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1 Introduction

The Kerr black hole metric is considered one of the most relevant solutions of General
Relativity due to its astrophysical applications, and also celebrated for its mathematical
structure and symmetry. The solution describes a rotating asymptotically flat black hole
in four spacetime dimensions, and is famously conjectured to be dual to a two dimensional
conformal field theory (2D CFT). This conjectured duality holds both in the extremal
case (via a near-horizon limit in the extremal Kerr geometry, or NHEK limit) [1] and the
non-extremal case (via a near-horizon limit in the dynamics that reveals hidden conformal
symmetry of the radial Klein-Gordon (KG) equation) [2].

One remarkable feature of the Kerr metric is that it leads to a separable KG-
equation [3]. We will call black hole solutions with a separable KG-equation simply sep-
arable black hole metrics. It was later shown that such classes of separable black hole
solutions are uniquely determined by requiring the existence of a principal closed confor-
mal Killing-Yano form [4] (and references therein). The geometry possesses a high degree
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of symmetry encoded in the existence of a tower of Killing vectors and tensors. Unlike
Killing vectors, these higher-rank Killing tensors do not generate explicit isometries of the
metric, and for this reason they are often called “hidden” symmetry generators [5]. An
interesting question is to determine to what extent these hidden symmetries of separability
are related to the hidden conformal symmetries found in geometries like Kerr [2].

Many miraculous properties of the Kerr solution survive in higher dimensions. The KG-
equations for many higher-dimensional solutions of the Einstein equations are separable,
and the geometry possesses a high degree of symmetry encoded in a tower of Killing vectors
and tensors [4, 6]. However, this exceptional symmetry does not extend to all higher
dimensional black hole solutions of General Relativity. In particular, the KG-equations for
generic black rings solutions [7] are believed to be non-separable.

In the context of the nonextremal Kerr/CFT correspondence [2], hidden conformal
symmetry leads to the proposal that D-dimensional black holes are dual to 2D CFTs (in
contrast to D−1 CFTs) in a certain limit, stemming from the analysis of the separable KG-
equations. As previously mentioned, one pressing question that remains to be clarified is
whether the hidden conformal symmetries relevant for the CFT description of nonextremal
black holes are bound to the existence of higher degrees of symmetry encoded Killing
tensors, ultimately realized in the KG-equation separability.

We will argue that the CFT interpretation for generic black holes is valid even without
full separability of the KG-equation. Moreover, we conjecture that the existence of hidden
symmetry structures in the KG-equation will be guaranteed for black hole metrics with
two horizons — an outer event horizon r = r+ and Cauchy inner horizon r = r−. In other
words, black hole metrics containing a smooth extremal limit rext = r+ = r−. This property
for black holes seems to be the key for the CFT interpretations rather than separability
and existence of Killing-Yano forms.

Other techniques involving the CFT interpretation of black hole horizons include the
so-called monodromy technique [8–10]. In this approach, expressions involving the mon-
odromies are interpreted by making explicit the relationship between the monodromy of
the solutions and greybody factors for fully separable KG-equations. One then wonders:
are the solution monodromies, hidden symmetries of KG separability and hidden confor-
mal symmetries from the dynamics related? We find that separability is not required, and
therefore not linked to the hidden conformal symmetries in the KG equation. Indeed, the
hidden conformal symmetry structure can be obtained from the monodromies, allowing a
2D CFT interpretation even for black holes exhibiting non-separable KG equations. With
appropriate modifications to the monodromy technique, we will be able to compute explicit
relations that can be interpreted as effective temperatures of a 2D CFT for generic black
hole solutions of vacuum Einstein’s equations with at least two horizons.

In this article, we pay special attention to two black ring solutions, the dipole black
ring [11] and the doubly-spinning black ring [12, 13]. Although the KG equations on these
backgrounds are non-separable, we show that one can make contact with a dual 2D CFT
by focusing on the radial poles and radial derivatives alone. From the radial pole terms
of our KG equations, we can extract the monodromies and build the temperatures TL and
TR for the purported dual 2D CFT. We then move on to construct conformal coordinates
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for these spacetimes, to further exhibit the hidden conformal symmetry structure. We
show a difficulty arises in constructing an appropriate radial function for the conformal
coordinates, reminiscent of what was found in [14]. We make progress by considering two
limits that we describe: a black string limit and a near-horizon limit. In this way we
succeed in constructing conformal coordinates for these systems.

This approach should be contrasted with the so-called “near-region limit” of [2] and
others. In those works, they take a limit ωM � 1, ωr � 1, which has been endowed with
a physical interpretation involving soft hair [15]. However, the same hidden symmetry
arguments can be obtained without such a specific limit and simply focusing on the poles
of the radial equation. Indeed, we will find that the black ring solutions would require a
more complicated limit than that proposed by [2]. The main result of our current work is
that we are able to describe a purported CFT dual of a non-separable black hole metric.
This result is strengthened by our ability to reproduce known microscopic results for horizon
entropy via a Cardy formula.

This article is organized as follows. In section 2 we outline our formalism, namely the
revised monodromy technique and the construction of conformal coordinates. In section 3
we demonstrate these techniques on the Kerr black hole before considering our spacetimes
of interest: the dipole black ring (section 4) and the doubly-spinning black ring (section 5).
In our Discussion section 6 we review our results and conclusions. We relegate some metric
definitions and properties to appendix A.

2 Methods

Here we outline some of the techniques that we use to probe hidden conformal symmetry
in black ring solutions. While much of this section is review, some of the analysis is, to the
best of our knowledge, new.

2.1 Revised monodromy technique

We consider the KG equation for a massless scalar evaluated on a D-dimensional spacetime
background

∇2Ψ(x) = 1√
−g

∂µ(
√
−ggµν∂ν)Ψ(x) = 0. (2.1)

Let us assume that the background has n + 1 Killing vectors. We choose a basis where
the vectors are simply labelled by the coordinates K = (∂t, ∂φk) with k = 1, · · · , n. The
presence of Killing vectors allows us to decompose the wave function as

Ψ(x) = exp(−iωt+ i
n∑
k=1

mφkφk) Φ(r, θ) . (2.2)

The full separability in (r, θ) coordinates via Φ(r, θ) does not follow from symmetries real-
ized explicitly in the black hole background and will be the subject of our paper. We will
be mostly interested in solutions that have Cauchy horizons, such as rotating black holes
and black rings. In the appropriate coordinate system these horizons are characterized by
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being simple poles of a “radial” coordinate. If we denote this coordinate by r, the horizons
are defined by the zeroes of grr = 0.

The basic observation for the revised monodromy technique starts as follows. Horizons
are regular surfaces, and in particular we expect that the wave equation is well behaved
around each pole. Hence, instead of analyzing the behavior of the KG equation and so-
lutions around each pole, we can instead simply keep the kinetic radial part and pole
terms for each horizon {r−, r+} to identify the monodromy and corresponding 2D CFT
temperatures. The argument that these temperatures should belong to a CFT is based on
symmetry. The crucial point is that we are able to match the radial derivative and pole
terms to the SL(2, R) conformal Casimir, and this can be accomplished for the solutions
that we consider even though the background spacetime is non-separable. Furthermore,
no near-region limit is necessary to obtain these results.

For example, for the black holes we consider we focus on terms of the following form:

∂r [∆(r)∂rΦ(r)] +
[
F+(ω,mφk)2

(r − r+) + F−(ω,mφk)2

(r − r−)

]
Φ(r) + . . . = 0, (2.3)

where ∆(r) = (r − r+)(r − r−)f(r) for a regular function f(r) at r+, r−. Throughout this
work, the “. . . ” that appears in equations such as (2.3) refer to terms that are non-singular
at either horizon. The solutions to this effective differential equation with a non-trivial
monodromy αj around (r − rj) take the form

Φ(r) ∼ (r − rj)i αj + (r − rj)−iαj , αj = Fj(ω,mφk)
limr→rj (∆(r)/(r − rj))1/2 . (2.4)

The associated monodromy matrix is

Mj =
(
e2παj 0

0 e−2παj

)
. (2.5)

The curiosity here is that we write mφk as a function of αj , such that the coefficients in
this relation can be interpreted as effective temperatures of a 2D CFT. More explicitly,
take φk → φk + 2π, and then the wave function changes as [16]

Ψ(φk + 2π) = e2πimφkΨ(φk) = e−i4π
2(−TL,φkωL+TR,φkωR)Ψ(φk) , (2.6)

where Tj,φk is determined by rewriting (2.4) as mk = mk(αj). As we explicitly compute
below, it seems in general that

ωR = α+ + α− , ωL = α+ − α−, (2.7)

involving the monodromies around the outer (+) and inner (-) horizons. These relations
seem to indicate that TR/L,φk ’s are the relevant temperatures to describe the black hole
entropy as a Cardy formula for a 2D CFT.

