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1 Introduction

Grand Unified Theories (GUTs), with their original formulations based on the gauge groups
of SU(5) [1] and SO(10) [2], were proposed to unify all three fundamental symmetries
described by the Standard Model (SM). Though being successful in achieving the gauge
coupling unification, one has to acknowledge that all existing unified models have not
completely address some fundamental puzzles in the matter sector of the SM. In particular,
the observed mass hierarchies and their mixings under the charged weak currents of three
generational fermions have never been fully probed in the framework of GUT. A detailed
description of the flavor puzzle can be found in recent refs. [3, 4]. All puzzles in the flavor
sector originate from the three-generational structure. In most of the previous studies,
one-generational anomaly-free fermion representations were trivially repeated with multiple
times for the generational structure. For example, the minimal set of fermion contents are
3×

[
5F ⊕ 10F

]
in the SU(5) GUT, and 3× 16F in the SO(10) GUTs.

The flavor sector becomes more puzzling with the discovery [5, 6] and the measure-
ments [7] of the 125 GeV SM Higgs boson at the Large Hadron Collider (LHC). All existing
measurements of the SM Higgs boson have confirmed its Yukawa couplings to the third
generational fermions, both through the H → (bb̄ , ττ ) decays [8–11] and the tt̄H associated
productions [12, 13]. The ongoing searches are indicating the SM Higgs boson decays into
the second-generational fermions of charm quarks [14, 15] and muons [16, 17]. These experi-
mental results further strengthen the SM flavor puzzle into a SM flavor paradox. In the SM,
each generation of fermions transform identically under the GSM ≡ SU(3)c⊗SU(2)W⊗U(1)Y .
Therefore, a single SM Higgs boson is unlikely to generate hierarchical couplings to different
flavors without additional symmetries. An intrinsic issue with the Higgs mechanism is
what can be the natural Yukawa coupling. The proposal of the anarchical fermion mass
scenario [18, 19] will be adopted in the current discussion. From the renormalization group
evolutions of the Yukawa coupling, it is unlikely to generate large hierarchies from O(1) to
O(10−6) when it evolves from the GUT scale to the electroweak (EW) scale. Studies of the
running SM fermion masses can be found in refs. [20–25]. From this point of view, the SM
Higgs boson that is responsible for the electroweak symmetry breaking (EWSB) is most
likely to give top quark mass, with the natural Yukawa coupling of yt ∼ O(1). Such a result

– 1 –



J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

was recently obtained in the third-generational SU(6) model [26]. Therefore, the question be-
comes what may be the underlying mechanism to generate all other suppressed SM fermion
masses to the EW scale. Furthermore, three generational SM fermions exhibit mixings
under the weak charged currents, which are described by the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [27, 28] for the quark sector, and the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [29, 30] for the lepton sector, respectively. The SM itself does not explain
the origins of all measured fermion mixings. In the context of the minimal SU(5) GUT,
Georgi and Jarlskog [31] realized natural mass relations between the down-type quarks and
the charged leptons in three generations with extended Higgs fields of 3× 5H ⊕ 45H.

Historically, a unification of the flavor sector was first made by Georgi [32], where
he suggested that fermions in different generations may transform differently under the
symmetries of the UV theory. It turns out this can be achieved in the framework of GUT,
as long as one extends the gauge groups beyond the SU(5). Furthermore, one must include
anti-symmetric irreducible representations (irreps) with rank larger than two to avoid the
simple repetition of one generational anomaly-free fermions. This can be minimally achieved
from a unified gauge group of SU(7), as was shown by Frampton [33, 34]. Some early
studies of the SU(7) models include refs. [35–40]. Collectively, we dub the GUTs with gauge
groups larger than SU(5) the non-minimal GUTs. Besides of some brief constructions of
the fermion and Higgs spectrum, the non-minimal GUT was never studied in details from
the physical perspective since its inception. A separate observation is that the non-minimal
GUT groups are usually broken to the SM gauge group via several intermediate scales. For
example, the third-generational SU(6) GUT undergoes two symmetry breaking stages of
SU(6) → SU(3)c ⊗ SU(3)W ⊗ U(1)X → GSM [26, 41]. During the intermediate symmetry
breaking stages, some vectorlike fermions in the spectrum can obtain masses and also mix
with the SM fermions. The existence of some Higgs mixing operators is likely to generate
EWSB vacuum expectation values (VEVs) that contribute to light SM fermion masses, such
as bottom quark and tau lepton in the third generation [26]. Based on the previous studies
to the SU(6) toy model, we propose that

Conjecture. The realistic GUT can give arise to the observed mass hierarchies as well as
the weak mixings of the SM fermions through its realistic symmetry breaking pattern, with
the natural Yukawa couplings of O(1).

A separate feature of the non-minimal GUT is the automatic emergence of the global
symmetries, as long as one relaxes the Georgi’s third law [32] in formulating the anomaly-free
fermion irreps. As was first observed by Dimopoulos, Raby and Susskind (DRS) [42], an
anomaly-free SU(N + 4) gauge theory with N chiral fermions in the anti-fundamental irrep
and one chiral fermion in the rank-2 anti-symmetric irrep enjoys a global DRS symmetry of

GDRS = U(N) = SU(N)⊗U(1) , N ≥ 2 . (1.1)

Notice that the global DRS symmetries in eq. (1.1) come from the anomaly-free condition,
and can be generally true with anomaly-free rank-k (k ≥ 3) fermion irreps. Though the
original study of ref. [42] deals with a strong interacting theory with the gauge symmetry
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broken through the bi-linear fermionic condensates, the emergence of the DRS global
symmetries is valid when the underlying gauge symmetry is spontaneously broken by the
Higgs mechanism. This result can be generalized to the non-minimal GUTs beyond the
SU(5). Indeed, this was soon pointed out by Georgi, Hall, and Wise in ref. [43], where
they conjectured the Abelian component of the global DRS symmetry to be the automatic
Peccei-Quinn (PQ) symmetry [44]. The emergent PQ symmetry from the non-minimal
GUT may be an appealing source of another long-standing PQ quality problem [43, 45–50]
in the axion models, e.g., a minimal construction may be realized in the supersymmetric
SU(6) model with additional discrete Z4 symmetry [41].

Motivated by our main conjecture, we study a two-generational SU(7) toy model. There
are two major purposes of the current study, which are

1. to probe the origin of the SM fermion mass hierarchies and their mixings through the
realistic symmetry breaking patterns;

2. to describe the gauge couplings of fermion sector in the non-minimal GUTs.

The rest of the paper is organized as follows. In section 2, we describe the two-generational
fermion content in the SU(7) model, and describe the gauge symmetry breaking pattern
followed by SU(7)→ SU(3)c ⊗ SU(4)W ⊗U(1)X0 at the GUT scale. In section 3, we review
some necessary ingredients from the third-generational SU(6) GUT. In particular, we focus
on a gauge-invariant ν-term and its contribution to the Higgs potential. In section 4, we
discuss the Higgs sector of the SU(7) in details, with focus on the contributions from the
gauge-invariant and DRS-invariant operators in the Higgs potential. These terms can be
viewed as the generalized ν-terms in the SU(6) model. We found that some of such terms
automatically generate a chain of additional VEVs through the tadpole-free condition in
the Higgs potential. The gauge sector from the symmetry breaking pattern is described in
section 5. Section 6 is the core of this work, where we analyze the details of the realistic
gauge symmetry breaking pattern. Based on the analyses, we obtain the fermion mass
terms and mixings together with the Higgs VEVs described in section 4. In particular, the
analyses in this section will justify our identification of SM fermions in tables 2, 3, and 4. In
section 7, we summarize the two-generational fermion masses, the quark mixings under the
charged EW currents. Particularly, we display the flavor non-universality between different
generational fermions through their gauge couplings to flavor-conserving neutral gauge
boson Z ′′µ. We summarize our results and make outlook in section 8. In appendix A, we give
the decomposition rules and the charge quantization according to the desirable symmetry
breaking pattern in the SU(7) GUT. All related Lie group calculations are carried out by
LieART [51, 52]. In appendix B, we define the particle names and indices used for different
gauge groups in the SU(7) model. In appendix C, we give explicit derivations of the Higgs
VEV generations through the complete set of Higgs mixing operators in the context of
the SU(7).

We wish to make some disclaimers before presenting the main results. Throughout the
current discussions, we focus on the mass origins and their mixings of two-generational SM
fermions, while we do not address some general issues in the GUTs, such as (i) the gauge
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coupling unification, (ii) the proton lifetime, and (iii) the supersymmetric extension. We
believe all these issues would better be studied in the realistic GUTs with ng = 3.

2 Motivation and the fermion sector in SU(7)

2.1 The flavor unification in GUTs

In a seminal paper [32] of the GUT model building including the flavor structure of the
SM fermions, Georgi proposed three laws for any extension of the GUT group with the
following chiral fermion content

{fL}
ng
SU(N) =

∑
{k}

mk [N , k]F . (2.1)

Here, [N , k]F represents a rank-k anti-symmetric irreps of the SU(N) for the chiral fermions.
It was also argued that only the [N , k]F should be considered in order to avoid the exotic
fermions beyond the SM irreps in the spectrum. In the third law, he required no repetition
of a particular irrep of [N , k]F. In other words, one can only have mk = 0 or mk = 1 in
eq. (2.1). Correspondingly, he found that the minimal possible GUT group is SU(11) with
561 chiral fermions in total.

The essence of Georgi’s third law [32] is to prohibit the simple repetition of one set
of anomaly-free chiral fermions in the flavor sector, such as 3 ×

[
5F ⊕ 10F

]
in the SU(5)

model or 3×16F in the SO(10) model. However, this was soon reconsidered by allowing the
repetition of some fermion representations as long as the gauge anomaly is cancelled [33, 34].
It is reasonable to conjecture that the third law for the realistic GUT building with multiple
fermion generations can be modified by partitioning the SU(N) chiral fermions into several
irreducible anomaly-free sets as follows

{fL}
ng
SU(N) =

⊕
{k}′

{
Anom([N , k]F)× [N , 1]F ⊕ [N , k]F

}
, for 2 ≤ k ≤

[
N

2

]
. (2.2)

The anomaly factor for a generic rank-k anti-symmetric chiral fermion is given by [32, 53, 54]

Anom([N , k]F) = (N − 2k) (N − 3)!
(N − k − 1)! (k − 1)! . (2.3)

Each set of anomaly-free fermions are composed of a rank-k (with 2 ≤ k ≤
[
N
2

]
) anti-

symmetric chiral fermion together with Anom([N , k]F) copies of anti-fundamental chiral
fermions. We propose that the third law of the flavor unification in GUT should be

Conjecture. Simple repetition of any irreducible anomaly-free fermion set in eq. (2.2) is
not allowed.

The notion of {k}′ in eq. (2.2) represents the choices of the rank-k anti-symmetric fermion
irreps without repeating itself. The conjectured third law thus leads to global DRS
symmetries of

GDRS =
⊗
{k}′

[
SU
(
Anom([N , k]F)

)
k
⊗U(1)k

]
. (2.4)
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This is certainly a generalization of the global DRS symmetry in the rank-2 anti-symmetric
SU(N + 4) theory [42]. In the current SU(7) toy model, the specific choices of k in eq. (2.2)
will be required to reproduce ng = 2 according to the rules described below. In the realistic
GUT, one should reproduce the observed ng = 3 for all SM fermions.

Georgi also gave the rules of counting the SM fermion generations, which read as follows

• The SU(N) fundamental irrep is decomposed under the SU(5) as [N , 1]F = (N −
5) × 1F ⊕ 5F. The decompositions of other higher-rank irreps can be obtained by
tensor products.

• For an SU(N) GUT, one can eventually decompose the set of anomaly-free fermion
irreps into the SU(5) irreps of (1F ,5F ,5F ,10F ,10F).

• Count the multiplicity of each SU(5) irrep as ν5F and so on, and the anomaly-free
condition must lead to ν5F + ν10F = ν5F

+ ν10F
.

• The SM fermion generation is determined by ng = ν5F
− ν5F = ν10F − ν10F

.

It turns out that the multiplicity difference between 10F and 10F from a given irrep of
[N , k]F can be expressed as

ν10F [N , k]F − ν10F
[N , k]F = (N − 2k)(N − 5)!

(k − 2)! (N − k − 2)! , (k ≥ 2 , k 6= N − 1) . (2.5)

Obviously for k = 2, one always has ν10F [N , 2]F − ν10F
[N , 2]F = 1. To avoid naive

replication of generations, it is therefore necessary to consider anti-symmetric irreps with
rank greater than or equal to 3. For the SU(6) case, the irrep of [6 , 3]F = 20F is self-
conjugate1 and leads to ν10F [6 , 3]F − ν10F

[6 , 3]F = 0 according to eq. (2.5). In this
regard, the SU(7) group is expected to be the leading GUT group that generates multiple
generations non-trivially.

The SU(7) group was first considered by Frampton in ref. [33], where he suggested the
SU(7) group could generate multiple SM fermion generations. However, we wish to point
out this was not true. To see this, we list two following sets of fermions from ref. [33]

{fL}SU(7) =
[
8× 7F

]⊕
[2× 21F]

⊕
35F , dimF = 133 , (2.6a)

{fL}′SU(7) =
[
7× 7F

]⊕
21F

⊕
[2× 35F] , dimF = 140 , (2.6b)

that can both lead to ng = 3 according to Georgi’s rule. However, these fermions become

{fL}SU(7) =
{
2×

[
3× 7F ⊕ 21F

]}⊕[
2× 7F ⊕ 35F

]
, (2.7a)

{fL}′SU(7) =
[
3× 7F ⊕ 21F

]⊕{
2×

[
2× 7F ⊕ 35F

]}
, (2.7b)

if one partitions the fermions in terms of irreducible anomaly-free sets. Hence, there are
trivial repetitions of one set of anomaly-free fermions for both cases suggested by Frampton.
Through detailed analyses of the SU(7) symmetry breaking pattern below, we shall show that
the SU(7) can never generate realistic SM fermion mass hierarchies for three generations.

1More generally, any self-conjugate irrep of the SU(2N) GUT cannot contribute to a SM fermion
generation at the EW scale.
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Higgs irrep dim pattern
fundamental N SU(N − 1)

rank-2 symmetric 1
2N(N + 1) SO(N)

or SU(N − 1)
rank-2 anti-symmetric 1

2N(N − 1) SO(2k + 1) , k = [N2 ]
or SU(N − 2)

adjoint N2 − 1 SU(N − k)⊗ SU(k)⊗U(1) , k = [N2 ]
or SU(N − 1)

Table 1. The Higgs representations and the corresponding symmetry breaking patterns in the
SU(N) group.

2.2 Possible symmetry breaking patterns

Gauge symmetry breaking patterns are determined by Higgs representations, which was first
studied in ref. [55]. For this purpose, we tabulate the patterns of the symmetry breaking
for the SU(N) groups with various Higgs representations in table 1.

One expects four different symmetry breaking stages for the SU(7) model. The zeroth-
stage symmetry breaking occurs at the GUT scale, and one expects a maximally broken
pattern of SU(7) → SU(3) ⊗ SU(4) ⊗ U(1) due to the Higgs VEVs of an adjoint Higgs
field of 48H. Since this stage leads to massive gauge bosons that can mediate the proton
decays in the context of the minimal SU(5) GUT, it would be mostly proper to occur at
the zeroth stage. However, one cannot determine whether the SU(4) or the SU(3) subgroup
will describe the strong or weak sector. In the current discussion, we consider the following
symmetry breaking pattern of the SU(7)

SU(7) ΛGUT−−−−→ G341
v341−−→ G331

v331−−→ GSM
vEW−−−→ G′SM ,

G341 ≡ SU(3)c ⊗ SU(4)W ⊗U(1)X0 , G331 ≡ SU(3)c ⊗ SU(3)W ⊗U(1)X1 ,

GSM ≡ SU(3)c ⊗ SU(2)W ⊗U(1)Y , G′SM ≡ SU(3)c ⊗U(1)EM ,

ΛGUT � v341 � v331 � vEW . (2.8)

This was previously considered in refs. [35, 38]. An alternative zeroth-stage symmetry
breaking pattern of SU(7) → SU(4)s ⊗ SU(3)W ⊗ U(1)X0 was previously discussed in
refs. [36, 37, 39, 40, 56]. We also wish to mention that such an ambiguity no longer arises
when one considers the GUT groups of SU(8) [57–59] and SU(9) [34], where non-trivial
embedding of three-generational SM fermions can be achieved. Given the SU(7) symmetry
breaking pattern in eq. (2.8), we define the decomposition rules and charge quantizations
in appendix A. Above the EWSB scale, the effective theory is described by a 331 model,
which was previously studied in various aspects [26, 41, 60–90].

2.3 The fermion content

The gauge anomaly factors of several leading SU(7) irreps are listed below

Anom(7F) = +1 , Anom(21F) = +3 , Anom(35F) = +2 , (2.9)
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SU(7) G341 G331 GSM

7F
Λ (3 ,1 ,+1

3)Λ
F (3 ,1 ,+1

3)Λ
F (3 ,1 ,+1

3)Λ
F : (DΛ

R)c

(1 ,4 ,−1
4)Λ

F (1 ,3 ,−1
3)Λ

F (1 ,2 ,−1
2)Λ

F : (EΛ
L ,−NΛ

L )T
(1 ,1 , 0)Λ

F : ŇΛ
L

(1 ,1 , 0)Λ′
F (1 ,1 , 0)Λ′

F : ŇΛ′
L

Table 2. The SU(7) fermion representation of 7F
Λ under the G341 ,G331 ,GSM subgroups for the

SU(7) model, with Λ = (λ , λ̇), λ = (I , II , 3), and λ̇ = (İ , 2̇). Here, we denote (DΛ
R)c = (dΛ

R)c for
the SM right-handed down-type quarks, and (DΛ

R)c = (DΛ
R)c for the heavy right-handed down-type

partner quarks. Similarly, we denote (EΛ
L ,−NΛ

L )T = (eΛ
L ,−νΛ

L)T for the SM left-handed lepton
doublets, and (EΛ

L ,−NΛ
L )T = (eΛL ,−nΛ

L)T for the heavy left-handed lepton doublets.

according to eq. (2.3). Any anti-symmetric irreps with higher ranks of the SU(7) are their
conjugates. By decomposing the SU(7) fermions in terms of the SU(5) irreps, we have

7F = 2× [5 , 0]F ⊕ [5 , 1]F ,

21F = [5 , 0]F ⊕ 2× [5 , 1]F ⊕ [5 , 2]F ,

35F = [5 , 1]F ⊕ 2× [5 , 2]F ⊕ [5 , 3]F . (2.10)

According to ref. [32], one identifies one generational left-handed quarks from the 21F, and
2 − 1 generational left-handed quarks from the 35F. The two-generational SU(7) model
contains the following fermions

{fL}
ng=2
SU(7) =

[
3× 7F ⊕ 21F

]⊕[
2× 7F ⊕ 35F

]
, dimF = 91 . (2.11)

In other words, the fermions can be viewed by joining a rank-2 SU(7) model with a rank-3
SU(7) model. The corresponding global DRS symmetries are given by

GDRS [SU(7) , ng = 2] =
[
SU(3)2 ⊗U(1)2

]⊗[
SU(2)3 ⊗U(1)3

]
, (2.12)

according to eq. (2.4).
Given the global DRS symmetries in eq. (2.12), we label the flavor indices as follows

Λ ≡ (λ , λ̇) , λ ≡ (I , II , 3) , λ̇ ≡ (İ , 2̇) , (2.13)

where the undotted and dotted indices are used to distinguish the SU(3)2 flavors and the
SU(2)3 flavors. Throughout the context, the Roman numbers and the Arabic numbers are
used for the heavy fermion flavors and the SM fermion flavors, respectively. Fields that are
contracted by SU(3)2-invariant and/or SU(2)3-invariant ε-tensors, as well as their possible
combinations are dubbed the DRS-singlets. Fields or their combinations carrying the U(1)2
and/or U(1)3 charges are dubbed the DRS-charged states. Note that the DRS-singlets may
not be gauge-invariant in general. The DRS-invariant terms are both DRS-singlets and
DRS-neutral states.

We tabulate the SU(7) fermion spectrum in tables 2, 3, and 4. The U(1)X0 ,X1 ,Y

charges are obtained according to the assignments given in eqs. (A.2a) and (A.2b). From
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SU(7) G341 G331 GSM

21F (3 ,1 ,−2
3)F (3 ,1 ,−2

3)F (3 ,1 ,−2
3)F : tR

c

(3 ,4 ,− 1
12)F (3 ,3 , 0)F (3 ,2 ,+1

6)F : (tL , bL)T

(3 ,1 ,−1
3)F : DL

(3 ,1 ,−1
3)′F (3 ,1 ,−1

3)′F : D′L

(1 ,6 ,+1
2)F (1 ,3 ,+2

3)F (1 ,2 ,+1
2)F : (nRc ,−eRc)T

(1 ,1 ,+1)F : τR
c

(1 ,3 ,+1
3)F (1 ,2 ,+1

2)′F : (e′R
c , n′R

c)T
(1 ,1 , 0)F : ňcR

Table 3. The SU(7) fermion representation of 21F under the G341 ,G331 ,GSM subgroups for the
SU(7) model. All SM fermion names and irreps are identified with underlines.

SU(7) G341 G331 GSM

35F (1 ,1 ,−1)F (1 ,1 ,−1)F (1 ,1 ,−1)F : EL

(1 ,4 ,+3
4)F (1 ,3 ,+2

3)′′F (1 ,2 ,+1
2)′′F : (n′′R

c ,−e′′R
c)T

(1 ,1 ,+1)′′F : µR
c

(1 ,1 ,+1)′F (1 ,1 ,+1)′F : ER
c

(3 ,4 ,− 5
12)F (3 ,3 ,−1

3)F (3 ,2 ,−1
6)F : (sRc , cRc)T

(3 ,1 ,−2
3)′F : UR

c

(3 ,1 ,−2
3)′′F (3 ,1 ,−2

3)′′F : cR
c

(3 ,6 ,+1
6)F (3 ,3 , 0)′F (3 ,2 ,+1

6)′F : (cL , sL)T

(3 ,1 ,−1
3)′′F : SL

(3 ,3 ,+1
3)F (3 ,2 ,+1

6)′′F : (sL ,−cL)T
(3 ,1 ,+2

3)F : UL

Table 4. The SU(7) fermion representation of 35F under the G341 ,G331 ,GSM subgroups for the
SU(7) model. All SM fermion names and irreps are identified with underlines.

the decomposition, we find one quark doublet of (3 ,2 ,+1
6)F from 21F, two quark doublets

of (3 ,2 ,+1
6)′F and (3 ,2 ,+1

6)′′F, plus one mirror quark doublet of (3 ,2 ,−1
6)F from 35F.

