

, A′ = A

r2 − 1
2A ·A

. (3.18)

The lattice vector shift of the Wilson line arises through a more elaborate lattice isomorphism,
depending on a choice of lattice vector ρ ∈ Γ8 + Γ8:

g2(p) = p+
(
ρ · λ− 1

2ρ · ρw
)
e∗ − ρw , (3.19)

or more explicitly,

g2(n,w, λ) =
(
n+ ρ · λ− 1

2ρ · ρw,w, λ− ρw
)
. (3.20)

This action also preserves the lattice since g2(p).g2(p) = p.p , and the induced map on the
moduli is simply

(r′, A′) = g∗2(r,A) = (r,A+ ρ) . (3.21)

Having reviewed the form of these basic maps, we will now use them to construct an
isomorphism between the two orbifold theories, i.e. the compactification on X5 and the
T4/ZN × S1 orbifold.
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3.4 Heterotic isomorphism

Let t = g1g2. We claim that this combination of O(Γ17,1) elements leads to the desired
equivalence (3.13) for an appropriate choice of lattice vector ρ. Since t does not act on the
T4 bosons or right-moving fermions, and our two actions g and g′ act in the same way on
those degrees of freedom, it is sufficient to check the claim for p ∈ Γ17,1.

We set the ρ to be proportional to the root α6 = v6 − v7:

ρ = (1−N)α6 , (3.22)

and we define for convenience γ = v7 − v8. Note that γ · ρ = 1−N . We now compute

t|n,w, λ〉 = |w, n+ ρ · λ− 1
2ρ · ρw, λ− ρw〉 , (3.23)

and therefore

t−1gt|n,w, λ〉 = exp
[

2πi
N (w + γ · (λ− ρw))

]
|n,w, λ〉 = e

2πi
N γ·λ|n,w, λ〉 = g′|n,w, λ〉 .

(3.24)

In the second equality the phase dependence on the winding mode w drops out precisely
because γ · ρ = 1−N . Thus, despite appearances, the two orbifold CFTs are isomorphic!

Special features of N = 3. As we remarked above, the correspondence between the
theories is particularly nice when N = 3, since there it is possible to match the massless
spectra by turning on a single Wilson line for the u(1)′ vector multiplet. We can see these
special features from the point of view of our isomorphism as well. Precisely when N = 3
we can set the Willson line shift to be ρ = γ, and the winding mode will again drop out
from the phase factor.

In this case, then, we can identify the X5 theory with radius r and circle Wilson line
A5 = aγ with the T4/Z3 × S1 theory with radius r′ and circle Wilson line A5 = a′γ via

r = r′

r′2+(a′−1)2 , a = a′−1
r′2+(a′−1)2 . (3.25)

As expected, the duality is a stringy one. For example, setting a′ = 1, which corresponds to
the a = 0 X5 theory analyzed above, we find that a large radius circle on the T4/Z3 × S1

side corresponds to X5 with a small shift circle.
Note that the theory with a′ = 1 is equivalent to a′ = 0 in the T5 theory, but that is

not the case in the orbifold, where instead the equivalence is a′ ∼ a′ + 3. This is closely
related to the appearance of the fractional U(1)′L charges in the twisted sector states, and
it is thus not surprising that such massless states are lifted for a′ = 1.

The a′ = 0 locus is also interesting, since it corresponds to the T4/Z3 × S1 theory with
the massless hypermultiplets coming from the twisted sectors. It would be surprising if we
could identify it in the X5 description at large radius, and indeed this is not so. When
written in terms of the X5 moduli, the a′ = 0 locus corresponds to the semicircle with
r ≥ 0 and

(2r)2 + (1 + 2a)2 = 1 , (3.26)

so that r ≤ 1/2.

– 18 –



J
H
E
P
0
4
(
2
0
2
3
)
0
7
4

3.5 Cocycle subtleties and their resolution

The reader who has made it this far may wonder if we have not introduced more formalism
than we need to describe our results: we have not used the structure of the vertex operators
Vp in any detail, and the operators C(p), which are typically relegated to a last section or
appendix have played no role in our discussion. We will now explain the need for these
terms and point out that in general their presence can lead to subtleties in the analysis
of CFT symmetries. We will also see, however, that in this case we are lucky: all of the
potential subtle factors drop out, and the duality conclusions reached in the previous section
remain unmodified. Nevertheless, since the general observations here may lead to subtleties
in closely related discussions, we will include them. In addition to the standard textbook
references [51, 52], which supply some of the background, our thinking about these issues
was guided by the work [53].

A class of CFT symmetries. We are interested in discussing a class of CFT symmetries
of Narain compactification that are realized as the following G action on the vertex operators.
For every g ∈ G there is a map ϕg : Γ→ Γ and a factor U(g, p) ∈ C such that

g ◦ Vp = U(g, p)Vϕg(p) . (3.27)

Not all CFT symmetries can be realized in this fashion. For example, the SU(2)× SU(2)
symmetries of the compact boson at self-dual radius take a more general form and also mix
the Vp with non-Kac-Moody primary operators such as ∂Φ and ∂̄Φ.

We wish the g-action to be invertible and to be consistent with the OPE, and it must
preserve the weights of the operators. Therefore it must be that for every g the factor
U(g, p) ∈ C∗, and ϕg is a lattice isomorphism. We will insist that the action is unitary,
which means U(g, p) is a pure phase. Since we also want composition to be consistent with
the group product structure, i.e.

(g2g1) ◦ Vp = g2 ◦ (g1 ◦ Vp) , (3.28)

we also learn that the phases must obey

U(g2g1, p) = U(g2, g1(p))U(g1, p) , (3.29)

and similarly the ϕg should satisfy ϕg1g2(p) = ϕg1(ϕg2(p)). We now see that ϕ must be
a map to the group of automorphisms of the lattice, i.e. ϕ : G → O(Γ). The resulting
subgroup of O(Γ)

GΓ ' G/ ker(ϕ) (3.30)

is in general smaller than G: for example, the circle shift symmetry has G = ZN and GΓ = 1.
These are sensible constraints determined by the group structure, but there are further

constraints on the factors U(g, p), and this is where the cocycles make an appearance.
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A look at the cocycles. The factors C(p) are introduced to resolve an issue with
commutation properties of the naive vertex operators Vnaive

p which lack these factors: the
OPE of two such operators has a non-trivial monodromy as we transport one operator
around the other, which leads to

: Vnaive
p1 (−z/2) : : Vnaive

p2 (z/2) : = eiπp1.p2 : Vnaive
p2 (z/2) : : Vnaive

p1 (−z/2) : . (3.31)

Thus, the operators appear to anticommute whenever p1.p2 is odd. To resolve this, the
operators are modified to include the C(p), which are chosen so that

VqCp = ε(q, p)CpVq , CpCq = Cp+q (3.32)

for some phase ε(q, p). Including these factors will remove the unwanted factor eiπp1.p2 if
the phases obey

ε(p2, p1) = (−1)p1.p2ε(p1, p2) . (3.33)

Associativity of the OPE places further non-trivial conditions on the phases:

ε(p1, p3)ε(p2, p3) = ε(p1 + p2, p3) , (3.34)

and

ε(p1, p2)ε(p1 + p2, p3) = ε(p1, p2 + p3)ε(p2, p3) . (3.35)

The second of these justifies the name of cocycle, i.e. ε ∈ H2(Γ,U(1)). Consider the group
homomorphisms Γ× Γ→ U(1), denoted by c(p1, p2). The coboundary map to the group of
homomorphisms Γ× Γ× Γ→ U(1) is taken to be

δ32c(p1, p2, p3) = c(p2, p3)
c(p1 + p2, p3)

c(p1, p2 + p3)
c(p1, p2) . (3.36)

Similarly, starting with homomorphisms Γ→ U(1) denoted by f(p), we have

δ21f(p1, p2) = f(p1)f(p2)
f(p1 + p2) , (3.37)

and the reader can check δ32(δ21f) = 1. The condition (3.35) is the statement that
δ32ε = 1, i.e. that ε is a cocycle that defines a class in H2(Γ,U(1)). On the other hand, the
condition (3.33) shows that ε(p1, p2) cannot be a coboundary.

As shown in the references [51–53], it is possible to choose the C(p) so that ε take the
following form:

ε(p1, p2) = exp
[
iπ
2 (n1iw

i
2 − wi1n2i) + iπΩ(λ1, λ2)

]
, (3.38)

where the bilinear antisymmetric form Ω(λ1, λ2) is obtained by writing λ1,2 = λI1,2αI in
terms of the simple roots and then setting

Ω(λ1, λ2) = 1
2
∑
I>J

(
λI1λ

J
2 − λI2λJ1

)
αI ·αJ . (3.39)
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Cocycles and symmetry phases. Finally we come to our key point: the cocycle factors
and the phases U(g, p) are intertwined, and the consistency of the OPE with the symmetry
action, i.e.

: g ◦ Vp(z1) : : g ◦ Vq(z2) := g ◦ ( : Vp(z1) : : Vq(z2) : ) (3.40)

require the phase factors to obey [53]

U(g, p+ q)
U(g, p)U(g, q) = ε(ϕg(p), ϕg(q))

ε(p, q) . (3.41)

There are two ways to read this equation. On one hand, it shows that the ratio of
cocycles ε(ϕg(p),ϕg(q))

ε(p,q) is a coboundary, and U(g, p) is the trivializing cycle. On the other
hand, whenever the ratio is not 1, it gives an obstruction to choosing U(g, p) to be a
homomorphism from the lattice to U(1).

There are two obvious questions about this result: how does the it depend on the choice
of cocycle? to what extent does it determine the phases U(g, p)? We leave it to the reader to
check that a modification of ε by a coboundary f(p) modifies U(g, p)→ U(g, p)f(g(p))/f(p),
and the new U(g, p) so obtained is consistent with the group structure. As far as the second
question goes, it is clear that if U1(g, p) and U2(g, p) both solve (3.41) with the same ε,
then their ratio U1/U2 is a homomorphism from Γ to U(1) for all g.

Some examples. Let us consider some simple examples that illustrate the appearance
(and non-appearance) of non-trivial phase factors U(g, p). By non-trivial we mean here
factors that are not in Hom(Γ,U(1)) and whose appearance is necessitated by (3.41).

By far the simplest example is any action where ϕg(p) = p for all p. In this case, U(g, p)
must be in Hom(Γ,U(1)). The circle shift orbifold yields a simple example. A bit more
interesting is any geometric symmetry that arises from a GL(d,Z) change of coordinates on
the torus, such as our symmetry gT in (3.10), acting on the winding and momentum modes
as in (3.10). However, in this case too we find ε(ϕg(p), ϕg(q)) = ε(p, q), so that again the
phase can be taken to be trivial.