– 4 –



J
H
E
P
0
4
(
2
0
2
3
)
0
6
6

2.2 Building conformal coordinates

In this subsection we describe a streamlined technique for constructing conformal coordi-
nates, and also express the monodromy parameters α± in terms of these. We will use the
technique outlined here to attempt to construct coordinates that reproduce the conformal
structure of the black ring solutions.

Following [2, 17], we seek a coordinate transformation of the following form

w+ = f(r)eαφ+βt

w− = f(r)eγφ+δt

y = g(r)e1/2((α+γ)φ+(β+δ)t).

(2.8)

Note that we have selected a single angular direction φ. The primary purpose of these
conformal coordinates is to construct an SL(2, R) Casimir

H2 = 1
4
(
y2∂2

y − y∂y
)

+ y2∂+∂−, (2.9)

which is proportional to the radial derivative and pole terms of the KG operator acting
on our probe scalar field Φ = R(x)ei(kφ−ωt). A secondary feature that we would like these
coordinates to possess is that near the bifurcation surface (w± = 0) the metric becomes
warped AdS3 to leading order.

It will sometimes be cleaner to reparametrize the radial coordinate r in the following
way

w+ =

√√√√x− 1
2

x+ 1
2
eαφ+βt

w− =

√√√√x− 1
2

x+ 1
2
eγφ+δt

y =
√

1
x+ 1

2
e1/2((α+γ)φ+(β+δ)t).

(2.10)

The nice thing about the x-coordinate is that this form (2.10) is the same in both four
and five dimensions. For Kerr, x = 2r−r−−r+

2(r+−r−) and for the 5D Myers-Perry black hole

x = r2−1/2(r2
++r2

−)
r2
+−r

2
−

. Indeed, we will find that the conformal coordinates for the black ring
and black string solutions fit this form as well.

In terms of these general conformal coordinates (2.10), we can write down the
Casimir (2.9) as

H2R(x) =

∂x∆∂x + (ω(α+ γ) + k(β + δ))2

4
(
x− 1

2

)
(βγ − αδ)2

− (ω(α− γ) + k(β − δ))2

4
(
x+ 1

2

)
(βγ − αδ)2

R(x), (2.11)

where ∆ =
(
x− 1

2

) (
x+ 1

2

)
. This is what should be compared to the radial derivative and

pole terms of the KG operator to determine the parameters (α, β, γ, δ). The solutions to
the equation H2R(x) = 0 are hypergeometric functions (by construction). This analysis
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also gives us the monodromy data in terms of the conformal coordinates. The monodromy
around the outer horizon is

R(x) ∼
(
x− 1

2

)iα+

, α+ = ω(α+ γ) + k(β + δ)
2(βγ − αδ) . (2.12)

The monodromy around the inner horizon is

R(x) ∼
(
x+ 1

2

)iα−
, α− = ω(α− γ) + k(β − δ)

2(βγ − αδ) . (2.13)

These expressions for the monodromies make direct contact with the parameters in the
Casimir. We can now identify the CFT temperatures as proposed in [17, 18]. The analysis
of the periodicities yields

α = 2πTR, γ = 2πTL , (2.14)

or equivalently
TR = α/(2π) , TL = γ/(2π) . (2.15)

Via a Cardy formula for a 2D CFT these will reproduce the expressions for the inner and
outer black hole entropies.

3 Warm-up: Kerr black hole

The simplest case where we can exhibit the formalism of section 2 is the Kerr black hole.
For Kerr, with generic mass M and angular momentum J = Ma, the full radial KG
equation is1

[
∂r ((r − r+)(r − r−)∂r) + (2Mr+ω − am)2

(r − r+)(r+ − r−)

− (2Mr−ω − am)2

(r − r−)(r+ − r−) + (r2 + 2M(r + 2M))ω2
]

Φ(r) = K` Φ(r) . (3.1)

Focusing on the terms responsible for the hidden conformal symmetry, we have[
∂r ((r − r+)(r − r−)∂r) + (2Mr+ω − am)2

(r − r+)(r+ − r−) −
(2Mr−ω − am)2

(r − r−)(r+ − r−)

]
Φ + . . . = 0. (3.2)

Employing the definition (2.4), we can now compute the monodromies for the outer horizon
r = r+

Φ ∼ (r − r+)± iα+ , α+ = (2Mr+ω − am)
(r+ − r−) . (3.3)

Similarly, for the inner horizon r = r− it gives

Φ ∼ (r − r−)± iα− , α− = (2Mr−ω − am)
(r+ − r−) . (3.4)

1For the Kerr metric and more details regarding the resulting KG equation, please see for example [2].
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Solving for m in terms of α± we get

−m = r+
a
α− −

r−
a
α+. (3.5)

Taking φ→ φ+ 2π, the wave function (2.6) changes as

Ψ(φ+ 2π) = exp
(
−2πir+

a
α− + 2πir−

a
α+

)
Ψ(φ). (3.6)

Changing the basis to ωR,L = α+ ± α− we get2

Ψ(φ+ 2π) = ei4π
2 (TL ωL−TR ωR)Ψ(φ), (3.7)

where
TL = r+ + r−

4πa , TR = r+ − r−
4πa . (3.8)

These are the same temperatures computed in [2] using the hypergeometric equation. The
CFT microstate degeneracy inferred from the Cardy formula with central charge cL =
cR = 12J agrees exactly with the Bekenstein-Hawking area law. Further, the product of
the inner and outer entropy, representing a minimal phase-volume, is quantized as a full
spin surface area:

S+S− = 4π2J2 (3.9)

4 Dipole black ring and black string

The black ring solutions in this and the upcoming section distinguish themselves from other
black objects due to their non-trivial S1 × S2 horizon topology. Known as D = {10, 11}
supergravity solutions [19], they can also be found as systems in minimal N = 1, D = 5
supergravity. A classification of those solutions can be found in [20]. The IR limit of the
latter leads to the identification of black rings as exact solutions of General Relativity [21]
in D = 5, erecting themselves as clear violations of the uniqueness theorem for black
holes [22]. The dipole black ring in particular is a generalization of [21], being an exact
solution of Einstein-Maxwell-dilaton theory. We will be considering the case where the
dilaton φ is decoupled, thus giving us pure Einstein-Maxwell theory with winding number
N = 3. More precisely, we will focus on the neutral (non-supersymmetric) dipole spinning
black ring specified by the three physical parameter (M,Jψ, q), the mass, angular momenta
along S1 and dipole magnetic charge respectively. An in-depth description of the dipole
black ring solution is given in appendix A. The black ring solution [21] is parametrized by
a scale R, the dipole parameter µ and λ, ν within 0 < ν ≤ λ < 1 and 0 ≤ µ < 1.

Although the (x, y, ψ)-coordinates discussed in appendix A are useful for a compact
expression for the metric, it is instructive to consider (r, θ, z)-coordinates defined by

x = cos θ, y = −R/r , and ψ = z/R , (4.1)
2This is related to the fact that the identification φ → φ + 2π is generated by the group element

e−i4π
2(TRH0+TLH̄0) = e2π∂φ .
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as well as the constants ν = r0/R, λ = (r0/R) cosh2 σ and µ = (r0/R) sinh2 γ where γ
gives a convenient parametrization of the charge. We label the functions s2

X = sinh2X

and c2
X = cosh2X from here onwards. This is a convenient set of coordinates to take the

straight black string limit R → ∞. In these coordinates the outer horizon is at r = r0
and the inner horizon is at r = 0. The two horizons coincide when ν = 0, which defines
the extremal limit, and thus ν can be regarded as a non-extremality parameter. The
expressions for the entropy were computed in [23] yielding

S+ =
2π2r2

0Rc
3
γ cσ

G5

(1 + r0s
2
γ/R)3(1− (r0c

2
σ/R)2)1/2

(1− r0/R)2(1 + r0/R)

S− =
2π2r2

0Rs
3
γ sσ

G5

(1 + r0s
2
γ/R)3(1− (r0c

2
σ/R)2)1/2

(1− r0/R)2 . (4.2)

In addition, we have the angular momentum

Jψ = πR2r0cσsσ
2G5

(
1 + r0s2γ

R

)9/2 (
1 + r0c2σ

R

)1/2

(
1− r0

R

)2 , (4.3)

and dipole charge

q3 =
2π2r3

0sγc
3
γ

G5

(1 + r0s
2
γ/R)3

(1− r0/R)3

(
1− (r0c

2
σ/R)

1− r0s2
γ/R

)3/2

. (4.4)

Interestingly, as observed in [23], it is the case that the product of the inner and outer
entropies is independent of the mass of the black hole and therefore depends solely on the
quantized charges

S+S− = 4π2 Jψ q
3. (4.5)

We now use the revised monodromy technique to analyze the KG-equation for a mass-
less scalar field on the dipole black ring geometry in the (r, θ, z)-coordinates. This allows
us to compute temperatures of the proposed dual 2D CFT.

