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1 Introduction

Soft theorems relate amplitudes with soft emission to the amplitude without the soft particles
through a soft factor [1, 2]. In the case of the single soft photon theorem, a scattering
amplitude An+1 involving m incoming hard particles, n−m outgoing hard particles and a
single soft external photon can be expressed as

An+1 = 〈pm+1 · · · pn|aα(q)S|p1 · · · pm〉
= Sphoton〈pm+1 , · · · , pn|S|p1 , · · · , pm〉 = SphotonAn . (1.1)

In eq. (1.1), S is the S-matrix that relates incoming and outgoing states, p1 , · · · , pn are the
momenta of the hard particles with charges Q1 , · · ·Qn, aα(q) is the soft photon creation
operator in the outgoing state with momentum q and polarization εα and Sphoton is the
soft photon factor which is a function of all the charges, momenta and the soft photon
polarization. The soft factor admits an expansion in soft momentum q, with the leading
pole contribution being the Weinberg soft photon factor [2]

Sphoton
(0) =

n∑
i=m+1

Qi
pi.ε

p.q
−

m∑
i=1

Qi
pi.ε

p.q
. (1.2)

Remarkably, soft theorems have also been recently realized as a symmetry of the S-matrix
along future and past null infinity on asymptotically flat spacetimes [3–8]. More specifically,
there exist soft charges that generate large gauge transformations of asymptotic massless
fields, with the S-matrix satisfying the corresponding large gauge Ward identity [9–18].
Thus soft theorems are equivalent to large gauge Ward identities, with the intepretation of
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soft particles as Goldstone modes. This equivalence is part of a larger web of relations known
as the ‘infrared triangle’ for interacting theories with massless fields on asymptotically
flat spacetimes [8].

It is currently unknown if similar infrared structures of scattering processes are present
on non-asymptotically flat spacetimes, particularly those with a cosmological constant.
While certain generalizations of BMS symmetries on spacetimes with a cosmological constant
are known to result from modified boundary conditions [19–21], their relevance in scattering
processes remain obscure. In large part, this is due to the absence of well defined scattering
amplitudes on these spacetimes. However there exists an approach to derive classical
contributions in soft factors without recourse to an S-matrix which comes from classical
soft theorems [22–27]. To be specific one can write the classical soft photon theorem in four
spacetime dimensions as,

lim
ω→0

εµãµ (ω , ~x) = − i

4πRe
iωRSem (1.3)

where ãµ is the radiative component of the electromagnetic field in frequency space, εµ is
the polarization vector, R is the distance of the soft photon from the scatterer and Sem
denotes the soft photon factor. These theorems provide universal soft factor contributions
from classical scattering processes whenever the soft radiation has a wavelength much larger
than the impact parameter and total energy far less than that of the scatterer. Using
a probe scattering process in the small cosmological constant limit, this approach was
generalized to derive universal soft graviton [28] and soft photon [29] factor contributions
on asymptotically AdS4 spacetimes up to the first subleading order in frequency.

The AdS radius (L) dependent corrections are a consequence of a double scaling limit
required on spacetimes with a cosmological constant. The spectrum of massless fields
on AdS spacetimes is actually discrete and a typical ω → 0 limit does not exist. As
further elaborated in [28, 29], one have to consider a double scaling limit wherein ω → 0
as L → ∞ while leaving ωL = γ constant and large. We have found out in [28, 29] that
retaining all 1/L2 corrections, the soft radiation involve corrections at this order while
the correction in massive probe particle asymptotic trajectory becomes relevant at the
next subleading order (1/L4). This is a consequence of the AdS4 potential considered
perturbatively about flat spacetime up to 1/L2 order, which affects the trajectories of
massless soft particles while preserving the flat spacetime geodesics of massive particles.
This also ensures that the relation in eq. (1.3) still holds at this order. At both leading (ω−1)
and subleading (lnω−1) orders in frequency, there exist AdS radius specific corrections to
the known universal asymptotically flat spacetime soft factor results.1 The corrected soft
factors provide evidence for asymptotic interactions due to AdS potential, that distinguish
between asymptotically flat spacetimes and a flat region in a larger spacetime.

It is well understood that the flat spacetime S-matrix involving the hard particles
can be recovered from CFT correlation functions in the large AdS radius limit [30–36].

1It should also be noted that such corrections can’t be replicated by higher curvature contributions to
General Relativity on asymptotically flat spacetimes, as the corresponding soft factors in this case appear at
subleading order in soft frequency.
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The scattering in this context takes place in a small locally asymptotically flat region,
centrally located within a larger AdS spacetime. In addition, some infrared properties of
asymptotically flat spacetime S-matrices have been recovered in this large AdS radius limit,
including the derivation of BMS symmetries [37] and the soft photon theorem from CFT
Ward identities [38]. Let us summarize how the correspondence works:

• Within the Lorentzian approach Applying the HKLL (Hamilton, Kabat, Lifschytz,
and Lowe) bulk reconstruction method [39], one first constructs bulk AdS operators
from the boundary CFT operators.

• Subsequently, the large AdS radius limit of these suitably constructed operators
provide the corresponding flat spacetime creation and annihilation operators.

In particular for boundary dual U(1) current operators smeared around a small window of
global time, one gets the photon creation and annihilation modes defined on the null infinity
of the flat patch at the center of the AdS spacetime. Hence aspects of the asymptotically
flat spacetime infrared triangle can in principle be derived from CFT correlation functions
on asymptotically AdS spacetimes.

In this paper, we derive the leading 1/γ2 corrected soft photon factor from the U(1)
symmetry Ward identities of the CFT sitting at the boundary of AdS4 spacetimes. The
leading soft photon factor at 1/L2 order was already shown to be equivalent to a perturbed
large gauge Ward identity on the flat spacetime patch in AdS spacetimes [29]. We will follow
the approach in [38] and extend the reconstruction process of [38] to 1/L2 contributions,
which provide 1/γ2 corrections to flat spacetime soft photon factor in double scaling limit.
The general expression for the corrected soft photon modes involve an integration over
angles on the flat spacetime patch and CFT boundary. We show that a leading contribution
from this integral precisely agrees with the 1/γ2 corrected soft photon factor obtained from
classical soft theorems. It is important to note that our analysis do not provide any AdS
radius corrections to the S-matrix involving hard particles.

The organization of our paper is as follows. In the next section, we review essential
features and derivation of the Weinberg soft photon theorem from a large N CFT3 Ward
identity on AdS4 spacetimes following [38]. In section 3, we then consider 1/L2 corrections
to the flat spacetime limit of the CFT Ward identity. We first review the result for 1/γ2

corrections to the flat spacetime soft factors coming from classical soft theorems. We then
proceed to derive the corrected soft photon theorem from the CFT3 Ward identity. We
conclude the paper with some interesting open questions.

2 Soft photon theorem from CFT Ward identities

In this section, we will review the derivation of Weinberg’s soft photon theorem from a
CFT3 Ward identity at the boundary of AdS4 spacetimes closely following [38]. Experts
familiar with notations and other relevant details may skip this part. We first address
certain preliminaries needed for this derivation before turning to the result from the Ward
identity. The AdS4 spacetime metric in global coordinates is

ds2 = L2

cos2(ρ)
[
−dτ2 + dρ2 + sin2(ρ)dΩ2

2

]
, (2.1)
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where the 2-sphere metric dΩ2
2 will be described using complex stereographic coordinates

{z , z̄}. The metric for the asymptotically flat spacetime patch follows from eq. (2.1)
by defining

r

L
= tan(ρ) ; t

L
= τ , (2.2)

and taking L→∞. This patch is centrally located at global time τ = 0.
The Lorentzian analysis in [38] is based on relating Fock states on the asymptotic

boundary of the flat spacetime patch with CFT states on the boundary of the AdS spacetime.
This is achieved through global Cauchy slices that foliate the spacetime, whose L → ∞
limit recovers the asymptotic slices of the flat spacetime patch. In particular, the scattering
process is confined to the flat patch in a region of ε ∼ O(L)−1 around global time τ = 0.
Beyond this region, the bulk fields are asymptotically free and their reconstruction from
boundary operators can be carried out using the HKLL reconstruction. The outgoing
(ingoing) states can be defined on Cauchy slices for τ ∈ {ε , π − ε} (τ ∈ {−π + ε ,−ε})
denoted by Σ+ (Σ−).

We consider bulk gauge field operators Âµ(ρ , τ , z , z̄) defined on early and late time
slices, with the general fall-off conditions

Âµ(ρ , x′) −−−→
ρ→π

2

(cos ρ)1α̂µ(x′) + (cos ρ)0β̂µ(x′) , (2.3)

where x′ = {τ ′ , z′ , z̄′} denotes global boundary coordinates, while α̂µ(x′) and β̂µ(x′) are
primary operators of the CFT that are sources. In the following, we choose ‘magnetic
boundary conditions’ with β̂µ(x′) = 0 and α̂µ(x′) = jµ(x′) being a U(1) conserved current
of conformal dimension ∆ = 2. With these assumptions, the boundary limit of the bulk
gauge field is simply

Âµ(ρ , x′) −−−→
ρ→π

2

(cos ρ)jµ(x′) . (2.4)

The choice in eq. (2.4) will provide us with Weinberg’s soft photon theorem in the
absence of magnetic charges. We further assume the absence of Coulombic fields, with the
conserved current dual to radiative modes. Hence µ = z , z̄ provide the only non-vanishing
current components.