For a more interesting example in Γd,d we can consider integral shifts of the b-field
background, for which

ϕg(ni, wi) = (ni + Θijw
j , wi) , (3.42)

where Θij is an arbitrary integral antisymmetric matrix. In this case

ε(g(p1), g(p2))
ε(p1, p2) = exp

[
iπ
∑
i>j Θij(wi1w

j
2 − wi2w

j
1)
]
6= 1 , (3.43)

and a non-trivial phase is required to satisfy (3.41). A choice that works is to take

U(g, p) = exp
[
iπ
∑
i>j Θijw

iwj
]
. (3.44)

Since the g-action preserves winding numbers U(g, g(p)) = U(g, p), so that U(gk, p) =
U(g, p)k, which is consistent with the group structure.
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For a more elaborate example, we consider the Wilson line shift in Γ17,1 relevant to
our construction:

ϕg(n,w, τ) = (n+ ρ · λ− 1
2ρ · ρw,w, λ− ρw) . (3.45)

In this case a somewhat lengthy computation, making creative use of mod 2 conditions in
the exponential, leads to

ε(ϕg(p1), ϕg(p2))
ε(p1, p2) = exp [iπ (w1S(ρ, λ2) + w2S(ρ, λ1))] , (3.46)

where the bilinear map S is

S(ρ, λ) =
∑
I

ρIλI −
∑
I>J

αI ·αJρIλJ ∈ Z . (3.47)

The naive guess U(g, p) = eiπwS(ρ,λ), while solving (3.41), does not satisfy the group property

U(g2, p) = U(g, g(p))U(g, p) . (3.48)

We can fix this by multiplying the naive guess by an element of Hom(Γ,U(1)). We find that

U(g, p) = exp [iπwS(ρ, λ+ ρ/2)] (3.49)

satisfies all of the desired properties.

Duality unmodified. We just discussed at length that symmetry actions of the sort
we used to prove the duality between X5 and T4/ZN × S1 heterotic compactifications in
general come with extra phase factors. Since the whole point of our duality claim was a
match of phase factors for two group actions, this is a non-trivial concern.

To allay this worry, we write the correct form for the symmetry action on the states,
taking into account the possible extra phases. In keeping with the spirit of this section, we
distinguish in our notation between the action on the states and the action on the lattice
vectors, so that we have, coming back to (3.13),

t−1gt|p〉 = U(t, p)U(g, ϕt(p))U(t−1, ϕgt(p))|ϕt−1gt(p)〉 . (3.50)

The group multiplication properties imply the relation

1 = U(t−1t, ϕt−1(p)) = U(t−1, p)U(t, ϕ−1
t (p)) , (3.51)

so that

U(t−1, p) = 1
U(t, ϕ−1

t (p))
. (3.52)

But, since we have ϕt−1gt(p) = p, the phase factor becomes

t−1gt|p〉 = U(t, p)U(g, ϕt(p))
1

U(t, p) |ϕt−1gt(p)〉 = U(g, ϕt(p))|p〉 , (3.53)

but that is exactly the factor we showed to be equal to U(g′, p).
We neglected two points in this discussion: the phases associated to the right-moving

fermions, and the ZN action on T4. As we saw above, the latter does not lead to any
additional phase factors, and the former is identical in both theories.
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4 Gerbes and duality in type II compactification

We have seen so far that in the context of the heterotic string T-duality can relate compact-
ifications on X5 to more familiar compactifications on T4/ZN × S1, but the relationship
cannot be seen at the level of the NS sector and O(d, d,Z) transformations — the Wilson
line background is essential. It is therefore not surprising that a similar construction is
unavailable in type II compactifications: there is no transformation t ∈ O(d, d,Z) such
that (3.13) holds.

Nevertheless, we can still ask: what is the T-dual of X5? We will argue that the dual
geometry is indeed that of T4/ZN × S1, but this geometry is equipped with a choice of a
flat B-field, which leads to drastic modifications in the spectrum of the theory.

Some of the backgrounds that we discuss involve B-field data that is pure holonomy:
the connection B = 0, but the gerbe background is nevertheless topologically non-trivial.
To describe these global structures we will need to introduce some machinery of abelian
gerbes, and in our context these arise as G-equivariant topologically trivial gerbes on T5.

It is not hard to see why such structures should arise naturally in our context. We
are interested in geometries that are presented as quotients T5/G and that also have a
presentation as a circle fibration

S1 X

T4/G

.

In each case the fibration is flat, meaning that the transition functions can be taken to
be constant, and the connection set identically to zero. Nevertheless, the fibration is
topologically non-trivial, with holonomy encoding the topological data. On the other hand,
T-duality in general exchanges the topology of the circle fibration for that of the B-field [22],
and we might expect this to be the case in our context as well. We will develop this picture,
but to motivate some of the developments, we will make a small digression on T-duality
with H-flux, following [22].

Correspondence spaces and vertical gerbes. Suppose X is the total space of a
principal circle bundle πg : Pg → M . This space has a nowhere vanishing vector field
associated to the circle fiber, which we denote V and a dual form Θg that satisfies

dΘg = π∗g(Fg) , (4.1)

where Fg is the curvature of the circle bundle. An H-flux over X is said to be T-dualizable
if dH = 0 and V xH = π∗(Fb) for some closed 2-form Fb. This form is necessarily integral
and defines (up to torsion) another principal circle bundle πb : Pb → M with 1-form Θb

satisfying dΘb = π∗b (Fb).
When this is the case, H decomposes as

H = Θg ∧ π∗g(Fb)− π∗g(Ω) , (4.2)
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where Ω is a 3-form on M that satisfies dΩ = Fg ∧ Fb, and we can also define the T-dual
H-flux on the total space of Pb by

Ĥ = Θb ∧ π∗b (Fg)− π∗b (Ω) . (4.3)

This H-flux is clearly T-dualizable, and it can be argued that the exchange of fibrations
and fluxes implements the action of T-duality on various generalized (in general twisted)
cohomology theories such as K-theory, as well as reproducing the Buscher rules [22].13

The correspondence space is the geometric setting for these actions: it is the space
Z = Pg ×M Pb, which fits into the commutative diagram

Z

Pg Pb

M

pg pb

πg πb

(4.4)

The pullbacks of the two fluxes p∗g(H) and p∗b(Ĥ) differ by an exact form: d
(
p∗b(Θb) ∧ p∗g(Θg)

)
.

Turning the construction around, given two principal circle bundles over M with
curvatures Fg and Fb satisfying [Fg ∧ Fb] = 0 ∈ H4(M,R), we can choose H-fluxes on each
of them that will be exchanged by T-duality.

A special case of the construction that is of particular importance for us is to take
H = Θg ∧ π∗g(Fb) — this is the analogue of what we will call a “vertical” gerbe. While
elegant, this comes at a heavy price: the curvature forms have to satisfy Fg ∧ Fb = 0
pointwise, and not merely in cohomology.

Ordinarily the discussion of string backgrounds with H-flux is complicated by basic
questions about existence of a such a solution in string theory. Our constructions will not
have this difficulty since H = 0, and the correspondence space will give an elegant encoding
of T-dual theories with flat principal circle bundles. But we will also see torsional echoes
of the Fg ∧ Fb = 0 constraint: not every pair of circle bundles over M = T4/G can be a
correspondence space. To describe those results, we will now delve into equivariance.

4.1 Equivariant flat line bundles

Let X be a compact smooth manifold with an action by a discrete group G, i.e. there are
diffeomorphisms ϕa : X → X obeying ϕa(ϕb(x)) = ϕab(x) for all a, b ∈ G. We are interested
in describing flat line bundles over the quotient M = X/G, and this can accomplished by
describing G-equivariant line bundles on L→ X.

Recall that a line bundle is flat if and only if its curvature is zero. In this case
it is possible to choose a trivialization such that the transition functions are constant,
and the connection is identically zero. Since line bundles are topologically classified by

13The reference [22] treats the general case of a principal torus fibration, but for us the circle fibration
will be sufficient.
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c1(L) ∈ H2(X,Z), the first Chern class of a flat line bundle is a torsion class. When
H2(X,Z) (or, equivalently, H1(X,Z)) is torsion-free, then every flat line bundle is trivial.

A line bundle π : L → X is G-equivariant if there is a lift of the G-action on X to
a G-action on L compatible with the projection π, where G acts linearly on the fiber
directions. The quotient L/G is then naturally a line bundle over M = X/G. While in
general a bundle may not admit a lift, every trivial bundle does admit a lift. In our setting,
where X = Td, every flat line bundle is trivial: we can always find a lift of the G action, and
the characterization of flat line bundles over M is then equivalent to the characterization of
these lifts.14

The reader may wish to consult the appendix B.1 for a review of some general aspects
of such constructions, but in this section we will stick to the concrete setting relevant for
our examples: G = ZN , X = Td, and L = X × C is the trivial line bundle with trivial
transition functions and a torus-invariant connection A.

We lift the G action on X to a G action on the total space L by specifying circle-valued
functions Ra : X → S1 that obey15

Rba = Raϕ∗a(Rb) . (4.5)

Note that this composition is automatically associative: R(cb)a = Rc(ba).
The G-action on a point (x, ξ) ∈ X × C is

ψ : L→ L , ψ(x, ξ) = (ϕa(x), Ra(x)ξ) . (4.6)

We also demand that the G action preserves the connection, which requires16

ϕ∗a(A) = A− id logRa . (4.7)

We assume that A is a torus-invariant 1-form on Td, and so we will naturally demand that
d logRa is torus-invariant as well.

When G = ZN and X = Td, we can describe the Ra explicitly. Think of Td = Rd/Zd

with coordinates ~x ∼ ~x+ ~m, where ~m ∈ Zd. Let a be the generator of ZN which acts by
a linear transformation a : ~x → ϕa(~x) on the torus coordinates, and denote by Rn the
function corresponding to the element ak, defined by

R1 = e
2πi
(
k
N +~k·~x

)
, Rn = R1ϕ∗a

(
Rn−1

)
, k = 2, . . . , N − 1 . (4.8)

These are circle-valued functions for ~k ∈ Zd, and when k ∈ Z we find RN = 1, so that this
indeed gives a representation of ZN .

14This situation is not special to the torus: for any M we can set X to be its universal cover, with G the
group of deck transformations; in this case we find the explicit characterization of flat line bundles on M via
representations ρ : H1(M,Z)→ U(1) [54].

15As described in more detail in the appendix B.1, for a general line bundle L→ X the Ra need not be
globally defined circle-valued functions, but when L is trivial, the Ra can be taken to be globally defined.

16We take our connections to be real.
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There is a further equivalence on these lifts, because given a circle-valued function
h : X → S1 we can make a global gauge transformation which acts by

R1 → R1ϕ
∗
a(h)
h

, (4.9)

and choosing h = e2πi~r·~x, we find an equivalence ~k ∼ ~k +M~r, where

M = (ϕTa − 1) . (4.10)

A constant equivariant connection that is consistent with this action is

A~k = 2π(M−1~k) · d~x . (4.11)

Thus, the gauge-inequivalent lifts of the ZN action on Td are characterized by k ∈
{0, 1, . . . , N − 1} and ~k ∈ Zd/ imM . It is not hard to show that these are in 1:1 correspon-
dence with representations ρ : H1(Td/G,Z)→ U(1), which topologically characterize flat
line bundles on the quotient M = Td/G [54], and this shows that the line bundles on the
quotient are in general non-trivial: the first Chern class, while torsion, is non-zero.