4.1 Monodromy analysis

In eigenmodes the scalar field is of the form

Ψ(t, r, θ, φ, z) = e−itω+imφ+inz
(

1 + r

R
cos θ

)
Φ(r, θ). (4.6)

Notice that both m and n are not integers because (φ, z) do not have periodicity 2π. Below
we will account for this. The classical wave equation for Φ(r, θ) becomes

∂r

(
r (r − r0)

(
1− r2

R2

)
∂r Φ

)
+ 1

sin θ ∂θ
((

1 + r0
R

cos θ
)

sin θ ∂θ Φ
)

(4.7)

+
(r + r0 s

2
γ)3

r (r0 − r)
(
1− r2

R2

)
(r − r0c2

σ)

(
ω r0cσsσ

(
1− r

R

)√1 + r0
R c

2
σ

1− r0
R c

2
σ

− n(r − r0c
2
σ)
)2

Φ

+ω2 (1 + r0
R c

2
σ cos θ)2(r + r0 s

2
γ)3

(1 + r
R cos θ)2(r − r0c2

σ) Φ−m2 (1 + r0
R c

2
σ cos θ)(1− r0

R s
2
γ cos θ)3

(1 + r0
R cos θ) sin2 θ

Φ

+
(
r0
R

cos θ − r

R
(2r − r0)

)
Φ = 0.
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We are only interested in the kinetic radial part and the single poles for each horizon:

∂r

(
r (r − r0)

(
1− r2

R2

)
∂r Φ

)
+ r3

0
r − r0

c6
γ

1− r0
R

1 + r0
R

(
sσ

1− r0
R

n+ cσKω

)2

Φ (4.8)

−r
3
0
r
s6
γ (cσn+ sσKω)2 Φ + . . . = 0.

The calculation of the monodromies employing the prescription (2.4) is straightforward.
Around the outer event horizon r → r0:

Φ ∼ (r − r0)±iα+ , α+ = r0
c3
γ

1 + r0
R

(
sσ

1− r0
R

n+ cσKω

)
. (4.9)

We can also compute the monodromy around the inner horizon r → 0:

Φ ∼ r±iα− , α− = r0s
3
γ (cσn+ sσKω) . (4.10)

Here we have an expression for α+ and α− as a function of ω and n. Solving for n
gives

n =
1− r0

R

1− c2
σ
r0
R

1
2r0s3

γc
3
γ

[(
cσc

3
γ − sσs3

γ

(
1 + r0

R

))
ωL +

(
cσc

3
γ + sσs

3
γ

(
1 + r0

R

))
ωR

]
(4.11)

with ωR,L = α+ ± α−. The wave function transforms as

Ψ(z + 2π∆z) = e2π∆z inΨ(z) = e−i4π
2(−TLωL+TRωR)Ψ(z) (4.12)

with conformal temperatures

TR = ∆z
2π

1− r0
R

1− c2
σ
r0
R

1
2r0s3

γc
3
γ

(
cσc

3
γ − sσs3

γ

(
1 + r0

R

))
TL = ∆z

2π
1− r0

R

1− c2
σ
r0
R

1
2r0s3

γc
3
γ

(
cσc

3
γ + sσs

3
γ

(
1 + r0

R

))
(4.13)

and

∆z = 2π
(1 + r0s

2
γ/R)3/2(1− r0c

2
σ/R)1/2

(1− r0/R) . (4.14)

Here ∆z is the periodicity of the azimuthal direction in the black ring solution. Fixing this
condition represents a balance between forces in the ring that can be achieved when there
are no conical singularities. See e.g. [11] for more details. Our results here for the dipole
black ring apply for both situations, with or without balance. For our computations, in
order to link the results between the black ring and strings, it will be useful to not fix the
bound. Note that to be able to take the black string limit R → ∞ one needs to keep the
quantity ∆z unfixed.

A straightforward calculation using these results shows that the black ring satisfies a
Cardy entropy formula [24]:

S± = cπ2

3 (TL ± TR) (4.15)
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with central charge
c = 6 q3 (4.16)

and the entropies reported in (4.2). In analogy to the supersymmetric cases [7], the entropy
is independent of the mass and a power of the dipole charge. The central charge agrees
with that of [11]. In these cases the Bekenstein-Hawking entropy of a large extremal ring
can be reproduced through a microscopic calculation.

It is worth noticing that the extremal black ring configuration ν → 0 has TR = 0. The
extremal system ν = 0 is regarded as the ground state of the ring with finite radius. The
matching to the results previously obtained from the thermodynamical characterization of
the dual CFT is remarkable. In the supersymmetric case, the black ring exhibits a set of
three dipole charges qi, which when quantized become ni:

ni =
(

π

4G5

)1/3
qi. (4.17)

For both dipole black ring and its supergravity cousin, extremality is reached when
ν → 0. For the latter case, the extremal configuration can be regarded as the ground state
of a ring with large but finite radius [11]. Then in the extremal, large string limit, the
central charge becomes

c = 6n1n2n3np. (4.18)

Further, for these configurations np corresponds to the chiral momentum excitations. De-
termined through a Komar integral, its value is:

np = J (4.19)

where J is the ADM value of the angular momentum of the ring and ni can be identified
with the number of each type M5 branes forming the ring,

ni =
(2π
G

)1/3
Qi . (4.20)

4.2 Boosted charged black string

The black string solution appears as a higher dimensional solution of Einstein-Maxwell
theory. These black objects attracted great interest regarding their event horizon stability.
The well-known Gregory-Laflamme instability [25] was described first in the context of
black strings. Since then, further studies of the instability and the fate of black strings
evolving into regular higher dimensional black hole configurations have populated the lit-
erature [26, 27].

We introduce the metric and gauge field for the charged boosted black string

ds2 = − f̂
h

[
dt− r0cσsσ

rf̂
dz

]2
+ f

f̂h
dz2 + h2

[
dr2

f
+ r2dΩ2

2

]
(4.21)

Aφ =
√

3r0sγcγ(1 + cos(θ)), (4.22)
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where dΩ2
2 = dθ2 + sin θ2dφ2 and

f = 1− r0
r

(4.23)

f̂ = 1− r0cσ
2

r
(4.24)

h = 1 + r0sγ
2

r
. (4.25)

In the metric (4.21) the coordinates that we will use to construct our conformal coordinates
will be (t, r, z). The entropy of the outer and inner horizons is given by [28]

S+ =
2π2r2

0Rc
3
γcσ

G5
, S− =

2π2r2
0Rs

3
γsσ

G5
. (4.26)

By introducing the coordinate transformation x = r
r0
− 1

2 on the metric, is possible to
identify the outer/inner horizon at x = ±1

2 . Then, we calculate the KG equation of the
system using the ansatz

Ψ(t, x, θ, φ, z) = e−itω+imφ+inzR(x)Ω(θ) (4.27)

and we verify that the equation is separable. The radial part is given by:[
∂x[∆∂x] (4.28)

+
r2

0(c2
γ + s2

γ + 2x)3[ω2(c2
σ + s2

σ + 2x) + n2(c2
σ + s2

σ − 2x) + 4ωncσsσ]
16(x− 1/2)(x+ 1/2)

]
R(x)

= KlR(x)

where ∆ = (x− 1
2)(x+ 1

2). The angular component is

1
sin θ∂θ

[
sin θ∂θΩ

]
− m2

sin2θ
Ω = −KlΩ. (4.29)

We will focus on the radial equation and isolate the pole terms in (4.28). The wave equation
becomes:[

∂x[∆∂x] + r0
2
(

cγ
6

x− 1
2

(nsσ + ωcσ)2 − sγ
6

x+ 1
2

(ncσ + ωsσ)2
)]
R(x) + . . . = 0. (4.30)

This agrees with the R→∞ limit of (4.8).