The existence of the mirror quark doublet [91] is a distinctive feature from the previous
one-generational SU(6) toy model [26], and they can emerge from non-minimal GUTs in
general. According to the counting rule by Georgi [32], it is straightforward to find ng = 2
in the current setup. All chiral fermions are named by their SM irreps. For the right-handed
quarks of (DΛ

R)c, they are named as follows

(DI
R)c ≡ DR

c , (DII
R)c ≡ D′R

c
, (D3

R)c ≡ bRc ,

(Dİ
R)c ≡ SR

c , (D2̇
R)c ≡ sRc . (2.14)

For the left-handed lepton doublets of (EΛ
L ,−NΛ

L ), they are named as follows

(E I
L ,N I

L) ≡ (eL ,−nL) , (E II
L ,N II

L ) ≡ (e′L ,−n′L) , (E İ
L ,N İ

L) ≡ (e′′L ,−n′′L) ,

(E 2̇
L ,−N 2̇

L) ≡ (µL ,−νµL) , (E3
L ,−N 3

L) ≡ (τL ,−ντ L) . (2.15)
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SU(6) SU(2)F U(1)
6F

λ 2 p

15F 1 q

6H ,λ 2 −p− q
15H 1 −2q
35H 1 0

Table 5. The SU(6) fermions and Higgs representations under the global DRS symmetries in
eq. (3.2).

All fermions are categorized according to their electrical charges in appendix B. Names of
all SM fermions will become transparent with the analyses of their mass origins from the
symmetry breaking pattern in section 6.

3 Review of the third-generational SU(6) toy model

3.1 The SU(6) model setup and the DRS symmetry

Before presenting the fermion masses in the two-generational SU(7) model, we review some
necessary ingredients from the third-generational SU(6) toy model [26]. This was recently
shown to split the bottom quark and tau lepton masses from the top quark mass in the third
generation with natural Yukawa couplings of ∼ O(1). The minimal set of anomaly-free
fermion content in the SU(6) model is given by

{fL}
ng=1
SU(6) = 2× 6F ⊕ 15F , dimF = 27 . (3.1)

This model enjoys a global DRS symmetry of

GDRS [SU(6) , ng = 1] = SU(2)F ⊗U(1) , (3.2)

according to eq. (2.4). The model setup can be summarized in table 5. The symmetry
breaking pattern of the SU(6) model simply reads SU(6) ΛGUT−−−−→ G331

v331−−→ GSM
vEW−−−→ G′SM.

In the Higgs sector of the SU(6) model, the Higgs components that can develop VEVs
for the sequential stages of symmetry breaking after the GUT-scale symmetry breaking are

6H ,λ ⊃

Φ3 ,λ︷ ︸︸ ︷
(1 ,3 ,−1

3)H ,λ ⊃ (1 ,2 ,−1
2)H ,λ , (3.3a)

15H ⊃

Φ′
3︷ ︸︸ ︷

(1 ,3 ,+2
3)H ⊃ (1 ,2 ,+1

2)H , (3.3b)

with λ = 1 , 2 being the SU(2)F indices according to eq. (3.2). All Higgs components that
can develop VEVs for the symmetry breaking are framed with boxes. The Yukawa couplings
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contain the terms of

(YD)λκ6F
λ15F6H ,κ +H.c.

⊃ (YD)λκ
[
(3 ,3 , 0)F ⊗

(
3̄ ,1 ,+1

3

)λ
F
⊕
(

1 , 3̄ ,+2
3

)
F
⊗
(

1 , 3̄ ,−1
3

)λ
F

]

⊗
(

1 , 3̄ ,−1
3

)
H ,κ

+H.c. . (3.4)

These Yukawa couplings lead to massive vectorlike fermions from one copy of 6F
λ, and will be

integrated out after the G331 breaking. Accordingly, at least one of the (1 , 3̄ ,−1
3)H ,λ ⊂ 6H ,λ

should develop the VEV. We dub this the “fermion-Higgs matching pattern” for the
symmetry breaking. When both of the (1 , 3̄ ,−1

3)H ,λ ⊂ 6H ,λ develop VEVs for the G331

breaking, there is still one copy of 6F
λ become massive at this stage. We dub this the

“fermion-Higgs mismatching pattern” for the symmetry breaking [26]. Correspondingly, one
naturally denote the VEVs of two (1 , 3̄ ,−1

3)H ,λ as

〈Φ3 ,λ〉 = 1√
2

 0
0

V3 ,λ

 . (3.5)

3.2 The Higgs potential and the ν-term

For the SU(6) toy model, one can write down the following Higgs potential

VG331 = V (Φ3 ,λ) + V (Φ′3) + V (Φ3 ,λ ,Φ
′
3) , (3.6a)

V (Φ3 ,λ) = µ2
11|Φ3 ,1|

2 + µ2
22|Φ3 ,2|

2 −
(
µ2

12Φ†3 ,1Φ3 ,2 +H.c.
)

+ λ1
2 |Φ3 ,1|

4 + λ2
2 |Φ3 ,2|

4 + λ3|Φ3 ,1|
2|Φ3 ,2|

2 , (3.6b)

V (Φ′3) = µ2
t |Φ′3|

2 + λt|Φ′3|
4 , (3.6c)

V (Φ3 ,λ ,Φ
′
3) = κλ|Φ3 ,λ|

2|Φ′3|
2 +

(
νεĩj̃k̃(Φ3 ,1)̃i(Φ3 ,2)j̃(Φ′3)k̃ +H.c.

)
. (3.6d)

after the symmetry breaking of SU(6) → G331. Obviously, the V (Φ3 ,λ) mainly describes
the G331 symmetry breaking, and the V (Φ′3) mainly describes the EWSB. The global DRS
symmetry in eq. (3.2) can be restored when µ2

11 = µ2
22, µ2

12 = 0, λ1 = λ2 = λ3, and κ1 = κ2.
It turns out the SU(6) Higgs sector can naturally include a gauge-invariant mixing

ν-term of

VG331 ⊃ νελκ 6H ,λ6H ,κ15H +H.c.

⊃ νεĩj̃k̃
(

1 ,3 ,−1
3

)
H ,̃i λ

⊗
(

1 ,3 ,−1
3

)
H ,j̃ κ

⊗
(

1 ,3 ,+2
3

)
H ,k̃

+H.c. . (3.7)

According to table 13, (̃i , j̃ , k̃) represent the fundamental/anti-fundamental indices of the
SU(3)W group. This ν-term can also be DRS-invariant as long as p = −2q according to
table 5. The GSM-singlet terms that can develop the G331 breaking VEVs correspond to
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the ĩ = 3 components of two (1 ,3 ,−1
3)H ,λ. Meanwhile, the (1 ,3 ,+2

3)H only contains the
EWSB component with k̃ = 1. Therefore, the above ν-term can lead to a following tadpole
term in the Higgs potential

∼ −νελκ V3 ,λvt

(
1 ,3 ,−1

3

)
H ,2κ

+H.c. , (3.8)

where we have denoted 〈(1 ,3 ,−1
3)H ,3λ〉≡

1√
2

(0 , 0 , V3 ,λ)T and 〈(1 ,3 ,+2
3)H ,1〉≡

1√
2

(vt , 0 , 0)T .

To remove this tadpole term, it is necessary to have the j̃ = 2 component in the
(1 ,3 ,−1

3)H ,j̃ κ develop a VEV for the EWSB as well. Thus, two VEVs of Φ3 ,λ in eq. (3.5)
should be modified into

〈Φ3 ,λ〉 = 1√
2

 0
u2 ,λ
V3 ,λ

 . (3.9)

We parametrize the G331-breaking and the EWSB VEVs as follows2

(V3 ,1 , V3 ,2) = (cβ̃ , sβ̃)v331 , (u2 ,1 , u2 ,2) = (cβ′ , sβ′)uφ . (3.10)

The EWSB VEV of uφ will give masses to the bottom quark and the tau lepton. Hence, a
hierarchy of uφ � v331 is expected. One can further demand no mass mixing term between
the W± and W ′ ±. To see this, we write down the charged gauge boson masses from the
SU(3)W ⊗ U(1)X1 covariant derivative in eq. (5.15) by using the VEVs in eqs. (3.9), and
they read

1
4g

2
3W (W−µ ,W ′ −µ ) ·

(
v2

EW u2 ,λV3 ,λ
u2 ,λV3 ,λ v

2
331 + v2

t

)
·
(
W+µ

W ′+µ

)
. (3.11)

It is straightforward to obtain the following orthogonal relation of∑
λ=1 ,2

u2 ,λV3 ,λ = 0 , (3.12)

through the gauge transformations to Φ3 ,λ, which assures the absence of mass mixing
between the W± and W ′ ±. The VEV ratios in eq. (3.10) are related as β′ = β̃−π/2. Thus,
one can perform the following orthogonal transformations into the Higgs basisΦ′3 ,1

Φ′3 ,2

 =
(

cβ̃ sβ̃
−sβ̃ cβ̃

)
·
(

Φ3 ,1
Φ3 ,2

)
, (3.13)

such that

〈Φ′3 ,1〉 = 1√
2

 0
0
v331

 , 〈Φ′3 ,2〉 = 1√
2

 0
−uφ

0

 . (3.14)

2Throughout the context, we always use the short-handed notations of (cβ̃ , sβ̃) ≡ (cos β̃ , sin β̃).
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The ν-term in eq. (3.8) will contribute to a VEV term of 1√
2ν(u2V1 − u1V2)vt to the

Higgs potential. The minimization of the Higgs potential in eqs. (3.6) leads to
∂V

∂V3 ,1
= 0⇒ µ2

11 =µ2
12tβ̃−

λ1
2
(
V 2

3 ,1+u2
2 ,1

)
−λ3

2
(
V 2

3 ,2+u2
2 ,2

)
−κ1

2 v
2
t +

νu2 ,2vt√
2V3 ,1

, (3.15a)

∂V

∂V3 ,2
= 0⇒ µ2

22 = µ2
12
tβ̃
−λ2

2
(
V 2

3 ,2+u2
2 ,2

)
−λ3

2
(
V 2

3 ,1+u2
2 ,1

)
−κ2

2 v
2
t −

νu2 ,1vt√
2V3 ,2

, (3.15b)

∂V

∂vu
= 0⇒−µ2

t =λtv
2
t +κ1

2
(
V 2

3 ,1+u2
2 ,1

)
+κ2

2
(
V 2

3 ,2+u2
2 ,2

)
+ ν√

2vt

(
u2 ,1V3 ,2−u2 ,2V3 ,1

)
, (3.15c)

∂V

∂u2 ,1
= 0⇒ µ2

11 =−µ
2
12
tβ̃
−λ1

2
(
V 2

3 ,1+u2
2 ,1

)
−λ3

2
(
V 2

3 ,2+u2
2 ,2

)
−κ1

2 v
2
t −

νV3 ,2vt√
2u2 ,1

, (3.15d)

∂V

∂u2 ,2
= 0⇒ µ2

22 =−µ2
12tβ̃−

λ2
2
(
V 2

3 ,2+u2
2 ,2

)
−λ3

2
(
V 2

3 ,1+u2
2 ,1

)
−κ2

2 v
2
t +

νV3 ,1vt√
2u2 ,2

. (3.15e)

By equating eqs. (3.15a) with (3.15d), and eqs. (3.15b) with (3.15e), we have a relation of(
uφ
v331

)2
−
√

2µ2
12

νvtsβ̃cβ̃

uφ
v331

− 1 = 0 . (3.16)

The solution of eq. (3.16) naturally leads to uφ ∼ νv331
µ2

12
vt. For example, if one takes param-

eters of µ12 ∼ O(v331) ∼ O(10) TeV and ν ∼ O(100) GeV, one can have suppressed VEVs
of u2 ,λ ∼ O(1) GeV for the third-generational b quark and tau lepton masses in eq. (3.16).
This means some fine-tuning of the parameter ν in the SU(6) model is necessary [26].

The origin of the fine-tuning in the toy SU(6) model is simply because the ν-term is
renormalizable. Such a fine-tuning problem is analogous to the µ-problem in the minimal
supersymmetric Standard Model (MSSM) [92]. A widely accepted solution is the Kim-
Nilles mechanism [93], where the µ-term in the MSSM superpotential is generated by
non-renormalizable operator. Such operator can be possible with additional symmetries,
for instance, the PQ symmetry. Analogously, we shall probe whether non-renormalizable
operators that contribute to the Higgs VEV terms can emerge in the non-minimal GUTs
with extended gauge symmetries beyond the third-generational toy SU(6). Obviously, the
global DRS symmetries also differ between the two-generational SU(7) in eq. (2.12) and
the third-generational toy SU(6) in eq. (3.2).

4 The Higgs sector and the VEV generations

4.1 The Higgs fields

The minimal set of Higgs fields can be obtained from the following SU(7) gauge-invariant
Yukawa couplings3

−LY = (YB)λκ7F
λ21F7H ,κ + (YS)λ̇

κ̇7F
λ̇35F21H ,κ̇

+ YT 21F21F35H + YT C21F35F21H + YC35F35F7H +H.c. . (4.1)
3Throughout the context, we always sum over one superscript flavor index with one subscript flavor index.
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SU(7) SU(3)2 SU(2)3 U(1)2 U(1)3

7F
λ 3 1 p1 0

7F
λ̇ 1 2 0 p2

21F 1 1 q1 0
35F 1 1 0 q2
7H ,λ 3 1 −p1 − q1 0
21H ,λ̇ 1 2 0 −p2 − q2

7H 1 1 0 −2q2
21H 1 1 −q1 −q2
35H 1 1 −2q1 0
48H 1 1 0 0

Table 6. The SU(7) fermions and Higgs representations under the global DRS symmetry in
eq. (2.12).

Names for Yukawa couplings will become manifest in the fermion mass generation. In the
DRS limit, the Yukawa couplings become

(YB)λκ = YB δλ
κ , (YS)λ̇

κ̇ = YS δλ̇
κ̇ , (4.2)

while other Yukawa couplings of (YT , YT C , YC) involve the DRS singlet fermions. Altogether,
we collect the two-generational SU(7) Higgs fields as follows

{H}ng=2
SU(7) =

[
3× 7H

]
⊕
[
2× 21H

]
⊕ 7H ⊕ 21H ⊕ 35H ⊕ 48H . (4.3)

According to ref. [55], the adjoint Higgs field of 48H will be responsible for the GUT
symmetry breaking of SU(7)→ G341 through its VEV of

〈48H〉 = 1
2
√

42
diag(−4 ,−4 ,−4 ,+3 ,+3 ,+3 ,+3)vU . (4.4)

One can consider a generic Higgs potential for the adjoint Higgs field of 48H as follows

V (48H) = µ2Tr(48H)2 + λ1Tr[(48H)2]2 + λ2Tr(48H)4 . (4.5)

It turns out the desirable symmetry breaking of SU(7) → G341 can be achieved with
λ2 > 0 [55]. The 48H can be decomposed into two 3× 3 and 4× 4 diagonal blocks, plus two
3× 4 off-diagonal blocks. Obviously, the scalar components in two 3× 4 off-diagonal blocks
are the Nambu-Goldstone bosons for the massive gauge bosons (vectorial leptoquarks) at the
GUT scale symmetry breaking. By combining the fermions in eq. (2.11) and Higgs fields
in eq. (4.3), we tabulate their transformations and the most general charge assignments
under the global DRS symmetries in table 6.

Before we analyze the details of the symmetry breaking, it will be useful to decompose
all Higgs fields in eq. (4.3) and to look for the singlet directions for the sequential symmetry
breaking stages. The zeroth-stage symmetry breaking occurs at the GUT scale, which
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Higgs G341 G331 GSM
7H ,λ 3 (λ = II) 3 (λ = I) 3 (λ = 3)
21H ,λ̇ 7 3 (λ̇ = İ) 3 (λ̇ = 2̇)

7H 3 3 3

21H 7 3 4
35H 7 7 3

Table 7. The Higgs fields and their symmetry breaking directions in the SU(7) model. The 3and
7represent possible and impossible symmetry breaking directions for a given Higgs field. The 4
represents the symmetry breaking direction that is mathematically possible, while can bring potential
phenomenological constraints. The flavor indices for the Higgs fields that develop VEVs at different
stages are also specified in the parentheses.

follows the pattern determined by the adjoint Higgs field and the charge quantization in
eq. (A.1). After the zeroth-stage GUT symmetry breaking, they read

7H ,λ = (3 ,1 ,+1
3)H ,λ ⊕

Φ4 ,λ︷ ︸︸ ︷
(1 ,4 ,−1

4)H ,λ ⊃ (1 ,3 ,−1
3)H ,λ ⊃ (1 ,2 ,−1

2)H ,λ , (4.6a)

21H ,λ̇ = (3 ,1 ,+2
3)H ,λ̇ ⊕ (3 ,4 ,+ 1

12)H ,λ̇ ⊕

Φ6 ,λ̇︷ ︸︸ ︷
(1 ,6 ,−1

2)H ,λ̇

⊃ (1 ,3 ,−1
3)H ,λ̇ ⊕ (1 ,3 ,−2

3)H ,λ̇ ⊃ (1 ,2 ,−1
2)H ,λ̇ ⊕ (1 ,2 ,−1

2)H ,λ̇ , (4.6b)

7H = (3 ,1 ,−1
3)H ⊕

Φ4︷ ︸︸ ︷
(1 ,4 ,+1

4)H ⊃ (1 ,3 ,+1
3)H ⊃ (1 ,2 ,+1

2)H , (4.6c)

21H = (3 ,1 ,−2
3)H ⊕ (3 ,4 ,− 1

12)H ⊕

Φ6︷ ︸︸ ︷
(1 ,6 ,+1

2)H

⊃ (1 ,3 ,+1
3)′H ⊕ (1 ,3 ,+2

3)H ⊃ (1 ,2 ,+1
2)′H ⊕ (1 ,2 ,+1

2)H , (4.6d)

35H = (1 ,1 ,−1)H ⊕

Φ4︷ ︸︸ ︷
(1 ,4 ,+3

4)H ⊕ (3 ,4 ,− 5
12)H ⊕ (3 ,6 ,+1

6)H

⊃ (1 ,3 ,+2
3)′H ⊃ (1 ,2 ,+1

2)′H . (4.6e)

with all possible Higgs VEV components responsible for the sequential symmetry breaking
framed with boxes. All Higgs components without underlines or boxes are prohibited to
develop VEVs so that the SU(3)c ⊗U(1)EM remain exact. For our later convenience, we
also give names to all Higgs fields that are responsible for the extended weak symmetry
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Omix U(1)2 U(1)3 VEV terms
Od=3

A ≡ (21H)2 · 35H −4q1 , (0) −2q2 , (p2) 7

Od=3
B ≡ 7H · (35H)2 −4q1 , (0) −2q2 , (p2) 7

Od=4
A ≡ ε · (7H ,λ)3 · 35H −(3p1 + 5q1) , (0) 0 3

Od=4
B ≡ ε · (21H ,λ̇)2 · 7H · 35H −2q1 , (0) −2(p2 + 2q2) , (0) 3

Od=4
C ≡ ε · (21H ,λ̇)2 · (21H)2 −2q1 , (0) −2(p2 + 2q2) , (0) 3

Od=4
D ≡ 7H · (21H)3 −3q1 , (0) −5q2 , (5

2p2) 7

Table 8. The renormalizable SU(7) Higgs mixing operators and their U(1)2 ,3 charges. The charge
assignments with p1 = q1 = 0 and q2 = − 1

2p2 6= 0 are marked in parentheses.

breakings. These components are determined by whether they contain the singlet directions
according to the desirable symmetry breaking pattern in eq. (2.8). Note that the 35H only
contains the EWSB component of (1 ,2 ,+1

2)′H. Thus, we expect the 35H plays the similar
roles as the 15H in the SU(6) model, and it gives top quark mass with natural Yukawa
coupling of YT ∼ O(1). Based on the decompositions in eqs. (4.6), we summarize the results
in table 7. For DRS-transforming Higgs fields of 7H ,λ and 21H ,λ̇, we assign their VEVs
according to the so-called fermion-Higgs matching pattern. As will be described in section 6,
the number of Higgs VEVs will exactly match the copies of anti-fundamental fermions
that acquire their vectorlike masses at each symmetry breaking stage. For each individual
Higgs field, we assign VEVs for the highest symmetry breaking scale that is allowed by the
symmetry breaking pattern given in eq. (2.8). According to table 7, we expect that the 7H
is mainly responsible for the G341 symmetry breaking, the 21H is mainly responsible for
the G331 symmetry breaking, and so on. Altogether, we arrive at the minimal set of Higgs
VEVs for the sequential symmetry breaking stages as follows

G341 → G331 : 〈(1 ,4 ,−1
4)H ,II〉 ≡ w4 ,II , 〈(1 ,4 ,+1

4)H〉 ≡ w4 , (4.7a)

G331 → GSM : 〈(1 ,3 ,−1
3)H ,I〉 ≡ V3 ,I , 〈(1 ,3 ,−1

3)H ,İ〉 ≡ V3 ,İ ,

〈(1 ,3 ,+1
3)′H〉 ≡ V ′3 , (4.7b)

EWSB : 〈(1 ,2 ,+1
2)′H〉 ≡ vt . (4.7c)

It is natural to expect all these minimal set of VEVs at the particular symmetry breaking
stage are of the same order, i.e., we have w4 ,II ∼ w4 and V3 ,I ∼ V3 ,İ ∼ V ′3. Meanwhile,
such an expectation are no longer valid for additional Higgs VEVs to be generated through
the Higgs mixing operators below. Here, the flavor indices for all DRS-transforming Higgs
fields will be chosen in accordance to the symmetry breaking pattern in section 6.