In the L → ∞ limit, bulk radiative fields must also satisfy the mode expansion on
constant time slices of asymptotically flat spacetimes. To this end, we adopt the conventions
of [8] and write the mode expansion as,

Âµ(y) =
∫

d3~q

(2π)3
1

2ωq
∑
λ=±

[
ε(λ)∗
µ â

(λ)
~q eiqy + ε(λ)

µ â
(λ)†
~q e−iqy

]
, (2.5)

where y = {t , ~y} = {t , r , z , z̄} are flat spacetime coordinates, q = {q0 , ~q} is the 4-
momentum of the radiative fields satisfying q2 = 0 with frequency ωq, and ε

(λ)
µ are the

polarization vectors normalized according to ε(+)
µ ε(−)µ = 1. The expression in eq. (2.5) can

be used to derive the creation and annihilation operators

â
(λ)
~q = lim

t→±∞
i

∫
d3~y ε(λ)µe−iq·y

←→
∂0 Âµ(y) , (2.6)

â
(λ)†
~q = lim

t→±∞
−i
∫
d3~y ε(λ)∗µeiq·y

←→
∂0 Âµ(y) . (2.7)
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In eq. (2.6) and eq. (2.7) the outgoing modes follow from t → ∞ while the ingoing
modes are those from t→ −∞. The creation and annihilation modes of the ingoing and
outgoing states satisfy [

â
(λ)
~q , â

(λ′)†
~q ′

]
= δλλ

′(2π)32ωqδ(3)(~q − ~q ′) (2.8)

We can recover soft photon modes from eq. (2.6) and eq. (2.7) in the ωq → 0 limit. The
outgoing positive helicity soft photon mode will result from eq. (2.6), for which we have the
following polarization vector and plane wave expressions

ε(+)z = 1 + zz̄√
2r

, e−iq·y = eiω~qte−i~p.~r = eiω~qt4π
∑
l′,m′

(−i)l′jl′(rω~q)Yl′m′(Ω)Y ∗l′m′(Ωq) . (2.9)

In order to derive flat spacetime soft modes from a CFT, we must also relate the gauge
field appearing in eq. (2.6) and eq. (2.7) with the CFT current at the boundary. This can
be facilitated by using the HKLL prescription [39], with the reconstruction of bulk gauge
fields in global coordinates that satisfy eq. (2.4) taking the form

Âµ(X) =
∫
d3x′

[
KV
µ (X ;x′)εa′b′τ ′ ∇a′j+

b′ +KS
µ (X ;x′)γa′b′∇a′j+

b′

+
(
KV
µ

)∗
(X ;x′)εa′b′τ ′ ∇a′j−b′ +

(
KS
µ

)∗
(X ;x′)γa′b′∇a′j−b′

]
, (2.10)

where x′ = {τ ′ , z′ , z̄′} are boundary coordinates while X = {τ , ρ , z , z̄} is a bulk point in
global AdS4 coordinates, εa′b′c′ and ∇a′ are respectively the Levi-Civita tensor and covariant
derivatives on the boundary, and j±b′ represent current components at the boundary with
the ± signs indicating positive and negative frequency solutions. The explicit form of the
boundary integral is ∫

d3x′ =
∫
T

dτ ′
∫
dΩ′ (2.11)

with the domain of integration T in the τ ′ integral being {−π , 0} for ingoing states and
{0 , π} for outgoing states. Lastly, KV

µ and KS
µ appearing in eq. (2.10) are respectively the

HKLL kernels for ‘vector’ and ‘scalar’ type components of the Maxwell field. For the purely
radiative modes we have the components

KV
z (X ;x′) = 1

π

∑
κ ,l ,m

N V Y ∗lm
(
Ω′
)
∂zYlm (Ω) Ξκl(ρ , τ , τ ′)

∣∣∣
∆=2

(2.12)

KV
z̄ (X ;x′) = − 1

π

∑
κ ,l ,m

N V Y ∗lm
(
Ω′
)
∂z̄Ylm (Ω) Ξκl(ρ , τ , τ ′)

∣∣∣
∆=2

(2.13)

KS
z (X ;x′) = 1

π

∑
κ ,l ,m

N SY ∗lm
(
Ω′
)
∂zYlm (Ω) Ξκl(ρ , τ , τ ′)

∣∣∣
∆=1

(2.14)

KS
z̄ (X ;x′) = 1

π

∑
κ ,l ,m

N SY ∗lm
(
Ω′
)
∂z̄Ylm (Ω) Ξκl(ρ , τ , τ ′)

∣∣∣
∆=1

, (2.15)

with

Ξκl(ρ , τ , τ ′) = eiωκ(τ−τ ′) sinl+1 ρ cos∆−1 ρ 2F1

(
−κ , κ+ ∆ + l ,∆− 1

2
∣∣∣ cos2 ρ

)
, (2.16)
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and κ, l,m are positive integers. Our expressions follow from the free Maxwell field
solutions [40], which we review in appendix A. The scaling dimensions ∆ = 2 and ∆ = 1
are those of the vector and scalar type solutions. The frequency modes of fields in AdS4 are
discrete and related to the scaling dimension in the above solutions by

ωκ = 2κ+ ∆ + l (2.17)

The normalizations N V and N S appearing in eqs. (2.12)–(2.15) are

N V = − 1
4l(l + 1) ; N S = − 1

4l(l + 1)
i

ωκ|∆=1
. (2.18)

This choice is consistent with the normalization of the CFT current in [38] and provides
canonically normalized creation and annihilation operators in the flat spacetime patch.
We can now substitute the L → ∞ limit of eq. (2.10) in eq. (2.6) and eq. (2.7) to find
expressions for the flat spacetime annihilation and creation operators in terms of derivatives
of the boundary current. The evaluation of the L→∞ limit involves substituting for ρ and
τ using eq. (2.2). Consistency with the flat spacetime mode solutions also require that the
discrete frequency modes ωκ in eq. (2.17) scale with L in the flat spacetime limit. This can
be achieved by requiring that modes in L→∞ limit are dominated by large values of κ,
with ωκ ≈ ωL and where ω is the continuous frequency of modes in flat spacetime. In this
way, the sum over κ gets traded for an integral over ω in the expressions eqs. (2.12)–(2.15).
Explicitly we have

2κ = ωκ −∆− l ,
∑
κ

→ 1
2

∫
dωL (2.19)

This procedure leads to a solution Âµ(y), with y the Minkowski coordinates, from
eq. (2.10). The flat spacetime modes â(±)out

~q create photons with positive (+) and negative
(−) helicity in the outgoing state and respectively result from Âout

z (y) and Âout
z̄ (y) in our

conventions for flat spacetime modes. Denoting the corresponding annihilation modes as
â

out(±)
~q , we find that eq. (2.6) gives the result

â
out(−)
~q = 1

4ωq
1 + zq z̄q√

2

∫
d3x′ eiω~qL(π2−τ ′) 1

z̄q − z̄′
Dz′j−z′(x

′) ,

â
out(+)
~q = 1

4ωq
1 + zq z̄q√

2

∫
d3x′ eiω~qL(π2−τ ′) 1

zq − z′
Dz̄′j−z̄′(x

′) (2.20)

The ωq frequency is defined below eq. (2.5).We get the result in eq. (2.20) after integrating
over the general flat spacetime frequency ω.2

The expressions for creation modes in the outgoing states and all modes in the ingoing
states can be similarly derived from the bulk gauge field solution. The association of flat
spacetime modes with current operators at the boundary has also been identified for massless
and massive scalar fields in [38]. For the outgoing modes in eq. (2.20) we see that the
dominant contribution of the phase in the large L limit comes around τ = π

2 . More generally
2There is a delta function for the frequency from integrating over the spherical Bessel functions that

picks the frequency ωq.
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Figure 1. The future (pink) and past (blue) null infinities of the central flat spacetime patch,
I+ and I− respectively, can be identified as the L → ∞ limits of boundary regions Ĩ± around
τ ′ = ±π2 . Massless particles approaching the soft limit on the flat spacetime patch more closely
approximate the τ ′ = ±π2 surfaces. As an example, we have drawn a soft particle trajectory (yellow).
The dashed line up to the boundary indicates the global trajectory outside the patch, but has no
role in mapping the boundaries of AdS to those of the flat spacetime patch. Timelike infinities i±
on the flat spacetime patch are identified with the Euclidean caps ∂M±, while spatial infinity i0 is
identified with τ ∈ {−π2 ,

π
2 }.

for ingoing and outgoing massless fields in the large L limit, the dominant contribution
comes from a O(L)−1 region around τ = ±π

2 . This provides a correspondence between a
small window around τ = ±π

2 , denoted as Ĩ±, and null infinity on the flat spacetime patch
I±. In the case of massive fields in the large L limit, the phase has complex saddles around
τ = ±π

2 ± if(ωp,m) with f a function of the massive particle energy ωp and mass m. This
indicates that i± of the flat spacetime patch can be associated at the AdS4 boundary with
Euclidean caps that are analytic continuations in the global time from ±π

2 . The mapping
between asymptotic regions of the flat spacetime patch and that of the AdS4 boundary is
indicated in figure 1.