Around the inner horizon r → 0, the monodromy is given by:

Φ ∼ r±iα− , α− = r0s
3
γ(ncσ + ωsσ) (4.31)

and with respect to the outer horizon r → r0:

Φ ∼ r±iα+ , α+ = r0c
3
γ(nsσ + ωcσ). (4.32)
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Solving for n gives

n = 1
2r0c3

γs
3
γ

[
− (cσc3

γ + sσs
3
γ)ωL + (cσc3

γ − sσs3
γ)ωR

]
(4.33)

with ωR,L = α+ ± α−. The wave function transforms as

Ψ(z + 2π∆z) = e2π∆z inΨ(z) = e(i4π2TLωL−i4π2TRωR)Ψ(z). (4.34)

We can read off the left and right temperatures

TL = ∆z
2π

(cσc3
γ + sσs

3
γ)

2r0c3
γs

3
γ

, TR = ∆z
2π

(cσc3
γ − sσs3

γ)
2r0c3

γs
3
γ

. (4.35)

Again, assuming a Cardy formula holds, we recover the entropies (4.26) via completely
different means. The central charge is in this case c = 6q3, with

q3 =
2π2r3

0sγc
3
γ

G5
. (4.36)

4.3 Conformal coordinates

We attempt to find conformal coordinates of the form (2.8) that reproduce the radial
derivatives and radial poles of the dipole black ring Laplacian. Our first objective is to
determine suitable radial dependence of the functions f(r) and g(r). The procedure that
we follow is outlined in section 3.2 of [14]. Defining the function h(r) ≡ f(r)/g(r), the
authors of [14] found that the Casimir operator in Boyer-Lindquist coordinates takes the
form

H2 = h2 + 1
4(h′)2 ∂

2
r+
(

1 + h2

4hh′

[
(h′)2 − h′′h

(h′)2

]
+ h

2h′

)
∂r+F1(r)∂2

t +F2(r)∂t∂φ+F3(r)∂2
φ. (4.37)

In comparing this to the radial derivative and pole terms of the KG operator (4.8), we can
determine the radial dependence of the conformal coordinates h(r) by solving the following
differential equation

h2+1
4h′h

d
dr

(
h
h′

)
+ h

2h′
h2+1
4h′2

=
d∆
dr

∆ , (4.38)

where for the dipole black ∆ = r(r − r0)
(
1− r2

R2

)
. This has the following solution

h(r) =
exp

(
c2 − c1

(
log(r−r0)
r3
0−R2r0

+ log(r)
R2r0

+ log(r−R)
2R2(R−r0) −

log(r+R)
2R2(R+r0)

))
√

1− exp
(
2
(
c2 − c1

(
log(r−r0)
r3
0−R2r0

+ log(r)
R2r0

+ log(r−R)
2R2(R−r0) −

log(r+R)
2R2(R+r0)

))) , (4.39)

where c1 and c2 are constants. We see here that we are not able to choose a good c1 that
eliminates all of the branch cut behavior for us. This is the same problem that occurs
in higher dimensions, as pointed out in [14]: a solution h(r) that is free of branch cuts
(besides the overall square root) can only exist if the highest power of ∆ ∼ r2 (or in the
special case where one can write ∆ ∝ (r2 − r2

+)(r2 − r2
−)).
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There are two ways to make progress here. The first is to focus only on the outer
horizon and take a near horizon limit in the conformal coordinates themselves. This is
a reasonable thing to do, as it essentially is taking a near horizon limit in the dynamics,
which is close in spirit to the standard hidden conformal symmetry analyses [2, 15]. To do
this, we choose the constants in equation (4.39) to be c2 = 0 and c1 = r0(R2 − r2

0)/2, in
analogy to what was suggested in [14]. Then we expand the result around r = r0 to obtain

h(r) = f(r0, R)
√
r − r0
r0

, (4.40)

where f(r0, R) is an uninteresting function that is independent of r. You will notice that
this is reminiscent of the Kerr answer h(r) =

√
r−r+
r+−r− , with r+ = r0 and r− = 0.

The second way to make progress is to consider the black string limit R→∞. In that
case, we would like to solve the differential equation

h2+1
4h′h

d
dr

(
h
h′

)
+ h

2h′
h2+1
4h′2

= 2r − r0
r(r − r0) . (4.41)

This has the solution

h(r) = ec2r
c1
r0√

(r − r0)
2c1
r0 − e2c2r

2c1
r0

. (4.42)

We have freedom to choose c1 and c2. One clean choice is to take c1 = r0/2 and c2 = 0.
Then our radial functions take the particularly simple form

h(r) =
√
− r

r0
, g(r) =

√
− r0
r − r0

, f(r) = gh =
√

r

r − r0
. (4.43)

The fact that two of these radial functions are imaginary does not cause any problems.
The important thing is that the Casimir

H2 = 1
4
(
y2∂2

y − y∂y
)

+ y2∂+∂− (4.44)

is still real. The radial functions (4.43) admit the same x-coordinate structure as presented
in (2.10). For the dipole black ring, we see that x = r

r0
− 1

2 .
At last we are ready to attempt to find the angular conformal coordinate variables

(α, β, γ, δ). To do this, we would like to compare the Casimir

H2R(x) =

∂x∆∂x + (ω(α+ γ) + n(β + δ))2

4
(
x− 1

2

)
(βγ − αδ)2

− (ω(α− γ) + n(β − δ))2

4
(
x+ 1

2

)
(βγ − αδ)2

R(x) (4.45)

and the R→∞ limit of the dipole black ring solution (4.8), written in the x-coordinate:

∂x (∆ ∂x Φ) + r2
0

(
c6
γ

x− 1
2

(sσn+ cσω)2 −
s6
γ

x+ 1
2

(cσn+ sσω)2
)

Φ = 0, (4.46)
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where ∆ =
(
x− 1

2

) (
x+ 1

2

)
. We can compare ω and n terms in equations (4.45) and (4.46)

to find the conformal coordinate parameters (α, β, γ, δ), as in (2.10):

w+ =

√√√√x− 1
2

x+ 1
2
eαz+βt

w− =

√√√√x− 1
2

x+ 1
2
eγz+δt

y =
√

1
x+ 1

2
e1/2((α+γ)z+(β+δ)t).

(4.47)

Due to the squared terms in (4.45) and (4.46), there are 16 possible combinations of
(α, β, γ, δ) that work. We choose a branch based on two criteria. First, we would like
α = 2πTR and γ = 2πTL, where TR and TL are given by the R → ∞ limit of (4.13).
Second, when we plug the conformal coordinates (4.47) into the black string metric (4.21),
we would like to see a warped AdS3 factor near the bifurcation surface w± = 0. The result is

α =
(cσ c3

γ − sσ s3
γ)

2r0 s3
γc

3
γ

β =
(−cσ s3

γ + sσ c
3
γ)

2r0 s3
γc

3
γ

γ =
(sσ s3

γ + cσ c
3
γ)

2r0 s3
γc

3
γ

δ =
(cσ s3

γ + sσ c
3
γ)

2r0 s3
γc

3
γ

.

(4.48)

As desired, the metric near the bifurcation surface has a warped AdS3 factor:

ds2 = 4r2
0c

4
γ

dw+dw− + s6γ
c6γ
dy2

y2 + . . .

 . (4.49)

The correction terms in (4.49) are at least second order in w±.

5 Doubly-spinning black ring and Kerr black string

In this section we study the hidden conformal symmetries of the doubly-spinning black
ring. The metric is a vacuum solution to the five-dimensional Einstein equations with
event horizon topology S1 × S2. the regular solution was constructed by Pomeransky and
Senkov [12] and is parametrized by mass and two angular momenta (M,Jφ, Jψ) respectively.
It is a single black ring configuration balanced by angular momentum Jψ in the plane of
the ring, but with angular momentum Jφ also in the orthogonal plane, corresponding
to rotation of the S2 sphere (see [29] for a detailed analysis of the physical properties).
A more general version of the doubly-spinning black ring solution, corresponding to an
unbalanced ring with conical singularities was later found in [13]. It is in fact this more
general unbalanced black ring solution that contains the Kerr black string and 5-dimensional
Myers-Perry black hole as a “collapse” limit of the balanced ring solution. To keep our
analysis as general as possible we obtain our results for the solutions [13].
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In order to set up the notation, we give some details of the doubly spinning black ring
in appendix A.2. The black ring solution has been given in different related (x, y)-forms.
We can rewrite this same foliation of space in a manner that is particularly appropriate in
the region near the ring. The (r, θ)-coordinates employed are a transformation from the
(x, y)-coordinates where

x = cos θ, y = −R/r , and ψ = −z/R , (5.1)

and has four independent physical parameters µ, ν, λ,R, of which the first three are dimen-
sionless and the last sets the scale of the solution which are required to satisfy

0 ≤ ν ≤ µ ≤ λ < 1 . (5.2)

The single spinning black ring [7] with rotation in only one plane is found in the limit
ν → 0. The radial and angular coordinates take the ranges 0 ≤ r < R and 0 ≤ θ < π.3

The KG equation of the doubly-spinning black ring solution has a hidden phase space
symmetry that we argue can be linked to a 2D CFT.