4.2 The Higgs potential

The most generic Higgs potential for the {Φk} = {7H ,λ ,21H ,λ̇ ,7H ,21H ,35H} include
the following terms

V =
∑
Φk

V (|Φk|2) +
(
V d≤4

mix + V d≥5
mix +H.c.

)
, (4.8)
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Omix U(1)2 U(1)3 VEV terms
Od=5

A ≡ ε · (7H ,λ)3 · ε · (21H ,λ̇)2 −3(p1 + q1) , (0) −2(p2 + q2) , (−p2) 7

Od=5
B ≡ (7H)4 · 35H −2q1 , (0) −8q2 , (4p2) 7

Od=5
C ≡ ε · (7H ,λ)3 · 7H · 21H −(3p1 + 4q1) , (0) −3q2 , (3

2p2) 3

Od=5
D ≡

[
ε · (21H ,λ̇)2

]2
· 7H 0 −2(2p2 + 3q2), (−p2) 7

Od=6
A ≡ ε · (7H ,λ)3 · (7H)3 −3(p1 + q1) , (0) −6q2 , (3p2) 3

Od=6
B ≡

[
ε · (21H ,λ̇)2

]
· (7H)4 0 −2(p2 + 5q2) , (3p2) 7

Od=6
C ≡ (21H)4 · (35H)2 −8q1 , (0) −4q2 , (2p2) 7

Od=6
D ≡ 7H · (21H)2 · (35H)3 −8q1 , (0) −4q2 , (2p2) 7

Od=8 ≡
[
ε · (21H ,λ̇)2

]3
· 21H · 35H −3q1 , (0) −(6p2 + 7q2) , (−5

2p2) 7

Od=9
A ≡

[
ε · (7H ,λ)3

]2
· (21H)3 −3(2p1 + 3q1) , (0) −3q2 , (3

2p2) 3

Od=9
B ≡

[
ε · (21H ,λ̇)2

]3
· 7H · (21H)2 −2q1 , (0) −2(3p2 + 5q2) , (−p2) 7

Od=9
C ≡

[
ε · (21H ,λ̇)2

]4
· 21H −q1 , (0) −(8p2 + 9q2) , (−7

2p2) 7

Table 9. The non-renormalizable SU(7) Higgs mixing operators and their U(1)2 ,3 charges. The
3and 7represent whether the specific operator can contribute to VEV terms in the Higgs potential
or not. The charge assignments with p1 = q1 = 0 and q2 = − 1

2p2 6= 0 are marked in parentheses.

with the renormalizable moduli terms expressed as

V (|Φk|2) = µ2
k|Φk|2 + λk|Φk|4 +

∑
j 6=k

κjk|Φj |2 · |Φk|2 . (4.9)

Obviously, the moduli terms are both gauge-invariant and DRS-invariant. For all mixing
terms of Omix between Higgs fields, the DRS-invariance becomes non-trivial given that the
possible operators may be DRS-charged. Here, we require that all renormalizable operators
of Od≤4

mix listed in table 8 to be DRS-neutral. For this reason, the only possible U(1)2 ,3
charge assignments are

p1 = q1 = 0 , q2 = −1
2p2 6= 0 . (4.10)

In particular, three d = 4 operators of (Od=4
A ,Od=4

B ,Od=4
C ) will play crucial roles in

generating additional Higgs VEVs for the SM fermion masses. With the U(1)1 ,2 charge
assignments in eq. (4.10), all non-renormalizable mixing operators of Od≥5

mix in table 9 are
inevitably DRS-charged. However, they can be allowed in the Higgs potential, in the sense
that they can only be violated by the gravitational effects [45–50, 94]. In tables 8 and 9, we
use the short-handed notations of

ε · (7H ,λ)3 ≡ ελ1λ2λ3 7H ,λ17H ,λ27H ,λ3 , (4.11a)

ε · (21H ,λ̇)2 ≡ ελ̇1λ̇2 21H ,λ̇1
21H ,λ̇2

. (4.11b)

Thus, we express the mixing terms in the Higgs potential as follows

V d≤4
mix = gdOd≤4

mix , V d≥5
mix = gd

Md−4
pl
Od≥5

mix . (4.12)
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Figure 1. The generation chains of all additional Higgs VEVs through the gauge-invariant operators
composed by SU(7) Higgs fields.

Obviously, only the Higgs VEV components should be taken into account in eq. (4.8) when
one minimizes the potential. This was previously pointed out in analyzing the explicit
PQ-breaking terms by ref. [95]. In appendix C, we derive and determine whether a specific
operator in tables 8 and 9 can lead to VEV terms to the Higgs potential.

For three renormalizable d = 4 operators that can lead to Higgs VEV terms, a
suppression of induced EWSB VEVs are possible. Let us consider the generation of the
suppressed VEV of u2 ,3. After the GUT scale symmetry breaking, the Higgs fields that
lead to a VEV term in the operator of Od=4

A are (Φ4 ,λ ,Φ4). The Higgs potential must
contain the following terms

V341 ⊃ µ2
λ|Φ4 ,λ|

2 + g4A ε
λκδΦ4 ,λΦ4 ,κΦ4 ,δΦ4 . (4.13)

By minimizing the potential along the direction of the generated VEV u2 ,3 according to
eq. (C.3), one finds a relation of µ2

3u2 ,3 ∼ g4Aw4V3vt. By further assuming the natural
relations of µ3 ∼ w4 and g4A ∼ O(1), one finds that u2 ,3 ∼ ( V3

w4
)vt � vt. In addition

to renormalizable d = 4 operators, we also find three non-renormalizable operators of
(Od=5

C ,Od=6
A ,Od=9

A ) that can generate additional Higgs VEV terms.
Altogether, we end up with the following Higgs VEVs at each stage of symmetry breaking

G341 → G331 : 〈(1 ,4 ,−1
4)H ,II〉 ≡ w4 ,II , 〈(1 ,4 ,+

1
4)H〉 ≡ w4 , (4.14a)

G331 → GSM : 〈(1 ,3 ,−1
3)H ,I〉 ≡ V3 ,I , 〈(1 ,3 ,−

1
3)H ,İ〉 ≡ V3 ,İ ,

〈(1 ,3 ,+1
3)H〉 ≡ V3 , 〈(1 ,3 ,+1

3)′H〉 ≡ V ′3 , (4.14b)

EWSB : 〈(1 ,2 ,−1
2)H ,3〉 ≡ u2 ,3 ,

〈(1 ,2 ,−1
2)H ,2̇〉 ≡ u2 ,2̇ , 〈(1 ,2 ,−1

2)H ,2̇〉 ≡ u2 ,2̇ ,

〈(1 ,2 ,+1
2)H〉 ≡ u2 , 〈(1 ,2 ,+1

2)′H〉 ≡ u′2 , 〈(1 ,2 ,+1
2)H〉 ≡ u2 ,

〈(1 ,2 ,+1
2)′H〉 ≡ vt . (4.14c)
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The additional Higgs VEVs generated by the Higgs mixing operators in appendix C are
marked with boxes. We display the VEV generation chains through the series of operators
in figure 1, with the minimal set of Higgs VEVs given in eq. (4.7) as their input parameters.
The EWSB VEV from the 21H may lead to flavor-changing decay mode of t→ hSMc, which
should be further studied with the ongoing LHC searches for this rare decay mode. For our
later usage, we denote the Higgs VEVs at different scales collectively as follows

w2
4 ,II + w2

4 ≡ v2
341 , (4.15a)

∑
Λ=I ,İ

V 2
3 ,Λ + V 2

3 + (V ′3)2 ≡ v2
331 , (4.15b)

∑
Λ=2̇ ,3

u2
2 ,Λ + (u2 ,2̇)2 + u2

2 + (u′2)2 + u2
2 + v2

t ≡ v2
EW . (4.15c)

5 The gauge sector

After the GUT scale symmetry breaking, the effective theory is described by an extended
electroweak symmetry of SU(3)c⊗ SU(4)W ⊗U(1)X0 . The sequential symmetry breaking of
SU(4)W ⊗ U(1)X0 → SU(3)W ⊗ U(1)X1 and SU(3)W ⊗ U(1)X1 → SU(2)W ⊗ U(1)Y lead to
seven and five massive gauge bosons, respectively. In this section, we describe the massive
gauge bosons during two stages of symmetry breaking. Results obtained in this section will
be used to describe the gauge couplings of fermions in section 7. All group indices in this
section follow the conventions defined in table 13.

5.1 The SU(4)W ⊗U(1)X0 gauge bosons

We express the SU(4)W ⊗U(1)X0 covariant derivatives as follows

Dµ ≡ ∂µ − ig4WA
Ī
µT

Ī
SU(4) − igX0X0I4X0µ , (5.1)

for the SU(4)W fundamental representation. It becomes

Dµ ≡ ∂µ + ig4WA
Ī
µ(T ĪSU(4))T − igX0X0I4X0µ , (5.2)

for the SU(4)W anti-fundamental representation. The SU(4)W generators of T ĪSU(4) are
normalized such that Tr

(
T ĪSU(4)T

J̄
SU(4)

)
= 1

2δ
Ī J̄ . The explicit form for the gauge fields of

g4WA
Ī
µT

Ī
SU(4) + gX0X0I4X0µ can be expressed in terms of a 4× 4 matrix as follows

g4WA
Ī
µT

Ī
SU(4) + gX0X0I4X0µ =

g4W√
2


0 W+

µ W ′+µ W ′′+µ

W−µ
W ′ −µ 03×3
W ′′ −µ

+ g4W√
2


0 0 0 0
0 0 Nµ N ′µ
0 N̄µ 0 N ′′µ
0 N̄ ′µ N̄ ′′µ 0


+ g4W

2 diag
(
A3
µ + 1√

3
A8
µ ,−A3

µ + 1√
3
A8
µ ,−

2√
3
A8
µ , 0

)
+ g4W

2
√

6
diag

( [
A15
µ + 12tθGX0X0µ

]
I3×3 ,−3A15

µ + 12tθGX0X0µ
)
, (5.3)
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where we have defined a mixing angle of

tθG ≡ tan θG = gX0√
6g4W

. (5.4)

The notions of massive gauge bosons are determined according to their electric charges from
the relation of [Q̂e(15W) , AĪµT ĪSU(4)] = QeA

Ī
µT

Ī
SU(4), with Q̂e(15W) defined in eq. (A.5).

Explicitly, we find the electrically charged gauge bosons of

Qe(A1
µ ∓ iA2

µ) = Qe(A4
µ ∓ iA5

µ) = Qe(A9
µ ∓ iA10

µ ) = ±1 , (5.5)

while all other gauge bosons are electrically neutral.
Through the analyses in section 6.1, this stage of symmetry breaking can be achieved by

SU(4)W anti-fundamental Higgs fields of Φ4 ,II ≡ (1 ,4 ,−1
4)H ,II ⊂ 7H ,II and one SU(4)W

fundamental Higgs field of Φ4 ≡ (1 ,4 ,+1
4)H ⊂ 7H. With the SU(4)W -breaking VEVs in

eqs. (4.14), the Higgs kinematic terms lead to the (W ′′ ±µ , N ′µ , N
′′
µ) gauge boson masses of

1
4g

2
4W v

2
341

(
W ′′+µ W ′′−µ +N ′µN̄

′µ +N ′′µN̄
′′µ
)
, (5.6)

with the Higgs VEV of v341 given in eq. (4.15a). For the flavor-conserving neutral gauge
bosons of (A15

µ , X0µ), the mass squared matrix reads

3
16g

2
4W v

2
341(A15

µ , X0µ) ·
(

1 −tθG
−tθG t2θG

)
·
(
A15µ

Xµ
0

)
. (5.7)

Obviously it contains a zero eigenvalue which corresponds to the massless gauge boson of
X1µ after the SU(4)W symmetry breaking. The mass eigenstates can be diagonalized in
terms of the mixing angle in eq. (5.4) as follows(

Z ′′µ
X1µ

)
=
(
cθG −sθG
sθG cθG

)
·
(
A15
µ

X0µ

)
. (5.8)

The SU(4)W ⊗ U(1)X0 gauge couplings of (α4W , αX0) match with the SU(3)W ⊗ U(1)X1

gauge couplings as follows

α−1
3W (v341) = α−1

4W (v341) , α−1
X1

(v341) = 1
6α
−1
4W (v341) + α−1

X0
(v341) ,

1
6α
−1
4W = α−1

X1
s2
θG
, α−1

X0
= α−1

X1
c2
θG
. (5.9)

From the definitions of two mixing angles in eqs. (5.4) and (5.16), we find a relation of

sin θG = 1√
2

tan θS . (5.10)

The tree-level masses for seven gauge bosons at this stage read

m2
W ′′ ±µ

= m2
N ′µ ,N̄

′
µ

= m2
N ′′µ ,N̄

′′
µ

=
g2
X1

24s2
θG

v2
341 , (5.11a)

m2
Z′′µ

=
g2
X1

16s2
θG
c2
θG

v2
341 . (5.11b)
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After the first-stage symmetry breaking, the remaining massless gauge bosons are (W±µ ,W ′ ±µ ),
(Nµ , N̄µ), and (A3

µ , A
8
µ , X1µ).

In terms of mass eigenstates, the gauge bosons from the covariant derivative in eq. (5.3)
are expressed as

g4WA
Ī
µT

Ī
SU(4) + gX0X0I4X0µ =

g4W√
2


0 W+

µ W ′+µ W ′′+µ

W−µ
W ′ −µ 03×3
W ′′ −µ

+ g4W√
2


0 0 0 0
0 0 Nµ N ′µ
0 N̄µ 0 N ′′µ
0 N̄ ′µ N̄ ′′µ 0


+ g4W

2 diag
(
A3
µ + 1√

3
A8
µ ,−A3

µ + 1√
3
A8
µ ,−

2√
3
A8
µ , 0

)
+ gX1diag

(
( 1
12 + X0)I3×3 ,−

1
4 + X0

)
X1µ

+ gX1

sθGcθG
diag

([ 1
12 −

( 1
12 + X0

)
s2
θG

]
I3×3 ,−

1
4 +

(1
4 −X0

)
s2
θG

)
Z ′′µ . (5.12)

As a consistent check, the (44)-component in eq. (5.12) is reduced to − gX1
4sθGcθG

Z ′′µ when
setting X0 = +1

4 for the fundamental representation. Likewise, we find the explicit form the
gauge fields of −g4WA

Ī
µ(T ĪSU(4))T + gX0X0I4X0µ for the anti-fundamental representation as

follows

− g4WA
Ī
µ(T ĪSU(4))T + gX0X0I4X0µ =

− g4W√
2


0 W−µ W ′ −µ W ′′ −µ
W+
µ

W ′+µ 03×3
W ′′+µ

− g4W√
2


0 0 0 0
0 0 N̄µ N̄ ′µ
0 Nµ 0 N̄ ′′µ
0 N ′µ N ′′µ 0


− g4W

2 diag
(
A3
µ + 1√

3
A8
µ ,−A3

µ + 1√
3
A8
µ ,−

2√
3
A8
µ , 0

)
+ gX1diag

((
− 1

12 + X0

)
I3×3 ,

1
4 + X0

)
X1µ

+ gX1

sθGcθG
diag

([
− 1

12 +
( 1

12 −X0

)
s2
θG

]
I3×3 ,

1
4 −

(1
4 + X0

)
s2
θG

)
Z ′′µ . (5.13)

5.2 The SU(3)W ⊗U(1)X1 gauge bosons

We express the SU(3)W ⊗U(1)X1 covariant derivatives for the SU(3)W fundamental and
anti-fundamental representations as follows

Dµ ≡ ∂µ − ig3WA
Ĩ
µ

λĨSU(3)
2 − igX1X1I3X1µ , (5.14a)

Dµ ≡ ∂µ + ig3WA
Ĩ
µ(
λĨSU(3)

2 )T − igX1X1I3X1µ . (5.14b)
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The λĨSU(3) are Gell-Mann matrices, which are normalized such that Tr
(
λĨSU(3)λ

J̃
SU(3)

)
= 2δĨ J̃ .

The gauge fields from eq. (5.14a) can be expressed in terms of a 3× 3 matrix

g3WA
Ĩ
µ

λĨSU(3)
2 + gX1X1I3X1µ =

g3W√
2

 0 W+
µ W ′+µ

W−µ 0 0
W ′ −µ 0 0

+ g3W√
2

 0 0 0
0 0 Nµ

0 N̄µ 0


+ g3W

2 diag
(
A3
µ + 1√

3
A8
µ + 2

√
3tθSX1X1µ ,

−A3
µ + 1√

3
A8
µ + 2

√
3tθSX1X1µ ,−

2√
3
A8
µ + 2

√
3tθSX1X1µ

)
, (5.15)

with
tθS ≡ tan θS = gX1√

3g3W
. (5.16)

This stage of symmetry breaking is achieved by Higgs VEVs in eq. (4.14b). The gauge
boson masses from the Higgs kinematic terms are

1
4g

2
3W v

2
331

[(
W ′+µ W ′ −µ +NµN̄

µ
)

+ 2
3
(
A8
µ − tθSX1µ

)2]
. (5.17)

It is straightforward to obtain the mass eigenstates in terms of the mixing angle in eq. (5.16)
for this case (

Z ′µ
Bµ

)
=
(
cθS −sθS
sθS cθS

)
·
(
A8
µ

X1µ

)
. (5.18)

The SU(3)W ⊗ U(1)X1 gauge couplings of (α3W , αX1) match with the EW gauge couplings
as follows

α−1
2W (v331) = α−1

3W (v331) , α−1
Y (v331) = 1

3α
−1
3W (v331) + α−1

X1
(v331) ,

1
3α
−1
3W = α−1

Y s2
θS
, α−1

X1
= α−1

Y c2
θS
. (5.19)

From the definitions of two mixing angles in eqs. (5.16) and (5.26), we find a relation of

sin θS = 1√
3

tan θW . (5.20)

The tree-level masses for five gauge bosons at this stage read

m2
W ′ ±µ

= m2
Nµ ,N̄µ

= g2
Y

12s2
θS

v2
331 , (5.21a)

m2
Z′µ

= g2
Y

9s2
θS
c2
θS

v2
331 . (5.21b)
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In terms of mass eigenstates, the gauge bosons from the covariant derivative in
eq. (5.15) become

g3W√
2

 0 W+
µ 0

W−µ 0 0
0 0 0

+ g3W√
2

 0 0 W ′+µ
0 0 Nµ

W ′ −µ N̄µ 0


+ g3Wdiag

(1
2 ,−

1
2 , 0

)
A3
µ + gY diag

((1
6 + X1

)
I2×2 ,−

1
3 + X1

)
Bµ

+ gY
sθScθS

diag
([1

6 −
(1

6 + X1

)
s2
θS

]
I2×2 ,−

1
3 +

(1
3 −X1

)
s2
θS

)
Z ′µ . (5.22)

Likewise, the covariant derivative for the SU(3)W anti-fundamental representation gives

− g3W√
2

 0 W−µ 0
W+
µ 0 0

0 0 0

− g3W√
2

 0 0 W ′ −µ
0 0 N̄µ

W ′+µ Nµ 0


− g3Wdiag

(1
2 ,−

1
2 , 0

)
A3
µ + gY diag

(
(−1

6 + X1)I2×2 ,
1
3 + X1

)
Bµ

+ gY
sθScθS

diag
([
−1

6 +
(1

6 −X1

)
s2
θS

]
I2×2 ,

1
3 −

(1
3 + X1

)
s2
θS

)
Z ′µ . (5.23)

5.3 The SU(2)W ⊗U(1)Y gauge bosons

We express the SU(2)W ⊗U(1)Y covariant derivatives in the EW sector for the fundamental
and anti-fundamental representations as follows

Dµ ≡ ∂µ − ig2WA
I
µT

I
SU(2) − igY YI2Bµ , (5.24a)

Dµ ≡ ∂µ + ig2WA
I
µ(T ISU(2))T − igY YI2Bµ , (5.24b)

with T ISU(2) ≡
1
2σ

I . The gauge fields from eqs. (5.24) can be expressed in terms of a 2× 2
matrix

g2WA
I
µT

I
SU(2) + gY YI2Bµ

= g2W√
2

(
0 W+

µ

W−µ 0

)
+ g2W

2 diag
(
A3
µ + 2tθWYBµ ,−A3

µ + 2tθWYBµ
)
, (5.25a)

− g2WA
I
µ(T ISU(2))T + gY YI2Bµ

= −g2W√
2

(
0 W−µ
W+
µ 0

)
+ g2W

2 diag
(
−A3

µ + 2tθWYBµ , A3
µ + 2tθWYBµ

)
, (5.25b)

with the Weinberg angle defined by

tθW ≡ tan θW = gY
g2W

. (5.26)

6 The symmetry breaking patterns and Yukawa couplings in the SU(7)

In this section, we analyze the Yukawa couplings in the SU(7) symmetry breaking pattern.
All fermions obtain their masses through the Yukawa couplings to the minimal set of Higgs
fields given in eq. (4.1) at each stage of symmetry breaking.
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6.1 The G341 → G331 symmetry breaking

At the first stage, we consider the Higgs fields of (1 ,4 ,−1
4)H ,λ ⊂ 7H ,λ and (1 ,4 ,+1

4)H ⊂
7H for the symmetry breaking, according to table 7 and eqs. (4.6). The Yukawa coupling
term between the 7F

λ and 21F is explicitly given by

(YB)λκ7F
λ21F7H ,κ +H.c.

⊃ (YB)λκ
[
(1 ,4 ,−1

4)λF ⊗ (1 ,6 ,+1
2)F ⊕ (3 ,1 ,+1

3)λF ⊗ (3 ,4 ,− 1
12)F

]
⊗ (1 ,4 ,−1

4)H ,κ +H.c.

