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1 Introduction

Without dynamical gravity, correlation functions measured in black hole backgrounds decay
all the way to zero for late times. However, as pointed out initially by Maldacena [1], in
any full theory of quantum gravity this should not be possible. This is because black holes
themselves are finite entropy quantum systems.

This predicted behavior for late time correlators was later sharpened by [2]. They
considered a toy model of the thermal two point function, known as the spectral form factor
(H is the Hamiltonian of the holographically dual quantum system)

Z(β + iT, β − iT ) = Tr
(
e−(β+iT )H

)
Tr
(
e−(β−iT )H

)
=

dim(H)∑
i=1

dim(H)∑
j=1

e−β(Ei+Ej)e−iT (Ei−Ej) ,

(1.1)
and argued that its late-time behavior is universally given by a ramp-and plateau structure
(on time scales ∼ eS with S the black hole entropy)1

Z(β + iT, β − iT ) =
∫ ∞

0
dE e−2βE min(ρ(E), T/2π) , ρ(E) = eS(E) . (1.2)

In particular for T →∞ this goes to a non-zero constant Z(2β). That this does not decay
all the way to zero indeed follows from the fact that black holes are discrete (or finite
entropy) quantum systems: the value Z(2β) arises from the terms i = j in the sum (1.1).
If we instead had a continuous spectrum those terms would measure zero, so the correlator
would instead indeed decay to zero.

It is interesting to ask how the bulk gravitational path integral reproduces this ramp-
and plateau structure; one, because they are universal; and two, because the plateau is
a signature of microstructure (and hence unitarity) in gravity. In gravity, one computes
the spectral form factor by path integrating over all geometries with two asymptotically
AdS boundaries (with appropriate boundary conditions implementing the β ± iT ). It was
found [3] that the linear ramp (the T/2π piece in (1.2)) is explained by wormhole geometries
connecting both boundaries2

Z(β + iT, β − iT )conn ⊃

1 wormhole

β + iT β − iT

. (1.3)

1Actually, this simple ramp-and plateau structure is only visible after some time-averaging, or other types
of averaging [2]. We will exclusively be concerned with the gravitational interpretation of such smeared
quantities in this work.

2Similarly wormholes were found to be important for understanding late-time correlators [4–7], the Page
curve [8, 9], the fate of late-time infalling observers [10] and more.
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The origin of the plateau seems more mysterious, and discussions have been limited largely to
scattered comments about D-brane effects in [11–14], which lack an obvious truly geometric
interpretation.3

In this work we consider generic models of AdS2 dilaton gravity, of the type studied
in [18–20]

− I = S0χ+ 1
2

∫
d2x
√
g(ΦR+W (Φ)) . (1.4)

Extending results of Okuyama-Sakai [21] (for Airy gravity), and Saad-Shenker-Stanford-
Yang-Yao [22] (for JT gravity), we show in section 2 that in the double scaling limit where
T → ∞ and eS0 → ∞ with the combination Te−S0 held fixed, that the plateau simply
follows from the perturbative sum over all genus g wormholes

Z(β + iT, β − iT )conn =
∞∑
g=0

e−2gS0 Zg(β + iT, β − iT )conn , (1.5)

and no non-perturbative (non-geometric) D-brane corrections are required. More precisely,
the genus g wormhole amplitude is found to grow universally as T 2g+1

Zg(β + iT, β − iT )conn =

genus g wormholes

β + iT β − iT

. . . = Pg−1(β)T 2g+1 , (1.6)

with Pg−1(β) a theory-specific degree g−1 polynomial. And, the sum over genus reproduces
the plateau

lim
T→∞

∞∑
g=0

Pg−1(β)T 2g+1e−2gS0 = Z(2β) . (1.7)

For the Airy case of Okuyama-Sakai [21] this is visible in figure 1, other cases are presented
in appendix A.

The focus of our work is explaining the universal growth T 2g+1 of the genus g wormhole
amplitudes. For fixed theories and fixed g this behavior can be checked manually: genus g
amplitudes in the theories (1.4) can be computed [18, 19] using topological recursion [11, 23–
25]. In particular, topological recursion spits out an even “volume” polynomial Vg,2(b1, b2)
of degree 6g − 2. As discussed in section 2, based on dimensional analysis one actually
expects a faster growth rate

Zg(β + iT, β − iT )conn
?= #(g)T 3g . (1.8)

3In particular, the plateau can be understood as due to a second saddle in a universe field theory
description of gravity [13–17], but this second saddle and the perturbations around it are less geometric,
they can not be understood using the gravitational path integral (as far as we know), which describes
perturbations around the first saddle.
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Figure 1. The double scaling limit of the sum over genus g wormholes in the Airy model, up to
g = gmax (numbers shown) with eS0 = 10 and β = 1/2.

The factual case-by-case limitation of the maximal power of T to T 2g+1 seems miraculous.
It depends on very nontrivial cancellations in large sums involving the expansion coefficients
of these polynomial volumes Vg,2(b1, b2). To derive the universality of T 2g+1 (1.6) using the
gravitational path integral, we thus need to prove that these cancellations in the volumes
happen at any genus g, and for any dilaton gravity theory (1.4).