The total space of the associated circle bundle Pg →M is then also easy to understand:
it is the quotient of Td+1 by the ZN action generated by

a(~x, xd+1) =
(
ϕa(~x), xd+1 + k

N + ~k · ~x
)
, (4.12)

with

k ∈ {0, 1, . . . , N − 1} , ~k ∈ Zd/ imM . (4.13)

Note that the compact flat manifolds described above arise naturally in this setting: taking
d = 4 and setting ~k = 0 and k = 1, we obtain exactly the compact flat manifolds X5. More
generally, we will denote these spaces by X

k,~k
. We also note that this same classification of

equivariant line bundles was obtained in [15] by calculating equivariant cohomology groups.

(Orbifold) diffeomorphism types of Xk,~k. Although each choice of k and ~k as above
yields distinct circle bundles over T4/ZN , Not all possible choices of k,~k give distinct
geometries for the total space.17

As an example, consider the Z2 quotient, where ϕa(~x) = −~x, and we can take the
parameters k ∈ {0, 1}, and ki ∈ {0, 1}. To characterize the inequivalent orbifolds we can
make changes of coordinates on T5 as follows.

Suppose ~k 6= 0. Then, because ki ∈ {0, 1}, there is a SL(4,Z) change of coordinates
~y = A~x, such that y4 = ~k · ~x. So, without loss of generality we set ~k · ~x = x4. Now define a
new coordinate y4 = x4 + k

2 . Since a(y4) = −y4 + 2k ∼ −y4, the quotient is equivalent to
the action

a(~x, x5) = (−~x, x5 + x4) . (4.14)
17We say that two orbifolds X/G1 and X/G2 are diffeomorphic if their G-actions are related by a

diffeomorphism of X.
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Combining this with the remaining possibilities, we obtain 3 diffeomorphism classes for the
Z2 quotients, represented by

orbifold quotient action

X0,0 = T4/Z2 × S1 (−~x, x5)
X1,0 (smooth) (−~x, x5 + 1

2)
X0,~k (−~x, x5 + x4) (4.15)

A similar treatment can be given for the remaining ZN actions, with similar results. We
relegate the full list to the appendix and here just summarize the key features.

1. For N = 3, 4 there are the analogous 3 classes to the ones we found for Z2, with the
replacement 1

2 →
1
N .

2. For Z4 there is an additional class X2,0.

3. For Z6 it is possible to set ~k = 0 by a change of coordinates, and there are just four
inequivalent quotients with 0 ≤ k ≤ 3:

orbifold quotient action

Xk,0 (ϕa(~x), x5 + k
6 ) . (4.16)

These results are consistent with the orbifold classification [5].

Invariant form associated to circle isometry. As we saw above, the discussion of
T-duality on a circle bundle Pg involves the nowhere vanishing 1-form Θ. In our construction
a natural guess is to set Θ = dxd+1, but when ~k 6= 0 the differential dxd+1 is not G-invariant.
We can compensate for its transformation by using the connection A~k:

Θ = dxd+1 − 1
2πA~k . (4.17)

Θ is not necessarily an integral form on Td+1. Denoting a homology cycle γ ∈ H1(Td+1,Z)
by (~m,m), we find ∫

γ
Θd+1 = m− ~m ·M−1 · ~k . (4.18)

4.2 Vertical equivariant flat gerbes

Just as G-equivariant line bundles on X can be used to describe line bundles on the quotient
M = X/G, G-equivariant gerbes on X describe gerbes on M , and the data that specifies
the lift of the G-action to the gerbe enters the computation of the partition function for
the orbifold CFT associated to the quotient [24, 26]. We provide a detailed view of the
construction in appendix B.2, while in this section we describe the gerbes on X and the
G-action relevant to our examples.

In a nutshell, the G-action on a gerbe over X is encoded in a set of gerbe gauge
transformations, one for each element a ∈ G. When H2(X,Z) is torsion-free and the
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gerbe is topologically trivial and flat, meaning H = dB = 0, the relevant gerbe gauge
transformations reduce to a choice of line bundles La → X equipped with connections Aa

such that Lb ⊗ ϕ∗b(La) ' Lab, and

ϕ∗a(B) = B + dAa , Aab = Ab + ϕ∗b(Aa) + id log ha,b . (4.19)

The ha,b are gauge transformations that realize the bundle isomorphism, and associativity
of the group product requires these to satisfy

ϕ∗c(ha,b)hab,c = ha,bchb,c . (4.20)

Given any solution to these constraints and a representative λa,b of a class in H2(G,U(1)),
we can obtain another solution by setting ha,bnew = λa,bha,b. On the other hand, multiplying
ha,b by a group coboundary can be absorbed into gauge transformations on each of the
bundles La and gives the same G-action on the gerbe. This choice of [λ] ∈ H2(G,U(1)) is
the discrete torsion of [25]. Since H2(ZN ,U(1)) = 1 this degree of freedom is absent in all
of our constructions. However, as emphasized in [26], G-equivariance allows for additional
topological data associated to the holonomy of the gerbe.

We are interested in a particular class of gerbes defined by the following data: a
manifold Y = X × S1 equipped with a closed 1-form Θ and a flat line bundle that is the
pull-back of a bundle L→ X with flat connection Λ, which is itself a global 1-form on X.18

In this case, we obtain a flat “vertical” gerbe by setting

B = Λ ∧Θ . (4.21)

Now suppose further that there is a G action on Y such that Θ is G-invariant, while L is
G-equivariant with the lift described by a choice of phases R̃a. In this case the vertical
gerbe may admit a G-action as well. To explore when this is the case, we simply compute

ϕ∗a(B)−B = d
(
−i log(R̃a)Θ

)
, (4.22)

so that a naive solution to (4.19) is to set

Aa = −i log(R̃a)Θ . (4.23)

There are three reasons why this construction is naive. First, the Aa so defined may not be
a connection on a line bundle La because 1

2πdA
a is not properly quantized. Second, it may

not be possible to find ha,b to satisfy (4.19) and (4.20).
Turning to our specific interest with Y = Td+1, G = ZN acting as in (4.12), and Θ as

in (4.17), we set—β and ~β are parameters analogous to k and ~k —

R̃1 = e
2πi
(
β
N +~β·~x

)
, Λ = 2π(M−1~β) · d~x , (4.24)

18Recall that every flat line bundle admits a trivialization with constant transition functions, and the
connections compatible with this choice are global 1-forms on X.
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and find

A1 = 2π
(
β
N + ~β · ~x

) (
dxd+1 − (M−1~k) · d~x

)
. (4.25)

Because Θ is not an integrally quantized form, the requirement that 1
2πdA

1 is an integral
form on Td is non-trivial. Up to gauge transformations of the bundle L, we find that the
only solutions are: ~β = 0 or ~k = 0 (any N), or N = 2 and ~β = ~k. For any such solutions
we have

1
2πdA

1 = ~β · d~x ∧ dxd+1 . (4.26)

To explore the remaining consistency conditions, we will denote by Ap the connection
corresponding to the group element ap, with 0 ≤ p < N , and similarly for the diffeomorphism
ϕp. Writing a sum of two such integers as p1+p2 = m1+m2N , with 0 ≤ m1 < N , consistency
with the group law (4.19) requires

Am1 −Ap1 − ϕ∗p1(Ap2) = id log hp1,p2 . (4.27)

Using the explicit form of the Ap we find

Am1 −Ap1 − ϕ∗p1(Ap2) = −2πm2βΘ = im2d log f , (4.28)

where

f = exp
[
−2πiβ

(
xd+1 − (M−1~k) · ~x

)]
. (4.29)

To describe the hp1,p2 , we define

σ(p) =

0 , p < N ;
1 , p ≥ N .

, h̃(p) = fσ(p) , (4.30)

as well as a remainder p such that p = p mod N , and 0 ≤ p < N . With that preparation,
we can now write the general solution for the hp1,p2 as

hp1,p2 = h̃(p1 + p2)cp1,p2 , (4.31)

where the cp1,p2 are constants. With this form the constraint (4.20) is

ϕ∗p3(h̃(p1 + p2))h̃(p1 + p2 + p3)
h̃(p1 + p2 + p3)h̃(p2 + p3)

= cp1,p2+p3cp2,p3

cp1,p2cp1+p2,p3
. (4.32)

Using the explicit form of f , we find

ϕ∗p3(h̃(p)) = exp
[
−2πiβkN p3σ(p)

]
h̃(p) , (4.33)

so that (4.20) requires

h̃(p1 + p2)h̃(p1 + p2 + p3)
h̃(p1 + p2 + p3)h̃(p2 + p3)

= exp
[
2πiβkN σ(p1 + p2)p3

] cp1,p2+p3cp2,p3

cp1,p2cp1+p2,p3
. (4.34)
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The reader can check that the left-hand-side is not only x-independent, but in fact equals
1. It is also possible to show that the phase exp

[
2πiβkN σ(p1 + p2)p3

]
gives a non-trivial

cocycle in H3(ZN ,U(1)) ' ZN whenever βk 6= 0 mod N , in which case it is not possible
to choose the cp1,p2 to satisfy the consistency conditions.19 On the other hand, when
βk = 0 mod N , cp1,p2 must be a cocycle, and since H2(ZN ,U(1)) = 1, it must in fact be a
group coboundary, so that we can set cp1,p2 = 1 by constant gauge transformations on the
individual bundles La.

Finally, we should take care of an ambiguity in our description: the parameters (k,~k)
and (β, ~β) are not uniquely defined. For any ~r ∈ Z4 there are changes of coordinates on T 4

~x→ ~y = ~x+ M̃−1~r , M̃ = ϕa − 1 , (4.35)

which preserve the ZN action on T4, i.e. a(~y) = ϕa(~y) + ~r ∼ ϕa(~y) and lead to shifts in the
parameters β and k:

k → k +N~k · M̃−1~r , β → β +N~β · M̃−1~r , (4.36)

and these shifts do not in general preserve βk mod N . Since the consistency of the
equivariant gerbe should not depend on which representative we choose, we demand that
the condition βk = 0 mod N is preserved for all ~r ∈ Z4.

Summary: vertical flat ZN -equivariant gerbes on T5. With these results in hand,
we can now use the language of correspondence spaces to describe the possible ZN -equivariant
flat vertical gerbes on T5 with ZN action generated by (4.12). Each correspondence space
Z
k,~k;β,~β is a double circle fibration over Td/ZN with action generated by

a(~x, x5, x6) =
(
ϕa(~x), x5 + k

N + ~k · ~x, x6 + β
N + ~β · ~x

)
, (4.37)

subject to conditions

1. (β +N~β · M̃−1~r)(k +N~k · M̃−1~r) = 0 mod N for all ~r ∈ Z4 ;

2. ~k = 0 or ~β = 0 for N ≥ 2, or ~β = ~k 6= 0 for N = 2.