⊃ (YB)λκ
[
(1 ,3 ,−1

3)λF ⊗ (1 ,3 ,+1
3)F ⊕ (3 ,1 ,+1

3)λF ⊗ (3 ,1 ,−1
3)′F

]
⊗ (1 ,1 , 0)H ,κ +H.c. , (6.1)

along the G331-singlet direction. The corresponding vectorlike fermion masses are

1√
2
YB
(
e′Le
′
R − n′Ln

′
R + ňLňR + D′LD

′
R

)
w4 ,II +H.c. , (6.2)

with the VEVs in eqs. (4.14) and the DRS limit of Yukawa couplings in eq. (4.2). According to
our convention of flavor indices, we identify that (1 ,2 ,−1

2)λ=II
F ≡ (e′L ,−n′L)T , Ň λ=II

L = ňL,
and (3 ,1 ,+1

3)λ=II
F ≡ D′R

c.
The Yukawa coupling term between two 35F’s is explicitly given by

YC35F35F7H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,4 ,+3

4)F ⊕ (3 ,4 ,− 5
12)F ⊗ (3 ,6 ,+1

6)F
]
⊗ (1 ,4 ,+1

4)H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,1 ,+1)′F ⊕ (3 ,3 ,−1

3)F ⊗ (3 ,3 ,+1
3)F

]
⊗ (1 ,1 , 0)H +H.c. . (6.3)

They give masses to the following vectorlike fermions

YC
[
(3 ,2 ,−1

6)F ⊗ (3 ,2 ,+1
6)′′F ⊕ (3 ,1 ,−2

3)′F ⊗ (3 ,1 ,+2
3)F ⊕ (1 ,1 ,−1)F ⊗ (1 ,1 ,+1)′F

]
⊗ (1 ,1 , 0)H +H.c.

= 1√
2
YC
(
sLsR − cLcR + ULUR + ELER

)
w4 +H.c. . (6.4)

In particular, the left-handed quark doublet of (3 ,2 ,+1
6)′′F and its mirror doublet of

(3 ,2 ,−1
6)F from the 35F become massive. Names of (s , c ,U ,E) become transparent

according to their electrical charges, as well as their heavy masses. One of (1 ,1 , 0)λ′F
remains massless at this stage.

We find that one of the (1 ,3 ,−1
3)λF ⊕ (3 ,1 ,+1

3)λF ⊂ 7F
λ (chosen to be λ = II at

this stage) become massive at this stage.4 After integrating out the massive fermions, the
4Loosely speaking and without confusion, we will say one of the anti-fundamental fermion of 7F

λ becomes
massive and is integrated out from the spectrum.
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residual massless fermions for the effective G331 theory are

(3 ,1 ,+1
3)Λ

F ⊕ (1 ,3 ,−1
3)Λ

F ⊕ (1 ,1 , 0)Λ′
F ⊂ 7F

Λ
, Λ = (I , 3 , İ , 2̇) ,

(1 ,1 , 0)II′
F ⊂ 7F

II
, (6.5a)

(3 ,1 ,−2
3)F ⊕ (3 ,3 , 0)F ⊕ (1 ,3 ,+2

3)F ⊂ 21F , (6.5b)

(1 ,3 ,+2
3)′′F ⊕ (3 ,1 ,−2

3)′′F ⊕ (3 ,3 , 0)′F ⊂ 35F . (6.5c)

With the massless fermions in eqs. (6.5), one can explicitly check the anomaly-free conditions
of [SU(3)c]2 [U(1)X1 ] = 0, [SU(3)W ]2 [U(1)X1 ] = 0, and [U(1)X1 ]3 = 0 in the effective G331
theory. Thus, the remaining massless fermion numbers after this stage are dimF = 59 from
eqs. (6.5). At least one of the (1 ,4 ,−1

4)H ,κ ⊂ 7H ,κ (chosen to be κ = II) in eq. (6.1)
should develop VEV for the G341 symmetry breaking, and we dub this the “fermion-Higgs
matching pattern”.

6.2 The G331 → GSM symmetry breaking

The second-stage symmetry breaking is due to Higgs fields of (1 ,3 ,−1
3)H ,λ ⊂ 7H ,λ,

(1 ,3 ,−1
3)H ,λ̇ ⊂ 21H ,λ̇, (1 ,3 ,+1

3)H ⊂ 7H, and (1 ,3 ,+1
3)′H ⊂ 21H, according to table 7

and eqs. (4.6).
The Yukawa coupling term between the 7F

λ and 21F is explicitly given by

(YB)λκ7F
λ21F7H ,κ +H.c.

⊃ (YB)λκ
[
(3 ,1 ,+1

3)λF ⊗ (3 ,3 , 0)F ⊕ (1 ,3 ,−1
3)λF ⊗ (1 ,3 ,+2

3)F
]
⊗ (1 ,3 ,−1

3)H ,κ +H.c.

⊃ (YB)λκ
[
(3 ,1 ,+1

3)λF ⊗ (3 ,1 ,−1
3)F ⊕ (1 ,2 ,−1

2)λF ⊗ (1 ,2 ,+1
2)F

]
⊗ (1 ,1 , 0)H ,κ +H.c. , (6.6)

along the GSM-singlet direction. They give masses to the following vectorlike fermions

YB
[
(3 ,1 ,+1

3)I
F ⊗ (3 ,1 ,−1

3)F ⊕ (1 ,2 ,−1
2)I

F ⊗ (1 ,2 ,+1
2)F

]
⊗ (1 ,1 , 0)H ,I +H.c.

= 1√
2
YB
(
DLDR − eLeR + nLnR

)
V3 ,I +H.c. , (6.7)

with the Higgs VEVs in eqs. (4.14) and the DRS limit of Yukawa couplings in eq. (4.2). Cor-
respondingly, we can identify that (3 ,1 ,+1

3)λ=I
F ≡ DR

c, and (1 ,2 ,−1
2)λ=I

F ≡ (eL ,−nL)T .
The Yukawa coupling term between the 7F

λ and 35F is explicitly given by

(YS)λ̇
κ̇7F

λ̇35F21H ,κ̇ +H.c.

⊃ (YS)λ̇
κ̇
[
(3 ,1 ,+1

3)λ̇F ⊗ (3 ,3 , 0)′F ⊕ (1 ,3 ,−1
3)λ̇F ⊗ (1 ,3 ,+2

3)′′F
]
⊗ (1 ,3 ,−1

3)H ,κ̇ +H.c.

⊃ (YS)λ̇
κ̇
[
(3 ,1 ,+1

3)λ̇F ⊗ (3 ,1 ,−1
3)′′F ⊕ (1 ,2 ,−1

2)λ̇F ⊗ (1 ,2 ,+1
2)′′F

]
⊗ (1 ,1 , 0)H ,κ̇ +H.c. , (6.8)
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along the GSM-singlet direction. They give masses to the following vectorlike fermions

YS
[
(3 ,1 ,+1

3)İ
F ⊗ (3 ,1 ,−1

3)′′F ⊕ (1 ,2 ,−1
2)İ

F ⊗ (1 ,2 ,+1
2)′′F

]
⊗ (1 ,1 , 0)H ,İ +H.c.

= 1√
2
YS
(
SLSR − e′′Le

′′
R + n′′Ln

′′
R

)
V3 ,İ +H.c. . (6.9)

Correspondingly, we can identify that (3 ,1 ,+1
3)λ̇=İ

F ≡ SR
c, and (1 ,2 ,−1

2)λ̇=İ
F ≡ (e′′L ,−n′′L)T .

The Yukawa coupling term between two 35F’s is explicitly given by

YC35F35F7H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,4 ,+3

4)F ⊕ (3 ,4 ,− 5
12)F ⊗ (3 ,6 ,+1

6)F
]
⊗ (1 ,4 ,+1

4)H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,3 ,+2

3)′′F ⊕ (3 ,3 ,−1
3)F ⊗ (3 ,3 , 0)′F

⊕ (3 ,1 ,−2
3)′′F ⊗ (3 ,3 ,+1

3)F
]
⊗ (1 ,3 ,+1

3)H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,1 ,+1)′′F ⊕ (3 ,2 ,−1

6)F ⊗ (3 ,2 ,+1
6)′F

⊕ (3 ,1 ,−2
3)′′F ⊗ (3 ,1 ,+2

3)F
]
⊗ (1 ,1 , 0)H +H.c. , (6.10)

along the GSM-singlet direction. They give the following fermion mass mixing terms

YC
[
(1 ,1 ,−1)F ⊗ (1 ,1 ,+1)′′F ⊕ (3 ,2 ,−1

6)F ⊗ (3 ,2 ,+1
6)′F ⊕ (3 ,1 ,−2

3)′′F ⊗ (3 ,1 ,+2
3)F

]
⊗ (1 ,1 , 0)H +H.c.

= 1√
2
YC
(
ELµR + sLsR − cLcR + ULcR

)
V3 +H.c. . (6.11)

Note that the 7H has already developed a VEV for the G341 symmetry breaking direction,
and the VEV of V3 is generated by Higgs mixing operator according to figure 1.

The Yukawa coupling term that mixes the 21F and the 35F is explicitly given by

YT C21F35F21H +H.c.

⊃ YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,3 ,+1
3)F ⊕ (3 ,3 , 0)F ⊗ (3 ,3 ,−1

3)F

⊕ (1 ,3 ,+2
3)F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,3 ,+1

3)′H +H.c.

⊃ YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,1 ,+2
3)F ⊕ (3 ,2 ,+1

6)F ⊗ (3 ,2 ,−1
6)F

⊕ (1 ,1 ,+1)F ⊗ (1 ,1 ,−1)F
]
⊗ (1 ,1 , 0)′H +H.c. , (6.12)

along the GSM-singlet direction. They give the following fermion mass mixing terms

YT C
[
(3 ,1 ,−2

3)F⊗(3 ,1 ,+2
3)F⊕(3 ,2 ,+1

6)F⊗(3 ,2 ,−1
6)F⊕(1 ,1 ,+1)F⊗(1 ,1 ,−1)F

]
⊗(1 ,1 ,0)′H+H.c.

= 1√
2
YT C

(
ULtR+tLcR−bLsR+ELτR

)
V ′3+H.c. . (6.13)
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By analyzing the anomaly-free conditions for the effective GSM theory, we find the
residual massless fermions of

(3 ,1 ,+1
3)Λ

F ⊕ (1 ,2 ,−1
2)Λ

F ⊕ (1 ,1 , 0)Λ
F ⊕ (1 ,1 , 0)Λ′

F ⊂ 7F
Λ
, Λ = (2̇ , 3) , (6.14a)

(3 ,1 ,−2
3)F ⊕ (3 ,2 ,+1

6)F ⊕ (1 ,1 ,+1)F ⊂ 21F , (6.14b)

(1 ,1 ,+1)′′F ⊕ (3 ,1 ,−2
3)′′F ⊕ (3 ,2 ,+1

6)′F ⊂ 35F , (6.14c)

(1 ,1 , 0)II′
F ⊕ (1 ,1 , 0)I

F ⊕ (1 ,1 , 0)I′
F ⊕ (1 ,1 , 0)İ

F ⊕ (1 ,1 , 0)İ′
F , (6.14d)

after this stage. The massive anti-fundamental fermions are chosen to be 7F
İ ,I as in

eqs. (6.7) and (6.9). Explicitly, the massless fermions in eqs. (6.14a), (6.14b), and (6.14c)
form two-generational SM fermions.

6.3 The EWSB

Through the decomposition of all Higgs fields according to the symmetry breaking pattern
in table 7, we found that the 35H only contains the EWSB direction. Similar situation also
happened in the SU(6) toy model, where the Higgs field of 15H that gives the top quark
Yukawa coupling through the 15F15F15H + H.c. contributes mostly to the EWSB [26].
Based on these facts, we conjecture that the EWSB is mostly achieved by Higgs field of
(1 ,2 ,+1

2)′H ⊂ 35H, and the corresponding Yukawa coupling term in eq. (4.1) leads to the
top quark mass as follows

YT 21F21F35H +H.c.

⊃ YT (3 ,1 ,−2
3)F ⊗ (3 ,2 ,+1

6)F ⊗ (1 ,2 ,+1
2)′H +H.c.

= 1√
2
YT tLtRvt +H.c. . (6.15)

Below, we list all other fermion mass terms from the additional EWSB VEVs generated
from the Higgs mixing operators, as was displayed in figure 1.

The Yukawa coupling term between the 7F
λ and the 21F can lead to

(YB)λκ7F
λ21F7H ,κ+H.c.

⊃ (YB)λκ
[
(3 ,1 ,+1

3)λF⊗(3 ,4 ,− 1
12)F⊕(1 ,4 ,−1

4)λF⊗(1 ,6 ,+1
2)F

]
⊗(1 ,4 ,−1

4)H ,κ+H.c.

⊃ (YB)λκ
[
(3 ,1 ,+1

3)λF⊗(3 ,3 ,0)F⊕(1 ,3 ,−1
3)λF⊗(1 ,3 ,+2

3)F

⊕(1 ,1 ,0)λ′F ⊗(1 ,3 ,+1
3)F

]
⊗(1 ,3 ,−1

3)H ,κ+H.c.

⊃ (YB)λκ
[
(3 ,1 ,+1

3)λF⊗(3 ,2 ,+1
6)F⊕(1 ,2 ,−1

2)λF⊗(1 ,1 ,+1)F

⊕(1 ,1 ,0)λF⊗(1 ,2 ,+1
2)F⊕(1 ,1 ,0)λ′F ⊗(1 ,2 ,+1

2)′F
]
⊗(1 ,2 ,−1

2)H ,κ+H.c. , (6.16)
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along the EWSB direction. They give fermion masses of

YB
[
(3 ,1 ,+1

3)3
F ⊗ (3 ,2 ,+1

6)F ⊕ (1 ,2 ,−1
2)3

F ⊗ (1 ,1 ,+1)F

⊕ (1 ,1 , 0)3
F ⊗ (1 ,2 ,+1

2)F ⊕ (1 ,1 , 0)3′
F ⊗ (1 ,2 ,+1

2)′F
]
⊗ (1 ,2 ,−1

2)H ,3 +H.c.

= 1√
2
YB
(
bLbR + τLτR + Ň 3

LnR + Ň 3′
L n′R

)
u2 ,3 +H.c. , (6.17)

with λ = κ = 3 for the DRS limit of Yukawa couplings. We can identify that (3 ,1 ,+1
3)λ=3

F ≡
bR

c, and (1 ,2 ,−1
2)λ=3

F ≡ (τL ,−ντ L)T . Obviously, the eq. (6.17) gives common tree-level
masses to the bottom quark and the tau lepton, which is the same as the prediction in the
supersymmetric SU(5) Georgi-Glashow model and the third-generational SU(6) model [26].

The Yukawa coupling terms between the 7F
λ̇ and the 35F can lead to

(YS)λ̇
κ̇7F

λ̇35F21H ,κ̇ +H.c.

⊃ (YS)λ̇
κ̇
[
(3 ,1 ,+1

3)λ̇F ⊗ (3 ,6 ,+1
6)F ⊕ (1 ,4 ,−1

4)λ̇F ⊗ (1 ,4 ,+3
4)F

]
⊗ (1 ,6 ,−1

2)H ,κ̇

⊃ (YS)λ̇
κ̇
[
(3 ,1 ,+1

3)λ̇F ⊗ (3 ,3 , 0)′F ⊕ (1 ,3 ,−1
3)λ̇F ⊗ (1 ,3 ,+2

3)′′F
]
⊗ (1 ,3 ,−1

3)H ,κ̇

+ (YS)λ̇
κ̇
[
(3 ,1 ,+1

3)λ̇F ⊗ (3 ,3 ,+1
3)F ⊕ (1 ,3 ,−1

3)λ̇F ⊗ (1 ,1 ,+1)′F

⊕ (1 ,1 , 0)λ̇′F ⊗ (1 ,3 ,+2
3)′′F

]
⊗ (1 ,3 ,−2

3)H ,κ̇ +H.c.

⊃ (YS)λ̇
κ̇
[
(3 ,1 ,+1

3)λ̇F ⊗ (3 ,2 ,+1
6)′F ⊕ (1 ,2 ,−1

2)λ̇F ⊗ (1 ,1 ,+1)′′F

⊕ (1 ,1 , 0)λ̇F ⊗ (1 ,2 ,+1
2)′′F

]
⊗ (1 ,2 ,−1

2)H ,κ̇

+ (YS)λ̇
κ̇
[
(3 ,1 ,+1

3)λ̇F ⊗ (3 ,2 ,+1
6)′′F ⊕ (1 ,2 ,−1

2)λ̇F ⊗ (1 ,1 ,+1)′F

⊕ (1 ,1 , 0)λ̇′F ⊗ (1 ,2 ,+1
2)′′F

]
⊗ (1 ,2 ,−1

2)H ,κ̇ +H.c. , (6.18)

along the EWSB direction. They give fermion masses of

YS
[
(3 ,1 ,+1

3)2̇
F ⊗ (3 ,2 ,+1

6)′F ⊕ (1 ,2 ,−1
2)2̇

F ⊗ (1 ,1 ,+1)′′F ⊕ (1 ,1 , 0)2̇
F ⊗ (1 ,2 ,+1

2)′′F
]

⊗ (1 ,2 ,−1
2)H ,2̇ +H.c.

= 1√
2
YS
(
sLsR + µLµR + Ň 2̇

Ln
′′
R

)
u2 ,2̇ +H.c. , (6.19a)

YS
[
(3 ,1 ,+1

3)2̇
F ⊗ (3 ,2 ,+1

6)′′F ⊕ (1 ,2 ,−1
2)2̇

F ⊗ (1 ,1 ,+1)′F ⊕ (1 ,1 , 0)2̇′
F ⊗ (1 ,2 ,+1

2)′′F
]

⊗ (1 ,2 ,−1
2)H ,2̇ +H.c.

= 1√
2
YS
(
sLsR + µLER + Ň 2̇′

L n′′R

)
u2 ,2̇ +H.c. . (6.19b)

Eq. (6.19a) gives common tree-level masses to the sea quark and the muon. The other
EWSB VEV from eq. (6.19b) gives mass mixing terms between the second-generational
fermions and heavy partner fermions.
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The Yukawa coupling terms between two 35F’s can lead to

YC35F35F7H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,4 ,+3

4)F ⊕ (3 ,4 ,− 5
12)F ⊗ (3 ,6 ,+1

6)F
]
⊗ (1 ,4 ,+1

4)H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,3 ,+2

3)′′F ⊕ (3 ,3 ,−1
3)F ⊗ (3 ,3 , 0)′F

⊕ (3 ,1 ,−2
3)′′F ⊗ (3 ,3 ,+1

3)F
]
⊗ (1 ,3 ,+1

3)H +H.c.

⊃ YC
[
(1 ,1 ,−1)F ⊗ (1 ,2 ,+1

2)′′F ⊕ (3 ,2 ,−1
6)F ⊗ (3 ,1 ,−1

3)′′F

⊕ (3 ,1 ,−2
3)′F ⊗ (3 ,2 ,+1

6)′F ⊕ (3 ,1 ,−2
3)′′F ⊗ (3 ,2 ,+1

6)′′F
]
⊗ (1 ,2 ,+1

2)H +H.c. ,

(6.20)

along the EWSB direction. They give fermion mass mixing terms of

YC
[
(1 ,1 ,−1)F ⊗ (1 ,2 ,+1

2)′′F ⊕ (3 ,2 ,−1
6)F ⊗ (3 ,1 ,−1

3)′′F

⊕ (3 ,1 ,−2
3)′F ⊗ (3 ,2 ,+1

6)′F ⊕ (3 ,1 ,−2
3)′′F ⊗ (3 ,2 ,+1

6)′′F
]
⊗ (1 ,2 ,+1

2)H +H.c.

= 1√
2
YC
(
− ELe

′′
R + SLsR + cLUR − cLcR

)
u2 +H.c. . (6.21)

The Yukawa coupling term that mixes the 21F and the 35F in eq. (6.12) can
further become

YT C21F35F21H +H.c.

⊃ YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,6 ,+1
6)F ⊕ (3 ,4 ,− 1

12)F ⊗ (3 ,4 ,− 5
12)F

⊕ (1 ,6 ,+1
2)F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,6 ,+1

2)H

⊃ YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,3 ,+1
3)F ⊕ (3 ,3 , 0)F ⊗ (3 ,3 ,−1

3)F

⊕ (1 ,3 ,+2
3)F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,3 ,+1

3)′H

+ YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,3 , 0)′F ⊕ (3 ,3 , 0)F ⊗ (3 ,1 ,−2
3)′′F

⊕ (3 ,1 ,−1
3)′F ⊗ (3 ,3 ,−1

3)F ⊕ (1 ,3 ,+1
3)F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,3 ,+2

3)H +H.c.

⊃ YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,2 ,+1
6)′′F ⊕ (3 ,2 ,+1

6)F ⊗ (3 ,1 ,−2
3)′F

⊕ (3 ,1 ,−1
3)′F ⊗ (3 ,2 ,−1

6)F ⊕ (1 ,2 ,+1
2)F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,2 ,+1

2)′H

+ YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,2 ,+1
6)′F ⊕ (3 ,2 ,+1

6)F ⊗ (3 ,1 ,−2
3)′′F

⊕ (3 ,1 ,−1
3)′F ⊗ (3 ,2 ,−1

6)F ⊕ (1 ,2 ,+1
2)′F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,2 ,+1

2)H +H.c. ,

(6.22)
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along the EWSB direction. They give fermion mass mixing terms of

YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,2 ,+1
6)′′F ⊕ (3 ,2 ,+1

6)F ⊗ (3 ,1 ,−2
3)′F

⊕ (3 ,1 ,−1
3)F ⊗ (3 ,2 ,−1

6)F ⊕ (1 ,2 ,+1
2)F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,2 ,+1

2)′H +H.c.

= 1√
2
YT C

(
− cLtR + tLUR + DLsR − ELeR

)
u′2 +H.c. , (6.23a)

YT C
[
(3 ,1 ,−2

3)F ⊗ (3 ,2 ,+1
6)′F ⊕ (3 ,2 ,+1

6)F ⊗ (3 ,1 ,−2
3)′′F

⊕ (3 ,1 ,−1
3)′F ⊗ (3 ,2 ,−1

6)F ⊕ (1 ,2 ,+1
2)′F ⊗ (1 ,1 ,−1)F

]
⊗ (1 ,2 ,+1

2)H +H.c.