A feature of the Maxwell field modes which distinguish them from massless scalar field
modes are the appearance of specific functions of the boundary angular coordinates {z′ , z̄′}.
Denoting the parameter ε(x̂′) (with x̂′ indicating dependence on angles) for the two helicity
choices as

ε(x̂′) = 1
zq − z′

(+ve helicity) , ε(x̂′) = 1
z̄q − z̄′

(−ve helicity) , (2.21)

we can express the ωq → 0 limit of eq. (2.20) as

lim
ωq→0

ωq

√
2

1 + zq z̄q
â

out(−)
~q = 1

4

∫
d3x′ε(x̂′)Dz′j−z′(x

′) ,

lim
ωq→0

ωq

√
2

1 + zq z̄q
â

out(+)
~q = 1

4

∫
d3x′ε(x̂′)Dz̄′j−z̄′(x

′) (2.22)
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The parameters in eq. (2.21) are precisely those that are chosen in the large gauge Ward
identity on asymptotically flat spacetimes to recover the Weinberg soft photon theorem [8].
We note that in taking the soft limit in eq. (2.22), the τ ′ dependent phase drops out.
The soft limit hence has a boundary description on the τ = ±π

2 slices, providing a 2
dimensional realization on the 3 dimensional boundary. We also note that the outgoing
positive (negative) helicity flat spacetime soft photon modes are mapped to Dz̄j−z̄ (Dzj−z )
current derivatives on the AdS4 boundary.

With the above results, we can now derive Weinberg’s soft photon theorem from the
Ward identity of a large N CFT with global U(1) symmetry. The integrated expression for
the Ward identity takes the form

∫
d3x′ α(x′)∂′µ〈0|T{jµ(x′)Φ}|0〉 =

 n∑
i=1

Qiα(x′i)−
m∑
j=1

Qjα(x′j)

 〈0|T{Φ}|0〉 , (2.23)

where T{· · · } refers to time ordering of the operators inside the parenthesis, Φ are a
collection of CFT operators comprising of n operators with charges Qi in the ‘ingoing’
(τ < 0) region and m operators with charges Qj in ‘outgoing’ (τ > 0) region of the boundary,
and α(x′) an arbitrary parameter. Using the relationship between creation/annihilation flat
spacetime modes with operators at the boundary, the correlation function 〈0|T{Φ}|0〉 can be
related with the S-matrix for a corresponding scattering process in the flat spacetime patch.

The following choice for α(x′)

α(x′) = lim
ρ→π

2

∫
d2x̂′′

1
4π

cos2 ρ− cos2 τ

(sin τ − sin ρ x̂′ · x̂′′)2 ε(x̂
′′) , (2.24)

recovers the soft theorem, as it has the desired property of α(x′)|Ĩ± = ε(x̂′). Hence we
recover the gauge parameters as in eq. (2.21) which have no dependence on τ ′. The left
hand side of Weinberg’s soft theorem, involving the insertion of the soft photon mode,
follows from the left hand side of eq. (2.23).∫
d3x′α(x′)∂′µ〈0|T{jµ(x′)Φ}|0〉=

∫
Ĩ±

d3x′ε(x̂′)
[
Dz′〈0|T{jz′(x′)Φ}|0〉+Dz̄′〈0|T{jz̄′(x′)Φ}|0〉

]
(2.25)

The expression in eq. (2.25) can be directly associated with the soft photon insertion using
eq. (2.22) for the outgoing state. In summing over all positive and negative frequency
contributions, only negative frequency terms contribute in the out-state. Hence the terms
in eq. (2.22) account for the insertion of a soft photon in the out-state of a given scattering
process involving massless particles whose S-matrix results from 〈0|T{Φ}|0〉. The procedure
can be carried out for soft photons inserted in the in-state, with contributions in this case
coming from positive frequency modes and thus creation operators. However, by invoking
the equivalence of matrix elements involving in-state and out-state soft photons insertions by
CPT invariance, the contributions from the in-state can be readily related to the out-state
soft photon insertions.

The Weinberg soft photon theorem is recovered on considering eq. (2.24) in the right
hand side of eq. (2.23). The derivation of the soft photon theorem from a CFT Ward
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identity relied centrally on ε(x̂′) as in eq. (2.21), which was derived from the flat limit of
HKLL reconstructed bulk gauge fields. We conclude this section with an observation of
soft factors being encoded in eq. (2.20) and consider only the outgoing positive helicity
mode for simplicity. The flat spacetime parametrization for null particles can be applied to
particles on the flat spacetime patch and AdS4 boundary, as these only depend on angles.
Assuming a ‘hard’ massless particle with energy E′ and unit charge parametrized in terms
of angular coordinates at the AdS4 boundary, and a soft photon defined in terms of angular
coordinates of the flat spacetime patch, we have

pµ = E′

1 + z′z̄′
(
1 + z′z̄′ , z′ + z̄′ ,−i(z′ − z̄′) , 1− z′z̄′

)
,

qµ = ωq
1 + zq z̄q

(1 + zq z̄q , zq + z̄q ,−i(zq − z̄q) , 1− zq z̄q)

εµ+ = 1√
2

(z̄q , 1 ,−i ,−z̄q) . (2.26)

We then find that eq. (2.20) is equivalent to the following expression

â
out(+)
~q (ωq q̂) = 1

4

∫
d3x′ eiω~qL(π2−τ ′) p.ε+

p.q
Dz̄′j−z̄′(x

′) , (2.27)

which involves the soft factor p.ε+
p.q for a positive helicity soft photon. Similar expressions can

be found for all other incoming and outgoing modes. This establishes that flat spacetime
gauge field modes derived in terms of the boundary current contain information on the soft
photon factor in soft theorems and the equivalent gauge parameter needed to derive the
corresponding large gauge Ward identity.

3 1/L2 corrections to the soft photon theorem from CFT ward identities

We will now address 1/L2 corrections of the soft photon theorem on AdS4 spacetimes. In
the following subsection, we first briefly recall the soft factor correction derived previously
using classical soft theorems on AdS4 black hole spacetimes [28, 29]. We will then proceed
to generalize the above bulk reconstruction analysis up to 1/L2 corrections. The resulting
expression for a perturbed soft photon mode in terms of a current can also be substituted
in the Ward identity. In the last subsection, we establish that the corrected soft photon
theorem resulting from the CFT3 Ward identity agrees with the classical soft theorem result
after expanding about a leading saddle.

3.1 1/L2 corrected soft photon theorem from classical soft theorems

The formal derivation of soft factorization in scattering processes on asymptotically AdS
spacetimes is obstructed by the absence of a globally defined S-matrix. This motivated
our derivation of soft factors using classical soft theorems. These theorems state that the
classical limit of soft photon and graviton factors may be derived from the zero frequency
limit of certain classical scattering processes. More significantly, the primary requirement is
that of gauge invariant observables in the case of electromagnetically mediated scattering
and diffeomorphism invariance in gravitational scattering, without specifc reference to the

– 9 –



J
H
E
P
0
4
(
2
0
2
3
)
0
5
5

background geometry. This allows for the derivation of soft factors on spacetimes with a
cosmological constant [28, 29, 41]. The classical scattering processes are broadly constrained
to be such that the energy of the scatterer does not significantly change during the scattering
process (∆Escatterer � Escatterer) and the wavelength of the emitted radiation should be
greater than the large impact parameter (λradiation � b).

Among the scattering processes that satisfy these criteria are probe scattering processes
on curved spacetimes. We accordingly considered the scattering of a probe particle on
asymptotically AdS black hole spacetimes in [28, 29]. The existence of a largest length scale
in the classical scattering, namely the AdS radius L, introduces two additional requirements
in applying classical soft theorems. The first concerns the radial distance of the probe
from the scatterer, which we denote by r. With the black hole radius GM , we modify
the large impact parameter requirement to be GM � r � L. Hence the classical process
is confined to a region deep in the bulk of asymptotically AdS spacetimes. The second
requirement comes in the derivation of the soft limit. Since r cannot take on asymptotically
large values, the scattering process takes place within a finite interval of time. In addition,
the frequency of massless fields on AdS spacetimes is discrete, formally preventing a zero
frequency limit. We hence implement a double scaling limit, wherein ω → 0 as L → ∞,
while keeping ωL = γ constant and large.3

We further note that in the classical soft photon theorem derivation, we never encoun-
tered the discrete frequency of AdS. The derivation is on an asymptotically flat spacetime
perturbed by small cosmological constant corrections. Hence ω and L were given and we
defined a suitable double scaling limit where their product is a large constant.4

With these assumptions, the equations for the radiative fields were derived retaining
all 1/L2 corrections. The double scaling limit applied to the radiative fields identified
1/γ2 corrections to soft factors on asymptotically flat spacetimes. More specifically, the
leading (ω−1) and subleading (lnω−1) soft photon and soft graviton factors were derived,
each with their respective 1

γ2 corrections. Furthermore, the 1/L2 corrections of the probe
particle trajectory, while present, lead to contributions at subleading order in frequency.
This suggests that 1/γ2 corrected soft factors would be those for an S-matrix on an
asymptotically flat spacetime patch within a global AdS spacetime.