There is a geometric perspective on these consistency conditions. The ZN -equivariant
gerbe on T5 defines a gerbe on the quotient X = T5/ZN , and for flat gerbes this amounts
to an assignment of holonomies to homology 2-cycles in X, subject to the requirement that
any two homologous cycles must be assigned the same holonomy. Using the computations
of holonomies assigned to cycles in T4/ZN by equivariant line bundles given in [15], we
checked that our two consistency conditions are the “upstairs” view of this requirement.

We can also understand the conditions from the point of view of the orbifold CFT. As
we will see shortly, and as is discussed in greater length in [24] and reviewed in detail in the
appendix, a choice of gerbe amounts to dressing the orbifold twisted sectors with additional
phases, which are constrained by unitarity, modular invariance, and factorization properties
of the CFT [25].

19This is easy to see explicitly for N = 2: setting p1 = p3 = 1 and p2 = 0, we find the requirement
c0,1 = c1,0, while taking p1 = p2 = p3 = 1 leads to eiπβkc1,0 = c0,1.
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4.3 T-duality

Having described a class of ZN -equivariant flat gerbes on T5, we return to our original
question: what is the T-dual of type II compactification on X

k,~k
? The answer is captured

by the correspondence space. In the previous section we constructed what one might call
“T-dualizable” flat gerbes on G

β,~β
→ X

k,~k
, and the geometries fit into the correspon-

dence space
Z
k,~k;β,~β

X
k,~k

X
β,~β

T4/ZN

pg pb

πg

T-dual

πb

(4.38)

As we reviewed above, a key result in the study of T-duality with H-flux is that H is
T-dualizable if and only if the dual flux Ĥ is T-dualizable [22]. The consistency conditions
on the gerbes are also symmetric under the exchange (k,~k)↔ (β, ~β).

So, we find that the smooth geometry X5 = X1,0 with trivial gerbe is T-dual to the
singular geometry T4/ZN × S1 equipped with a flat vertical gerbe with a ZN -equivariant
description on T5 with β = 1 and ~β = 0.

Similarly, if we start with X0,0 = T4/ZN × S1 but now turn on a gerbe with β = 0 and
~β 6= 0, the T-dual geometry is X0,~β with trivial gerbe. While both spaces are singular, the
singularity structure is quite different. For example, in the N = 2 case the singular locus of
X0,0 consists of (~x, x5), where x1,2,3,4 ∈ {0, 1

2}, while x5 is arbitrary. On the other hand,
the singular locus for X0,~β requires that in addition x4 = 0: instead of 16 singular circles,
the are just 8.

4.4 Equivariant gerbes and orbifold CFT

So far we have defined a class of gerbes and used the correspondence space to suggest a
class of T-dual orbifold geometries. In this section we will connect that perspective with an
explicit worldsheet computation.

The notion that equivariant gerbes enter the construction of the orbifold partition
function was developed in [24, 26], and the second reference showed that pure holonomy
equivariant gerbes with B = 0 produce the kinds of shift orbifold factors that are necessary
to relate the X5 and T4/ZN × S1 orbifolds. We will now review those ideas and illustrate
in an example that they do lead to the expected phases.

Let Z0,0 denote the genus 1 partition function of a CFT which admits the action of
a discrete abelian group G with 0 the additive identity element. The orbifold partition
function then takes the familiar form

Z = 1
|G|

∑
a,b∈G

Za,b , Za,b = TrHb ρb(a)qL0−c/24qL0−c/24 , (4.39)

where ρb(a) is a representation of the G-action on the Hilbert space Hb, i.e. the space of
states twisted by the element b. In general the choice of representation ρb is not unique.
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For example, if ρb(a) leads to a consistent choice of modular-invariant and unitary partition
function, then so does

ρ̃b(a) = ρb(a)ω
a,b

ωb,a
(4.40)

for any representative of a class [ω] ∈ H2(G,U(1)) — this is the discrete torsion of [25].
The observation from [26] is that the equivariant gerbe data for a G = ZN quotient

enters the choice of ρb(a) through the pull-back of the holonomy of the gerbe to the
string worldsheet:

Pa,b = exp
[
i

∫
Φ∗(B)

]
exp

[
i

∫ 1

0
Φ∗(Ab)− i

∫ τ

0
Φ∗(Aa)

]
ha,b(x)
hb,a(x) (4.41)

in the Lagrangian computation of Za,b. Here Φ : T 2 → X is the map from the worldsheet
torus with complex structure τ = τ1 + iτ2 to the targetspace with

Φ(0) = x , Φ(1) = ϕb(x) , Φ(τ) = ϕa(x) , Φ(1 + τ) = ϕab(x) . (4.42)

The integration contours in the z plane of the worldsheet torus are along the left and bottom
boundaries of the parallelogram:

0 1

τ + 1τ z

(4.43)

The expression Pa,b is not easy to interpret on a general targetspace. However, our interest
is in X = Td/ZN × S1, where the interpretation is straightforward in the situation when
B = 0. Focusing on the bosonic part of the CFT, the original theory’s configuration
space decomposes into sectors labeled by their periodicities under shifts of z → z + 1 and
z → z + τ . The x5 field corresponding to S1, which is neutral under the orbifold action,
has configurations

x5(z, z) = i
2τ2

(w − ñτ) z + i
2τ2

(−w + ñτ) z . (4.44)

While w has the interpretation as the winding quantum number, ñ is not the momentum
mode n of the Hamiltonian formulation — the two are related through a Poisson resummation.
In constructing the path integral of Za,b we must also consider fluctuations around this
classical solution, but those do not enter the phase factor Pa,b.

In our examples above, the gerbes with B = 0 have Aa = 2πa
N dx5 and ha,b = hb,a, which

leads to phases

Pa,b = exp
[

2πi
N (aw − bñ)

]
. (4.45)

The contribution to the circle partition function can be evaluated by including the integration
over the fluctuations around the semi-classical solution [44]. Including the phase Pa,b the
result is (our conventions are given in appendix A)

Zcir
a,b = 1

ηη

∑
w

e2πiawN
√
τ2
r

∑
ñ

exp
[
−S0(ñ, w, τ, r)− 2πi bN ñ

]
, (4.46)
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where S0 is the classical action evaluated on the solution (4.44). Making a Poisson
resummation on ñ, we therefore obtain

Zcir
a,b = 1

ηη

∑
w

e2πiawN
√
τ2
r

∑
n

∫ ∞
−∞

dx exp
[
−S0(x,w, τ, r)− 2πi bN x− 2πixn

]
. (4.47)

When b = 0, this leads to the usual expression for the circle partition function with an
extra phase:

Zcir
a,0 = 1

ηη

∑
n,w

e2πiawN qhn,wqhn,w , (4.48)

but now the form of the b-dependence under the x integral shows that more generally
including b just leads to the shift n → n + b/N in the weights hn,w and hn,w. But this
is precisely the partition function of the T-dual of the shift orbifold of the circle! Since
the remaining degrees of freedom, i.e. the fermions and the bosons of the Td theory, are
treated in the same way in both the X5 and Td/ZN × S1 orbifolds, the gerbe data and
the associated phase correctly reproduce the T-dual of the ZN quotient that leads to the
smooth X5 geometries.

It would be interesting to generalize this treatment to the other pure holonomy equiv-
ariant gerbes that appear in the T-dualities, i.e. the ones with B 6= 0. On one hand, it
would provide a detailed test of the dualities constructed via the correspondence space
analysis. On the other hand, such a generalization may shed light on the precise meaning
of (4.41) in compactifications that go beyond the simple toroidal examples considered here.
We leave such a study for future work.

The circle and “non-geometry”. Much like the inexhaustible electron [55], the compact
boson is a seemingly perpetual source of insights and lessons, and we end this section by
specializing our analysis to it.

The compact boson CFT admits various orbifold actions, and some of these, such
as the shift orbifold which acts by the phase e2πin/N or the reflection orbifold, have a
straightforward geometric interpretation: for example, the former is a quotient that leads
to a circle of radius r/N . On the other hand, there are also orbifolds that seemingly do not
have such a straightforward interpretation, such as the ZN orbifold that acts by the phase
e2πiw/N . If we are willing to include the gerbe data as part of our geometric information,
then we can assign a geometric meaning to this phase: it corresponds to turning on a gerbe
on S1!

Applying this logic to the compact boson CFT is surely an indication that one has spent
too much time with gerbes, but the example has an important lesson for more elaborate
theories: the gerbe data should be included in any discussion of “non-geometric” features of
string compactification.

4.5 Frozen singularities and a dual perspective

The geometry T4/G× S1 is familiar to every string theorist as a limit of compactification
on K3×S1. The resulting spacetime physics depends on the way in which the limit is taken.
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For example, if we focus on type II compactification, then the choice of B-field determines
whether the limiting theory will lead to additional massless gauge degrees of freedom (in
IIA) or tensionless strings (in IIB) [36, 56, 57]. These arise at points in the moduli space
where the CFT breaks down, and string non-perturbative effects are crucial. On the other
hand, there is a choice of B-field such that the limit leads precisely to the orbifold CFT for
T4/G. In each of these cases it is possible to perturb the moduli to a more generic point
and arrive at a smooth K3 geometry with some small cycles. From the point of view of the
orbifold CFT these deformations correspond to massless spacetime fields that arise from
the twisted sectors.

As we have seen, in 5-dimensional compactification there is a new possibility: by
turning on a flat vertical gerbe on the K3 × S1 geometry, we obtain a theory without
moduli associated to any of the blow-up modes. The disappearance of the moduli is easy to
understand in the T-dual picture, since the dual geometry is smooth, and every twisted
sector is massive. In the original formulation the singularity is frozen by the holonomy of
the gerbe.

We can understand this as follows in terms of the local structure of the geometry.20

The equivariant gerbe implies that the orbifold geometry T4/G × S1 carries non-trivial
gerbe holonomy: a curve γ̃ in T4 with γ̃(0) = x and γ̃(1) = ϕa(x) projects to a closed curve
γ, and the cycle γ × S1 then carries a gerbe holonomy e2πia/N : this topological feature is
responsible for freezing the moduli.

This local discussion has a string-dual description: starting with IIB compactified on
T4/G× S1 with a B = 0 vertical gerbe, we use SL(2,Z) duality to obtain IIB compactified
on the same space, but now with a holonomy for the Ramond-Ramond C2 field on the same
cycle γ × S1. Taking another T-dual, we obtain IIA on T4/G× S1, but now with holonomy
for C1 on the loop γ. These different descriptions can understood by compactifying M-theory
on X5×S1 and then reducing either on the trivial circle or on the circle of the X5 fibration.
This is exactly the picture described in [15] for the freezing of the singularities, and we see
that our construction gives the same mechanism at the level of spacetime physics, but one
accessible in standard worldsheet analysis.

If we consider the T4/Z2×S1 case, there are two qualitatively different gerbes we might
turn on: the B = 0 one is dual to the smooth geometry X5 = X1,0, while the B 6= 0 one
is T-dual to compactification on the singular space X0,~k. In the former the gerbe freezes
all 16 singularities, while in the latter only 8 are frozen, and the remaining 8 contribute
massless moduli that can be used to resolve the singularities.21

This leads to a natural question: is it possible to turn on different gerbe holonomies
at different singularities to freeze a number of singularities different from 0, 8, or 16? As
pointed out in [15], there are global constraints that prevent us from turning on such
holonomies independently: some combinations of the cycles are homologous, and unless
the holonomies are chosen in a consistent manner, they would necessarily lead to non-zero
curvature for dC1.