= 1√
2
YT C

(
cLtR + tLcR + D′LsR + ELe

′
R

)
u2 +H.c. . (6.23b)

7 The SM fermion masses, mixings, and flavor non-universality

In this section, we summarize the fermion mass spectrum according to the symmetry
breaking patterns presented in section 6. With the fermion identifications through the
previous analyses, we also obtain their gauge couplings according to the gauge sector
described in section 5.

7.1 The quark mass spectra and their mixings

We start from the up-type quarks with Qe = +2
3 in eq. (B.1). By using the basis of

(c , c ,U , t), we find their mass matrix of

MU = 1√
2


0 −YCV3 YCu2 YT Cu2

−YCu2 −YCw4 0 −YT Cu′2
YCV3 0 YCw4 YT CV

′
3

YT Cu2 YT CV
′
3 YT Cu

′
2 YT vt

 , (7.1)

from eqs. (6.4), (6.11), (6.13), (6.15), (6.21), and (6.23). Several features of eq. (7.1) should
be observed. First, the charm and top quarks form the 2× 2 mass matrix of

(
Mu

)
2×2

= 1√
2

(
0 YT Cu2

YT Cu2 YT vt

)
, (7.2)

which resembles the conjectured mass matrix by Georgi and Jarlskog [31]. Second, one
finds that

det
(
MUM†U

)
= Y 4

C Y
4
T C

16
[
(u2V

′
3 − u2w4)2 − (u′2V3)2

]2
= m2

cm
2
tm

2
cm

2
U . (7.3)

In the limit of the vanishing Yukawa mixing of YT C → 0, the lightest charm quark must be
massless. The masses of two heaviest vectorlike quarks and the top quark are approximately

mc ≈ mU ≈
YC√

2
w4 , mt ≈

YT√
2
vt . (7.4)

– 29 –



J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

Thus, the charm quark mass can be approximately expressed as

mc ≈
Y 2
T C

2mtw2
4

[
(u2V

′
3 − u2w4)2 − (u′2V3)2

]
≈ Y 2

T C√
2YT

u2
2
vt
. (7.5)

Obviously, the charm quark becomes massless when all generated EWSB VEVs of (u2 , u2 , u
′
2)

and/or the mixing Yukawa coupling of YT C vanish.
In general, any fermion mass matrix can be diagonalized in terms of bi-unitary trans-

formation of

FLMFF†R =Mdiag
F , MFM†F = F†L(Mdiag

F )2FL , M†FMF = F†R(Mdiag
F )2FR .

(7.6)
We focus on the MFM†F in order to obtain the CKM mixing in the quark sector. The
diagonalization of the up-type quark mass matrix in eq. (7.1) can be performed in terms of
perturbation expansion as follows

MUM†U ≈
(
MUM†U

)(0)
+
(
MUM†U

)(1)
, (7.7a)

(
MUM†U

)(0)
= 1

2


Y 2
C V

2
3 Y 2

C V3w4 0 0
Y 2
C V3w4 Y 2

C w
2
4 0 −YCYT CV ′3w4

0 0 Y 2
C w

2
4+Y 2

T C(V ′3)2 YT YT CV
′
3vt

0 −YCYT CV ′3w4 YT YT CV
′
3vt Y 2

T C(V ′3)2+Y 2
T v

2
t

 , (7.7b)

(
MUM†U

)(1)
=

1
2



0 0 Y 2
C u2w4+Y 2

T Cu2V
′
3 YT CYT u2vt

0 0 −Y 2
C u2V3−Y 2

T Cu
′
2V
′
3 −YT CYT u′2vt

Y 2
C u2w4+Y 2

T Cu2V
′
3 −Y 2

C u2V3−Y 2
T Cu

′
2V
′
3 0 YCYT C(u2V3

+u′2w4)
YT CYT u2vt −YT CYT u′2vt YCYT C(u2V3 0

+u′2w4)


.

(7.7c)

The
(
MUM†U

)(0)
only contains the mass terms with the SU(4)W ⊗U(1)X0-breaking and

SU(3)W ⊗U(1)X1-breaking VEVs, and can be diagonalized by the orthogonal transformation
as follows

U (0)
L

(
MUM†U

)(0)
U (0)T
L ≈ diag(0 ,m2

c ,m
2
U ,m

2
t ) , (7.8a)


ĉ

ĉ

Û

t̂

 = U (0)
L ·


c

c

U

t

 , U (0)
L ≈


1 − V3

w4
0 0

V3√
2w4

1√
2 − 1√

2 −
YT CV

′
3√

2YCw4
V3√
2w4

1√
2

1√
2 −

YT CV
′

3√
2YCw4

0 YT CV
′

3
YCw4

0 1

 , (7.8b)
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where we approximated the matrix to the order of w−1
4 . By further including the terms

from the
(
MUM†U

)(1)
, which depend linearly on the EWSB VEVs of (u2 , u

′
2 , u2), the mass

eigenstates of the charm and the top quarks (denoted as ˆ̂c and ˆ̂t) are related to the gauge
eigenstates as

( ˆ̂c
ˆ̂t

)
= XU ·

 cc
t

 ,

XU ≈

 1 − u2√
2w4
− V3

w4
− Y 2

T CV
′

3u2
YT YCvtw4

−YT Cu2
YT vt

YT Cu2
YT vt

YT CV
′

3
YCw4

− YT CV3u2
YT vtw4

− YT Cu
′
2√

2YCw4
1

 . (7.9)

The mass matrices for the down-type quarks with Qe = −1
3 and charged leptons are cor-

related. Here, we express their mass matrices in terms of the basis of ({s , s ,S} , {b ,D ,D′})
and ({µ ,E , e′′} , {τ , e , e′}) as follows

MD = 1√
2



YSu2 ,2̇ YCV3 0
YSu2 ,2̇ YCw4 0 03×3

0 YCu2 YSV3 ,İ
0 −YT CV ′3 0 YBu2 ,3 0 0
0 −YT Cu′2 0 0 YBV3 ,I 0
0 −YT Cu2 0 0 0 YBw4 ,II


, (7.10a)

ML = 1√
2



YSu2 ,2̇ YSu2 ,2̇ 0 0 0 0
YCV3 YCw4 −YCu2 YT CV

′
3 YT Cu2 YT Cu

′
2

0 0 YSV3 ,İ 0 0 0
YBu2 ,3 0 0

03×3 0 YBw4 ,II 0
0 0 −YBV3 ,I


, (7.10b)

according to eqs. (6.2), (6.4), (6.7), (6.9), (6.11), (6.13), (6.17), (6.19), (6.21), and (6.23).
Distinct from the mass matrix for the up-type quarks in eq. (7.1), they are both sparse
matrices. Both the second and the third generational (s , µ) and (b , τ ) obtain their tree-level
masses. Given the patterns in eqs. (7.10a) and (7.10b), one can naturally expect degenerate
masses of ms = mµ and mb = mτ at the tree level. Below, we focus on the down-type quark
sector in order to address the electroweak mixing. We find that

det
(
MDM†D

)
= Y 2

C Y
4
S Y

6
B

64 w2
4 ,IIV

2
3 ,IV

2
3 ,İu

2
2 ,3(u2 ,2̇w4 − u2 ,2̇V3)2 = m2

sm
2
bm

2
sm

2
Sm

2
Dm

2
D′ .

(7.11)
One can expand the down-type quark mass matrix in terms of the VEV hierarchies

as follows

MDM†D ≈
(
MDM†D

)(0)
+
(
MDM†D

)(1)
, (7.12a)
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(
MDM†D

)(0)
= 1

2



Y 2
C V

2
3 Y 2

C V3w4 0 −YCYT CV3V
′
3

Y 2
C V3w4 Y 2

C w
2
4 0 −YCYT CV ′3w4

0 0 Y 2
S V

2
3 ,İ 0

−YCYT CV3V
′
3 −YCYT CV ′3w4 0 Y 2

T C(V ′3)2

Y 2
BV

2
3 ,I

Y 2
Bw

2
4 ,II


.

(7.12b)

The leading mass terms from the
(
MDM†D

)(0)
can be diagonalized by the orthogonal

transformation as follows

D(0)
L

(
MDM†D

)(0)
D(0)T
L ≈ diag(0 ,m2

s ,m
2
S , 0 ,m2

D ,m
2
D′) , (7.13a)



ŝ

ŝ

Ŝ

b̂

D̂

D̂′


= D(0)

L ·



s

s

S

b

D

D′


, D(0)

L ≈



cα1 −sα1 0 0
sα1cα2 cα1cα2 0 −sα2

0 0 1 0
sα1sα2 cα1sα2 0 cα2

1
1


,

tα1 = V3
w4

, tα2 = YT CV
′
3

YC

√
w2

4 + V 2
3

. (7.13b)

By further including the
(
MDM†D

)(1)
mass terms, we find the strange and bottom quark

masses of
ms ≈

1√
2
YSu2 ,2̇ , mb ≈

1√
2
YBu2 ,3 (7.14)

at the tree level. The corresponding EWSB VEVs for their masses are generated from
operators in eqs. (C.3) and (C.5a), respectively. In both operators of Od=4

A and Od=4
B1 , the

minimal set of Higgs VEVs in eqs. (4.7) are expected to be of the same order. With the
assumption of the natural Yukawa couplings of YS ∼ YB ∼ O(1), we have unrealistic mass
relation of ms ≈ mb from eq. (7.14). Their mass eigenstates (denoted as ˆ̂s and ˆ̂

b) are related
to the gauge eigenstates as

( ˆ̂s
ˆ̂
b

)
= XD ·

 ss
b

 , XD ≈
(

1 − V3
w4

0
0 YT CV

′
3

YCw4
1

)
. (7.15)

Together with the left-handed quark mixing matrix in eq. (7.15), we find the following
approximation to the 2× 2 CKM matrix

V 2×2
CKM = XUX

†
D ≈

 1 −YT Cu2
YT vt

YT Cu2
YT vt

1

 . (7.16)
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Indeed, the current 2× 2 CKM matrix resembles the observed feature of the realistic 3× 3
CKM matrix, namely, it is almost diagonal. Notice that we have neglected all higher order
correction terms suppressed by w−1

4 in eq. (7.16). Given the mass matrices for the lepton
sector in eq. (7.10b), it is straightforward to infer the tree-level masses of

mµ ≈
1√
2
YSu2 ,2̇ , mτ ≈

1√
2
YBu2 ,3 . (7.17)

This means the b − τ mass unification is extended to the s − µ mass unification at the
tree level. In the context of the Georgi-Glashow SU(5) model, the possible b − τ mass
splitting was attributed to the renormalization group effects [96]. However, results therein
cannot be naively applied to the (b , τ) and (s , µ) mass ratios in the non-minimal GUTs.
To fully evaluate their mass splitting, we expect two prerequisites of: (i) the evaluation
of the intermediate symmetry breaking scales from an appropriate GUT group, and (ii)
the identification of the SM fermion representations with the extended color and weak
symmetries above the EW scale. Both are distinctive features of the non-minimal GUTs,
and we defer to analyze the details in the future work.

7.2 The neutrino masses

We also summarize the neutrino masses in the SU(7) toy model. According to our conventions
in eq. (B.1), the neutral fermions include two EW active neutrinos of (νµ , ντ ), three vectorlike
massive neutrinos of (n , n′ , n′′) from the SU(2)W -doublets, nine left-handed sterile neutrinos,
and one vectorlike massive sterile neutrinos of ň. From eqs. (6.2), (6.7), and (6.9), we find
the vectorlike neutrino masses of mn′ = mň ∼ O(v341) and mn ∼ mn′′ ∼ O(v331). All other
EW active neutrinos and sterile neutrinos are massless from the tree-level Yukawa couplings.
Neither can we find any tree-level Yukawa coupling that mixes the active neutrinos and the
massive neutrinos in the current setup. Meanwhile, it is known that the loop-level effects
can be ubiquitous in the neutrino mass generation [97] and it is most appropriate to take
the analysis in the three-generational non-minimal GUTs.

7.3 The fermion gauge couplings with the extended weak symmetries and the
flavor non-universality

We proceed to derive the fermion gauge couplings. Since the color symmetry of SU(3)c is
always exact in the current context, we focus on the extended weak symmetries. Some general
features of the fermion gauge couplings in the SU(7) model can be outlined. First, different
SM fermion generations transform differently, as the current SU(7) model suggests through
its fermion decompositions in tables 2, 3, and 4. Consequently, we show manifestly that the
flavor non-universality can be expected through the flavor-conserving neutral currents from
the SU(4)W ⊗U(1)X0 symmetry breaking. Second, non-minimal GUTs such as SU(7) model
and beyond contain vectorlike fermions in the spectrum. This can be manifestly confirmed
through the flavor-conserving neutral currents from the SU(3)W⊗U(1)X1 symmetry breaking
in the current context. Third, the tree-level currents include both flavor-changing charged
currents (FCCC) mediated by (W± ,W ′ ± ,W ′′ ±), as well as flavor-changing neutral currents
(FCNC) mediated by (Nµ , N̄µ , N

′
µ , N̄

′
µ , N

′′
µ , N̄

′′
µ). The tree-level FCNCs in the current
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c t c U - -
gV ′′f

1
24 −

1
3s

2
θG

1
24 −

1
3s

2
θG

1
24 −

1
3s

2
θG

1
24 −

1
3s

2
θG

- -
gA ′′f

5
24 −

1
3s

2
θG

− 1
24 −

1
3s

2
θG

−1
8 −1

8 - -
s b s S D D′

gV ′′f − 1
12 + 1

6s
2
θG

1
24 + 1

6s
2
θG

1
24 −

1
3s

2
θG

− 1
12 + 1

6s
2
θG

1
24 + 1

6s
2
θG

−1
8 + 1

3s
2
θG

gA ′′f
1
12 + 1

6s
2
θG

− 1
24 + 1

6s
2
θG

−1
8

1
12 + 1

6s
2
θG

− 1
24 + 1

6s
2
θG

1
8

µ τ e e′ e′′ E

gV ′′f
1
2s

2
θG

−1
8 + 1

2s
2
θG

−1
8 + 1

2s
2
θG

1
24 + 1

3s
2
θG

1
2s

2
θG

−1
8 + s2

θG

gA ′′f
1
12 + 1

6s
2
θG

− 1
24 + 1

6s
2
θG

− 1
24 + 1

6s
2
θG

1
8

1
12 + 1

6s
2
θG

−1
8

Table 10. The couplings of the flavor-conserving neutral currents mediated by Z ′′µ in the V − A
basis, with θG being the SU(4)W ⊗U(1)X0 mixing angle defined in eq. (5.4).

context never involve two different flavors of SM fermions. Instead, they only involve one
SM flavor with another heavy vectorlike fermion with the same electric charge, as will
be explicitly given in eqs. (7.18b) and (7.20b). Below, we organize the relevant couplings
according to the symmetry breaking stages described in the current context.

7.3.1 The SU(4)W ⊗U(1)X0 gauge couplings

After the first-stage symmetry breaking, the FCCC and the FCNC are expressed as

LCC ,AF
SU(4)W = g4W√

2

(
− EΛ

Lγ
µŇΛ′

L + eRγ
µňR + τRγ

µn′R + ERγ
µn′′R

+ D′Lγ
µtL − sRγ

µcR − sLγµUL + SLγ
µcL

)
W ′′ −µ +H.c. , (7.18a)

LNC ,AF
SU(4)W = g4W√

2

(
ŇΛ′
L γµNΛ

L − e′Rγ
µτR + ňRγ

µnR − e′′Rγ
µER

+ bLγ
µD′L − cRγµcR + ULγ

µcL − sLγ
µSL

)
N ′µ

+ g4W√
2

(
− ŇΛ′

L γµŇΛ
L − n′Rγ

µnR − e′Rγ
µeR + µRγ

µER

+ DLγ
µD′L − cRγµUR + sLγ

µsL − cLγ
µcL

)
N ′′µ +H.c. . (7.18b)

The flavor-conserving neutral currents are expressed as follows in the V −A basis

LNC ,F
SU(4)W = gX1

sθGcθG
(gV ′′f fγµf + gA ′′f fγµγ5f)Z ′′µ , (7.19)

and we tabulate the vectorial and axial couplings of (gV ′′f , gA ′′f ) in table 10. Manifestly, the
gauge couplings of two-generational SM fermions with the flavor-conserving neutral boson
of Z ′′µ are distinctive, which is the source of flavor non-universality. This is consistent from
what we found from the fermion irreps in tables 2, 3, and 4. The flavor non-universality is
only possible with the extended weak symmetries of SU(4)W ⊗U(1)X0 , or in the SU(7) and
beyond non-minimal GUTs. As we have discussed previously in section 2, the non-trivial
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c/t c U - -
gV ′f

1
12 −

5
12s

2
θS

−1
6 −

1
6s

2
θS

1
3(1− 2s2

θS
) - -

gA ′f − 1
12 −

1
4s

2
θS

0 0 - -
s/b s S D D′

gV ′f
1
12 + 1

12s
2
θS

−1
6 −

1
6s

2
θS

−1
6 + 1

3s
2
θS

−1
6 + 1

3s
2
θS

1
3s

2
θS

gA ′f − 1
12 + 1

4s
2
θS

0 1
6

1
6 0

µ/τ e e′ e′′ E

gV ′f −1
4 + 3

4s
2
θS

1
2s

2
θS

−1
6 + 1

2s
2
θS

1
2s

2
θS

s2
θS

gA ′f − 1
12 + 1

4s
2
θS

1
12 0 1

12 0

Table 11. The couplings of the flavor-conserving neutral currents mediated by Z ′µ in the V − A
basis, with θS being the SU(3)W ⊗U(1)X1 mixing angle defined in eq. (5.16).

embedding of multiple SM generations requires at least rank-3 (or above) anti-symmetric
irreps that are not self-conjugate. One should also expect the flavor non-universality in a
realistic non-minimal GUT from its extended weak and strong sectors.

7.3.2 The SU(3)W ⊗U(1)X1 gauge couplings

After the second-stage symmetry breaking, the FCCC and the FCNC are expressed as

LCC ,AF
SU(3)W = g3W√

2

(
− EΛ

Lγ
µŇΛ

L + τRγ
µnR + µRγ

µn′′R − e′Rγ
µňR

+ DLγ
µtL + SLγ

µcL − sγµγ5U
)
W ′ −µ +H.c. , (7.20a)

LNC ,AF
SU(3)W = g3W√

2

(
ŇΛ
L γ

µNΛ
L − eRγ

µτR − e′′Rγ
µµR − ňRγ

µn′R

+ bLγ
µDL + sLγ

µSL − Uγµc
)
Nµ +H.c. . (7.20b)

The flavor-conserving neutral currents are expressed as follows in the V −A basis

LNC ,F
SU(3)W = gY

sθScθS
(gV ′f fγµf + gA ′f fγµγ5f)Z ′µ , (7.21)

and we tabulate the vectorial and axial couplings in table 11. The fermions of
(c ,U , s ,D′ , e′ ,E) only exhibit vectorial gauge couplings with the Z ′µ. This can be expected,
since they already obtain vectorlike masses through the first-stage symmetry breaking, as
one can find in eqs. (6.2) and (6.4). The SM fermions with the same electrical charges
couple to the Z ′µ universally. This can also be expected, since the SU(6) GUT, which
can unify the G331 gauge symmetries minimally, cannot have multiple fermions embedded
non-trivially according to Georgi’s counting rule and the third law. Therefore, the flavor
universality of the SM fermions should be expected through the flavor-conserving neutral
currents of the effective G331 theory based on the non-minimal GUTs. Consequently, the
gauge couplings for the first generational SM fermions should be identical to the second and
the third generational SM fermions as we have listed in table 11. This is distinctive from
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c/t c U - -
gVf

1
4 −

2
3s

2
θW

1
2 −

2
3s

2
θW

−2
3s

2
θW

- -
gAf −1

4 0 0 - -
s/b s S D D′

gVf −1
4 + 1

3s
2
θW

−1
2 + 1

3s
2
θW

1
3s

2
θW

1
3s

2
θW

1
3s

2
θW

gAf +1
4 0 0 0 0

µ/τ e e′ e′′ E

gVf −1
4 + s2

θW
−1

4 + 1
2s

2
θW

−1
4 + 1

2s
2
θW

−1
4 + 1

2s
2
θW

s2
θW

gAf +1
4 0 0 0 0

Table 12. The couplings of the flavor-conserving neutral currents mediated by Zµ in the V − A
basis, with θW being the Weinberg angle.

the fermion contents in several previous 331 model studies [63–70, 72–77, 80–84, 86, 88–90],
where the flavor non-universalities were assumed at the beginning.

7.3.3 The electroweak gauge couplings

At the stage of the EWSB, the flavor-conserving neutral currents are expressed as follows
in the V −A basis

LNC ,F
SU(2)W = e

sθW cθW

(
gVf fγ

µf + gAf fγ
µγ5f

)
Zµ , (7.22)

and we tabulate the vectorial and axial couplings in table 12. Consistent SM fermion gauge
couplings are obtained. Besides of the SM fermion couplings, all heavy partner fermions in
the spectrum only have vectorial gauge couplings to the Zµ boson.

7.4 The search for the Z′µ gauge boson

The non-minimal GUTs such as the two-generational SU(7) model predict an extended
G331 effective theory above the EWSB scale according to the symmetry breaking pattern in
eq. (2.8). All massive gauge bosons and vectorlike fermions are expected to have masses of
∼ v331 according to the previous analyses. According to eqs. (7.20a), (7.20b) and (7.21), only
the flavor-conserving neutral Z ′µ can couple to SM fermions and anti-fermions, while all other
massive gauge bosons always mediate between a SM fermion and a heavy vectorlike fermion,
or between heavy vectorlike fermions. Accordingly, we can mostly expect the current and/or
future terrestrial collider searches for the Z ′µ. Based on the related gauge couplings in
table 11, we estimate the leptonic decay branching ratios of Br[Z ′µ → `+`−]331 = 0.2 by
assuming that the Z ′µ cannot decay into the vectorlike fermions of (S ,D , e , e′′). The current
LHC searched for the Z ′µ via the di-lepton final states and assumed the sequential SM
(SSM) scenario [98] was assumed. The corresponding leptonic decay branching ratio reads
Br[Z ′µ → `+`−]SSM = 0.06 according to the gauge couplings in table 12. A rescaling of the
couplings leads to the signal strength of

µ ≡
σ[pp→ Z ′µ]331 × Br[Z ′µ → `+`−]331

σ[pp→ Z ′µ]SSM × Br[Z ′µ → `+`−]SSM
. (7.23)
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The ratio of the production cross sections is found to be

σ[pp→ Z ′µ]331

σ[pp→ Z ′µ]SSM
= 0.13

κd/u + 1.14
κd/u + 0.78 , (7.24)

where we estimate the ratio of [99]

κd/u =
∫
dx1dx2fd(x1)fd̄(x2)δ(x1x2 −m2

Z′/s)∫
dx1dx2fu(x1)fū(x2)δ(x1x2 −m2

Z′/s)
, (7.25)

by using the MSTW2008PDF [100]. Altogether, we find that µ ' 0.57, which sets a limit
of mZ′ & 4.8 TeV to our current model setup according to the LHC searches for the SSM
Z ′µ [98]. By further using the gauge boson mass in eq. (5.21b) and the mixing angle relation
in eq. (5.20), we estimate that the current LHC searches have set a limit of v331 & 12 TeV
to the non-minimal GUTs.