5.1 Monodromy analysis

We now turn to a general analysis of the KG-equation (2.1) for a massless scalar with the
ansatz

Ψ̃(t, r, θ, φ, z) = e−itω+imφ+inz
(

1 + r

R
cos θ

)
Φ̃(r, θ) (5.3)

in the background of the doubly spinning black ring [12, 13]

∂r

((
1− r2

R2

)
(r − µR)(r − ν R) ∂r Φ̃

)
(5.4)

+ 1
sin θ ∂θ

(
(1 + µ cos θ)(1 + ν cos θ) sin θ ∂θ Φ̃

)
+

 Cµνλ(1− µν)2 (1 + r
R cos θ

)2 (r/R)2 K̃(r, θ)(
1− r2

R2

)
(r − µR)(r − ν R)(1 + µ cos θ)(1 + ν cos θ) sin2 θ

+ f̃r + f̃θ

 Φ̃ = 0

3One can also redefine the constants as ν = (M −
√
M2 − a2)/R = r−/R, µ = (M +

√
M2 − a2)/R =

r+/R and λ = r+cσ/R. Taking the ring radius R much larger than the ring thickness µR gives the boosted
Kerr-black string metric.Note that

√
2R = κ with respect to the definitions of [13].
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where

K̃(r, θ) = n2R2Frθ −m2Fθr + 2mω(Fθr ωφ − Jrθ ωψ) + 2nRω(Frθ ωψ + Jrθ ωφ)

−2nmRJrθ + ω2
(
H2
θr

Hrθ
F̃ 2 + Frθ ω

2
ψ − Fθr ω2

φ + 2ωφ ωψ Jrθ

)
(5.5)

F̃ ≡
(
FθrFrθ + J2

rθ

HθrHrθ

)1/2

=
(
r2 −R2)1/2 (r − µR)1/2(r − ν R)1/2G(cos θ)1/2

(1− νµ)(1 + r
R cos θ)2 (5.6)

Cµνλ = (1− µ)2(1− ν)
(1− µν)(1− λ)ΦΨ (5.7)

Frθ ≡ F (−R/r, cos θ) , Fθr ≡ F (cos θ,−R/r) (5.8)
Hrθ ≡ H(−R/r, cos θ) , Hθr ≡ H(cos θ,−R/r) (5.9)
Jrθ ≡ J(−R/r, cos θ) (5.10)

f̃r = (µ+ ν) r
R

− 2 r2

R2 f̃θ = − cos θ (µ+ ν + 2µ ν cos θ) , (5.11)

and the definitions of F,G,H, J,Φ,Ψ,Σ, ωψ, ωφ can be found in appendix A.2. Recall that
the doubly spinning black ring satisfies the constraints (5.2) ensuring that the quantities
Φ, Ψ and Σ are positive. Under these conditions, the solution has a regular event horizon
located at r = µR. In addition, there is an inner Cauchy horizon at r = ν R. The two
horizons coincide when ν = 0, which defines the extremal limit, hence ν can be regarded as
a non-extremality parameter. In general, a ring-shaped ergosurface is present at r = λR.

Focusing on the terms in the KG equation that have singular behavior at a horizon,
we find that the equation (5.4) takes the form

∂r

((
1− r2

R2

)
(r − µR)(r − ν R) ∂r Φ̃

)
(5.12)

− Cµνλ (1− µν)
(r − µR)(µ− ν)2

√νΣΨ
Φ m− (µ+ ν)ΣR

(1 + µ)

√
λ(1 + λ)

(1− µν)(1− λ) ω

2

Φ̃

−Cµνλ (µ+ ν)2(1− µν)(1− λ2)ν2

(r − ν R)(1− ν2)(µ− ν)2 ×(
µ (1− λµ) + ν2(λ− µ)

(µ+ ν)

√
1
νΦ m− (1− µ)R

√
λ(1 + λ)Σ

(1− λ)(1− µν)Ψ ω

)2

Φ̃ + . . . = 0

for the n = 0 sector in analogy to the Myers-Perry black hole solution in [8, 9]. For the
Myers-Perry black hole, it was observed by [30] that two separate CFTs can be conjectured,
one for each azimuthal direction φ or ψ. Further, in that case, one can make contact with
either CFT by setting the other azimuthal quantum number (mφ or mψ) equal to zero.
We find that, for the doubly-spinning black ring, taking m = 0 is not possible. This is in
contrast with the Myers-Perry black hole solution, that is φ, ψ symmetric.

The regular singular points of the equation (5.12) corresponds to the outer horizon
r = µR, inner horizon r = ν R and r = ±R. Now we can proceed with the monodromy
technique in the usual way. The solutions to this effective differential equation have a
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non-trivial monodromy α± around each horizon. Near the outer horizon r → µR we have

Φ̃ ∼ (r − µR)α+ , (5.13)

where

α+ =
√
Cµνλ (1− µν)

(µ− ν)2

(µ+ ν)ΣR

(1 + µ)

√
λ(1 + λ)

(1− µν)(1− λ) ω −

√
νΣΨ

Φ m

 .
Around the inner Cauchy horizon r → ν R we find

Φ̃ ∼ (r − ν R)α− , (5.14)

where

α− =
√
Cµνλ (µ+ ν)2(1− µν)(1− λ2)ν2

(1− ν2)(µ− ν)2 (5.15)

×
(

(1− µ)R
√

λ(1 + λ)Σ
(1− λ)(1− µν)Ψ ω − µ (1− λµ) + ν2(λ− µ)

(µ+ ν)

√
1
νΦ m

)
.

To analyze the temperatures of the proposed dual CFT we are obliged to consider
each spin sector separately in analogy to [30]. We begin writing the above monodromy
parameters as

α+ = Aω +Bm, α− = Cω +Dm. (5.16)

Solving for ω and m, we find

m = Cα+ −Aα−
BC −AD

. (5.17)

The wave function changes under φ→ φ+ 2π as:

Ψ̃(φ+ 2π) = Ψ̃(φ)e2πim. (5.18)

Using (5.17) and
ωR = α+ + α−, ωL = α+ − α−, (5.19)

we find that
Ψ̃(φ+ 2π) = Ψ̃(φ)e

πi
BC−AD ((A+C)ωL−(A−C)ωR). (5.20)

We can compare this to the relationship

Ψ̃(φ+ 2π) = e2πimΨ̃(φ) = ei4π
2(TLωL−TRωR)Ψ̃(φ) , (5.21)

and from this we have the temperatures:

TL = A+ C

4π(BC −AD) , TR = A− C
4π(BC −AD) . (5.22)
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Thus, we find that the temperatures for the double spinning black ring are:

TL =

√
Φ(µ− ν)

(
−
(
1− µ2)3/2 ν + Ψ

√
Cµνλ(ν + 1)ΣΦ(1− µν)

)
4π (Σ− (1− µ2) ν)

√
Cµνλ(λ+ 1) (1− µ2) νΣΨ(1− µν)

TR =

√
Φ(µ− ν)

((
1− µ2)3/2 ν + Ψ

√
Cµνλ(ν + 1)ΣΦ(1− µν)

)
4π (Σ− (1− µ2) ν)

√
Cµνλ(λ+ 1) (1− µ2) νΣΨ(1− µν)

.

(5.23)

In the R→∞ these reduce to

TL = r+ + r−
4πa , TR = r+ − r−

4πa , (5.24)

as expected.
Now, we can check that we can also map these quantities via the Cardy formula to the

Bekenstein-Hawking entropy for the balanced doubly spinning black rings:

S+ ≡
π2

3 (cφTL + cφTR) = 16
√

2π2R3µ(1 + ν)(µ+ ν)
(1− µ)(1− µν)2 , (5.25)

and the corresponding value of the inner horizon area is

S− ≡
π2

3 (cφTL − cφTR) = 16
√

2π2R3ν(1 + ν)(µ+ ν)
(1− ν)(1− µν)2 . (5.26)

Then the natural choice for the central charge of the black ring (in analogy to Kerr) is

cφ = 12Jφ . (5.27)

with angular momentum

Jφ = 8πR3(µ+ ν)(1− µ)
(1− µν)3/2

√
νλ(1 + λ)Σ
(1− λ)ΦΨ . (5.28)

This is an appealing, simple picture. In this case, the angular momentum Jφ is present
as in the Kerr black hole. Our results are consistent with the CFT identifications for the
extremal doubly rotating black ring [31].