20In this discussion we stick to the equivariant gerbe with B = 0.
21Note that such a resolution in the X2

0,~k geometry provides examples of the recent construction of novel
heterotic geometries in [58].
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These global constraints are also reflected in our worldsheet analysis. This can be
seen explicitly by focusing on the bosonic sector of the theory. For example, the partition
function for T4/Z2 × S1 — see appendix A for the relevant CFT details — has twisted
sector contributions that come with an overall factor of 16 = 24, one for each of the orbifold
fixed points:

Ztwist = 24Zcir(r)
{(

ηη

ϑ4ϑ̄4

)2
+
(
ηη

ϑ3ϑ̄3

)2
}
. (4.49)

A CFT model of turning on a local gerbe on k of the singularities is to split the twisted
sector contribution into k terms for which we introduce the phases associated to the gerbe,
and the remaining 16− k terms which we leave untouched. Thus, we have

Z(k)
twist = (16− k)Zcir(r)

{(
ηη

ϑ4ϑ̄4

)2
+
(
ηη

ϑ3ϑ̄3

)2
}

+ k

{
Z +

sh−

(
ηη

ϑ4ϑ̄4

)2
+ Z −

sh−

(
ηη

ϑ3ϑ̄3

)2
}
. (4.50)

Can this be the twisted sector of a worldsheet Z2 orbifold CFT? If so, we should be
able to obtain the untwisted sector partition function by applying worldsheet SL(2,Z)
transformations. However, when we do this, we find that the resulting expression fails to
have an integral q expansion unless k = 0 mod 8.

A similar analysis can be carried out for the Z3 example: there the number of frozen
singularities can be 0, 6, 9 [15], and those are precisely the values for which the procedure
just outlined yields a well-behaved worldsheet partition function.

5 Discussion

It is remarkable that after so many years of intensive study theories with 8 supercharges
continue to furnish surprises and provide insights into the structure of quantum field theory
and string theory. In this work we have seen new connections between disparate geometries,
both in the context of heterotic and type II theories in 5 dimensions. In the former we
found that duality in the O(21, 5) moduli space leads to relations between topologically
distinct compactifications. In the latter, we saw that by including the global data of a pure
holonomy gerbe, T-duality is enlarged beyond the conventional arena of Buscher rules and
exchange of data encoded in the differential forms associated to a circle fibration equipped
with H-flux.

The original motivation for our work was to understand how a particularly simple
class of compact flat geometries fits into the framework of string compactification. We
showed that such compactifications are related to more familiar ones, and, via T-duality,
they provide models for a number of phenomena. Perhaps the most striking of these is
the freezing of singularities in a T4/ZN × S1 compactification achieved by turning on a
pure holonomy gerbe. Such phenomena arise in a number of settings, often involving
strongly coupled physics or other degrees of freedom that are difficult to access directly (e.g.
background Ramond-Ramond fields). Our work provides an example where the mechanism
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can be understood directly in the worldsheet theory and has a geometric interpretation via
the gerbe.

There are a number of promising directions where extensions of our ideas may be of
use, and in the remainder of this section we will highlight a few of them.

First, we have seen that inclusion of the gerbe data leads to new classes of and new
equivalences between orbifold conformal field theories. While our analysis was carried out
in the context of 8 supercharges and 5 dimensions, it should be possible to extend our
techniques to other orbifolds, and the classification of [5] offers an obvious place to start.22

On one hand, inclusion of the pure holonomy gerbes will enlarge the class of conformal
field theories, but, on the other hand, there will also be new equivalences between geomet-
rically distinct orbifolds equipped with the gerbe data. For general orbifold groups the
possibility of discrete torsion should also be included in a general analysis.

Sticking to the 5-dimensional theories, perhaps the simplest extension is to consider
replacing the base geometry in our circle fibrations to K3/G. Although it will not be
possible to solve the worldsheet theory exactly, it is possible to preserve 8 supercharges,
and therefore to have a reasonable amount of control on the theory. At the same time, the
non-trivial topology of K3 opens up new possibilities. For example, in the context of the
heterotic string there is the possibility of choosing a principal circle fibration that has a
non-torsion first Chern class [59–62]. Generalizing such fibrations to include a shift in the
S1 leads to a large class of examples where one can explore the topology and geometry of
gerbes and perhaps find new dualities relating these background to each other beyond those
obtained by conventional T-duality with H-flux [22, 23].

A more ambitious direction would be to pursue our ideas in the context of the recent
constructions [58] that generalize the geometries of [60] by allowing the base K3 geometries
to have a number of orbifold singularities: the total space of the fibration is nevertheless
smooth, precisely because the local geometry near each singularity is (C2 × S1)/G, where
the G-action on C is accompanied by a shift on the S1 fiber. Thus, these are models without
a global (K3× S1)/G orbifold description. It will be interesting to explore the interplay of
the differential geometry and gerbe holonomy in this context. Is it possible to obtain “local”
T-dual descriptions relating the smooth (C2×S1)/G geometry to a singular C2/G×S1 with
a non-trivial gerbe holonomy? What are the global constraints on the set of singularities
that can be treated in this fashion?

Returning to the simpler T4 geometry as the starting point, we can study how our results
fit into type II/ heterotic duality. Since the 6-dimensional duality between type IIA on K3
and heterotic string on T4 is well-understood, we can hope to use the spacetime perspective,
where we view heterotic compactification on X5 as a reduction of the 6-dimensional theory
on a circle with a non-trivial holonomy for the G action, to map our results to type II. Can
we interpret the dual type II theory as an orbifold? How do such dual pairs relate to the
work [19, 20] on non-geometric type II compactifications and their heterotic duals? More
generally, what is the translation of the gerbe data in either duality frame to the other one?

22It appears that the type II 6-dimensional orbifolds that preserve 16 supercharges do not allow non-trivial
equivariant gerbes beyond those explored in this work. However, we have not explored the situation with
type II orbifolds that only preserve 8 supercharges.
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Finally, our work shows that inclusion of the global gerbe data is crucial in understanding
T-duality, and even our simple examples indicate that much remains to be understood.
We indicated some of the directions in the main text, as well as in appendix B. Another
direction is to consider our results in the context of heterotic T-duality, where the gerbe
data is more complicated, and there can be interesting interplay between discrete torsion
and more conventional shift orbifolds [63]. It would be very interesting to understand these
phenomena in the context of a heterotic correspondence space [23].
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A Bosonic toy model

In this appendix we discuss the bosonic partition function for compactification on X5 in the
case of the Z2 quotient. This will illustrate some features of the decompactification limit to
six dimensions discussed in section 2.5, and it will also set up conventions for some later
developments. While the Z2 quotient is particularly simple, there is a straightforward to
the remaining ZN actions.

A.1 Orbifolds of S1

We described the construction of the shift orbifold of the circle in section 2.5. Starting with
the circle partition function

Z(r) = 1
ηη

∑
n,w∈Z

qhn,wqhn,w , η = q1/24
∞∏
n=1

(1− qn) , (A.1)

where

hn,w = hR(p) =
(
n
2r + rw

2
)2
, hn,w = hL(p) =

(
n
2r −

rw
2
)2
, (A.2)

the partition function of the shift orbifold for the Z2 quotient is

Zsh(r) = 1
2

(
Z +

sh+ + Z −
sh+ + Z +

sh− + Z −
sh−

)
, (A.3)
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with

Z +
sh+ = Z(r) , Z −

sh+ = 1
ηη

∑
n,w∈Z

eiπnqhn,wqhn,w ,

Z +
sh− = 1

ηη

∑
n,w∈Z

qh
−
n,wqh

−
n,w Z −

sh− = 1
ηη

∑
n,w∈Z

eiπnqh
−
n,wqh

−
n,w , (A.4)

where the weights in the twisted sector are

h
−
n,w =

(
n
2r + r

2(w + 1
2)
)2

, h−n,w =
(
n
2r −

r
2(w + 1

2)
)2

. (A.5)

This is just a fancy rewriting of Z(r/2), but the split into the sectors will be useful for
building the X5 orbifold CFT.

A reflection orbifold of S1. Another familiar quotient of the compact boson is the
x→ −x orbifold. In this case the action does affect the oscillators, and it acts on the states
|p〉 by g′|p〉 = | − p〉.23 As discussed in [44], the orbifold partition function can be obtained
by explicitly constructing the untwisted sector with the g′ projection, and the twisted sector
contributions are obtained by taking orbits of SL(2,Z). The result is

Zre(r) = 1
2

(
Z +

re+ + Z −
re+ + Z +

re− + Z −
re−

)
, (A.6)

with

Z +
re+ = Z(r) , Z −

re+ = 2
√

ηη

ϑ2ϑ̄2
, Z +

re− = 2
√

ηη

ϑ4ϑ̄4
, Z −

re− = 2
√

ηη

ϑ3ϑ̄3
. (A.7)

Our conventions for the Jacobi theta functions ϑi are as in [44]. The crucial factors of 2
in the twisted sector contributions reflect the presence to two fixed points for the orbifold
action, at x = 0 and x = 1/2.

A.2 Bosonic CFT for X5

To make contact with our compactification of X5, we first generalize the S1 reflection
orbifold to a reflection orbifold of Td. Since the reflection symmetry is present for all
parameters of the Td CFT, we have

Z +
re+ = ZTd , Z −

re+ = 2d
(
ηη

ϑ2ϑ̄2

)d/2
, Z +

re− = 2d
(
ηη

ϑ4ϑ̄4

)d/2
, Z −

re− = 2d
(
ηη

ϑ3ϑ̄3

)d/2
.

(A.8)

Finally, to obtain the bosonic CFT for X5, we combine the orbifold actions on Td × S1 and
find the orbifold partition function

Z = 1
2

(
Z+

+ + Z−+ + Z+
− + Z−−

)
, (A.9)

with

Z+
+ = Z(r)ZTd , Z−+ = Z −

sh+Z
−

re+ , Z+
− = Z +

sh−Z
+

re− , Z−− = Z −
sh−Z

−
re− .

(A.10)
23Note that our discussion of cocycles and phases in section 3.5 shows that there is no additional phase on

the state.
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A decompactification limit. Having written down the full bosonic partition function
for X5 (or rather for its d + 1-dimensional analog), we are now ready to examine its
decompactification limit: r →∞.