8 Discussions

In this work, we initiate a study of the non-minimal GUTs with multiple generational SM
fermions that transform differently in the UV theory. A two-generational SU(7) unified
theory is a reasonable step towards more realistic model building. Remarkably, the anomaly-
free fermion contents in the UV theory do not display any generational structure, as one
can find in eq. (2.11). It will be straightforward to find that the first non-minimal GUT
with the minimal fermion contents that can lead to three generations at the electroweak
scale has a unified group of SU(8) [57–59], which is also composed by both the rank-2 and
the rank-3 anti-symmetric fermions, plus the anti-fundamental fermions. Regarding this,
some of the results in the two-generational SU(7) model will be expected to be relevant
in a more realistic model construction. Below, we summarize some major results of the
current work.

Firstly, the non-minimal GUTs are built based on the conjectured third law of the
flavor unification. Naturally, the unified gauge symmetry undergoes multiple intermediate
stages of symmetry breaking below the GUT scale. In the current context, we focus on
the symmetry breaking pattern where the weak symmetries are extended. It can also
be expected that the realistic symmetry breaking pattern of a three-generational theory
includes both extended strong and weak sectors beyond the SM gauge symmetries. At each
stage of symmetry breaking, the vectorlike fermions that acquire masses are predictable
through the anomaly-free conditions. Similar to the SU(6) model, we found that the Higgs
field of 35H can only develop VEV for the EWSB and give the top quark mass in the given
symmetry breaking pattern. These results suggest that the fermion masses are acquired
through the natural Yukawa couplings of Yf ∼ O(1) in the non-minimal GUTs.

Secondly, the emergent global DRS symmetries are generally expected with our con-
jectured third law on the anomaly-free fermion content. We determine the Higgs fields
according to the minimal set of Yukawa couplings with the corresponding DRS symmetries.
With the minimal set of Higgs VEVs in eqs. (4.7), there can be additional Higgs VEVs
generated through the Higgs mixing terms. They are responsible to give masses to other
electrically charged SM fermions other than the top quark. In other words, the previously
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observed VEV generations through a d = 3 operator in the SU(6) model [26] are generalized
in the current context. In the context of the SU(7) model, the additional Higgs VEVs are
either generated from d = 4 renormalizable operators, or from d ≥ 5 non-renormalizable
operators. To have a complete VEV generation chain as we have shown in figure 1 in the
current model, the non-renormalizable operators are inevitably DRS-charged, and they can
only be allowed with the gravitational effect that violates the global symmetries in general.

Thirdly, the observed fermion mass spectrum can partially explain the observed mass
hierarchies of the SM fermion. In particularly, the charm quark mass can be reasonably
suppressed from the top quark. Notice that Yukawa texture that leads to vanishing
tree-level charm quark mass in eq. (6.21) is purely due to the symmetries in the current
setup. Besides, we have successfully displayed the observed CKM mixing pattern with two
generations. These results may be viewed as positive hints for the future construction of
the three-generational model. However, the current model predicts the unrealistic mass
relations of ms ≈ mb and mµ ≈ mτ . As we have mentioned in the second point, such VEV
generation chains may be completely due to the non-renormalizable operators with the
gravitational effects. Besides, the hierarchical SM fermion masses among three generations
were long conjectured due to the radiative mechanism with extended gauge bosons and/or
Higgs fields [101–103], including in the class of the SU(N) GUTs [57]. Altogether with the
distinct gauge symmetries and the emergent DRS symmetries in the three-generational
non-minimal GUTs, it is premature to conclude such degenerate fermion mass pattern
among different generations. Of course, the usual b− τ mass unification is further extended
to the second generational fermions of (s , µ) at the tree level. Thus, it will be reasonable
to investigate the renormalization group effects [96] in a realistic non-minimal GUT, with
two prerequisites of: (i) the identification of the intermediate symmetry-breaking scales,
and (ii) the identification of the SM fermion representations with the extended color and
weak symmetries.

Lastly, we wish to point out the early constructions of three-generational SU(7) model by
Frampton [33, 34] cannot be realistic models. Our previous argument was that the partition
of the fermions into irreducible anomaly-free sets in eqs. (2.7) violates our conjectured third
law. According to the current analyses, the SU(7) can only undergo two more intermediate
symmetry breaking stages above the EWSB scale. One can naturally expect that the
first generational fermion masses, in particular the down quark and the electron, will be
degenerate with SM fermions that carry the same electric charges.

In addition to the study of the SM fermion masses and their weak mixings, several new
physics ingredients have automatically emerged in the current context, which include

• Emergence of the DRS symmetries that may give rise to high-quality axion [43, 46–
49, 95] for the strong CP problem [44].

• The vectorlike mirror quark doublets [91] and the sterile neutrinos from the minimal
fermion contents.

• Flavor-changing neutral currents and flavor non-universal gauge couplings [104] from
the extended weak symmetries. In particular, the flavor non-universality originates
from the non-trivial embedding of multiple generations into the unified theory.
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These ingredients are expected to be general in non-minimal GUTs with three generational
SM fermions, given their anomaly-free fermion content according to our conjectured third
law of flavor unification, as well as the realistic symmetry breaking patterns from the group
theoretical considerations.
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A Conventions, rules of decompositions, and charge quantizations

In this section, we list the decomposition rules of the fermions and Higgs fields that are
relevant in the SU(7) breaking patterns. After the GUT symmetry breaking, we define the
U(1)X0 charges as follows

X̂0(7) ≡ diag
(
−1

3 ,−
1
3 ,−

1
3︸ ︷︷ ︸

3c

,+1
4 ,+

1
4 ,+

1
4 ,+

1
4︸ ︷︷ ︸

4W

)
. (A.1)

Sequentially, the U(1)X1 and U(1)Y charges are defined according to the SU(4)W funda-
mental representation as follows

X̂1(4W) ≡ 1√
6
T 15

SU(4) + X0 I4 = diag
( 1

12 + X0 ,
1
12 + X0 ,

1
12 + X0 ,−

1
4 + X0

)
, (A.2a)

Ŷ (4W) ≡ 1√
3
T 8

SU(4) + X1 I4 = diag
(1

6 + X1 ,
1
6 + X1 ,−

1
3 + X1 ,X1

)
= diag

(1
4 + X0 ,

1
4 + X0 ,−

1
4 + X0 ,−

1
4 + X0

)
. (A.2b)

Explicitly, the SU(4) Cartan generators are listed as follows

T 3
SU(4) = 1

2 diag(1 ,−1 , 0 , 0) , (A.3a)

T 8
SU(4) = 1

2
√

3
diag(1 , 1 ,−2 , 0) , (A.3b)

T 15
SU(4) = 1

2
√

6
diag(1 , 1 , 1 ,−3) . (A.3c)

Correspondingly, the electric charge quantization is given by

Q̂e(4W) ≡ T 3
SU(4) + Y I4 = diag

(3
4 + X0 ,−

1
4 + X0 ,−

1
4 + X0 ,−

1
4 + X0

)
. (A.4)
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Indices group irrep range
a , b , c SU(3)c fundamental 1 , 2 , 3

anti-fundamental
A ,B ,C SU(3)c adjoint 1 , . . . , 8
ī , j̄ , k̄ SU(4)W fundamental 1 , 2 , 3 , 4

anti-fundamental
Ī , J̄ , K̄ SU(4)W adjoint 1 , . . . , 15
ĩ , j̃ , k̃ SU(3)W fundamental 1 , 2 , 3

anti-fundamental
Ĩ , J̃ , K̃ SU(3)W adjoint 1 , . . . , 8
i , j , k SU(2)W fundamental 1 , 2

anti-fundamental
I , J ,K SU(2)W adjoint 1 , 2 , 3

Table 13. Definition of indices for various gauge groups.

For the SU(4)W adjoint, the 4× 4 electric charge matrix becomes

Q̂e(15W) ≡ diag
(3

4 ,−
1
4 ,−

1
4 ,−

1
4

)
, (A.5)

with X0 = 0. We also define our convention of indices for different gauge groups in table 13.
The fundamental and anti-fundamental representations will be denoted by superscripts and
subscripts, respectively.

B Name scheme of the SU(7) fermions

Here, we list the names for fermions in tables 2, 3, and 4 according to the symmetry breaking
patten analyzed in section 6. Names of all heavy partner fermions are expressed in Gothic

fonts. According to tables 2, 3, and 4, we name fermions according to their electric charges
as follows

Qe = +2
3 : c , t , c , U ,

Qe = −1
3 : s , b , s , D , D′ , S ,

Qe = ±1 : µ , τ , e , e′ , e′′ , E ,

Qe = 0 : νµ , ντ , n , n
′ , n′′

ŇΛ
L (Λ = I , 3 , İ , 2̇) , ŇΛ′

L (Λ = I , II , 3 , İ , 2̇) , ň . (B.1)

Neutrinos marked withˇare sterile neutrinos, since they are SM singlets.

C The Higgs mixing operators in the SU(7) Higgs potential

In section 4, we argue that the VEV terms in the SU(7) Higgs potential should be determined
through gauge-invariant operators listed in tables 8 and 9. In this section, we show explicitly
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whether each term contributes to a VEV term or not according to the Higgs decompositions
in eqs. (4.6). This can be made by checking whether a specific operator composed by the
Higgs components framed with boxes is gauge-invariant.

C.1 General rules

We list some general rules to obtain the VEV term contributions to the Higgs potential.
They read as follows

1. One should always choose the Higgs VEV components, and look for gauge-invariant
operators at each stage of symmetry breaking. In the current context, the VEV
components are framed with boxes in eqs. (4.6).

2. For VEV components from DRS-transforming Higgs fields that develop VEVs, their
VEVs at one specific symmetry-breaking stage should not appear more than once
in the Higgs mixing operators. Otherwise, the VEVs at the specific stage will be
vanishing due to the DRS-invariant ε-tensors in the Higgs mixing operators. In the
current context, the Higgs fields of (7H ,λ ,21H ,λ̇) are DRS-transforming fields, while
others are DRS singlets, as can be seen in table 6.

C.2 The d = 3 operators

For two d = 3 operators of Od=3
A and Od=3

B , we decompose them as follows

Od=3
A = (21H)2 · 35H ⊃ (1 ,6 ,+1

2)H ⊗ (1 ,6 ,+1
2)H ⊗ (1 ,4 ,+3

4)H

⇒ no gauge-invariant term , (C.1a)

Od=3
B = 7H · (35H)2 ⊃ (1 ,4 ,+1

4)H ⊗ (1 ,4 ,+3
4)H ⊗ (1 ,4 ,+3

4)H

⇒ no gauge-invariant term . (C.1b)

Obviously, none of the VEV components in eqs. (C.1) are gauge-invariant after the decom-
position.

C.3 The d = 4 operators

For the operator of Od=4
A , we find

ελκδ 7H ,λ7H ,κ7H ,δ35H

⊃ ελκδ (1 ,4 ,−1
4)H ,λ ⊗ (1 ,4 ,−1

4)H ,κ ⊗ (1 ,4 ,−1
4)H ,δ ⊗ (1 ,4 ,+3

4)H

⊃ w4 ,IIε
λκ (1 ,3 ,−1

3)H ,λ ⊗ (1 ,3 ,−1
3)H ,κ ⊗ (1 ,3 ,+2

3)′H . (C.2)

We took δ = II according to the fermion-Higgs matching pattern at the second step.
Thus the remaining flavor indices are (λ , κ) = (I , 3). With the VEV assignment of
〈(1 ,3 ,−1

3)H ,I〉 = (0 , 0 , V3 ,I)T and 〈(1 ,3 ,+2
3)H〉 = (vt , 0 , 0)T , it is unavoidable to have
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(1 ,2 ,−1
2)H ,3 ⊂ (1 ,3 ,−1

3)H ,3 develop the VEV of 〈(1 ,2 ,−1
2)H ,3〉 = (0 , u2 ,3)T . Explicitly,

this VEV term reads
Od=4

A ∼ g4Aw4 ,IIV3 ,Iu2 ,3vt ⇒ u2 ,3 . (C.3)

According to the minimal VEV assignments for the fermion-Higgs matching pattern in
eqs. (4.7), this operator leads to a VEV of u2 ,3 to avoid the tadpole term.

Obviously, the gauge-invariant VEV term in eq. (C.2) plays the similar role as the
ν-term in the SU(6) model [26] and can lead to a tadpole term. By denoting the coefficient
of this operator as g4A , we have ν4A = g4Aw4 ,II. According to the study of the third-
generational SU(6) model, one expects ν ∼ O(100) GeV. Similar to the SU(6) model, a
fine-tuning is also observed. Thus, the ν-problem persists in the current context and will
be solved in the realistic models.

For the operator of Od=4
B , we find

ελ̇κ̇21H ,λ̇21H ,κ̇ · 7H · 35H

⊃ ελ̇κ̇ (1 ,6 ,−1
2)H ,λ̇ ⊗ (1 ,6 ,−1

2)H ,κ̇ ⊗ (1 ,4 ,+1
4)H ⊗ (1 ,4 ,+3

4)H

⊃ Od=4
B1 +Od=4

B2 +Od=4
B3 , (C.4a)

Od=4
B1 = w4ε

λ̇κ̇ (1 ,3 ,−1
3)H ,λ̇ ⊗ (1 ,3 ,−1

3)H ,κ̇ ⊗ (1 ,3 ,+2
3)′H , (C.4b)

Od=4
B2 = ελ̇κ̇ (1 ,3 ,−2

3)H ,λ̇ ⊗ (1 ,3 ,−1
3)H ,κ̇ ⊗ (1 ,3 ,+1

3)H ⊗ (1 ,3 ,+2
3)′H , (C.4c)

Od=4
B3 = ελ̇κ̇ (1 ,2 ,−1

2)H ,λ̇ ⊗ (1 ,2 ,−1
2)H ,κ̇ ⊗ (1 ,2 ,+1

2)H ⊗ (1 ,2 ,+1
2)′H . (C.4d)

Clearly, the operator of Od=4
B1 plays the similar role as the operator of Od=4

A . One can think
of this as a ν-term for the second generational fermions, since two (1 ,3 ,−1

3)H ,λ̇ carry the
dotted flavor indices. Explicitly, the VEV term from eq. (C.4b) read

Od=4
B1 ∼ g4Bw4V3 ,İu2 ,2̇vt ⇒ u2 ,2̇ , (C.5a)

Od=4
B2 ∼ g4BV3V3 ,İu2 ,2̇vt ⇒ V3 , u2 ,2̇ , (C.5b)

Od=4
B3 ∼ g4Bu2 ,[2̇u2 ,İ]u2vt ⇒ u2 ,2̇ , u2 ,İ , u2 or u2 ,İ , u2 ,2̇ , u2 . (C.5c)

For the operator of Od=4
C , we find

ελ̇κ̇ 21H ,λ̇21H ,κ̇ · (21H)2 ⊃ Od=4
C 1 +Od=4

C 2 +Od=4
C 3 +Od=4

C 4 , (C.6a)

Od=4
C 1 = ελ̇κ̇ (1 ,3 ,−2

3)[r̃
H ,λ̇
⊗ (1 ,3 ,−2

3)s̃]H ,κ̇ ⊗ (1 ,3 ,+2
3)H ,r̃ ⊗ (1 ,3 ,+2

3)H ,s̃

⇒ 0 , (C.6b)

Od=4
C 2 = ελ̇κ̇ (1 ,3 ,−2

3)H ,λ̇ ⊗ (1 ,3 ,−1
3)H ,κ̇ ⊗ (1 ,3 ,+2

3)H ⊗ (1 ,3 ,+1
3)′H , (C.6c)

Od=4
C 3 = ελ̇κ̇ (1 ,2 ,−1

2)H ,λ̇ ⊗ (1 ,2 ,−1
2)H ,κ̇ ⊗ (1 ,2 ,+1

2)H ⊗ (1 ,2 ,+1
2)′H , (C.6d)

Od=4
C 4 = ελ̇κ̇ (1 ,3 ,−1

3)H ,λ̇ ⊗ (1 ,3 ,−1
3)H ,κ̇ ⊗ (1 ,3 ,+1

3)′H ⊗ (1 ,3 ,+1
3)′H . (C.6e)
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In eq. (C.6b), the possible EWSB VEVs from the (1 ,3 ,−2
3)H ,λ̇ can only be developed with

r̃ = s̃ = 1. The anti-symmetrizing of two SU(3)W indices clearly makes this term vanishing.
Explicitly, the VEV terms from eqs. (C.6c) and (C.6d) read

Od=4
C 2 ∼ g4CV

′
3V3 ,İu2 ,2̇u2 ⇒ u2 ,2̇ , u2 , (C.7a)

Od=4
C 3 ∼ g4Cu2 ,2̇u2 ,İu2u

′
2 ⇒ u2 ,2̇ , u2 ,İ , u2 , u′2 , (C.7b)

Od=4
C 4 ∼ g4CV

′
3V3 ,İu2 ,2̇u

′
2 ⇒ u2 ,2̇ , u′2 . (C.7c)

For the operator of Od=4
D , we find

Od=4
D = 7H · (21H)3 ⊃ (1 ,4 ,+1

4)H ⊗ (1 ,6 ,+1
2)H ⊗ (1 ,6 ,+1

2)H ⊗ (1 ,6 ,+1
2)H

⇒ no gauge-invariant term . (C.8)

Hence, this term does not contribute to a VEV term in the Higgs potential.

C.4 The d = 5 operators

For the operator of Od=5
A , we find

ελκγ7H ,λ7H ,κ7H ,γ · ερ̇δ̇21H ,ρ̇21H ,δ̇

⊃ ελκγερ̇δ̇ (1 ,4 ,−1
4)H ,λ ⊗ (1 ,4 ,−1

4)H ,κ ⊗ (1 ,4 ,−1
4)H ,γ

⊗ (1 ,6 ,−1
2)H ,ρ̇ ⊗ (1 ,6 ,−1

2)H ,δ̇ ⇒ no gauge-invariant term . (C.9)

Hence, this term does not contribute to a VEV term in the Higgs potential.

For the operator of Od=5
B , we find

(7H)435H

⊃ (1 ,4 ,+1
4)H ⊗ (1 ,4 ,+1

4)H ⊗ (1 ,4 ,+1
4)H ⊗ (1 ,4 ,+1

4)H ⊗ (1 ,4 ,+3
4)H

⇒ no gauge-invariant term . (C.10)

Hence, this term does not contribute to a VEV term in the Higgs potential.

For the operator of Od=5
C , we find

(ελκδ 7H ,λ7H ,κ7H ,δ) · 7H · 21H

⊃ ελκδ (1 ,4 ,−1
4)H ,λ ⊗ (1 ,4 ,−1

4)H ,κ ⊗ (1 ,4 ,−1
4)H ,δ ⊗ (1 ,4 ,+1

4)H ⊗ (1 ,6 ,+1
2)H

⊃ Od=5
C 1 +Od=5

C 2 +Od=5
C 3 . (C.11)

Explicitly, the VEV term from eq. (C.11) reads

Od=5
C 1 ∼ g5Cw4 ,IIV3 ,Iu2 ,3V

′
3u2 ⇒ u2 ,3 , u2 ,

Od=5
C 2 ∼ g5Cw4 ,IIV3 ,Iu2 ,3V3u

′
2 ⇒ u2 ,3 , V3 , u′2

Od=5
C 3 ∼ g5Cw4 ,IIV3 ,Iu2 ,3w4u2 ⇒ u2 ,3 , u2 . (C.12)
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For the operator of Od=5
D , we find

(ελ̇κ̇ 21H ,λ̇21H ,κ̇)2 · 7H

⊃ ελ̇1κ̇1ελ̇2κ̇2 (1 ,6 ,−1
2)H ,λ̇1

⊗ (1 ,6 ,−1
2)H ,κ̇1 ⊗ (1 ,6 ,−1

2)H ,λ̇2
⊗ (1 ,6 ,−1

2)H ,κ̇2

⊗ (1 ,4 ,+1
4)H ⇒ no gauge-invariant term . (C.13)

Hence, this term does not contribute to a VEV term in the Higgs potential.

C.5 The d = 6 operators

For the operator of Od=6
A , we find

(ελκδ 7H ,λ7H ,κ7H ,δ) · (7H)3

⊃ ελκδ (1 ,4 ,−1
4)H ,λ ⊗ (1 ,4 ,−1

4)H ,κ ⊗ (1 ,4 ,−1
4)H ,δ

⊗ (1 ,4 ,+1
4)H ⊗ (1 ,4 ,+1

4)H ⊗ (1 ,4 ,+1
4)H

⊃ w4 ,IIw4ε
κδ (1 ,3 ,−1

3)H ,κ ⊗ (1 ,3 ,−1
3)H ,δ ⊗ (1 ,3 ,+1

3)H ⊗ (1 ,3 ,+1
3)H . (C.14)

According to the minimal fermion-Higgs matching pattern, both the (1 ,4 ,−1
4)H ,λ=II

and the (1 ,4 ,+1
4)H develop the G341-breaking VEVs. Explicitly, the VEV term from

eq. (C.14) reads

Od=6
A ∼ g6Aw4 ,IIw4V3 ,Iu2 ,3V3u2 ⇒ u2 ,3 , V3 , u2 . (C.15)

For the operator of Od=6
B , we find

Od=6
B = ελ̇κ̇ 21H ,λ̇21H ,κ̇ · (7H)4

⊃ ελ̇κ̇ (1 ,6 ,−1
2)H ,λ̇ ⊗ (1 ,6 ,−1

2)H ,κ̇

⊗ (1 ,4 ,+1
4)H ⊗ (1 ,4 ,+1

4)H ⊗ (1 ,4 ,+1
4)H ⊗ (1 ,4 ,+1

4)H . (C.16a)

Obviously, the possible VEV term vanishes due to the SU(4)W -invariant ε-tensor.