In the following, we restrict ourselves to the leading soft photon factor. The inferred
form of the leading soft factor for a general process involving n hard particles with momenta
pµ(a) and charges Q(a), and a single soft photon with momentum qµ and polarization εµ
takes the form

S(0)
em = S(0);f

em + S(0);L
em

S(0);f
em =

n∑
a=1

Q(a)η(a)
εµp

µ
(a)

p(a).q
, (3.1)

S(0);L
em = ω2

4γ2

n∑
a=1

Q(a)η(a)
εµp

µ
(a)

p(a).q

~p2
(a)(

p(a).q
)2 , (3.2)

3As compared to the last section, γ = ωL ≈ ωκ, but their context is different.
4In the AdS derivation, the discrete mode can recover continuous flat spacetime modes in the large L

limit by double scaling. As noted in the previous section, here we have ωκ and L given, while ω is defined to
be the continuous flat spacetime frequency.
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where η(a) = 1(−1) for outgoing (ingoing) hard particles. All indices in the above expressions
are contracted with the flat spacetime metric.

As the leading soft factor is universal and holds beyond tree level, we can consider
the above expression at the level of the soft photon theorem in a flat spacetime scattering
process

lim
ω→0

ω
(
〈out|âout(+)(ωx̂)S|in〉+ nL〈out|âout; L (+)(ωx̂)S|in〉

)
=
(
S(0);f

em + S(0);L
em

)
〈out|S|in〉

(3.3)

with S the S-matrix of the scattering process and nL is an overall constant. The operators
âout(+) and âout; L (+) are those for positive helicity soft photon modes responsible for the
corresponding soft factors S(0);f

em and S
(0);L
em . Due to the absence of 1/L2 corrections of

the probe particle trajectory in the derivation using classical soft theorems, we assume
the soft factors are infrared divergent contributions to the uncorrected S-matrix on the
asymptotically flat spacetime patch. This implies that âout(+) is the usual soft photon mode
leading to the Weinberg soft factor, while âout; L (+) can be interpreted as a perturbed mode
that provides the 1/L2 corrected soft factor S(0);L

em . This interpretation is supported by the
equivalence of the 1/L2 corrected soft photon theorem with a perturbed large gauge Ward
identity.

We will now evaluate eq. (3.3) for the massless scattering process of interest in our
paper. Assuming the parametrization of hard particles and a single soft photon as in
eq. (2.26), we find the following correction to the soft photon theorem

lim
ωq→0

√
2ωqnL

(1 + zq z̄q)
〈out|âout; L (+)

~q (ωqx̂)S|in〉

= 1
16γ2

[ ∑
k=out

(1 + z′z̄′)2 (1 + zq z̄q)2

(z̄q − z̄′)2(zq − z′)3 Qk −
∑
k=in

(1 + z′z̄′)2 (1 + zq z̄q)2

(z̄q − z̄′)2(zq − z′)3 Qk

]
〈out|S|in〉

(3.4)

The above result is the 1/L2 corrected soft photon theorem inferred from a purely
classical scattering process in the bulk of AdS4 spacetimes, up to an overall constant nL
that cannot be fixed by classical soft theorems.

3.2 1/L2 corrected soft photon theorem from a CFT3 Ward identity

We will now consider the approach in section 2 to derive 1/L2 corrections to the known
soft photon theorem for a S-matrix defined on the asymptotically flat spacetime patch in
AdS4. This implies that we do not consider 1/L2 corrections to the L → ∞ limit of the
global AdS4 metric in eq. (2.1), nor the time ordered collection of fields Φ appearing in the
Ward identity eq. (2.23). In this way, the ‘hard process’ remains one of the S-matrix on an
asymptotically flat spacetime patch.5 However, with insights from the classical soft photon

5On expanding eq. (2.2) we find ds2 = ds2
flat − r2

L2

(
dt2 + dr2)+O(L−4), with ds2

flat the metric of the
flat spacetime patch. A general scattering process on the corrected background will not be governed by a
S-matrix. One possible way to define a S-matrix with such background corrections is to require it satisfy the
soft graviton theorem in a process containing soft graviton modes with subleading AdS radius corrections.
This analysis lies outside the scope of the present article.
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theorem, we expect that a scattering process on a flat spacetime patch embedded in an
AdS4 spacetime admits 1/L2 corrections to the soft photon theorem. We systematically
derive the corrected soft photon mode by expanding the integrand of eq. (2.10) up to 1/L2

corrections, assuming that the current remains fixed by the condition in eq. (2.4). The
substitution of the bulk gauge field up to 1/L2 corrections in eq. (2.6) and eq. (2.7) then
recovers soft photon modes as in eq. (2.22) along with its perturbation responsible for 1/L2

corrections to the soft photon factor.
From eqs. (2.12)–(2.15), we see that the 1/L2 corrections to the integrand in eq. (2.10)

can come from the function Ξκl(ρ , τ , τ ′) and possibly modified normalizations Ñ V and
Ñ S in the kernels. We first address the corrections coming from Ξκl(ρ , τ , τ ′) as defined in
eq. (2.16). As we continue to work in the nearly flat spacetime limit by considering L large,
the relation between τ and t remains the same as in eq. (2.1). We hence consider the same
replacement of discrete frequencies ωκ in AdS by ωL around large values of κ (as in the
L→∞ limit).6

We substitute ωκ from eq. (2.19) as well as τ and ρ from eq. (2.1) in eq. (2.16), and
expand up to 1/L2 terms. The technical details behind this expansion are provided in
appendix B. The final result in the vector and scalar type expressions are

Ξκl(ρ,τ ,τ ′)
∣∣∣
∆=2

=−(±i)−leiωte
−iωL

(
τ ′∓

π

2

)
r

L

{
jl(rω)

(
1+ 1

2ω2L2

(
l(l+1)

2 − (rω)2

3

))

− 1
2ω2L2

√
π

2rω

(
l(l+1)

2 +(rω)2
)

2rω
3 J ′

l+
1
2

(rω)
}

+O
( 1
ω3L3

)
, (3.5)

Ξκl(ρ,τ ,τ ′)
∣∣∣
∆=1

=−(±i)−l+1eiωte
−iωL

(
τ ′∓

π

2

)
(ωL) r

L

{
jl(rω)

(
1+ 1

2ω2L2

(
− l(l+1)

2 − (rω)2

3

))

− 1
2ω2L2

√
π

2rω

(
l(l+1)

2 +(rω)2
)

2rω
3 J ′

l+
1
2

(rω)
}

+O
( 1
ω3L3

)
, (3.6)

where Jk(v) are Bessel functions of the first kind of order k and argument v, while jl(v) are
spherical Bessel functions defined as

jl(v) =
√
π

2vJl+ 1
2
(v) . (3.7)

The primes on Bessel functions in eq. (3.5) and eq. (3.6) denote derivatives with respect to
the argument.

The need for 1/L2 corrections to the normalizations in eq. (2.18) comes from requiring
that perturbed soft modes of positive (negative) helicity continue being related to Dz̄j−z̄
(Dzj−z ) current derivatives on the AdS4 boundary, as discussed below eq. (2.22). If we
continue to use the normalizations in eq. (2.18), we in fact get the opposite identification.
As discussed in the previous section, the individual flat spacetime soft modes are further
associated with the gauge parameter and soft factors of the same helicity in the boundary
integrated expression over the derivatives of the current. We take this relationship between

6This approximation in the large L limit is consistent with the double scaling limit ω → 0 as L→∞ with
ωL = γ a large constant used in the derivation of 1/γ2 soft factor corrections from classical soft theorems.

– 12 –



J
H
E
P
0
4
(
2
0
2
3
)
0
5
5

modes and current components to be a constraint respected under perturbations. Up to a
common shift term proportional to 1

ω2L2 in both N V and N S , this restricts the possible
modifications of the corrected normalizations Ñ V and Ñ S to be either of two possibilities

Ñ V = N V ; Ñ S = N S
(

1 + l(l + 1)
2ω2L2

)
, (3.8)

Ñ V = N V
(

1− l(l + 1)
2ω2L2

)
; Ñ S = N S . (3.9)

The soft factor results we would get from these normalizations agree up to a sign. We
choose eq. (3.8) in the following. We stress that the modified normalization is not motivated
to satisfy a known normalization or inner product relation. Such a criteria does not exist
for the perturbed modes we seek to derive about flat spacetimes. Rather, we infer this
correction purely from requiring the consistency between helicity components in bulk flat
spacetime modes and boundary currents is respected to 1/L2 corrections.