To get an idea of what we mean, we first consider the circle partition function itself.
The dimensions of the primary states |p〉 are

∆p = hL(p) + hR(p) = n2

2r2 + w2r2

2 , (A.11)

so that when r is very large, every state with w 6= 0 has a large dimension, and therefore
has the spacetime interpretation of a very heavy mode. To focus on a set of light states,
we fix a cut-off ∆∗, and study the contribution to the partition function from states with
∆ ≤ ∆∗. We define Kaluza-Klein (KK) tower sums

T±∆∗ =
∑

∆(p)≤∆∗

(±1)nqhn,wqhn,w . (A.12)

So, for example, if we set ∆∗ = 2, we find

Z(r) = (qq)−1/24

 ∑
n2≤4r2

(qq)n2/4r2 +(q+q)
∑

n2≤2r2

(qq)n2/4r2 +2q2+qq+2q2

+heavy

= (qq)−1/24
(
T+

2 +(q+q)T+
1 +qq+2(q2+q)2

)
+heavy . (A.13)

We understand these contributions:

1. the over all factor is simply the zero-point energy (qq)−c/24 with c = 1;

2. the T+
2 is the KK expansion of the scalar mode of the circle metric;

3. the T+
1 is the KK expansion of the gauge bosons from the circle reduction of the

metric and B-field;

4. the qq reflects the presence of the marginal operator that controls the radius of the
circle;

5. the 2q2 and 2q2 terms are associated to the worldsheet operators ∂φ∂φ, ∂2φ, and
their conjugates.

With a little bit of work, we can obtain a similar expansion with ∆∗ = 2 for the Z
partition function. First, we note that the w → w + 1

2 shift in h−n,w relative to hn,w ensures
that all twisted sector states are heavy. Thus, the light states just come from the untwisted
sector. Making an expansion of the partition function then leads to

Z = (qq)−c/24
(1

2(T−2 + T+
2 ) + (q + q)1

2(T−1 + T+
1 ) + d(q + q)1

2(T+
1 − T

−
1 )

+(d2 + 1)qq +
(
d(d+1)

2 + 2
)

(q2 + q2)
)

+ (qq)−c/24∑
~p 6=0

qh(~p)qh(~p)
[1

2T
+
2−∆~p

+ (1 + d)(q + q)1
2T

+
1−∆~p

]
+ heavy . (A.14)
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Here c = d+ 1. As in the decompactification of the circle, we can give each of these terms
Kaluza-Klein interpretation, but this time there will be a twist in the boundary conditions.

1. Scalar KK modes. These are associated with the factor

1
2(T−∆ + T+

∆) =
∑

n∈2Z,n2≤4r2

(qq)n2/4r2 =
∑

n2≤4(r/2)2

(qq)
1
4n

2(r/2)−2
(A.15)

This is interpreted as a KK tower for a periodic field on a circle of radius r/2 .

2. Circle Vector KK modes. These are associated with the factor

(q + q)1
2(T−1 + T+

1 ) , (A.16)

and again have an interpretation of a KK tower for a circle of radius r/2, this time
dressing the circle’s vector field.

3. Td Vector KK modes. These are associated with the factor

d(q + q)1
2(T+

1 − T
−
1 ) (A.17)

This time we look at a slightly different KK term:

1
2(T+

∆ − T
−
∆) =

∑
n∈2Z+1,∆m,0≤2

(qq)n2/4r2 =
∑

(n+1/2)2≤4(r/2)2

(qq)
1
4 (n+1/2)2(r/2)−2

.

(A.18)

Because the sum runs over odd integers, we see that we do not have any massless
vectors from the Td for any finite r — this can be contrasted with the circle’s vector,
which has a massless mode and a KK tower over it.

These states constitute the KK spectrum we would get for a field that is anti-periodic
on the circle of radius r/2: i.e. a field satisfying

A(θ + 2π) = −A(θ) . (A.19)

Such a field has a Fourier expansion

A =
∑
n

ane
i(n+1/2)θ . (A.20)

4. The moduli are responsible for the (d2 + 1)qq term, and they give rise to massless
spacetime fields.

5. The canonical spin 2 fields that contribute to q2 are also nicely interpreted as the
d(d + 1)/2 operators ∂xi∂xj and ∂φ∂φ and ∂2φ. In other words, these are the
spin 2 operators invariant under the Z2 reflection on Td. The same holds for the
q2 contributions.
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6. The towers over Td momentum/winding modes. These arise from the second to last
term that we kept in the expansion, which we rewrite as

∑
~p 6=0

qh(~p)qh(~p) 1
2T

+
2−∆~p

= 1
2
∑
~p 6=0

qh(~p)qh(~p)
(1

2(T+
2−∆~p

+T+
2−∆~p

)+ 1
2(T+

2−∆~p
−T+

2−∆~p
)
)
.

(A.21)

These have a clear interpretation. The Td states |~p〉 with ~p 6= 0 can be rewritten in
terms of

|~p〉± = 1√
2 (|~p〉 ± | − ~p〉) . (A.22)

The |~p〉+ states are then dressed with the “periodic” KK tower— 1
2(T+

2−∆~p
+ T+

2−∆~p
),

while the |~p〉− states are dressed with the “anti-periodic” KK tower— 1
2(T+

2−∆~p
−

T+
2−∆~p

).

The remaining states have a similar interpretation: they are just dressed by the
oscillator modes coming from ∂xi or ∂φi factors and their conjugates.

In summary then, we see in this bosonic model that in the r →∞ limit, the light states have
a clear spacetime interpretation of turning on a holonomy for the Z2 reflection symmetry
acting on Td: the invariant fields are expanded in periodic modes on the S1, while the
charged fields are expanded in anti-periodic modes. It should not be too difficult to include
fermions in this discussion: the novel feature that we expect to naturally emerge is the
reduction of spacetime supersymmetry due to the non-trivial holonomy.

B Equivariant flat gerbes

In this appendix we review aspects of abelian gerbes and equivariant structures on gerbes,
following [24, 26, 64] .

Consider a compact smooth Riemannian manifold X that admits an action of a finite
group G: for every a ∈ G there is a diffeomorphism ϕa : X → X, and the composition
respects the group structure: ϕa(ϕb(x)) = ϕab(x) for all x ∈ X. It is possible to choose a
good cover U = {Uα}α∈I such that G has an action on the indexing set I, with a : α→ a(α),
and ϕa(Uα) = Ua(α) and similarly for all non-empty intersections Uαβ, Uαβγ , etc. [65].
We will assume that such a cover has been chosen, so that the various Čech cochain
manipulations that are to follow have a simple interpretation.24

B.1 Čech cochains and Hermitian line bundles

For what follows, it will be convenient to work in the language of Čech cochains and the
coboundary operator δ, so we will take a moment to review that language and fix our

24This is not strictly speaking necessary, but it makes for simpler arguments. A complete treatment
would involve also proving that the results are independent of the choice of cover; we will leave that to the
references [64].
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conventions.25 We consider a sheaf valued in an abelian group F defined over our cover
U. We will denote the cochains by Ck(X,F), with k = 0 denoting the space of sections
defined on each Uα, k = 1 on the Uαβ, and so on. The coboundary operator δ then takes
σ ∈ Ck(X,F) to (δσ) ∈ Ck+1(X,F) in the familiar way: for example, if σ0 ∈ C0(X,F),
and σ1 ∈ C1(X,F), then we have

(δσ0)αβ = σ0
α − σ0

β , (δσ1)αβγ = σ1
αβ + σ1

βγ + σ1
γα . (B.1)

The signs and ordering are chosen so that δ2 = 0. We say a section σ is a cocycle if δσ = 0,
and it is a coboundary if it can be written as σ = δλ. Note that we will have occasion to
use both additive and multiplicative abelian groups; in the latter case the cocycle condition
is written as δσ = 1.

The cochains that will show up in our discussion are:

1. Ck(X,Ωp), where Ωp denotes smooth p-forms;

2. Ck(X,S1), where S1 = U(1) denotes circle-valued constants;

3. Ck(X,S1), where S1 denotes smooth circle-valued functions.

A key result in Čech cohomology is that for sheaves that admit partitions of unity, such as
Ck(X,Ωp), the Čech cohomology groups Ȟk(X,Ωp) are trivial for k > 0: every cocycle is
a coboundary.

Hermitian line bundles: conventions. Consider now a Hermitian line bundle π : L→
X with transition functions gαβ : Uαβ → S1 obeying

gαβgβγgγα = 1 (B.2)

on all non-empty triple overlaps Uαβγ , as well as connection 1-forms Aα defined on each Uα
and satisfying

Aα = Aβ − id log gαβ (B.3)

on each Uαβ . Gauge transformations are encoded by functions hα : Uα → S1, which act by

gαβ → gαβhα(hβ)−1 , Aα → Aα − id log hα . (B.4)

A gauge transformation is global if on every overlap hα = hβ , so that hα is a restriction of
a circle-valued function defined on X to the set Uα.

This data is elegantly presented in the Čech language: the data for a line bundle with
connection is a pair (g,A) with g ∈ C1(X,S1), A ∈ C0(X,Ω1) subject to

δg = 1 , δA = −id log g , (B.5)

and gauge transformations are encoded by h ∈ C0(X,S1), and they act by

g → gδh , A→ A− id log h . (B.6)

A global gauge transformation satisfies δh = 1.
25A readable introduction is given in [66, 67].
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Two bundles L→ X, L′ → X with data (g,A) and (g′, A′) respectively, are isomorphic
if and only if it is possible (after a suitable refinement of the covers) to find a gauge
transformation h such that (g′, A′) = (gδh,A− id log h).

In what follows, we will take all of our line bundles to be Hermitian, so that the
transition functions are circle-valued.

Equivariant line bundles. Given a line bundle L→ X with transition functions g and
connection A, we would like to lift the action of G on X to an action on L. For every a ∈ G
we can use ϕa to construct the pull-back bundle ϕ∗a(L). We say L→ X is G-equivariant
if and only if ϕ∗a(L) ' L, and the isomorphisms, which we denote by Ra ∈ C0(X,S1) are
compatible with the group multiplication law. That is, we have the diagram

ϕ∗a(L) ' L

X X
ϕa

(B.7)

and for any section of L, s ∈ C0(X,Ω0), we have

ϕ∗a(s) = s(ϕa(x)) = Ra(x)s(x) . (B.8)

Since ϕ∗ab(s) = ϕ∗bϕ
∗
a(s),

Rabs = Rbϕ∗b(Ra)s , (B.9)

for any section s, and we conclude that for all a, b ∈ G

Rab = Rbϕ∗b(Ra) . (B.10)

Since s also satisfies δs = g — this is the Čech language for the perhaps more familiar
relation sα = gαβsb for all Uαβ — consistency with the pull-back requires

ϕ∗a(g) = gδRa . (B.11)

This implies that the G-action preserves the first Chern class of the bundle, i.e. ϕ∗a(c1(L)) =
c1(L), which is a necessary condition for the lift to exist. We will be interested in lifts that
also preserve the connection, meaning that the covariant derivative Ds = ds− iAs satisfies
ϕ∗a(Ds) = Ra(Ds). This requires

ϕ∗a(A) = A− id logRa . (B.12)

Notice that the G-action preserves the curvature F = dA: ϕ∗a(F ) = F .
It is not hard to check that the definition is consistent with gauge transformations: if

Ra provide the lift for the bundle data (g,A), then

Ranew = Ra
ϕ∗a(f)
f

(B.13)

provide a lift for the gauge equivalent data (gnew, Anew) = (gδf,A− id log f).
Geometrically, all of this amounts to finding a G-action on the total space of the line

bundle that is consistent with the projection and choice of connection.
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B.2 Gerbes: basic structure

Having reviewed the case of line bundles, we now extend the discussion to G-equivariant
gerbes. We begin with the defining data of a gerbe over X with connection: (ϑ, β,B),

ϑ ∈ C2(X,S1) , β ∈ C1(X,Ω1) , B ∈ C0(X,Ω2) (B.14)

satisfying

δϑ = 1 , δβ = id log ϑ , δB = dβ . (B.15)

Two gerbes with connections are equivalent if and only if (after a suitable refinement of
cover) they are related by a 0- and 1-gauge transformations, with parameters f ∈ C1(X,S1)
and η ∈ C0(X,Ω1), which act by

ϑ→ ϑδf , β → β + id log f + δη , B → B + dη . (B.16)

We will call the full transformation (f, η) a gerbe gauge transformation. Note that (f, η)
leave the gerbe data invariant if and only if f defines transition functions for a flat line
bundle over X with a compatible flat connection η.