Recall from [13] that the balance condition is

λ = 2µ
1 + µ2 , (5.29)

and to obtain exactly the form for the entropy as in [12] new parameters have to be defined:
λ̃ = µ+ ν, ν̃ = µν and k̃ = R/

√
2.

Finally, we observe that the area product is quantized,

S+S− = 4π2J2
φ. (5.30)

One feature of this system is a lack of symmetry between the angular directions; one
simply cannot take eigenvalue in the wave function m = 0 to analyze the other sector.
Indeed, when the rotation of the S2 is not present it is unclear how to justify the central
charge value of cφ that is needed to reproduce the entropy of black rings.
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5.2 Boosted Kerr black string

In this subsection we will focus on a family of exact solutions to vacuum 5-dimensional
General Relativity that is translationally symmetric. This type of solution is called a
Kerr black string. It generalizes a black hole solution but it also extends along a linear
z-direction in which it can be boosted. The physical parameters include mass, spin and
linear momentum (M,J, Pz). The line element for the boosted Kerr black string is given
by [12, 13, 32]

ds2 = −
(

1− 2Mr cosh2 σ

Σ

)
dt2 +

(
1 + 2Mr sinh2 σ

Σ

)
dz2 (5.31)

+(∆ + 2Mr)2 −∆a2 sin2 θ

Σ sin2 θdφ2 + Σ
(
dr2

∆ + dθ2
)

+4Mr

Σ

[1
2 sinh 2σdtdz − a sin2 θ (cosh σdt− sinh σdz) dφ

]
,

where ∆ = r2 + a2 − 2Mr, Σ = r2 + a2 cos2 θ. Here M and a can be regarded as the mass
and spin and σ is the boost parameter. As in Kerr also M = (r+ + r−)/2, a = √r+r− or
J = Ma. This geometry can be obtained from the unbalanced doubly-spinning black ring
solution taking the large R→∞ limit.

The KG equation for the boosted Kerr black string solution is separable under the
ansatz

Ψ̃(t, r, θ, φ, z) = e−itω+imφ+inz Φ̃(r, θ) ≡ e−itω+imφ+inz Φ(θ)Ψ(r). (5.32)

The radial wave equation was found in [33]

∆∂r(∆∂rΨ)−∆
(
n2r2 + a2ω2 − 2ωmcσ + λlm

)
Ψ (5.33)

+(2Mrcσ)2
[(

ω(∆ + 2Mr)
2Mrcσ

− ma

2Mr

)2
− m2a2 tanh2

σ

(2Mr)2

+∆ + 2Mr

2Mr

(
(ω − n tanh σ)2 − ω2

c2
σ

+ 2nma tanh σ
cσ(∆ + 2Mr)

)]
Ψ = 0.

We are again interested only in the part of (5.33) that gives us access to the hidden
conformal symmetry of the system (that is, we focus only on the radial derivative and pole
terms):

∂r(∆∂rΨ) + (2Mr cosh σ)2

∆

[
ω − n tanh σ − ma

2Mr cosh σ

]2

Ψ + . . . = 0. (5.34)

We can extract the monodromy data by analyzing the poles of the differential equation

Ψ± ∼ (r − r±)±iα± ⇒ α± = 2Mr± cosh σ
(r+ − r−)

[
ω − n tanh σ ± ma

2Mr± cosh σ

]

and we can rewrite the KG equation as

∂r(∆∂rΨ) + (r+ − r−)
[

α2
+

r − r+
−

α2
−

r − r−

]
Ψ + . . . = 0. (5.35)
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Having computed the monodromies, considering n = 0 (in analogy to [30]), we are able to
the define the frequencies

ωL = 2Mcσ ω , ωR = 2M
r+ − r−

(
2Mcσ ω −

ma

M

)
. (5.36)

Likewise, fixing the periodicities along the compact φ-direction

Ψ(φ+ 2π) = e2πimΨ(φ) = e4π2i(TRwR−TLwL)Ψ(φ) (5.37)

yields a prescription for the left and right conformal field theory temperatures

TR = r+ − r−
4πa TL = r+ + r−

4πa . (5.38)

The temperatures obey the Cardy relation, with a particular central charge given as:

S± = cφπ
2

3 (TL ± TR) where cφ = 12aMcσR = 12JBS . (5.39)

for a black string (BS) of length R, entropy S± = 2πMRr±cσ and spin JBS = aMcσR

(see e.g. [32, 33]). While the temperatures are independent of the boost parameter, our
results show that the central charge picks-up this dependence. And, while the results are
directly comparable to the d = 4 Kerr (3.8) when the boost parameter vanishes σ = 0,
our results indicate that the solution has a more general CFT interpretation than for Kerr.
Finally, it is also worth emphasizing that these identifications in the large R limit are also
in full agreement with the results derived in the previous section which further supports
our proposals.

Note the system is now one-quarter quantized:4

S+S− = 4π2J2
BS. (5.40)

5.3 Conformal coordinates

From our discussion of the dipole black ring, we know right away that we will not be able
to find conformal coordinates that reproduce (5.4) unless one of two limits is taken: (i)
zooming in on one of the black ring horizons or (ii) the black string limit R → ∞. Limit
(i) proceeds exactly as in the dipole black ring case (specifically the discussion surround-
ing (4.40)), and so we will not repeat that discussion here. In this section we will focus on
the second limit R→∞.

4In particular, see [34] for a geometric review of 1
4 -BPS exact diagramatics and [35] for classical intuition

of 1
4 -BPS states; for a more recent approach using supersymmetric dressed states see [36]. Since the left and

right SL(2, R) algebras are smoothly descendant under R→∞, the decompactification enforced by the R−1

string limit represents a strong phase defect point (see section 3 of [35] for a charged, extremal representation
of emergent momentum transfer, there under a IIB/IIA duality and here under the S1 decompactification
of the z coordinate). In fact, [36] results from relaxing the supersymmetric basis covers of [34] into dressed
states that represent 1

4 -BPS shadow (insertion) modes. See section 3 and appendix B of [36] for a construc-
tion of the dressed modes, as well as [37] for a discussion of the Cardy sector relevance into the stringy regime
(consistent with the monodromy approach). In fact, using the modular Hamiltonian shadowing displayed
in (4.23) of [36] and applying the monodromy CFT2 hypothesis of this paper shows that the defect (dyonic)
correlator in a IIB 1

4 -BPS state should be expected to grow as S+S− (see sections 2.2 and 2.3 of [37]).

– 20 –



J
H
E
P
0
4
(
2
0
2
3
)
0
6
6

Let us consider the KG-equation for the doubly spinning black ring (5.12). Before
taking the R→∞ limit it is convenient to employ a reparametrization

ν = r−/R, µ = r+/R, λ = r+cσ/R, (5.41)

where we have introduced the Kerr horizons r± and cσ that will represent the boost pa-
rameter in the black string. Using these definitions, and taking the large R limit the wave
equation (5.12) can be written as[
∂r (∆ ∂r ) +

(
cσr+(r+ + r−)ω −√r+r−m

)2
(r − r+)(r+ − r−) −

(
cσr−(r+ + r−)ω −√r+r−m

)2
(r − r−)(r+ − r−)

]
Φ̃ = 0 .

with ∆ = (r − r+)(r − r−). This is none other than the near-region KG-equation for the
Kerr black hole that was reported in [2], but modified by the boost parameter cσ. Changing
coordinates to x = 2r−(r++r−)

2(r+−r−) , we have

[
∂x∆̄ ∂x +

(
cσr+(r+ + r−)ω −√r+r−m

)2
(x− 1/2)(r+ − r−)2 −

(
cσr−(r+ + r−)ω −√r+r−m

)2
(x+ 1/2)(r+ − r−)2

]
Φ̃ = 0 .

where ∆̄ = x2 − 1
4 . Comparing with the Casimir (4.45), we obtain conformal coordi-

nates (2.10) that reproduce the above equation, with, for example,

α = r+ − r−
2√r+r−

, β = 0, γ = r+ + r−
2√r+r−

, δ = − 1
cσ(r+ + r−) . (5.42)