For the operator of Od=6
C , we find

(21H)4 · (35H)2

⊃ (1 ,6 ,+1
2)H ⊗ (1 ,6 ,+1

2)H ⊗ (1 ,6 ,+1
2)H ⊗ (1 ,6 ,+1

2)H

⊗ (1 ,4 ,+3
4)H ⊗ (1 ,4 ,+3

4)H ⇒ no gauge-invariant term . (C.17)

Hence, this operator does not contribute to a VEV term in the Higgs potential.
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For the operator of Od=6
D , we find

7H · (21H)2 · (35H)3

⊃ (1 ,4 ,+1
4)H ⊗ (1 ,6 ,+1

2)H ⊗ (1 ,6 ,+1
2)H

⊗ (1 ,4 ,+3
4)H ⊗ (1 ,4 ,+3

4)H ⊗ (1 ,4 ,+3
4)H ⇒ no gauge-invariant term . (C.18)

Hence, this operator does not contribute to a VEV term in the Higgs potential.

C.6 The d = 8 operators

For the operator of Od=8, we find

(ελ̇1λ̇221H ,λ̇1
21H ,λ̇2

) · (εκ̇1κ̇221H ,κ̇121H ,κ̇2) · (εδ̇1δ̇221H ,δ̇1
21H ,δ̇2

) · 21H · 35H

⊃
[
ερ̇δ̇(1 ,6 ,−1

2)H ,ρ̇ ⊗ (1 ,6 ,−1
2)H ,δ̇

]3
⊗ (1 ,6 ,+1

2)H ⊗ (1 ,4 ,+3
4)H

⇒ no gauge-invariant term . (C.19)

Hence, this operator does not contribute to a VEV term in the Higgs potential.

C.7 The d = 9 operators

For the operator of Od=9
A , we find

(ελκδ7H ,λ7H ,κ7H ,δ)2 · (21H)3

⊃
[
ελ1λ2λ3(1 ,4 ,−1

4)H ,λ1 ⊗ (1 ,4 ,−1
4)H ,λ2 ⊗ (1 ,4 ,−1

4)H ,λ3

]2
⊗ (1 ,6 ,+1

2)H ⊗ (1 ,6 ,+1
2)H ⊗ (1 ,6 ,+1

2)H

⊃ (w4 ,II)
2ελ1λ2εκ1κ2 (1 ,3 ,−1

3)H ,λ1 ⊗ (1 ,3 ,−1
3)H ,λ2 ⊗ (1 ,3 ,−1

3)H ,κ1 ⊗ (1 ,3 ,−1
3)H ,κ2

⊗ (1 ,3 ,+2
3)H ⊗ (1 ,3 ,+1

3)′H ⊗ (1 ,3 ,+1
3)′H . (C.20)

Explicitly, the VEV term from eq. (C.20) reads

Od=9
A ∼ g9A (w4 ,IIV3 ,Iu2 ,3)2V ′3u

′
2u2 ⇒ u2 ,3 , u′2 , u2 . (C.21)

For the operator of Od=9
B , we find[

ε · (21H ,λ̇)2
]3
· 7H · (21H)2

⊃
[
ερ̇δ̇(1 ,6 ,−1

2)H ,ρ̇ ⊗ (1 ,6 ,−1
2)H ,δ̇

]3
⊗ (1 ,4 ,+1

4)H ⊗ (1 ,6 ,+1
2)H ⊗ (1 ,6 ,+1

2)H

⇒ no gauge-invariant term . (C.22)

For the operator of Od=9
C , we find

(ερ̇δ̇21H ,ρ̇21H ,δ̇)
4 · 21H

⊃
[
ερ̇δ̇(1 ,6 ,−1

2)H ,ρ̇ ⊗ (1 ,6 ,−1
2)H ,δ̇

]4
⊗ (1 ,6 ,+1

2)H

⇒ no gauge-invariant term . (C.23)
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Omix U(1)1 U(1)2 VEV terms

Od=10 ≡
[
ε · (7H ,λ)3

]3
· 21H −(9p1 + 10q1) , (0) −q2 , (p2

2 ) 7

Od=12 ≡
[
ε · (21H ,λ̇)2

]5
· (35H)2 −4q1 , (0) −10(p2 + q2) , (−5p2) 7

Od=13
A ≡

[
ε · (21H ,λ̇)2

]5
· (21H)3 −3q1 , (0) −(10p2 + 13q2) , (−7

2p2) 7

Od=13
B ≡

[
ε · (21H ,λ̇)2

]6
· 35H −2q1 , (0) −12(p2 + q2) , (−6p2) 7

Od=14
A ≡

[
ε · (7H ,λ)3

]4
· 21H · 35H −3(4p1 + 5q1) , (0) −q2 , (p2

2 ) 7

Od=14
B ≡

[
ε · (21H ,λ̇)2

]7
0 −14(p2 + q2) , (−7p2) 7

Od=16 ≡
[
ε · (7H ,λ)3

]5
· 7H −15(p1 + q1) , (0) −2q2 , (p2) 7

Od=20
A ≡

[
ε · (7H ,λ)3

]6
· (21H)2 −2(9p1 + 10q1) , (0) −2q2 , (p2) 7

Od=20
B ≡

[
ε · (7H ,λ)3

]6
· 7H · 35H −2(9p1 + 10q1) , (0) −2q2 , (p2) 7

Od=21 ≡
[
ε · (7H ,λ)3

]7
−21(p1 + q1) , (0) 0 7

Table 14. The non-renormalizable SU(7) Higgs mixing operators with d ≥ 10 and their U(1)1 ,2
charges. The 3and 7represent whether the specific operator can contribute to VEV terms in the
Higgs potential or not. The charge assignments with p1 = q1 = 0 and q2 = − 1

2p2 6= 0 are marked
in parentheses.

C.8 Other higher-dimensional operators

For the operator of Od=10, we find

(ελκδ7H ,λ7H ,κ7H ,δ)3 · 21H

⊃
[
ελκδ(1 ,4 ,−1

4)H ,λ ⊗ (1 ,4 ,−1
4)H ,κ ⊗ (1 ,4 ,−1

4)H ,δ

]3
⊗ (1 ,6 ,+1

2)H

⇒ no gauge-invariant term . (C.24)

For the operator of Od=12, we find

(ερ̇δ̇21H ,ρ̇21H ,δ̇)
5 · (35H)2

⊃
[
ερ̇δ̇(1 ,6 ,−1

2)H ,ρ̇ ⊗ (1 ,6 ,−1
2)H ,δ̇

]5
⊗ (1 ,4 ,+3

4)H ⊗ (1 ,4 ,+3
4)H

⇒ no gauge-invariant term . (C.25)

For the operator of Od=13
A , we find

(ερ̇δ̇21H ,ρ̇21H ,δ̇)
5 · (21H)3

⊃
[
ερ̇δ̇(1 ,6 ,−1

2)H ,ρ̇ ⊗ (1 ,6 ,−1
2)H ,δ̇

]5
⊗ (1 ,6 ,+1

2)H ⊗ (1 ,6 ,+1
2)H ⊗ (1 ,6 ,+1

2)H

⇒ no gauge-invariant term . (C.26)
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For the operator of Od=13
B , we find

(ερ̇δ̇21H ,ρ̇21H ,δ̇)
6 · 21H

⊃
[
ερ̇δ̇(1 ,6 ,−1

2)H ,ρ̇ ⊗ (1 ,6 ,−1
2)H ,δ̇

]6
⊗ (1 ,6 ,+1

2)H

⇒ no gauge-invariant term . (C.27)

For the operator of Od=14
A , we find

(ελκδ7H ,λ7H ,κ7H ,δ)4 · 21H · 35H

⊃
[
ελκδ(1 ,4 ,−1

4)H ,λ ⊗ (1 ,4 ,−1
4)H ,κ ⊗ (1 ,4 ,−1

4)H ,δ

]4
⊗ (1 ,6 ,+1

2)H ⊗ (1 ,4 ,+3
4)H

⇒ no gauge-invariant term . (C.28)

For the operator of Od=14
B , we find

(ερ̇δ̇21H ,ρ̇21H ,δ̇)
7 ⊃

[
ερ̇δ̇(1 ,6 ,−1

2)H ,ρ̇ ⊗ (1 ,6 ,−1
2)H ,δ̇

]7
⇒ no gauge-invariant term . (C.29)

For the operator of Od=16, we find

(ελκδ7H ,λ7H ,κ7H ,δ)5 · 7H

⊃
[
ελκδ(1 ,4 ,−1

4)H ,λ ⊗ (1 ,4 ,−1
4)H ,κ ⊗ (1 ,4 ,−1

4)H ,δ

]5
⊗ (1 ,4 ,+1

4)H

⇒ no gauge-invariant term . (C.30)

For the operator of Od=20
A , we find

(ελκδ7H ,λ7H ,κ7H ,δ)6 · (21H)2

⊃
[
ελκδ(1 ,4 ,−1

4)H ,λ ⊗ (1 ,4 ,−1
4)H ,κ ⊗ (1 ,4 ,−1

4)H ,δ

]6
⊗ (1 ,6 ,+1

2)H ⊗ (1 ,6 ,+1
2)H

⇒ no gauge-invariant term . (C.31)

For the operator of Od=20
B , we find

(ελκδ7H ,λ7H ,κ7H ,δ)6 · 7H · 35H

⊃
[
ελκδ(1 ,4 ,−1

4)H ,λ ⊗ (1 ,4 ,−1
4)H ,κ ⊗ (1 ,4 ,−1

4)H ,δ

]6
⊗ (1 ,4 ,+1

4)H ⊗ (1 ,4 ,+3
4)H

⇒ no gauge-invariant term . (C.32)

For the operator of Od=21, we find

Od=21 = (ελκδ7H ,λ7H ,κ7H ,δ)7

⊃
[
ελκδ(1 ,4 ,−1

4)H ,λ ⊗ (1 ,4 ,−1
4)H ,κ ⊗ (1 ,4 ,−1

4)H ,δ

]7
⇒ no gauge-invariant term . (C.33)

– 47 –



J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32
(1974) 438 [INSPIRE].

[2] H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93
(1975) 193 [INSPIRE].

[3] S.F. King, Unified Models of Neutrinos, Flavour and CP Violation, Prog. Part. Nucl. Phys.
94 (2017) 217 [arXiv:1701.04413] [INSPIRE].

[4] Z.-Z. Xing, Flavor structures of charged fermions and massive neutrinos, Phys. Rept. 854
(2020) 1 [arXiv:1909.09610] [INSPIRE].

[5] ATLAS collaboration, Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1
[arXiv:1207.7214] [INSPIRE].

[6] CMS collaboration, Observation of a New Boson at a Mass of 125GeV with the CMS
Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[7] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay
rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC
pp collision data at

√
s = 7 and 8TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

[8] CMS collaboration, Inclusive search for highly boosted Higgs bosons decaying to bottom
quark-antiquark pairs in proton-proton collisions at

√
s = 13TeV, JHEP 12 (2020) 085

[arXiv:2006.13251] [INSPIRE].

[9] ATLAS collaboration, Measurements of Higgs bosons decaying to bottom quarks from vector
boson fusion production with the ATLAS experiment at

√
s = 13TeV, Eur. Phys. J. C 81

(2021) 537 [arXiv:2011.08280] [INSPIRE].

[10] ATLAS collaboration, Measurements of Higgs boson production cross-sections in
the H → τ+τ− decay channel in pp collisions at

√
s = 13TeV with the ATLAS detector,

JHEP 08 (2022) 175 [arXiv:2201.08269] [INSPIRE].

[11] CMS collaboration, Measurements of Higgs boson production in the decay channel with a pair
of τ leptons in proton-proton collisions at

√
s = 13TeV, arXiv:2204.12957 [INSPIRE].

[12] CMS collaboration, Observation of tt̄ H production, Phys. Rev. Lett. 120 (2018) 231801
[arXiv:1804.02610] [INSPIRE].

[13] ATLAS collaboration, Observation of Higgs boson production in association with a top quark
pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173
[arXiv:1806.00425] [INSPIRE].

[14] ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs
boson decays into charm quarks with the ATLAS detector, Eur. Phys. J. C 82 (2022) 717
[arXiv:2201.11428] [INSPIRE].

– 48 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevLett.32.438
https://inspirehep.net/literature/92111
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1016/0003-4916(75)90211-0
https://inspirehep.net/literature/1774
https://doi.org/10.1016/j.ppnp.2017.01.003
https://doi.org/10.1016/j.ppnp.2017.01.003
https://arxiv.org/abs/1701.04413
https://inspirehep.net/literature/1509379
https://doi.org/10.1016/j.physrep.2020.02.001
https://doi.org/10.1016/j.physrep.2020.02.001
https://arxiv.org/abs/1909.09610
https://inspirehep.net/literature/1755235
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://inspirehep.net/literature/1124337
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://inspirehep.net/literature/1124338
https://doi.org/10.1007/JHEP08(2016)045
https://arxiv.org/abs/1606.02266
https://inspirehep.net/literature/1468068
https://doi.org/10.1007/JHEP12(2020)085
https://arxiv.org/abs/2006.13251
https://inspirehep.net/literature/1802817
https://doi.org/10.1140/epjc/s10052-021-09192-8
https://doi.org/10.1140/epjc/s10052-021-09192-8
https://arxiv.org/abs/2011.08280
https://inspirehep.net/literature/1831503
https://doi.org/10.1007/JHEP08(2022)175
https://arxiv.org/abs/2201.08269
https://inspirehep.net/literature/2014187
https://arxiv.org/abs/2204.12957
https://inspirehep.net/literature/2072861
https://doi.org/10.1103/PhysRevLett.120.231801
https://arxiv.org/abs/1804.02610
https://inspirehep.net/literature/1666824
https://doi.org/10.1016/j.physletb.2018.07.035
https://arxiv.org/abs/1806.00425
https://inspirehep.net/literature/1676179
https://doi.org/10.1140/epjc/s10052-022-10588-3
https://arxiv.org/abs/2201.11428
https://inspirehep.net/literature/2020433


J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

[15] CMS collaboration, Search for Higgs boson decay to a charm quark-antiquark pair in
proton-proton collisions at

√
s = 13TeV, arXiv:2205.05550 [INSPIRE].

[16] ATLAS collaboration, A search for the dimuon decay of the Standard Model Higgs boson
with the ATLAS detector, Phys. Lett. B 812 (2021) 135980 [arXiv:2007.07830] [INSPIRE].

[17] CMS collaboration, Evidence for Higgs boson decay to a pair of muons, JHEP 01 (2021) 148
[arXiv:2009.04363] [INSPIRE].

[18] L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000)
2572 [hep-ph/9911341] [INSPIRE].

[19] N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010
[hep-ph/0009174] [INSPIRE].

[20] H. Fusaoka and Y. Koide, Updated estimate of running quark masses, Phys. Rev. D 57 (1998)
3986 [hep-ph/9712201] [INSPIRE].

[21] Z.-Z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses,
Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].

[22] Z.-Z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running
fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013
[arXiv:1112.3112] [INSPIRE].

[23] S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11
(2013) 115 [arXiv:1306.6879] [INSPIRE].

[24] G.-Y. Huang and S. Zhou, Precise Values of Running Quark and Lepton Masses in the
Standard Model, Phys. Rev. D 103 (2021) 016010 [arXiv:2009.04851] [INSPIRE].

[25] Y. Wang, B. Yu and S. Zhou, Flavor invariants and renormalization-group equations in the
leptonic sector with massive Majorana neutrinos, JHEP 09 (2021) 053 [arXiv:2107.06274]
[INSPIRE].

[26] N. Chen, Y.-N. Mao and Z. Teng, Bottom quark and tau lepton masses in a toy SU(6),
arXiv:2112.14509 [INSPIRE].

[27] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531
[INSPIRE].

[28] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak
Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

[29] B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor.
Fiz. 34 (1957) 247 [INSPIRE].

[30] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles,
Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

[31] H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys.
Lett. B 86 (1979) 297 [INSPIRE].

[32] H. Georgi, Towards a Grand Unified Theory of Flavor, Nucl. Phys. B 156 (1979) 126
[INSPIRE].

[33] P.H. Frampton, SU(N) Grand Unification With Several Quark-Lepton Generations, Phys.
Lett. B 88 (1979) 299 [INSPIRE].

[34] P.H. Frampton, Unification of Flavor, Phys. Lett. B 89 (1980) 352 [INSPIRE].

– 49 –

https://arxiv.org/abs/2205.05550
https://inspirehep.net/literature/2080007
https://doi.org/10.1016/j.physletb.2020.135980
https://arxiv.org/abs/2007.07830
https://inspirehep.net/literature/1806929
https://doi.org/10.1007/JHEP01(2021)148
https://arxiv.org/abs/2009.04363
https://inspirehep.net/literature/1815813
https://doi.org/10.1103/PhysRevLett.84.2572
https://doi.org/10.1103/PhysRevLett.84.2572
https://arxiv.org/abs/hep-ph/9911341
https://inspirehep.net/literature/510120
https://doi.org/10.1103/PhysRevD.63.053010
https://arxiv.org/abs/hep-ph/0009174
https://inspirehep.net/literature/533591
https://doi.org/10.1103/PhysRevD.57.3986
https://doi.org/10.1103/PhysRevD.57.3986
https://arxiv.org/abs/hep-ph/9712201
https://inspirehep.net/literature/465986
https://doi.org/10.1103/PhysRevD.77.113016
https://arxiv.org/abs/0712.1419
https://inspirehep.net/literature/770047
https://doi.org/10.1103/PhysRevD.86.013013
https://arxiv.org/abs/1112.3112
https://inspirehep.net/literature/1081270
https://doi.org/10.1007/JHEP11(2013)115
https://doi.org/10.1007/JHEP11(2013)115
https://arxiv.org/abs/1306.6879
https://inspirehep.net/literature/1240521
https://doi.org/10.1103/PhysRevD.103.016010
https://arxiv.org/abs/2009.04851
https://inspirehep.net/literature/1816049
https://doi.org/10.1007/JHEP09(2021)053
https://arxiv.org/abs/2107.06274
https://inspirehep.net/literature/1883001
https://arxiv.org/abs/2112.14509
https://inspirehep.net/literature/1998177
https://doi.org/10.1103/PhysRevLett.10.531
https://inspirehep.net/literature/4510
https://doi.org/10.1143/PTP.49.652
https://inspirehep.net/literature/81350
https://inspirehep.net/literature/42736
https://doi.org/10.1143/PTP.28.870
https://inspirehep.net/literature/3540
https://doi.org/10.1016/0370-2693(79)90842-6
https://doi.org/10.1016/0370-2693(79)90842-6
https://inspirehep.net/literature/140938
https://doi.org/10.1016/0550-3213(79)90497-8
https://inspirehep.net/literature/140392
https://doi.org/10.1016/0370-2693(79)90472-6
https://doi.org/10.1016/0370-2693(79)90472-6
https://inspirehep.net/literature/7897
https://doi.org/10.1016/0370-2693(80)90140-9
https://inspirehep.net/literature/142008


J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

[35] M. Claudson, A. Yildiz and P.H. Cox, Extended unified field theories: an SU(7) model, Phys.
Lett. B 97 (1980) 224 [INSPIRE].

[36] J.E. Kim, A Model of Flavor Unity, Phys. Rev. Lett. 45 (1980) 1916 [INSPIRE].

[37] I. Umemura and K. Yamamoto, SU(7) GUT and Evasion of the Survival Hypothesis, Phys.
Lett. B 100 (1981) 34 [INSPIRE].

[38] P.H. Cox, P.H. Frampton and A. Yildiz, Tests of SU(7) Unification, Phys. Rev. Lett. 46
(1981) 1051 [INSPIRE].

[39] P.-Y. Xue, A Possible SU(7) Grand Unified Model With Nonstandard Charged Quarks,
Lepton and Low Mass Magnetic Monopole, Phys. Lett. B 105 (1981) 147 [INSPIRE].

[40] J.E. Kim, Flavor Unity in SU(7): Low Mass Magnetic Monopole, Doubly Charged Lepton,
and Q = 5/3,−4/3 Quarks, Phys. Rev. D 23 (1981) 2706 [INSPIRE].

[41] N. Chen, Y. Liu and Z. Teng, Axion model with the SU(6) unification, Phys. Rev. D 104
(2021) 115011 [arXiv:2106.00223] [INSPIRE].

[42] S. Dimopoulos, S. Raby and L. Susskind, Light Composite Fermions, Nucl. Phys. B 173
(1980) 208 [INSPIRE].

[43] H.M. Georgi, L.J. Hall and M.B. Wise, Grand Unified Models With an Automatic
Peccei-Quinn Symmetry, Nucl. Phys. B 192 (1981) 409 [INSPIRE].

[44] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev.
Lett. 38 (1977) 1440 [INSPIRE].

[45] M. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B 273
(1986) 109 [INSPIRE].

[46] S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992)
539 [INSPIRE].

[47] M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn
mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

[48] R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B
282 (1992) 132 [hep-ph/9203206] [INSPIRE].

[49] S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B
283 (1992) 278 [INSPIRE].

[50] R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys.
Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

[51] R. Feger and T.W. Kephart, LieART — A Mathematica application for Lie algebras and
representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379]
[INSPIRE].

[52] R. Feger, T.W. Kephart and R.J. Saskowski, LieART 2.0 — A Mathematica application for
Lie Algebras and Representation Theory, Comput. Phys. Commun. 257 (2020) 107490
[arXiv:1912.10969] [INSPIRE].

[53] J. Banks and H. Georgi, Comment on Gauge Theories Without Anomalies, Phys. Rev. D 14
(1976) 1159 [INSPIRE].