We hence find the expressions

Ñ V Ξκl(ρ,τ ,τ ′)
∣∣∣
∆=2

= (±i)−l
4l(l+1)e

iωte−iωL(τ ′∓π2 ) r
L

{
jl(rω)

(
1+ 1

2ω2L2

(
l(l+1)

2 − (rω)2

3

))

− 1
2ω2L2

√
π

2rω

(
l(l+1)

2 +(rω)2
) 2rω

3 J ′
l+ 1

2
(rω)

}
+O

( 1
ω3L3

)
,

(3.10)

Ñ SΞκl(ρ,τ ,τ ′)
∣∣∣
∆=1

=− (±i)−l
4l(l+1)e

iωte−iωL(τ ′∓π2 ) r
L

{
jl(rω)

(
1+ 1

2ω2L2

(
l(l+1)

2 − (rω)2

3

))

− 1
2ω2L2

√
π

2rω

(
l(l+1)

2 +(rω)2
) 2rω

3 J ′
l+ 1

2
(rω)

}
+O

( 1
ω3L3

)
,

(3.11)

which can be susbtituted in eqs. (2.12)–(2.15) to find any 1/L2 corrected bulk gauge field
component in either the ingoing τ < 0 or outgoing τ > 0 states. In the following, we confine
ourselves to the derivation of the perturbed mode that creates a positive helicity soft photon
in the outgoing state. This mode is derived from the Âout

z (y) expression in the large L limit,
that takes the form

Âout
z (y) = Âout; f

z (y) + Âout;L
z (y) + Âout; sub

z (y) , (3.12)

with y the coordinates on the flat spacetime patch. The Âout; f
z (y), Âout; L

z (y) and Âout; sub
z (y)

respectively denote the flat spacetime, leading 1/L2 and subleading contributions,
with expressions

Âout; f
z (y) = 1

4π

π∫
0

dτ ′
∫
dΩ′

∫
dω r jl(rω)

∑
l,m

Y ∗lm (Ω′)
−l(l + 1)∂zYlm (Ω) (i)−leiωte−iωL(τ ′−π2 )Dz̄′j+

z̄′

+
∑
l,m

Ylm (Ω′)
−l(l + 1)∂zY

∗
lm (Ω) (−i)−le−iωteiωL(τ ′−π2 )Dz̄′j−z̄′

 (3.13)
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Âout; L
z (y) = 1

16π

π∫
0

dτ ′
∫
dΩ′

∫
dω

r

ω2L2 jl(rω)l(l + 1)

∑
l,m

Y ∗lm (Ω′)
−l(l + 1)∂zYlm (Ω) (i)−leiωte−iωL(τ ′−π2 )Dz̄′j+

z̄′

+
∑
l,m

Ylm (Ω′)
−l(l + 1)∂zY

∗
lm (Ω) (−i)−le−iωteiωL(τ ′−π2 )Dz̄′j−z̄′

 (3.14)

Âout; sub
z (y) =− 1

24π

π∫
0

dτ ′
∫
dΩ′

∫
dω

r

ω2L2

( l(l+1)
2 +(rω)2

)√
2πrωJ ′

l+
1
2

(rω)+(rω)2jl(rω)


∑
l,m

Y ∗lm (Ω′)
−l(l+1)∂zYlm (Ω)(i)−leiωte

−iωL
(
τ ′−

π

2

)
Dz̄′j+

z̄′

+
∑
l,m

Ylm (Ω′)
−l(l+1)∂zY

∗
lm (Ω)(−i)−le−iωte

iωL

(
τ ′−

π

2

)
Dz̄′j−z̄′

+O
( 1
ω3L3

)
(3.15)

On substituting eq. (3.12) in eq. (2.6) we recover corresponding outgoing positive helicity
gauge field modes in a flat spacetime scattering process. The mode corresponding to the
Âout; f
z (y) contribution is the same as in eq. (2.20) and provides the mode that creates an

outgoing photon, whose soft limit eq. (2.22) recovers the Weinberg soft photon theorem
through the U(1) CFT3 Ward identity as reviewed in the previous section.

On replacing the bulk field contribution Âout; L
z (y) of eq. (3.14) in eq. (2.6), we find a

perturbed mode in flat spacetime that we denote by âout; L (+)
~q . This mode is perturbative

and it involves corrections in terms of the dimensionless parameter 1/γ2 = 1/(ωqL)2. The
derivation of this mode is given in appendix C with the result

â
out; L (+)
~q = 1 + zq z̄q√

2ωq
1

32πγ2

π∫
0

dτ ′
∫
dΩ′

∫
dΩw

[
(1 + z′z̄′)2 (1 + zwz̄w)2

(z̄′ − z̄w)2 (zq − zw)3

]
Dz̄′j−z̄′e

iωqL(τ ′−π2 )

(3.16)
In repeating the above procedure for other ingoing and outgoing bulk field modes, we

can likewise find the corresponding perturbed creation and annihilation operators on the flat
spacetime patch. For instance, from the expression of Âout

z̄ (y), we can find the perturbed
negative helicity outgoing mode

â
out; L (−)
~q = 1 + zq z̄q√

2ωq
1

32πγ2

π∫
0

dτ ′
∫
dΩ′

∫
dΩw

[
(1 + z′z̄′)2 (1 + zwz̄w)2

(z′ − zw)2 (z̄q − z̄w)3

]
Dz′j−z′e

iωqL(τ ′−π2 )

(3.17)
Apart from the inclusion of an overall factor involving 1/γ2 in these corrected modes,

we draw attention to the additional integral over intermediate angles {w , w̄} in eq. (3.16)
that is absent in the flat spacetime result in eq. (2.20). The appearance of intermediate
angular integrals will generically be a property to all higher powers in 1/L2, as these terms
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involve higher order derivatives of the spherical harmonics. Such terms can be expressed in
terms of derivatives acting on products of Green’s functions on the 2-sphere, with additional
angular integrals as in eq. (3.16). The recovery of the 1/L2 corrected soft photon theorem
in eq. (3.4) from eq. (3.16) will be considered in the following subsection.

Lastly, the bulk field contribution in eq. (3.15) (apart from the O
(

1
ω3L3

)
terms ignored

in our analysis) contain terms that are subleading in frequency. More specifically, they
provide 1/γ2 corrected terms with higher order ωq contributions to the leading ω−1

q soft
factor in eq. (3.16). Hence the total contribution from eq. (3.15) is subleading in frequency
to the leading 1/L2 corrected soft photon theorem.

3.3 Recovering the classical soft photon theorem result

In this section we recover the soft photon factor obtained from classical soft theorem in [29].
The perturbed soft photon modes can be derived by taking the soft limit, namely ωq → 0.
Taking this limit in eq. (3.16) and eq. (3.17), we find the following soft operator mode
expressions in terms of the CFT3 current

lim
ωq→0

ωq

√
2

1 + zq z̄q
â

out; L (+)
~q = 1

4

∫
d3x′εL(x̂′)Dz̄′j−z̄′(x

′)

lim
ωq→0

ωq

√
2

1 + zq z̄q
â

out; L (−)
~q = 1

4

∫
d3x′εL(x̂′)Dz′j−z′(x

′) (3.18)

with the gauge parameter for the positive and negative helicity cases now defined as

εL(x̂′) = 1
8πγ2

∫
dΩw

[
(1 + z′z̄′)2 (1 + zwz̄w)2

(z̄′ − z̄w)2 (zq − zw)3

]
(+ve helicity) ,

εL(x̂′) = 1
8πγ2

∫
dΩw

[
(1 + z′z̄′)2 (1 + zwz̄w)2

(z′ − zw)2 (z̄q − z̄w)3

]
(−ve helicity) . (3.19)

In the above expressions, the gauge parameter involves an integration over intermediate
angles and hence does not provide the result derived from classical soft theorems in eq. (3.4).
If we were to evaluate the contour integral with higher order poles located at zq and z̄′,
we would find that eq. (3.16) involves a delta function relating zq with z′, which violates
our assumption of bulk modes being derived from a fixed current on the AdS4 boundary.
Thus we will need to proceed differently to extract a gauge parameter expression with no
dependence on intermediate angular coordinates just as in the classical soft photon theorem.

Before addressing the above point in more detail, we provide the expression for the
perturbed flat spacetime soft theorem from the CFT3 Ward identity. We follow the
treatment in section 2 with α(x′) in eq. (2.24) now defined in terms of εL(x̂′′). Noting
that the map between correlation functions of primary operators and S-matrix elements
in the L→∞ limit is not affected by our analysis, we find that the CFT3 Ward identity
provides the following 1/γ2 corrected soft photon theorem due to 1/L2 corrections to the
soft photon mode

lim
ωq→0

√
2ωq

(1 + zq z̄q)
〈out|âout; L (+)

~q (ωqx̂)S|in〉 =
[ ∑
k=out

εL(x′)Qk −
∑
k=in

εL(x′)Qk
]
〈out|S|in〉 ,

(3.20)
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where we have made use of the CPT invariance of matrix elements in the in-state and
out-state to arrive at the result in eq. (3.20).