The gerbe curvature H = 1
2πdB is a closed 3-form on X. Like the curvature of a line

bundle, the curvature H is gerbe gauge-invariant, and its cohomology class characterizes
gerbes at the level of topology.

Vertical flat gerbes. Given a closed 1-form Θ on X and a flat line bundle L→ X with
data (g,Λ), we obtain a flat connection on a trivial gerbe by setting

ϑ = 1 , β = i log(g)Θ , B = Λ ∧Θ . (B.17)

If the transition functions are constant (such a choice is always possible for a flat line
bundle), then β can be gauged away while keeping ϑ = 1. Of course this is exactly the
situation when the connection Λ is a global 1-form on X, and these are gerbes with which
we are concerned in the main text.

B.3 G-action on the gerbe data

In the situation of a line bundle, we had a clear geometric perspective on finding a lift of
the G-action to L: we were essentially finding a set of diffeomorphisms on the total space of
the line bundle compatible with the projection to X. Such a perspective is not immediately
available for a gerbe, but we can, as in [26], study the action on (ϑ, β,B), and we will show
that the solution to the consistency requirements of that action allows for more general
results than those obtained in [26].

Starting with the defining relations of the gerbe we demand that for every a ∈ G we
have (fa, ηa) such that

ϕ∗a(ϑ) = ϑδfa , ϕ∗a(β) = β + id log fa + δηa , ϕ∗a(B) = B + dηa . (B.18)
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Applying ϕ∗b , we find that consistency with the group law require

ϑδfab = ϑδf bϕ∗b(δfa) ,

−id log fab

f bϕ∗b(fa)
= δ

(
ηab − ηb − ϕ∗b(ηa)

)
,

0 = d
(
ηab − ηb − ϕ∗b(ηa)

)
. (B.19)

These conditions are solved by

fab = f bϕ∗b(fa)ka,b , ηab = ηb + ϕ∗b(ηa) + τa,b , (B.20)

where (ka,b, τa,b) is the data for a flat line bundle T a,b → X.

Associativity. There are non-trivial conditions from associativity of the group product.
Imposing fa(bc) = f (ab)c and ηa(bc) = η(ab)c in (B.20), requires

T a,bc ⊗ T b,c ' T ab,c ⊗ ϕ∗c(T a,b) , (B.21)

with

ka,bckb,c = kab,cϕ∗c(ka,b) , τa,bc + τ b,c = τab,c + ϕ∗c(τa,b) . (B.22)

Any flat connection τa,b can be written as

τa,b = id log ha,b (B.23)

for some ha,b ∈ C0(X,S1) satisfying

δha,b = ta,b
(
ka,b

)−1
(B.24)

for some Čech cocycle ta,b ∈ C1(X,S1). Recall that any flat line bundle admits a triv-
ialization with constant transition functions, and the choice of such constant transition
functions is a flat structure on the bundle [54]; ta,b is such a flat structure on the line
bundle T a,b → X.

The relations (B.22) are equivalent to

δ

(
hab,cϕ∗c(ha,b)
ha,bchb,c

)
= tab,cϕ∗c(ta,b)

ta,bctb,c
, d

(
hab,cϕ∗c(ha,b)
ha,bchb,c

)
= 0 . (B.25)

Therefore for every a, b, c ∈ G there exists a locally constant phase ψa,b;c ∈ C0(X,S1)
such that

ϕ∗c(ha,b) = ψa,b;c
ha,bchb,c

hab,c
, ta,bctb,c = δ(ψa,b;c)tab,cϕ∗c(ta,b) . (B.26)

So, we see that ψa,b;c is a constant gauge transformation relating the flat structures on the
flat bundles in (B.21). Letting ϕ∗d act on both sides of the first equation in (B.26), we find
that ψ is a group cocycle, i.e. for each patch Uα, the constants ψa,b;cα define a class in the
group cohomology H3(G,U(1)).

The appearance of the line bundles T a,b is a new feature compared to the analysis of [26],
and it in principle allows for more general G-actions. As with many matters involving
non-trivial gerbe structures, it would be useful to have concrete classes of examples that
realize these seemingly more exotic possibilities.
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Discrete torsion. From the first of the expressions in (B.26) we can already see the
possibility of discrete torsion of [25]. Let λa,b be a G 2-cocycle, i.e. λ : G × G → U(1),
such that

λa,bcλb,c

λab,cλa,b
= 1 . (B.27)

In that case, if we have found ha,b that satisfy (B.26) with some ψa,b;c, then we obtain a
new solution to (B.26) with the same ψa,b;c by setting

ha,bnew = ha,bλa,b . (B.28)

As we will see below, the factors ha,b only enter the orbifold CFT partition function
through combinations ha,b/hb,a for commuting elements a, b ∈ G. Therefore, shifting
λa,b → λa,bξaξb/ξab for any G 1-cochain ξ leave the partition function invariant; said another
way, the partition function only depends on the cohomology class [λ] ∈ H2(G,U(1)).

Action on a topologically trivial gerbe. As for line bundles, the familiar exponential
short exact sequence

0 Z R U(1) 0e2πi·
(B.29)

and the associated long exact sequence in cohomology can be used to relate differential
data encoded in the connections to topological information. For example, the cohomology
class of the curvature [H] ∈ H3(X,R) of a gerbe is the image of a class in H3(X,Z), and
this latter class characterizes the gerbe at the level of topology.

A gerbe is flat if and only if its curvature vanishes: H = 0. Flat gerbes are classified
by the cohomology group H2(X,U(1)) [68], which encodes the holonomy of the B-field on
2-cycles. Using the long exact sequence associated to (B.29), we find

0 H2(X,R)/H2(X,Z) H2(X,U(1))
{
H3(X,Z)

}tors 0 ,
(B.30)

where the last term is the torsion subgroup of H3(X,Z). The right-hand-side encodes a
possible non-trivial topology of the flat gerbe, while the left-hand-side encodes the choice of
B up to gauge transformations. This is analogous to the characterization of connections on
flat line bundles, where the same description holds with cohomology degrees reduced by 1.

A gerbe with data (ϑ, β,B) is topologically trivial if and only if ϑ is a Čech coboundary.
For any topologically trivial gerbe it is possible to make a gerbe gauge transformation that
sets ϑ = 1 and β = 0. This a partial gauge fixing, and the gerbe gauge transformations
that preserve the choice are (f, η) = (g,A), where (g,A) is data for a line bundle L → X;
these act by

B → B + dA . (B.31)

We now consider the G-action on a topologically trivial gerbe. Following our previous
line of reasoning, we specify line bundles La → X with data (ga,Aa) for every a ∈ G

such that

ϕ∗a(B) = B + dAa . (B.32)
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The group structure imposes further requirements on this data. Specializing (B.20) to the
topologically trivial gerbe, we find that the data for the flat T a,b bundles is determined
by the data for the La bundles that specify the G-action. Denoting the dual bundle to L
by L∨,

T a,b ' Lab ⊗
(
Lb ⊗ ϕ∗b(La)

)∨
, ta,b = gab

gbϕ∗b(ga)
δha,b , id log ha,b = Aab −Ab − ϕ∗b(Aa) .

(B.33)

Bundle and gerbe gauge transformations. Are these structures are consistent with
gauge transformations of the gerbe and of the individual line bundles La? If the latter does
not hold, then we could not speak of the G-action as encoded in a choice of line bundles; if
the former does not hold, then our G-action would depend on a particular representative B.
We dispel both of these concerns, starting with bundle gauge transformations.

Given (ga,Aa) and ha,b satisfying (B.26), (B.32), and (B.33), we can pick gauge-
equivalent data for the La

ganew = gafa , Aanew = Aa − id log fa , (B.34)

and set

ha,bnew = ha,bf bϕ∗b(fa)fab
−1
. (B.35)

It is straightforward to check that the factor ξa,b = f bϕ∗b(fa)(fab)−1 — a gauge transforma-
tion on T a,b — satisfies

ξab,cϕ∗c(ξa,b)
ξa,bcξb,c

= 1 . (B.36)

So, we see that (ganew,Aanew) give a consistent G-action.
Next, consider a gerbe gauge transformation specified by a line bundle L→ X with

data (gL,Λ) and

Bnew = B + dΛ . (B.37)

Suppose that we have a G-action on the gerbe with connection B specified by line bundles
La such that

ϕ∗a(B) = B + dAa . (B.38)

We can then obtain a G-action on the gerbe with connection Bnew by taking new bundles

Lanew = La ⊗ ϕ∗a(L)⊗ L∨ , (B.39)

with data accordingly satisfying

ganew = gaϕ∗a(gL)(gL)−1 , Aanew = Aa + ϕ∗a(Λ)− Λ . (B.40)
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Trivial T a,b. In the special situation that ta,b = 1, (B.33) gives isomorphisms

Lb ⊗ ϕ∗b(La) ' Lab , gbϕ∗b(ga) = gabδha,b , Ab + ϕ∗b(Aa) = Aab − id log ha,b .
(B.41)

As we discussed in section B.1, such isomorphisms have a geometric interpretation at the
level of sections, or, equivalently, as diffeomorphisms on the total space of the bundle that
commute with projection to X: for a point (x, ξ) in the total space of Lb ⊗ ϕ∗b(La) we have

Lb ⊗ ϕ∗b(La)→ Lab , (x, ξ) 7→ (x, ha,b(x)ξ) . (B.42)

The associativity of the group multiplication law then requires the diffeomorphisms to satisfy

ϕ∗c(ha,b)hab,c = ha,bchb,c . (B.43)

Using these relations in (B.26), we see that ψa,b;c = 1. A bit more generally, if ta,b = δsa,b

for some sa,b ∈ C0(X,S1), then we can absorb the sa,b into a redefinition of ha,b while
preserving (B.41). The associativity of the bundle isomorphisms then again implies (B.43),
so that the ψa,b;c = 1. We also see that (B.43) is consistent with multiplying ha,b by a
representative of H2(G,U(1)), and modifying it by a group coboundary can be absorbed
into the gauge transformations of the individual bundles La — again, this is the discrete
torsion of [25]. In this way, we recover the results of [26] when T a,b are trivial bundles.