[54] S. Okubo, Gauge Groups Without Triangular Anomaly, Phys. Rev. D 16 (1977) 3528
[INSPIRE].

– 50 –

https://doi.org/10.1016/0370-2693(80)90588-2
https://doi.org/10.1016/0370-2693(80)90588-2
https://inspirehep.net/literature/152578
https://doi.org/10.1103/PhysRevLett.45.1916
https://inspirehep.net/literature/9614
https://doi.org/10.1016/0370-2693(81)90280-X
https://doi.org/10.1016/0370-2693(81)90280-X
https://inspirehep.net/literature/155855
https://doi.org/10.1103/PhysRevLett.46.1051
https://doi.org/10.1103/PhysRevLett.46.1051
https://inspirehep.net/literature/156055
https://doi.org/10.1016/0370-2693(81)91008-X
https://inspirehep.net/literature/166196
https://doi.org/10.1103/PhysRevD.23.2706
https://inspirehep.net/literature/10213
https://doi.org/10.1103/PhysRevD.104.115011
https://doi.org/10.1103/PhysRevD.104.115011
https://arxiv.org/abs/2106.00223
https://inspirehep.net/literature/1866361
https://doi.org/10.1016/0550-3213(80)90215-1
https://doi.org/10.1016/0550-3213(80)90215-1
https://inspirehep.net/literature/152400
https://doi.org/10.1016/0550-3213(81)90433-8
https://inspirehep.net/literature/165570
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://inspirehep.net/literature/119084
https://doi.org/10.1016/0550-3213(86)90043-X
https://doi.org/10.1016/0550-3213(86)90043-X
https://inspirehep.net/literature/17872
https://doi.org/10.1103/PhysRevD.46.539
https://doi.org/10.1103/PhysRevD.46.539
https://inspirehep.net/literature/332710
https://doi.org/10.1016/0370-2693(92)90492-M
https://arxiv.org/abs/hep-th/9202003
https://inspirehep.net/literature/332440
https://doi.org/10.1016/0370-2693(92)90491-L
https://doi.org/10.1016/0370-2693(92)90491-L
https://arxiv.org/abs/hep-ph/9203206
https://inspirehep.net/literature/332731
https://doi.org/10.1016/0370-2693(92)90019-Z
https://doi.org/10.1016/0370-2693(92)90019-Z
https://inspirehep.net/literature/334600
https://doi.org/10.1103/PhysRevD.52.912
https://doi.org/10.1103/PhysRevD.52.912
https://arxiv.org/abs/hep-th/9502069
https://inspirehep.net/literature/392716
https://doi.org/10.1016/j.cpc.2014.12.023
https://arxiv.org/abs/1206.6379
https://inspirehep.net/literature/1120162
https://doi.org/10.1016/j.cpc.2020.107490
https://arxiv.org/abs/1912.10969
https://inspirehep.net/literature/1773084
https://doi.org/10.1103/PhysRevD.14.1159
https://doi.org/10.1103/PhysRevD.14.1159
https://inspirehep.net/literature/115974
https://doi.org/10.1103/PhysRevD.16.3528
https://inspirehep.net/literature/120964


J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

[55] L.-F. Li, Group Theory of the Spontaneously Broken Gauge Symmetries, Phys. Rev. D 9
(1974) 1723 [INSPIRE].

[56] C.-S. Gao and K.-C. Chou, A Possible SU(4)c × SU(3)f ×U(1) Model, Phys. Rev. D 23
(1981) 2690 [INSPIRE].

[57] S.M. Barr, Light Fermion Mass Hierarchy and Grand Unification, Phys. Rev. D 21 (1980)
1424 [INSPIRE].

[58] Z.-Q. Ma, T.-S. Tu, P.-Y. Xue and X.-J. Zhou, An SU(8) Grand Unified Model Accomodating
Three Generations With V −A Coupling, Phys. Lett. B 100 (1981) 399 [INSPIRE].

[59] S.M. Barr, Doubly Lopsided Mass Matrices from Unitary Unification, Phys. Rev. D 78 (2008)
075001 [arXiv:0804.1356] [INSPIRE].

[60] B.W. Lee and S. Weinberg, SU(3)×U(1) Gauge Theory of the Weak and Electromagnetic
Interactions, Phys. Rev. Lett. 38 (1977) 1237 [INSPIRE].

[61] B.W. Lee and R.E. Shrock, An SU(3)×U(1) Theory of Weak and Electromagnetic
Interactions, Phys. Rev. D 17 (1978) 2410 [INSPIRE].

[62] M. Singer, J.W.F. Valle and J. Schechter, Canonical Neutral Current Predictions From the
Weak Electromagnetic Gauge Group SU(3)×U(1), Phys. Rev. D 22 (1980) 738 [INSPIRE].

[63] F. Pisano and V. Pleitez, An SU(3)×U(1) model for electroweak interactions, Phys. Rev. D
46 (1992) 410 [hep-ph/9206242] [INSPIRE].

[64] P.H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69 (1992)
2889 [INSPIRE].

[65] R. Foot, O.F. Hernández, F. Pisano and V. Pleitez, Lepton masses in an SU(3)L ⊗U(1)N
gauge model, Phys. Rev. D 47 (1993) 4158 [hep-ph/9207264] [INSPIRE].

[66] J.C. Montero, F. Pisano and V. Pleitez, Neutral currents and GIM mechanism in
SU(3)L ⊗U(1)N models for electroweak interactions, Phys. Rev. D 47 (1993) 2918
[hep-ph/9212271] [INSPIRE].

[67] D. Ng, The Electroweak theory of SU(3)×U(1), Phys. Rev. D 49 (1994) 4805
[hep-ph/9212284] [INSPIRE].

[68] J.T. Liu and D. Ng, Lepton flavor changing processes and CP violation in the 331 model,
Phys. Rev. D 50 (1994) 548 [hep-ph/9401228] [INSPIRE].

[69] P.B. Pal, The Strong CP question in SU(3)C × SU(3)L ×U(1)N models, Phys. Rev. D 52
(1995) 1659 [hep-ph/9411406] [INSPIRE].

[70] H.N. Long, The SU(3)C × SU(3)L × U(1)N model with right handed neutrinos, Phys. Rev. D
53 (1996) 437 [hep-ph/9504274] [INSPIRE].

[71] M.D. Tonasse, The Scalar sector of 3-3-1 models, Phys. Lett. B 381 (1996) 191
[hep-ph/9605230] [INSPIRE].

[72] W.A. Ponce, Y. Giraldo and L.A. Sanchez, Minimal scalar sector of 3-3-1 models without
exotic electric charges, Phys. Rev. D 67 (2003) 075001 [hep-ph/0210026] [INSPIRE].

[73] A.G. Dias and V. Pleitez, Stabilizing the invisible axion in 3-3-1 models, Phys. Rev. D 69
(2004) 077702 [hep-ph/0308037] [INSPIRE].

[74] A.G. Dias, R. Martinez and V. Pleitez, Concerning the Landau pole in 3-3-1 models, Eur.
Phys. J. C 39 (2005) 101 [hep-ph/0407141] [INSPIRE].

– 51 –

https://doi.org/10.1103/PhysRevD.9.1723
https://doi.org/10.1103/PhysRevD.9.1723
https://inspirehep.net/literature/81109
https://doi.org/10.1103/PhysRevD.23.2690
https://doi.org/10.1103/PhysRevD.23.2690
https://inspirehep.net/literature/155140
https://doi.org/10.1103/PhysRevD.21.1424
https://doi.org/10.1103/PhysRevD.21.1424
https://inspirehep.net/literature/142536
https://doi.org/10.1016/0370-2693(81)90145-3
https://inspirehep.net/literature/10444
https://doi.org/10.1103/PhysRevD.78.075001
https://doi.org/10.1103/PhysRevD.78.075001
https://arxiv.org/abs/0804.1356
https://inspirehep.net/literature/783072
https://doi.org/10.1103/PhysRevLett.38.1237
https://inspirehep.net/literature/119162
https://doi.org/10.1103/PhysRevD.17.2410
https://inspirehep.net/literature/121819
https://doi.org/10.1103/PhysRevD.22.738
https://inspirehep.net/literature/153148
https://doi.org/10.1103/PhysRevD.46.410
https://doi.org/10.1103/PhysRevD.46.410
https://arxiv.org/abs/hep-ph/9206242
https://inspirehep.net/literature/31937
https://doi.org/10.1103/PhysRevLett.69.2889
https://doi.org/10.1103/PhysRevLett.69.2889
https://inspirehep.net/literature/335407
https://doi.org/10.1103/PhysRevD.47.4158
https://arxiv.org/abs/hep-ph/9207264
https://inspirehep.net/literature/336311
https://doi.org/10.1103/PhysRevD.47.2918
https://arxiv.org/abs/hep-ph/9212271
https://inspirehep.net/literature/341558
https://doi.org/10.1103/PhysRevD.49.4805
https://arxiv.org/abs/hep-ph/9212284
https://inspirehep.net/literature/342125
https://doi.org/10.1103/PhysRevD.50.548
https://arxiv.org/abs/hep-ph/9401228
https://inspirehep.net/literature/361635
https://doi.org/10.1103/PhysRevD.52.1659
https://doi.org/10.1103/PhysRevD.52.1659
https://arxiv.org/abs/hep-ph/9411406
https://inspirehep.net/literature/380311
https://doi.org/10.1103/PhysRevD.53.437
https://doi.org/10.1103/PhysRevD.53.437
https://arxiv.org/abs/hep-ph/9504274
https://inspirehep.net/literature/394152
https://doi.org/10.1016/0370-2693(96)00481-9
https://arxiv.org/abs/hep-ph/9605230
https://inspirehep.net/literature/418318
https://doi.org/10.1103/PhysRevD.67.075001
https://arxiv.org/abs/hep-ph/0210026
https://inspirehep.net/literature/598594
https://doi.org/10.1103/PhysRevD.69.077702
https://doi.org/10.1103/PhysRevD.69.077702
https://arxiv.org/abs/hep-ph/0308037
https://inspirehep.net/literature/624952
https://doi.org/10.1140/epjc/s2004-02083-0
https://doi.org/10.1140/epjc/s2004-02083-0
https://arxiv.org/abs/hep-ph/0407141
https://inspirehep.net/literature/654322


J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

[75] J.J.G. Ferreira, P.R.D. Pinheiro, C.A.S. Pires and P.S.R. da Silva, The Minimal 3-3-1 model
with only two Higgs triplets, Phys. Rev. D 84 (2011) 095019 [arXiv:1109.0031] [INSPIRE].

[76] P.V. Dong, H.N. Long and H.T. Hung, Question of Peccei-Quinn symmetry and quark masses
in the economical 3-3-1 model, Phys. Rev. D 86 (2012) 033002 [arXiv:1205.5648] [INSPIRE].

[77] A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The Anatomy of Quark Flavour
Observables in 331 Models in the Flavour Precision Era, JHEP 02 (2013) 023
[arXiv:1211.1237] [INSPIRE].

[78] A.C.B. Machado, J.C. Montero and V. Pleitez, Flavor-changing neutral currents in the
minimal 3-3-1 model revisited, Phys. Rev. D 88 (2013) 113002 [arXiv:1305.1921] [INSPIRE].

[79] A.J. Buras, F. De Fazio and J. Girrbach, 331 models facing new b→ sµ+µ− data, JHEP 02
(2014) 112 [arXiv:1311.6729] [INSPIRE].

[80] S.M. Boucenna, S. Morisi and J.W.F. Valle, Radiative neutrino mass in 3-3-1 scheme, Phys.
Rev. D 90 (2014) 013005 [arXiv:1405.2332] [INSPIRE].

[81] S.M. Boucenna, R.M. Fonseca, F. Gonzalez-Canales and J.W.F. Valle, Small neutrino masses
and gauge coupling unification, Phys. Rev. D 91 (2015) 031702 [arXiv:1411.0566] [INSPIRE].

[82] S.M. Boucenna, J.W.F. Valle and A. Vicente, Predicting charged lepton flavor violation from
3-3-1 gauge symmetry, Phys. Rev. D 92 (2015) 053001 [arXiv:1502.07546] [INSPIRE].

[83] F.F. Deppisch et al., 331 Models and Grand Unification: From Minimal SU(5) to Minimal
SU(6), Phys. Lett. B 762 (2016) 432 [arXiv:1608.05334] [INSPIRE].

[84] Q.-H. Cao and D.-M. Zhang, Collider Phenomenology of the 3-3-1 Model, arXiv:1611.09337
[INSPIRE].

[85] T. Li, J. Pei, F. Xu and W. Zhang, SU(3)C × SU(3)L × U(1)X model from SU(6), Phys. Rev.
D 102 (2020) 016004 [arXiv:1911.09551] [INSPIRE].

[86] A.E. Cárcamo Hernández, S. Kovalenko, F.S. Queiroz and Y.S. Villamizar, An extended 3-3-1
model with radiative linear seesaw mechanism, Phys. Lett. B 829 (2022) 137082
[arXiv:2105.01731] [INSPIRE].

[87] A.J. Buras, P. Colangelo, F. De Fazio and F. Loparco, The charm of 331, JHEP 10 (2021)
021 [arXiv:2107.10866] [INSPIRE].

[88] A.E.C. Hernández et al., Scotogenic neutrino masses with gauged matter parity and gauge
coupling unification, JHEP 03 (2022) 034 [arXiv:2109.05029] [INSPIRE].

[89] A. Alves et al., Constraining 3-3-1 models at the LHC and future hadron colliders, Phys. Rev.
D 106 (2022) 055027 [arXiv:2203.02520] [INSPIRE].

[90] A.L. Cherchiglia and O.L.G. Peres, On the viability of a light scalar spectrum for 3-3-1
models, arXiv:2209.12063 [INSPIRE].

[91] J. Maalampi and M. Roos, Physics of Mirror Fermions, Phys. Rept. 186 (1990) 53 [INSPIRE].

[92] S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1
[hep-ph/9709356] [INSPIRE].

[93] J.E. Kim and H.P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett. B 138
(1984) 150 [INSPIRE].

[94] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity,
Commun. Math. Phys. 383 (2021) 1669 [arXiv:1810.05338] [INSPIRE].

– 52 –

https://doi.org/10.1103/PhysRevD.84.095019
https://arxiv.org/abs/1109.0031
https://inspirehep.net/literature/926101
https://doi.org/10.1103/PhysRevD.86.033002
https://arxiv.org/abs/1205.5648
https://inspirehep.net/literature/1116159
https://doi.org/10.1007/JHEP02(2013)023
https://arxiv.org/abs/1211.1237
https://inspirehep.net/literature/1198432
https://doi.org/10.1103/PhysRevD.88.113002
https://arxiv.org/abs/1305.1921
https://inspirehep.net/literature/1232409
https://doi.org/10.1007/JHEP02(2014)112
https://doi.org/10.1007/JHEP02(2014)112
https://arxiv.org/abs/1311.6729
https://inspirehep.net/literature/1266255
https://doi.org/10.1103/PhysRevD.90.013005
https://doi.org/10.1103/PhysRevD.90.013005
https://arxiv.org/abs/1405.2332
https://inspirehep.net/literature/1295506
https://doi.org/10.1103/PhysRevD.91.031702
https://arxiv.org/abs/1411.0566
https://inspirehep.net/literature/1325847
https://doi.org/10.1103/PhysRevD.92.053001
https://arxiv.org/abs/1502.07546
https://inspirehep.net/literature/1346513
https://doi.org/10.1016/j.physletb.2016.10.002
https://arxiv.org/abs/1608.05334
https://inspirehep.net/literature/1482361
https://arxiv.org/abs/1611.09337
https://inspirehep.net/literature/1500522
https://doi.org/10.1103/PhysRevD.102.016004
https://doi.org/10.1103/PhysRevD.102.016004
https://arxiv.org/abs/1911.09551
https://inspirehep.net/literature/1766481
https://doi.org/10.1016/j.physletb.2022.137082
https://arxiv.org/abs/2105.01731
https://inspirehep.net/literature/1862181
https://doi.org/10.1007/JHEP10(2021)021
https://doi.org/10.1007/JHEP10(2021)021
https://arxiv.org/abs/2107.10866
https://inspirehep.net/literature/1891367
https://doi.org/10.1007/JHEP03(2022)034
https://arxiv.org/abs/2109.05029
https://inspirehep.net/literature/1920988
https://doi.org/10.1103/PhysRevD.106.055027
https://doi.org/10.1103/PhysRevD.106.055027
https://arxiv.org/abs/2203.02520
https://inspirehep.net/literature/2047160
https://arxiv.org/abs/2209.12063
https://inspirehep.net/literature/2156691
https://doi.org/10.1016/0370-1573(90)90095-J
https://inspirehep.net/literature/263268
https://doi.org/10.1142/9789812839657_0001
https://arxiv.org/abs/hep-ph/9709356
https://inspirehep.net/literature/448462
https://doi.org/10.1016/0370-2693(84)91890-2
https://doi.org/10.1016/0370-2693(84)91890-2
https://inspirehep.net/literature/193706
https://doi.org/10.1007/s00220-021-04040-y
https://arxiv.org/abs/1810.05338
https://inspirehep.net/literature/1698230


J
H
E
P
0
4
(
2
0
2
3
)
0
5
6

[95] B.A. Dobrescu, The Strong CP problem versus Planck scale physics, Phys. Rev. D 55 (1997)
5826 [hep-ph/9609221] [INSPIRE].

[96] A.J. Buras, J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, Aspects of the Grand Unification
of Strong, Weak and Electromagnetic Interactions, Nucl. Phys. B 135 (1978) 66 [INSPIRE].

[97] Y. Cai et al., From the trees to the forest: a review of radiative neutrino mass models, Front.
in Phys. 5 (2017) 63 [arXiv:1706.08524] [INSPIRE].

[98] ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1 of pp
collision data collected at

√
s = 13TeV with the ATLAS detector, Phys. Lett. B 796 (2019)

68 [arXiv:1903.06248] [INSPIRE].

[99] Y.-N. Mao, Spontaneous CP-violation in the Simplest Little Higgs Model and its Future
Collider Tests: the Scalar Sector, Phys. Rev. D 97 (2018) 075031 [arXiv:1703.10123]
[INSPIRE].

[100] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur.
Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

[101] S.M. Barr and A. Zee, A New Approach to the electron-Muon Mass Ratio, Phys. Rev. D 15
(1977) 2652 [INSPIRE].

[102] S.M. Barr and A. Zee, Calculating the Electron Mass in Terms of Measured Quantities, Phys.
Rev. D 17 (1978) 1854 [INSPIRE].

[103] S. Weinberg, Models of Lepton and Quark Masses, Phys. Rev. D 101 (2020) 035020
[arXiv:2001.06582] [INSPIRE].

[104] A. Crivellin and M. Hoferichter, Hints of lepton flavor universality violations, Science 374
(2021) 1051 [arXiv:2111.12739] [INSPIRE].

– 53 –

https://doi.org/10.1103/PhysRevD.55.5826
https://doi.org/10.1103/PhysRevD.55.5826
https://arxiv.org/abs/hep-ph/9609221
https://inspirehep.net/literature/422862
https://doi.org/10.1016/0550-3213(78)90214-6
https://inspirehep.net/literature/121914
https://doi.org/10.3389/fphy.2017.00063
https://doi.org/10.3389/fphy.2017.00063
https://arxiv.org/abs/1706.08524
https://inspirehep.net/literature/1607799
https://doi.org/10.1016/j.physletb.2019.07.016
https://doi.org/10.1016/j.physletb.2019.07.016
https://arxiv.org/abs/1903.06248
https://inspirehep.net/literature/1725190
https://doi.org/10.1103/PhysRevD.97.075031
https://arxiv.org/abs/1703.10123
https://inspirehep.net/literature/1520009
https://doi.org/10.1140/epjc/s10052-009-1072-5
https://doi.org/10.1140/epjc/s10052-009-1072-5
https://arxiv.org/abs/0901.0002
https://inspirehep.net/literature/810127
https://doi.org/10.1103/PhysRevD.15.2652
https://doi.org/10.1103/PhysRevD.15.2652
https://inspirehep.net/literature/4381
https://doi.org/10.1103/PhysRevD.17.1854
https://doi.org/10.1103/PhysRevD.17.1854
https://inspirehep.net/literature/6132
https://doi.org/10.1103/PhysRevD.101.035020
https://arxiv.org/abs/2001.06582
https://inspirehep.net/literature/1776639
https://doi.org/10.1126/science.abk2450
https://doi.org/10.1126/science.abk2450
https://arxiv.org/abs/2111.12739
https://inspirehep.net/literature/1976778

	Introduction
	Motivation and the fermion sector in SU(7)
	The flavor unification in GUTs
	Possible symmetry breaking patterns
	The fermion content

	Review of the third-generational SU(6) toy model
	The SU(6) model setup and the DRS symmetry
	The Higgs potential and the nu-term

	The Higgs sector and the VEV generations
	The Higgs fields
	The Higgs potential

	The gauge sector
	The SU(4)(W) otimes U(1)(X(0)) gauge bosons
	The SU(3)(W) otimes U(1)(X(1)) gauge bosons
	The SU(2)(W) otimes U(1)(Y) gauge bosons

	The symmetry breaking patterns and Yukawa couplings in the SU(7)
	The G(341) –> G(331) symmetry breaking
	The G(331) –> G(SM) symmetry breaking
	The EWSB

	The SM fermion masses, mixings, and flavor non-universality
	The quark mass spectra and their mixings
	The neutrino masses
	The fermion gauge couplings with the extended weak symmetries and the flavor non-universality
	The SU(4)(W) otimes U(1)(X(0)) gauge couplings
	The SU(3)(W) otimes U(1)(X(1)) gauge couplings
	The electroweak gauge couplings

	The search for the Z(mu') gauge boson

	Discussions
	Conventions, rules of decompositions, and charge quantizations
	Name scheme of the SU(7) fermions
	The Higgs mixing operators in the SU(7) Higgs potential
	General rules
	The d = 3 operators
	The d = 4 operators
	The d = 5 operators
	The d = 6 operators
	The d = 8 operators
	The d = 9 operators
	Other higher-dimensional operators