In order to recover the classical soft theorem result, we note a difference between the
large L limit in our present analysis and those for the classical soft theorem that involved
isotropic coordinates. The large L limit leads to the τ and ρ coordinates being scaled down
to the locally flat spacetime patch with respective coordinates t and r following eq. (2.2).
However, angular separations between points on the AdS4 boundary and the flat spacetime
patch are not necessarily small as would be the case in isotropic coordinates. We remedy
this by considering the distance |zq − z′| ≈ ε̃ as the smallest regulated length scale, with
{zw , z̄w} separated from either {zq , z̄q} or {z′ , z̄′} with the expansion

zw = zq + δeiθ , zw = z′ + δeiθ . (3.21)

We will not particularly distinguish the modulus δ and phase θ in the two expansions, since
{zq , z̄q} and {z′ , z̄′} are considered close to one another.

Before proceeding, we make a few comments on this approximation. On the one hand,
we can consider it as a means of regulating the delta function answer that would result
from integrating over {zw , z̄w} in eq. (3.19). Another point about the approximation
is that it brings us on similar footing as the choice of isotropic coordinates used in the
derivation of the classical soft theorem. Lastly, by considering an expansion with |zq − z′|
taken to be the smallest distance, we would expect to find a leading contribution to the
gauge parameter that agrees with the classical soft photon theorem result and a remainder
considered as corrections. This is because the soft photon factor should have the right
divergence behaviour in the soft and collinear limits [8]. The soft limit follows from ωq → 0,
while the collinear limit involves z′ − zq → 0 and z̄′ − z̄q → 0 (where {z′ , z̄′} and {zq , z̄q}
denote the angular coordinates of the hard particles and soft photon respectively). By
allowing {z′ , z̄′} and {zq , z̄q} to be separated by a cut-off, with the expansion of zw as
given in eq. (3.21), we can recover the collinear divergence property that is absent in the
gauge parameters in eq. (3.19).

In considering eq. (3.21) with |zq − z′| as the smallest distance, it follows that the
integrand of the positive helicity gauge parameter in eq. (3.19) has the leading contribution

(1 + z′z̄′)2 (1 + zwz̄w)2

(z̄′ − z̄w)2 (zq − zw)3 = (1 + zq z̄q)2(1 + z′z̄′)2

(z̄q − z̄′)2(zq − z′)3 [1 +O(δ)] . (3.22)

We can formally integrate eq. (3.22) over {zw , z̄w}. Denoting the integration over the
O(δ) contributions as “corrections”, we find the following result on substituting eq. (3.22)
in eq. (3.19) for the positive helicity gauge parameter

εL(x̂′) = 1
2γ2

(1 + zq z̄q)2(1 + z′z̄′)2

(z̄q − z̄′)2(zq − z′)3 + corrections . (3.23)

We now see that the leading contribution to the gauge parameter in eq. (3.23) has the right
collinear divergence property when z′ − zq → 0 and z̄′ − z̄q → 0. Hence the 1/L2 corrected
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soft photon mode in eq. (3.20) takes the form

lim
ωq→0

√
2ωq

(1 + zq z̄q)
〈out|âout; L (+)

~q (ωqx̂)S|in〉

= 1
2γ2

[ ∑
k=out

(1 + z′z̄′)2 (1 + zq z̄q)2

(z̄q − z̄′)2(zq − z′)3 Qk −
∑
k=in

(1 + z′z̄′)2 (1 + zq z̄q)2

(z̄q − z̄′)2(zq − z′)3 Qk

]
〈out|S|in〉

+ corrections (3.24)

We find that the leading contribution of eq. (3.24) agrees with eq. (3.4) on choosing
nL = 1

8 . We recall that while classical soft theorems recover the 1/L2 corrected soft photon
factor, there remained an overall factor of nL in the normalization of the perturbed soft
photon mode. The derivation from AdS/CFT provides a resolution of this ambiguity.

The nature of the corrections in eq. (3.24) in the context of classical soft theorems
remain to be better understood. It is clear that the integration over intermediate angles can
also be interpreted as a sum over certain particles parametrized by the angular coordinates
{zw , z̄w}. In this way, while these contributions are present in the AdS/CFT derivation of
the 1/L2 corrected soft photon mode, they might correspond to excitations in the context
of classical soft theorems.

4 Discussion

In this paper, we have studied the effect of a small negative cosmological constant on the
soft photon factor for scattering in a flat spacetime region centrally located within global
AdS. The main result of our paper is the derivation of 1/L2 corrected soft photon factor
observed at the null infinity of the flat region from a large N boundary CFT3 Ward identity.
This derivation for modes in the flat patch made use of bulk gauge fields reconstructed
from a U(1) boundary current via the HKLL procedure. We further noted that this result
from a CFT3 Ward identity, in large AdS radius limit, recovers our previous result for soft
photon factor derived from the classical soft photon theorem. Our results hence provide
evidence for universal ‘subleading in AdS radius’ corrections to soft theorems satisfied by a
S-matrix on asymptotically flat spacetimes within a larger AdS spacetime. We note that
the status of a general scattering process to 1/L2 and higher orders is still an open problem.
Our result only addresses infrared properties of the S-matrix that arise from the L→∞
limit of the background spacetime and double scaling limit of bulk fields.

One aspect of the corrected soft photon mode in eq. (3.16) which distinguishes it
from the flat spacetime mode in eq. (2.20) is the dependence on intermediate angles. We
believe this feature holds to higher orders of AdS radius contributions as well. Through
our analysis, we have noted that the HKLL kernels to order n generically appear to have
terms with an order 2n polynomial of the angular momentum mode l. Such terms can
be expressed in terms of derivatives on the spherical harmonics with the consequence of
additional Green’s functions integrated over intermediate angles. Hence the inclusion of
intermediate angles at 1/L2 appears to be a property that holds to higher orders in the
expansion. On asymptotically flat spacetimes, the Weinberg soft photon factor is the leading
infrared divergence coming from real soft photons, which cancel out the infrared divergences
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coming from photon loop contributions to provide an IR finite scattering process. The
situation on AdS spacetimes is most likely different, as the AdS radius L is known to be
a natural infrared regulator [35, 42] providing an exponential decay for massless particles.
It is thus tempting to conjecture that the resummation of 1/ωnLn corrections to the soft
factor (for n > 2) leads to emitted massless particles being infrared finite. This remains a
topic to explore in the future.

We also noted in section 3.3 that the agreement of this result with the classical soft
photon theorem results from expanding about a leading saddle independent of intermediate
angles. One way to interpret the integration over intermediate angles {zw , z̄w} is that
they correspond to additional particles whose momenta are parametrized in terms of these
coordinates. We can thus conclude that the classical soft theorem is recovered in a limit
that ignores the contributions from these additional particles. While our analysis derived
the 1/L2 corrected soft factor resulting from inserting a soft photon to a S-matrix in the
flat spacetime patch, it will be important to consider the factorization in 1/L2 corrected
scattering amplitudes such as those recently derived in [43, 44]. Given the universality
of the leading soft factor, including 1/L2 corrections, this should be derivable for these
amplitudes as well.
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A Solution of Maxwell’s equations in AdS4

We will be interested in solutions of Maxwell’s equations in the absence of sources

∇µFµν = 0 , (A.1)

where Fµν = ∇µAν −∇νAµ with Aµ the bulk gauge field, ∇µ the covariant derivative with
respect to the background. We will follow the treatment by Wald and Ishibashi [40] in
deriving the classical solutions. The general metric

ds2 = gµνdx
µdxν = habdy

adyb + g̃ijdz
idzj (A.2)

can be expressed in the global form of eq. (2.1) by choosing

hab = L2

cos2 ρ
ηab

g̃ijdz
idzj = L2

cos2 ρ
sin2 ρ

4
(1 + zz̄)2dzdz̄ = 2L2 tan2 ργzz̄dzdz̄ (A.3)
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We carry out a vector harmonic decomposition of the Maxwell field into the following
independent components

AVi dxi =
∑
l,m

Ψlm(τ , ρ)εij∂jYlmdzi , (A.4)

ASµdxµ =
∑
l,m

[
Alma (τ , ρ)Ylmdya +Alm(τ , ρ)∂iYlmdzi

]
. (A.5)

The superscripts V and S respectively refer to vector and scalar type components. The
scaling dimensions of the two components differ: ∆ = 2 in the vector case and ∆ = 1 in the
scalar case.