Note that these identifications for the conformal coordinates agree with those of
Kerr [17] by setting the boost parameter σ = 0 where the (unboosted) Kerr black string
geometry becomes ds2 = ds2

Kerr + dz2. At this stage, there is an ambiguity in fixing the
conformal coordinates. However, we can make an argument that in general α = 2πTR and
γ = 2πTL. Assuming a Cardy formula and comparing with the entropy for the Kerr black
string (see above) we are able to determine the central charge of the CFT dual

c = 12aMcσR = 12JBS . (5.43)

6 Discussion

We have studied the presence of hidden conformal symmetry in five-dimensional systems
in which the KG equation seems non-separable (in the dipole black ring and the doubly
spinning black ring) as well as their separable large R black string counterparts (the boosted
charged black string and the boosted Kerr black string). In analogy to the conjectured non-
extremal Kerr/CFT correspondence of [2], we propose that a dual CFT exists for the black
ring and black string solutions, and we use a revised monodromy technique to work out
the associated CFT left/right temperatures (TL, TR) respectively. The present approach
provides a derivation of these temperatures based on monodromy data, without the need
for a low energy limit. Furthermore, we develop a set of conformal coordinates for each
solution we consider, and show that they are related to TL and TR in a natural way.
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Assuming a Cardy entropy formula and comparing with the Bekenstein-Hawking entropy
formula we are able to determine the corresponding central charge. This includes the dipole
black ring or string configurations with c = 6q3 and doubly spinning black ring or boosted
Kerr black string with c = 12J .

The identification of left- and right-moving sectors in terms of the monodromy coef-
ficients in higher dimensions proceeded almost exactly as in the Kerr black hole example.
The only subtlety is for black ring and strings that the identifications gives a unique way of
realizing the hidden conformal symmetry. This is not linked to 5-dimensional spacetimes
but rather to the isometries involved. The presence of two commuting U(1) isometries in
the 5D Myers-Perry black hole solution gives two inequivalent ways of realizing the hidden
conformal symmetry [8, 30]. Likewise, the central charge associated to the associated to
the ψ circle is cψ = 6Jφ and cφ = 6Jψ for the φ circle.

We also have the phenomenological observation that the entropy product is indepen-
dent of the mass, and we can define for black rings and black strings the central charge c as

S+S−
4π2 = F(J)→ c ≡ cR = cL = 6∂F

∂J
. (6.1)

The analysis of the present work was inspired in part by the following question: are all
black holes dual to a 2D CFT? Much evidence exists for a Kerr/CFT correspondence both
at [1] and away from [2] extremality. Furthermore, through studying scattering amplitudes
on black hole backgrounds, there is evidence to suggest that 2D CFT duals might exist for
more general black hole spacetimes [38, 39]. Studying the presence of hidden conformal
symmetry in more exotic solutions such as black rings and black strings is an ideal arena
to push the boundaries of how general a phenomenon it is to have a proposed Near-
Horizon/CFT duality.

The black ring and string solutions are also great systems in which to study the inter-
play between hidden conformal symmetry and separability. That is, does the presence of a
tower of Killing tensors (responsible for the separability of the KG-equation) play a direct
role in the presence of hidden conformal symmetry? We are able to show that a consistent
hidden conformal symmetry analysis is possible in non-separable systems, provided that
we focus on the horizon pole structure. Focusing only on the outer horizon is essentially
what is done to find globally defined hidden symmetry generators, as in [40].

We would like to stress that the soft hair interpretation of hidden conformal symmetry,
as presented for example in [15], is not viable in more general contexts, such as black ring
solutions. Rather than taking a frequency dependent limit in the wave equation, such as
ωM � 1 and ωr � 1, one can gain access to the hidden conformal symmetry of the system
simply by matching the radial derivatives and poles of the KG equation to the SL(2, R)
quadratic Casimir via a set of suitably defined conformal coordinates. For Kerr these two
perspectives coincide, but in more general scenarios they do not.
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A Black ring metrics and identities

A.1 Dipole black ring

The following Dipole Black Ring identities are developed from [11]. For simplicity, we have
worked with the non-dilaton limit (N = 3), where N is the dipole charge winding number
with magnetic source Aφ. The line element is given as:

ds2 = −F (y)
F (x)

(
H(x)
H(y)

)(
dt+ C(ν, λ)R 1 + y

F (y) dψ
)2

(A.1)

+ R2

(x− y)2 F (x)
(
H(x)H(y)2

) [
− G(y)
F (y)H(y)3dψ

2 − dy2

G(y) + dx2

G(x) + G(x)
F (x)H(x)3dϕ

2
]

with functions defined as follows:

F (ξ) = 1 + λξ, G(ξ) = (1− ξ2)(1 + νξ) (A.2)
H(ξ) = 1− µξ. (A.3)

The curvature of this system involves the existence of energy-momentum sourced by elec-
tromagnetic fields. The potential is given by

Aφ =
√

3C(ν,−µ)R1 + cos θ
Hθ

+ k1, (A.4)

where Hθ is given in (A.14). The constant k1 is associated to the motion of Dirac
strings [7]. Given the Faraday tensor Fµν = ∂µAν − ∂νAµ, we have that the only non-zero
components are

F23 = −F32 = −A′φ(θ). (A.5)

With this result in hand, we can determine the stress-energy tensor

Tαβ = Fµαg
αβFβν −

1
4gµνFσαg

αβFβφg
φσ (A.6)
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with non zero components

T00 =
FrH

3
θA
′2
φ

(r2 sin θ)2F 3
θH

9
r

(A.7)

T11 =
R2(1 + r cos θ

R )6H3
θA
′2
φ

(r2 sin θ)4FθGrH6
r

(A.8)

T22 =
(1 + r cos θ

R )4H3
θ

[
−Gθ(1 + r cos θ

R )2 + 2r2FθHθH
2
r sin θ2]A′2φ

(r3 sin θ)2FθG
2
θH

6
r sin θ2 (A.9)

T33 =
(1 + r cos θ

R )4Gθ
[
2r2GθH

2
r −H2

θ (1 + r cos θ
R )2]A′2φ

(r3 sin θ2)2F 2
θH

2
θH

6
r

(A.10)

T44 =
(1 + r cos θ

R )6H3
θ

[
r2F 2

θGrH
2
r +R2C(ν, λ)(1 + r cos θ

R )2(1− R
r )2]A′2φ

(r2 sin θ)4F 3
θ FrH9r

(A.11)

T04 = T40 =
RC(ν, λ)(1− R

r )(1 + r cos θ
R )8H3

θA
′2
φ

(r2 sin θ)4F 3
θH

9
r

(A.12)

where

Fr ≡ F (−R/r) , Fθ ≡ F (cos θ) (A.13)
Hr ≡ H(−R/r) , Hθ ≡ H(cos θ) (A.14)
Gr ≡ G(−R/r) , Gθ ≡ G(cos θ) (A.15)

C(σ1, σ2) =
√
σ2(σ2 − σ1)1 + σ2

1− σ2
. (A.16)

Now we address the stability condition for the ring, balancing the centripetal force
against the magnetic repulsion generated between the monopoles distributed in the ring
structure. From a geometric perspective, that balance is reached by the avoidance of conical
singularities in the φ, ψ directions, through the constraint

∆φ = 2π (1 + µ)N/2
√

1− λ
1− ν (A.17)

and conical singularities at x = −1 and y = −1 , considering the condition

1− λ
1 + λ

(1 + µ

1− µ

)N
=
(1− ν

1 + ν

)2
. (A.18)

Now we define the extremality conditions. The event horizon and Cauchy horizon for
our ring solution are at r = r0 and r = 0, respectively. Extremality is reached when ν = 0,
that is r0 = 0. As expected, this has consequences on the thermodynamical description of
the Dipole Black Ring. Having both the temperature and horizon area given as

T = 1
4πR

ν(N−1)/2(1 + ν)
(µ+ ν)N/2

√
1− λ

λ(1 + λ) (A.19)

AH = 8π2R3 (1 + µ)Nν(3−N)/2(µ+ ν)N/2
√
λ(1− λ2)

(1− ν)2(1 + ν) , (A.20)
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by simple inspection we determine that at extremality, T = 0. In the non-dilatonic limit,
N = 3, the area remains finite at extremality, AH 6= 0, leading to degeneracy of the horizon.
Then, as a consequence, even at extremality, the entropy S is non-vanishing.