B.4 A trivial flat gerbe on Rd and orbifold CFT

Following [26], we now discuss how the equivariant structure just defined allows us to define
the contribution of the B-field to the orbifold partition function for the theory on X/G.
This is not easy for a general X equipped with a gerbe, but it is manageable and instructive
in the special case that X = Rd, G is abelian, and the gerbe is trivial and flat.26

Taking the worldsheet to be a torus, we fix a map from T 2 → X with image Sa,b(x):

•
x

•
ϕb(x)

•ϕab(x)•
ϕa(x)

(B.44)

We then define the phase factor

Pa,b = exp i
[∫

Sa,b(x)
B

]
exp i

[∫ ϕa(x)

x
Ab −

∫ ϕb(x)

x
Aa
]
ha,b(x)
hb,a(x) . (B.45)

This phase factor is precisely the holonomy of the gerbe on X/G associated to the cycle
that lifts to Sa,b(x), and it enjoys three important properties.

26The results are also relevant for non-abelian G, since the orbifold construction restricts the a, b to
mutually commuting elements in G.
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1. It is independent of the basepoint x.

First observe that
∫
Sa,b(x)B is base-point independent because Sa,b(x) and Sa,b(x+ v)

are homologous for any v ∈ Rd and H = 0. So, under a variation of x → x + v,
we have

−iδv logPa,b = Liev

[∫ ϕa(x)

x
Ab −

∫ ϕb(x)

x
Aa
]
− iLiev log h

a,b

hb,a
(x)

= vx
(
ϕ∗a(Ab)−Ab − ϕ∗b(Aa) +Aa

)
− ivxd log h

a,b

hb,a
= 0 . (B.46)

2. It is invariant under gerbe gauge transformations.

This follows because∫
Sa,b

Bnew =
∫
Sa,b

B +
(∫ ϕa(x)

x
−
∫ ϕb(x)

x
+
∫ ϕab(x)

ϕa(x)
−
∫ ϕab(x)

ϕb(x)

)
Λ

=
∫
Sa,b

B +
∫ ϕa(x)

x
(Λ− ϕ∗b(Λ))−

∫ ϕb(x)

x
(Λ− ϕ∗a(Λ)) , (B.47)

and the last two terms are canceled by the Λ transformations of the Aa from (B.40).

3. It is invariant under bundle gauge transformations.

To see this, we note that B does not transform under (B.34), while[∫ ϕa(x)

x
Ab −

∫ ϕb(x)

x
Aa
]
→
[∫ ϕa(x)

x
Ab −

∫ ϕb(x)

x
Aa
]
× faϕ∗a(f b)
f bϕ∗b(fa)

. (B.48)

The last factor is then canceled by the transformation of the ratio ha,b/hb,a.

While these properties make the factor well-defined, it is not obvious that including such
a factor leads to a well-behaved orbifold CFT. Fortunately, if we assume that the X/G
orbifold CFT is well-behaved without this phase factor, then the necessary and sufficient
conditions for a well-defined partition function at any genus are well-known from the classic
work [25]: the phases should satisfy

Pa,bPb,a = 1 , Pa,a = 1 , Pab,c = Pa,cPb,c . (B.49)

Using (B.45) we see that

Pa,bPb,a = exp i
[∫

Sa,b(x)
B +

∫
Sb,a(x)

B

]
. (B.50)

The two integrals cancel because Sa,b and −Sb,a are homologous, and H = 0. Moreover,
since the integrals cancel exactly, we also see that Pa,a = 1.

To study the last condition, we write

Pa,b = PBa,bP
A
a,bP

h
a,b (B.51)

and study the ratios for the different terms in turn.
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The ratio of the B- factors,

PBab,c
PBa,cP

B
b,c

, (B.52)

involves the integral
∫
Sab,c

B. We can relate this to the other integrals by constructing a closed
surface as follows (we drop the x dependence and just label the points by elements of G):

•
1

•
ab

•abc•c •
a

•ac

(B.53)

Because H = 0,∫
Sab,c(x)

B =
∫
Sa,c(x)

B +
∫
Sb,c(ϕa(x))

B −
∫

Σa,b(x)
B +

∫
Σa,b(ϕc(x))

B , (B.54)

where Σa,b is the oriented surface with ordered vertices 1, a, ab. We then obtain∫
Sab,c(x)

B −
∫
Sa,c(x)

B −
∫
Sb,c(x)

B =
∫
Sb,c(x)

(ϕ∗a(B)−B) +
∫

Σa,b
(ϕ∗c(B)−B)

=
∫
Sb,c(x)

dAa +
∫

Σa,b
dAc . (B.55)

So, we conclude

PBab,c
PBa,cP

B
b,c

= exp i
[∫

Sb,c(x)
dAa +

∫
Σa,b

dAc
]
. (B.56)

Next we tackle the PAab,c factor. Using (B.33) to eliminate the Aab term in PAab,c we arrive at

PAab,c
PAa,cP

A
b,c

= exp i
[(∫ ϕab(x)

x
−
∫ ϕa(x)

x
−
∫ ϕb(x)

x

)
Ac +

∫ ϕc(x)

x
(Aa − ϕ∗b(Aa))

]
ϕ∗c(ha,b)
ha,b

.

(B.57)

We rewrite the first term as(∫ ϕab(x)

x
−
∫ ϕa(x)

x
−
∫ ϕb(x)

x

)
Ac = −

∫
Σa,b

dAc −
∫ ϕb(x)

x
(Ac − ϕ∗a(Ac)). (B.58)

Because G is abelian, we have the relation

Aa − ϕ∗c(Aa) + id log hc,a = Ac − ϕ∗a(Ac) + id log ha,c , (B.59)

so that(∫ ϕab(x)

x
−
∫ ϕa(x)

x
−
∫ ϕb(x)

x

)
Ac = −

∫
Σa,b

dAc −
∫ ϕb(x)

x

(
Aa − ϕ∗c(Aa) + id log hc,a

ha,c

)
,

(B.60)
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and combining factors we learn that

PBab,c
PBa,cP

B
b,c

PAab,c
PAa,cP

A
b,c

= exp i
[∫

Sb,c(x)
dAa +

∫ ϕc(x)

x
(Aa − ϕ∗b(Aa)−

∫ ϕb(x)

x
(Aa − ϕ∗c(Aa)

]

× ϕ∗c(ha,b)
ha,b

ϕ∗b

(
hc,a

ha,c

)
ha,c

hc,a
(B.61)

The square bracket is zero, and we have

PBab,c
PBa,cP

B
b,c

PAab,c
PAa,cP

A
b,c

= ϕ∗c(ha,b)
ha,b

ϕ∗b

(
hc,a

ha,c

)
ha,c

hc,a
. (B.62)

Combining this with the ratio P hab,c/P ha,cP hb,c, we find

Pab,c
Pa,cPb,c

= hab,c

hc,ab
hc,b

hb,c
ϕ∗c(ha,b)
ha,b

ϕ∗b

(
hc,a

ha,c

)
. (B.63)

Using the constraint from (B.26) we can eliminate the pullbacks from this expression, and
we find the necessary and sufficient condition for a well-defined CFT partition function at
any genus:

Pab,c
Pa,cPb,c

= ψa,b;cψc,a;b

ψa,c;b
= 1 . (B.64)

We saw above that in the case ta,b = 1 we have ψa,b;c = 1, so the orbifold partition function
is consistent for every equivariant gerbe with trivial T a,b.

Possibilities for new equivariant gerbes. While trivial T a,b imply that ψa,b;c = 1, the
consistency condition in (B.64) appears to be weaker than ψa,b;c = 1. Since the general
requirements for a G-action on the gerbe— (B.26) for a general gerbe or (B.34) for a trivial
gerbe — also do not appear to require ψa,b;c = 1, this naively suggests that there may be
consistent equivariant gerbes with ψa,b;c 6= 1 satisfying (B.64). We do not believe this to be
the case: for example, it is hard to understand how a non-trivial class in H3(G,U(1)) would
show up in the computation of H2(X/G,U(1)) — the cohomology group that classifies flat
gerbes with connections.

On the other hand, it seems more likely that it is possible to include non-trivial bundles
T a,b, provided that (B.21) is obeyed with ψa,b;c = 1. This could potentially enlarge the class
of equivariant gerbes on X with

(
H2(X,Z)

)tors 6= 0. If our goal is to use the equivariant
gerbes to describe gerbes on the quotient M = X/G, then we can avoid the complications
associated to the T a,b by replacing X with its universal cover X◦, so that X = X◦/G◦.
Since (H2(X◦,Z))tors = (H1(X◦,Z))tors = 0, all flat line bundles on X◦ are trivial, and we
can describe the gerbes on M with the simpler construction of equivariant gerbes on X◦

with respect to the group G◦ ×G.

C Xk,~k for ZN>2

In this appendix we describe the spaces obtained for each T5/ZN quotient with N = 3, 4, 6.
These results match the ZN quotients described in section 4 of [15], as well as the classification
results obtained in [5].
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Z3 quotients. The action on T4 is

ϕa(~x) =


−1 1 0 0
−1 0 0 0
0 0 −1 1
0 0 −1 0

 ~x . (C.1)

Focusing on a single T2 factor, we see that

M = ϕTa − 1 =
(
−2 −1
1 −1

)
(C.2)

generates an index 3 sublattice in Z2, which allows us to set k1 = 0, while letting k2 ∈ {0, 1, 2}.
Examining the quotients in detail, we find that each quotient is diffeomorphic to one of the
following three types:

orbifold quotient action

X0,0 = T4/Z3 × S1 (ϕa(~x), x5)
X1,0 (smooth) (ϕa(~x), x5 + 1

3)
X0,~k (singular) (ϕa(~x), x5 + x3)

Z4 quotients. The action on T4 is

ϕa(~x) =
(
−ε 0
0 −ε

)
~x , ε =

(
0 1
−1 0

)
. (C.3)

Focusing on a single T2 factor we have

M = ϕTa − 1 =
(
−1 1
−1 −1

)
. (C.4)

This generates an index 2 sub-lattice and allows us to set k2 = 0 and k1 ∈ {0, 1}, and
similarly for the second T2 factor. The diffeomorphism classes are then represented by

orbifold quotient action

X0,0 = T4/ZN × S1 (ϕa(~x), x5)
X1,0 (smooth) (ϕa(~x), x5 + 1

4)
X2,0 (ϕa(~x), x5 + 1

2)
X0,~k (ϕa(~x), x5 + x1)

Z6 quotients. The action on T4 is

ϕa(~x) =


1 −1 0 0
1 0 0 0
0 0 1 −1
0 0 1 0

 ~x . (C.5)
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For a single T2 we find

M = ϕTa − 1 =
(

0 −1
1 −1

)
, (C.6)

generates the entire lattice, so that we can set ~k = 0.
There are then 4 diffeomorphism types, represented by

orbifold quotient action (C.7)

Xk,0 (ϕa(~x), x5 + k
6 ) . (C.8)
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