From Maxwell’s equations eq. (A.1) we find that the vector type component in eq. (A.4)
manifestly satisfies

�Ψlm − l(l + 1)
sin2 ρ

Ψlm = 0 (A.6)

The scalar type component can also be shown to satisfy a similar equation by defining
the field ‘φlm’ constructed from Alma and Alm in the following way

∂aA
lm −Alma = εab∂

bφlm(τ , ρ) . (A.7)

On substituting the scalar type expression eq. (A.5) in eq. (A.1), we find

�φlm − l(l + 1)
sin2 ρ

φlm = 0 (A.8)

The solutions we need are those that satisfy the HKLL asymptotic matching condition

jµ = lim
ρ→π

2

cos−1 ρAµ (A.9)

Thus for purely radiative solutions derived in the absence of any ja current component
(no Coulombic fields), the contribution from Alma in eq. (A.7) drops out of the scalar type
solution. The resulting equation eq. (A.8) simplifies to

�Alm − l(l + 1)
sin2 ρ

Alm = 0 (A.10)

which is the same as the vector type equation eq. (A.6). We will henceforth denote Alm
in eq. (A.10) and Ψlm in eq. (A.6) commonly by Φlm, with the solutions distinguished by
different values of ∆. The solution of the radial equation eq. (A.6) and eq. (A.10) is

Φlm(τ , ρ) = e±iωκτΦlm(ρ) (A.11)

with Φlm(ρ) ∼ sinl+1 ρ cos∆−1 ρ 2F1

(
−κ , κ+ ∆ + l ,∆− 1

2
∣∣∣ cos2 ρ

)
(A.12)

where κ = ωκ −∆− l
2 (A.13)

The ∼ in eq. (A.12) indicates an as yet unspecified overall normalization.
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A feature of the {z , z̄} coordinates is that the derivative basis simplifies considerably

∂iYlm = ∂zYlm (for i = z) ; ∂iYlm = ∂z̄Ylm (for i = z̄) (A.14)
εij∂

jYlm = ∂zYlm (for i = z) ; εij∂
jYlm = −∂z̄Ylm (for i = z̄) (A.15)

Hence the classical solutions that enter our analysis are simply

AVz (τ ,ρ ,Ω)∼
∑
l,m

Φlm(τ ,ρ)
∣∣∣
∆=2

∂zYlm(Ω); AVz̄ (τ ,ρ ,Ω)∼
∑
l,m

−Φlm(τ ,ρ)
∣∣∣
∆=2

∂z̄Ylm(Ω)

ASz (τ ,ρ ,Ω)∼
∑
l,m

Φlm(τ ,ρ)
∣∣∣
∆=1

∂zYlm(Ω); ASz̄ (τ ,ρ ,Ω)∼
∑
l,m

Φlm(τ ,ρ)
∣∣∣
∆=1

∂z̄Ylm(Ω)

These solutions, along with the general time dependence eiωκ(τ−τ ′), define the function
Ξκl(ρ, τ, τ ′) in the vector and scalar type kernels of eqs. (2.12)–(2.15).

B 1/L2 corrections of the gauge field HKLL kernels

We will now describe the derivation of the 1/L2 corrected expressions for Ξκl(ρ, τ, τ ′) in
eq. (3.5) and eq. (3.6), from the general expression given in eq. (2.16), which we repeat here
for convenience

Ξkl(ρ , τ , τ ′) = eiωκ(τ−τ ′) sinl+1 ρ cos∆−1 ρ 2F1

(
−κ , κ+ ∆ + l ,∆− 1

2
∣∣∣ cos2 ρ

)
. (B.1)

We will describe three intermediate steps leading to a form of Ξκl that we consider.
The first is the transformation of cos2 ρ to sin2 ρ in the hypergeometric function argument
by a linear transformation (cf. 2.4 of [45]).7 On transforming the hypergeometric function,
we find a coefficient with products of Gamma functions, some of which involve a negative
argument. These can be transformed to a positive argument, and we specifically consider

Γ(−l − 1
2)

Γ(−κ− l − 1
2)

= (−1)−κ
Γ(κ+ l + 3

2)
Γ(l + 3

2)
, (B.2)

which is derived from the Euler reflection identity Γ(x)Γ(1− x) = π
sinπx (for non-integer x).

Lastly, we replace ωκ = ωL and κ = 1
2(ωL−∆− l), with κ considered large.

The resulting expression for Ξκl is

Ξκl(ρ , τ , τ ′) = (±i)−∆−le±iωL
π
2 eiωL(τ−τ ′) ×A×B × C

where A = tanl+1 ρ cos∆+l ρ

B =
Γ
(
∆− 1

2

)
Γ
(
ωL+l−∆+3

2

)
Γ(l + 3

2)Γ
(
ωL−l+∆−1

2

)
C = 2F1

(∆ + l − ωL
2 ,

∆ + l + ωL

2 , l + 3
2
∣∣∣ sin2 ρ

)
(B.3)

The (±i)−∆−le±iωL
π
2 comes from the (−1)−κ in eq. (B.2). The + (−) sign will represent

positive frequency outgoing (incoming) states in the kernels.8
7We consider this transformation since 1/L2 corrections of flat spacetime still involve Bessel functions

(and their derivatives) with the argument rω. It is simpler to recover these Bessel functions from a sin2 ρ

argument in the hypergeometric function.
8The converse convention holds for negative frequency states and follows from complex conjugation.
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The 1/L2 corrections to the flat spacetime result from the HKLL kernels will result
from expanding the above terms after substituting eq. (2.2). As τ involves a trivial rescaling,
we find

eiωL(τ−τ ′) = eiωte−iωLτ
′
,

just as in the flat spacetime limit, which holds to all orders in 1/L2. The non-
trivial expansions in 1/L2 come from the terms A, B and C noted above on replacing
ρ = arctan( rωωL). Performing a Taylor expansion on A gives the following result

A = tanl+1 ρ cos∆+l ρ =
(
rω

ωL

)l+1
[
1− (l + ∆)(rω)2

2ω2L2 +O
( 1
ω3L3

)]
(B.4)

In the case of B, and specifically for the factor Γ(ωL+l−∆+3
2 )

Γ(ωL−l+∆−1
2 ) appearing within it, we

can make use of the following identity for Gamma functions with a large argument x (cf.
5.11.13 of [46])

Γ(x+ a)
Γ(x+ b) = xa−b

(
1 + 1

2
(a− b)(a+ b− 1)

x

+ 1
12

(a− b)(a− b− 1)(3(a+ b− 1)2 − (a− b+ 1))
2x2 +O(x−3)

)
(B.5)

As ωL is large, we define x = ωL
2 , a = l+3−∆

2 and b = ∆−l−1
2 to find

Γ(ωL+l−∆+3
2 )

Γ(ωL−l+∆−1
2 )

=
(
ωL

2

)l+2−∆ (
1− (l + 1−∆)(l + 2−∆)(l + 3−∆)

6ω2L2 +O
( 1
ω3L3

))
(B.6)

Thus our expansion for the B term is

B =
Γ(∆− 1

2)
Γ(l + 3

2)

(
ωL

2

)l+2−∆ (
1− (l + 1−∆)(l + 2−∆)(l + 3−∆)

6ω2L2 +O
( 1
ω3L3

))
(B.7)

For the C term, we make use of the following expansion of the hypergeometric function
in terms of Bessel functions [47]

2F1

(
λ,µ ;ν+1

∣∣∣∣∣− y2

4λµ

)
= Γ(ν+1)

(
y

2

)−ν[
Jν(y)+ y2

8 Jν+2(y)
( 1
λ

+ 1
µ

)

+
[
y4

128Jν+4(y)− y
3

24Jν+3(y)
]( 1

λ2 + 1
µ2

)

+
[
y4

64Jν+4(y)− y
3

8 Jν+3(y)+ y2

8 Jν+2(y)
]

1
λµ

+O(λ−3 ,µ−3 ,λ−1µ−2 , · · ·)
]

(B.8)

The leading contribution in eq. (B.8) is the relationship between the hypergeometric and
Bessel functions derived by Watson [48]. The expansion in eq. (B.8) was determined through
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Watson’s approach carried out to subleading order [47] and will be needed to determine the
1/L2 corrections of the HKLL kernels.

On comparing the expression for C in eq. (B.3) with eq. (B.8), we find

λ = ∆ + l − ωL
2 , µ = ∆ + l + ωL

2 (B.9)

We can likewise determine y2 in eq. (B.8) from sin2 ρ in C. Since

− 4λµ = ω2L2 − (∆ + l)2 , (B.10)

we can appropriately replace ω2L2 with −4λµ in the expansion for sin2 ρ to find

sin2 ρ =
(
rω

ωL

)2
(

1− r2ω2

ω2L2 +O
( 1
ω3L3

))

= r2ω2

−4λµ

(
1− (∆ + l)2 + r2ω2

ω2L2

)
+O

( 1
ω3L3

)

:= y2

−4λµ +O
( 1
ω3L3

)
, (B.11)

where in the last line of eq. (B.11) we defined

y = rω

(
1− (∆ + l)2 + r2ω2

2ω2L2

)
(B.12)

We can hence derive the right hand side of eq. (B.8) from the given expression of C in
eq. (B.3). Each Bessel function appearing in the expression can be written in terms of the
flat spacetime argument rω by making use of

Jν(x+ δx) = Jν(x)− δxJν+1(y) + ν

x
Jν(x) , (B.13)

which can be derived from recursion relations for the Bessel functions

Jν+1(x) = −J ′ν(x) + ν

x
Jν(x) , (B.14)

J ′ν+1(x) = Jν(x)− ν + 1
x

Jν+1(x) . (B.15)

In particular, on using eq. (B.12) we find that eq. (B.13) gives

Jν(y) = Jν(rω) + (∆ + l)2 + r2ω2

2ω2L2 (rωJν+1(rω)− νJν(rω)) (B.16)

On replacing eq. (B.9) and eq. (B.11) in eq. (B.8), and expressing all the Bessel function
arguments in terms of rω, we find the following expression for C

C = Γ
(
l + 3

2

)( 2
rω

)l+ 1
2
[
Jl+ 1

2
(rω) +

rω
(
(∆ + l)2 + r2ω2

)
2ω2L2 Jl+ 3

2
(rω)