A.2 Doubly-spinning black ring

The doubly-spinning black ring identities are extracted from [13]. The full metric may be
represented as

ds2 = −H[y, x]
H[x, y] (dt− ωψdψ − ωφdφ)2 + γ[x, y]

(
dx2

G[x] + dy2

G[y]

)

− 1
H[y, x]

(
F [x, y]dψ2 + 2J [x, y]dψdφ+ F [y, x]dφ2

)
(A.21)

with functions defined by:5

γ[x,y] = R2(1−µ)2(1−ν)H[x,y]
(1−λ)(1−µν)ΦΨ(x−y)2 := R2CµνλH[x,y]

(x−y)2 (A.22)

G[x] = (1−x2)(1+µx)(1+νx) (A.23)

F [x,y] = R2

µν(1−µν)Φ(x−y)2 (G[x]f1[λ,µ,ν;y]+G[y]f2[λ,µ,ν;x]) (A.24)

H[x,y] = (1−λ)(1−ν)ΨΦ+λ(µ+ν)
(
(1−λµ)2−(λ−µ)2ν2

)
(1+x)

−(1−x2)(1−y2)ν
(
λ(λ−µ)2ν(µ+ν)(1+x)−(1−λ)Ψ+(µ+1−Φ)

1−x2 (A.25)

+λ(λ−µ)(−1+λµ)(µ+ν)(1+y)+λ(λ−µ)(1−µ)(1−λµ)(µ+ν)+ΣΨ
1−y2

−(ΣΨ+λµ(λ−µ)(−1+λµ)(µ+ν))
)

J [x,y] =A[x,y]
(

1+ ΣΨµ
ν

+ µ(1+ΣΨ)
2 (x+y) (A.26)

+(1+µx)(1+µy)
(
Φ(Φ−(1−λµ)(2+λµ))−(1−λµ)(µ2−1)

) )
A[x,y] := ν

R2(µ+ν)
√
ν(λ−µ)(1−λµ)(1−x2)(1−y2)
µ2(1−µν)Φ(x−y) (A.27)

ωφ[x,y] = R(µ+ν)
H[y,x]

√
νλ(1−λ2)ΦΨΣ

1−µν y(1−x2) (A.28)

ωψ[x,y] = ωφ[x,y]
Ψ(1−λ)y(1−x2)

√
(λ−µ)(1−λµ)

ν

(
Φ(1+νy) (A.29)

+(1−µ)ν(1−y)(1+xλ)+yν(1−Φ+µ)(1−x2)
)
.

5Valid solutions to Gµν [g(∗, ·)] = 0 are constrained under 0 ≤ ν ≤ µ ≤ λ < 1 and R > 0. The metric is
independent of time −∞ < t <∞, angles 0 ≤ ψ, φ < 2π; further, the C-metric-like coordinates (x, y) take
ranges −1 < x < 1 and −∞ < y < −1.
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We also define

Φ ≡ 1+µν−λ(µ+ν), Ψ ≡ µ(1+ν)−λ(ν+µ2), Σ ≡ µ(1−ν)+λ(ν−µ2). (A.30)

Consider the massless, spinless wave equation6 in the background of a doubly-spinning
black ring. In particular, we will use the coordinate singular points (event horizons) in order
to put the wave equation into a useful form for extracting the near-horizon quasi-normal
modes. The KG operator equation is:

δ
[
L
[
[·]m=0

KG

]]
= 0 ⇔ ∂µ

[√
| − g|gµν∂ν [·]

]
= 0. (A.31)

Consider a 5D metric with global symmetries in x{α,β} ∈ {t, φ, ψ}; then ∂α[
√
−|gT |gµν ] = 0

and, letting {i, j} ∈ {x, y} represent the additional coordinates, the (massless) KG equation
is:

0 =
√
| − g|gαβ∂α∂β [·] + ∂i

[√
| − g|gij∂j [·]

]
. (A.32)

Then, with a trial solution of [·] → eiλαx
α [·] ⇒ ∂α∂β [·] → λαλβ [·] the above may be

written as:
0 = −

√
| − g|gαβλαλβ [·] + ∂i

[√
| − g|gij∂j [·]

]
. (A.33)

Further, consider a solution which is poloidally factorized: [·] → ϕT [t, φ, ψ]ϕP [x, y]
where ϕP [x, y] = h[x, y]Φ[x, y]; then ∂aϕP = ϕP (∂a[ln[hΦ]]), and the poloidal piece of the
KG equation becomes:

∂a[
√
−ggabP ∂bϕ] = R2ϕT

1− νµ∂a
[
G[xa]ϕP
(x− y)2 ∂a[ln[hΦ]]

]
(A.34)

= hR2ϕT
(1− νµ)(x− y)2

(
∂a[G[xa]Φ,a] + 2G[xa]

(
∂aln[h]− δxa − δya

x− y

)
Φ,a

+(∂a ln h)G[xa]
(
∂a ln [h,aG[xa]]− 2(δxa − δya)

x− y

)
Φ
)
.

In the above picture the free derivative terms have the same differential envelope
(∂a[G[xa][·]]), reminiscent of an isotropic fluid polarization.

Note that h→ x− y gives
(
∂a ln [ h

x−y ]
)

Ψ,a → 0 and h,aa → 0. In this case, it can be
shown that:

∂a[
√
−ggabP ∂bϕ] = R2ϕT

(1−νµ)(x−y)

(
∂a[GaΦ,a]−

Ga
x−y

(
2(δxa +δxy ))
x−y

−Ga,a
Ga

(δxa−δya)
)

Φ
)
.

(A.35)

6The KG field selection automatically projects onto the lowest spin-weight state(-tower) because the
(uncharged) KG field is spin self-dual. Having a fully extended, analytic scalar field is useful in embedding-
measured representations of boundary (orbifolds/)manifolds, such as asympotic infinity or coordinate sin-
gularities; in particular, the interplay between both (see [10, 15, 41] ).
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Then, defining Ωxy = (x−y)2(1−νµ)
R2

√
| − g| = R2CµνλH[x,y]

(x−y)2 ≡
√
G[x]G[y]|gP | induces7 the

resultant KG-form:

0 = ∂a[G[xa]Φ,a]− Ω[x, y]gαβλαλβΦ (A.36)

−G[xa]
x− y

(
2(δxa + δxy )
x− y

−
( −2xa

1− (xa)2 + µ

1 + µxa
+ ν

1 + νxa

)
(δxa − δya)

)
Φ.

Finally, letting Ad stand for the adjucate matrix of the general 3×3 symmetric matrix,

[gT ] =

 a j kj b i

k i c

, the toroidal sector generally gives:

~λ · Ω[x, y][gT ]−1~λ ≡ Ω[x, y]
| − gT |

~λ ·Ad[gT ]~λ (A.37)

= Ω[x, y]
| − gT |

||

√
bc− i2λ1√
ac− k2λ2√
ab− j2λ3

 ||2R3+2
(∣∣∣∣ j ia k

∣∣∣∣λ2λ3 +
∣∣∣∣ i jc k

∣∣∣∣λ1λ2 −
∣∣∣∣ b ij k

∣∣∣∣λ1λ3

) (A.38)

Here:

(i, j, k) = 1
Hxy

(
−
(
Hyxωφωψ + Hxy

Hyx
Jxy

)
, Hyxωφ, Hyxωψ

)
(A.39)

and (a, b, c) = −1
Hxy

(
Hyx,

(Hyxωφ)2 −HxyFyx
Hyx

,
(ωψHyx)2 +HxyFxy

Hyx

)
(A.40)

From this analysis, it can be shown that

0 = ∂r

((
1− r2

R2

)
(r−µR)(r−νR)∂r Φ̃

)
+ 1

sinθ ∂θ
(
(1+µcosθ)(1+ν cosθ)sinθ∂θ Φ̃

)

+

 Cµνλ(1−µν)2 (1+ r
R cosθ

)2 (r/R)2 K̃(r,θ)(
1− r2

R2

)
(r−µR)(r−νR)(1+µcosθ)(1+ν cosθ)sin2 θ

+ f̃r+ f̃θ

 Φ̃ (A.41)

where

K̃(r, θ) = n2R2Frθ −m2Fθr + 2mω(Fθr ωφ − Jrθ ωψ) + 2nRω(Frθ ωψ + Jrθ ωφ)

−2nmRJrθ + ω2
(
H2
θr

Hrθ
F̃ 2 + Frθ ω

2
ψ − Fθr ω2

φ + 2ωφ ωψ Jrθ

)
(A.42)

and f̃r = (µ+ ν) r
R

− 2 r2

R2 f̃θ = − cos θ (µ+ ν + 2µ ν cos θ) . (A.43)
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7Note: Ωxy
|−gT |

= CµνλHxy(1−µν)2(x−y)2
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