− r2ω2 (l + ∆ + 1)
2ω2L2 Jl+ 5

2
(rω) + r3ω3

6ω2L2Jl+ 7
2
(rω)

]
(B.17)
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We can now multiply eq. (B.4), eq. (B.7) and eq. (B.17) to get the expression for
Ξκl(r, t; τ ′) from eq. (B.3). Further simplifications can be performed — the first involves
the use of recursion relations for Bessel functions in eq. (B.14) and eq. (B.15), which enable
finding an expression involving only Jl+ 1

2
(rω) and its first derivative. Each Jl+ 1

2
(rω) can

then be written in terms of Spherical Bessel functions jl(rω)

jl(rω) =
√

π

2rωJl+ 1
2
(rω) . (B.18)

The other simplification that occurs is for a common expression in the two cases ∆ = 1
and ∆ = 2. We specifically have

Γ
(

∆− 1
2

)
2∆−1

∣∣∣∣∣
∆=2

=
√
π = Γ

(
∆− 1

2

)
2∆−1

∣∣∣∣∣
∆=1

(B.19)

Following the use of Bessel function recursion relations and the substitutions mentioned
above, we then find

Ξκl(ρ , τ , τ ′)
∣∣∣
∆=2

= −(±i)−leiωte−iωL(τ ′∓π2 ) [A×B × C]∆=2 , (B.20)

Ξκl(ρ , τ , τ ′)
∣∣∣
∆=1

= −(±i)(±i)−leiωte−iωL(τ ′∓π2 ) [A×B × C]∆=1 , (B.21)

with

[A×B × C]∆=2 = r

L

[
jl (rω) + 1

2ω2L2

((
l (l + 1)

2 − (rω)2

3

)
jl (rω)

− 2rω
3

√
π

2rω

(
l (l + 1)

2 + (rω)2
)
J ′
l+ 1

2
(rω)

)]
+O

( 1
ω3L3

)
(B.22)

[A×B × C]∆=1 = r

L
(ωL)

[
jl (rω)− 1

2ω2L2

((
l (l + 1)

2 + (rω)2

3

)
jl (rω)

− 2rω
3

√
π

2rω

(
l (l + 1)

2 + (rω)2
)
J ′
l+ 1

2
(rω)

)]
+O

( 1
ω3L3

)
(B.23)

The expressions in eq. (B.20) and eq. (B.21) are those in eq. (3.5) and eq. (3.6) respectively.

C Derivation of â
out; L (+)
~q and â

out(+)
~q

The outgoing positive helicity photon modes result from substituting the outgoing bulk
expression for Âout

z (y) from eq. (3.12) in eq. (2.6). We define the flat spacetime mode âout(+)
~q

as that corresponding to the bulk field Âout; f
z (y) and the 1/L2 corrected mode âout; L (+)

~q as
that resulting from the bulk field Âout; L

z (y) in the following way

â
out (+)
~q = lim

t→∞
i

∫
d3~y (ε(+)µ)∗e−iq·y←→∂0 Âout; f

z (y) , (C.1)

â
out; L (+)
~q = lim

t→∞
i

∫
d3~y (ε(+)µ)∗e−iq·y←→∂0 Âout; L

z (y) . (C.2)
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In both cases, we use the expressions for the polarization and plane waves given in eq. (2.9).
On substituting Âout; f

z (y) from eq. (3.13) and Âout; L
z (y) from eq. (3.14), we then find that

the expressions in eq. (C.1) and eq. (C.2) take the form

â
out(+)
~q =

lim
t→∞

i

∫
r2dr

∫
dΩ

π∫
0

dτ ′
∫
dΩ′

∫
dω

1+zz̄√
2

∑
l,m,l′,m′

jl′(rω~q)jl(rω)

[
(i(ω−ωq))

Y ∗lm (Ω′)
−l(l+1)Yl

′m′(Ω)Y ∗l′m′(Ωq)∂zYlm (Ω)(−i)l′(i)−lei(ω+ω~q)te−iωL(τ ′−π2 )Dz̄′j+
z̄′

+(−i(ω+ω~q))
Ylm (Ω′)
−l(l+1)Yl

′m′(Ω)Y ∗l′m′(Ωq)∂zY ∗lm (Ω)(−i)−l+l′e−i(ω−ω~q)teiωL(τ ′−π2 )Dz̄′j−z̄′

]
(C.3)

â
out; L(+)
~q =

lim
t→∞

i

∫
r2dr

∫
dΩ

π∫
0

dτ ′
∫
dΩ′

∫
dω

1+zz̄√
2

∑
l,m,l′,m′

jl′(rω~q)jl(rω)
(
l(l+1)
4ω2L2

)
[
(i(ω−ωq))

Y ∗lm (Ω′)
−l(l+1)Yl

′m′(Ω)Y ∗l′m′(Ωq)∂z̄Ylm (Ω)(−i)l′(i)−lei(ω+ω~q)te−iωL(τ ′−π2 )Dz̄′j+
z̄′

+(−i(ω+ω~q))
Ylm (Ω′)
−l(l+1)Yl

′m′(Ω)Y ∗l′m′(Ωq)∂z̄Y ∗lm (Ω)(−i)−l+l′e−i(ω−ω~q)teiωL(τ ′−π2 )Dz̄′j−z̄′

]
(C.4)

The above expressions contain derivatives of spherical harmonics and in this regard, it is
useful to introduce the Green’s function G(z , z̄ ;w , w̄) on the 2-sphere

G(z , z̄ ;w , w̄) = 1
4π ln ((z − w)(z̄ − w̄))− 1

4π ln (1 + zz̄)− 1
4π ln (1 + ww̄) . (C.5)

From the identity
∂z

1
z̄ − w̄

= 1
2δ

(2)(z − w) = ∂z̄
1

z − w
we find that G(z , z̄ ;w , w̄) satisfies the following relations

∂z∂z̄G(z , z̄ ;w , w̄) = 1
2δ

(2)(z − w)− γzz̄
8π , ∂w∂w̄G(z , z̄ ;w , w̄) = 1

2δ
(2)(z − w)− γww̄

8π
(C.6)

∂z∂w̄G(z , z̄ ;w , w̄) = −1
2δ

(2)(z − w) = ∂w∂z̄G(z , z̄ ;w , w̄) (C.7)

Eq. (C.7) in particular implies the useful property

∂zp
Ylm

(
Ωzp

)
−l(l + 1) = −2

∫
dΩwγ

ww̄∂w̄∂zpG(zp , z̄p ;w , w̄)∂w
Ylm (Ωw)
−l(l + 1)

=
∫
dΩw∂zpG(zp , z̄p ;w , w̄)Ylm (Ωw) , (C.8)

where we made use of 2γww̄∂w∂w̄Ylm (Ωw) = −l(l + 1)Ylm (Ωw) in the second equality.
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We can now use the orthogonality relations satisfied by the spherical harmonics∫
dΩYlm (Ω)Y ∗l′m′ (Ω) = δll′δmm′ (C.9)∑
l,m

Ylm (Ωq)Y ∗lm (Ω) = δ (Ωq − Ω) , (C.10)

and the spherical Bessel functions
∞∫
0

r2drjl(rω)jl(rω~q) = π

2ω2
~q

δ(ω − ω~q) , (C.11)

to simplify the integrals appearing in eq. (C.3) and eq. (C.4). In the case of eq. (C.3) we
find the result

â
out (+)
~q = π

1 + zq z̄q√
2ωq

π∫
0

dτ ′
∫
dΩ′∂zqG(zq , z′)Dz̄

′
j−z̄′e

iωqL(τ ′−π2 )

= 1
4

1 + zq z̄q√
2ωq

π∫
0

dτ ′
∫
dΩ′ 1

zq − z′
Dz̄′j−z̄′e

iωqL(τ ′−π2 ) , (C.12)

which is the flat spacetime mode expression eq. (2.20) that was derived in [38].
We find that the 1/L2 corrected mode in eq. (C.4) simplifies to

â
out; L(+)
~q = π

ω2
qL

2
1+zq z̄q√

2ω~q

π∫
0

dτ ′
∫
dΩ′

∫
dΩw

∂zq

[(
γz
′z̄′∂z̄′∂wG(z′ , z̄′ ;w,w̄)

)(
γww̄∂w̄∂zqG(w,w̄ ;zq , z̄q)

)]
Dz̄′j−z̄′e

iωqL(τ ′−π2 )

= 1
32πω2

qL
2

1+zq z̄q√
2ω~q

π∫
0

dτ ′
∫
dΩ′

∫
dΩw

[
(1+z′z̄′)2 (1+zwz̄w)2

(z̄′−z̄w)2 (zq−zw)3

]
Dz̄′j−z̄′e

iωqL(τ ′−π2 )

(C.13)

which is the expression in eq. (3.16). One key difference between the flat spacetime mode
in eq. (C.12) and the 1/L2 corrected mode in eq. (C.13) is the presence of a product of
Green’s function involving intermediate angles that are integrated over. This leads to the
final result in the second line of eq. (C.13)
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