In section 3 and section 4 we derive these cancellations using the relations between
our gravity models (1.4) and an infinite set of differential equations, known as the KdV
hierarchy. In particular, one can use these differential equations to prove [26, 27] some set
of cancellations in sums of intersection numbers 〈τd1 . . . τdn〉, which are essentially integrals
of products of specific two forms over the moduli space of Riemann surfaces. We then prove
that those cancellations in intersection numbers imply the cancellations that we need in
the volumes, for all theories (1.4). One key ingredient is a duality between exponentials of
operators τk and changes in the dilaton gravity potential, which we find in section 5

exp
( ∞∑
k=2

tkτk

)
⇔ exp

(∫
d2x
√
g
∞∑
k=2

(−1)k

(2k − 1)!! tk Φ2k e−2πΦ
)
. (1.9)

This can be viewed as an application of the fact that intersection numbers can be viewed as
correlators of cusp defects in JT gravity, which we also derive. This also leads to a new un-
derstanding of the KdV equations directly in terms of dilaton gravity variables: they express
how observables change when one alters certain parameters in the gravitational action.

In section 3 we give a gentle introduction to intersection numbers and their relation
with gravity, with more intuitive comments gathered in appendix C, as we did not want to
assume that the readers were familiar with these more mathematical constructions.

Relation with other work. Part of section 2 is based upon discussions with Saad,
Shenker, Stanford and Yang. In particular, the observation that for Airy and JT gravity
equation (2.2) and (2.5) gives the exact spectral form factor in the limit T →∞ and eS0 →∞
with Te−S0 fixed, and that this leads to a series with a non-zero radius of convergence
(matched by topological recursion) which gives the plateau (A.1) and (A.5), is due to
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Saad, Stanford, Yang and Yao [22]. The fact that equation (2.2) implies cancellations in
Weil-Petersson volumes for JT gravity was independently observed and investigated by [28].

2 The plateau from the perturbative sum over wormhole geometries

In this section we derive a simple integral representation of the spectral form factor in
the limit T and eS0 go to infinity keeping their ratio fixed (the τ -scaling limit [21, 29]),
as advertised in the introduction. This integral admits a power series in T 2g+1, which is
reproduced by computing the genus g wormhole amplitudes in gravity. In this τ -scaling
limit, the sum over genus converges to the plateau, without the need for non-perturbative
(in eS0) corrections.

2.1 Powers of time

The connected spectral form factor is related with the spectral correlation via a Laplace
transform

Z(β + iT, β − iT )conn =
∫ +∞

−∞
dE1

∫ +∞

−∞
dE2 e

−β(E1+E2)eiT (E1−E2) ρ(E1, E2)conn . (2.1)

We will consider 2d dilaton gravities with an exact dual description as random matrix
theories [11, 18, 19, 30]. In the full matrix integral, ρ(E1, E2)conn is a smooth function of E1
and E2, except for a contact term. In random matrix theory that in the limit T →∞ and
eS0 →∞ with τ = Te−S0 fixed [15, 21, 22, 29] (τ -scaling limit), this integral simplifies to

Z(β + iT, β − iT )conn =
∫ +∞

−∞
dE1

∫ +∞

−∞
dE2 e

−β(E1+E2)eiT (E1−E2) ρ(E1, E2)conn eff , (2.2)

where the effective spectral correlation features the sine kernel [31]4

ρ(E1, E2)conn eff = δ(E1 − E2)ρ0(E)− sin2(πρ0(E)(E1 − E2))
π2(E1 − E2)2 . (2.3)

Changing variables to E1 − E2 = ω and E1 + E2 = 2E this becomes

Z(β+iT, β−iT )conn =
∫ +∞

−∞
dE e−2βE ρ0(E)−

∫ +∞

−∞
dE e−2βE

∫ +∞

−∞
dω eiTω sin2(πρ0(E)ω)

π2ω2 .

(2.4)
The ω-integral is a standard Fourier-transform, which gives the familiar ramp-and plateau [2]

Z(β + iT, β − iT )conn =
∫ +∞

−∞
dE e−2βE min(ρ0(E), T/2π) (2.5)

=
∫ +∞

−∞
dE e−2βE ρ0(E)−

∫ +∞

E(T )
dE e−2βE (ρ0(E)− T/2π) ,

ρ0(E(T )) = T/2π ,
4The generic proof of this fact goes through Efetov’s non-linear sigma model description of random matrix

theory [15, 32], see also recently [13, 14, 33, 34]. We can alternatively use D-brane calculus as explained
in [11, 12].
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with E(T ) determined by solving ρ0(E(T )) = T/2π.5 Choosing the energy axis such that
ρ0(0) = 0,6 and using integration by parts, we arrive at

Z(β + iT, β − iT )conn =
∫ E(T )

0
dE e−2βE ρ0(E) + 1

2β ρ0(E(T ))e−2βE(T )

= 1
2β

∫ T/2π

0
dρ0 e

−2βE(ρ0) . (2.6)

This is the final formula for the spectral form factor in the τ -scaling limit. One might say
that we have put non-perturbative information into the calculation at this point, but here
we just use the matrix model answers. The objective is to reproduce the final formula from
gravity and explain its convergence properties, solely using perturbation theory.

As already alluded to, we consider 2d dilaton gravity (1.4) with a matrix integral dual
and for these theories the spectrum has an expansion in powers of Ek+1/2 [35–37],

ρ0(E) = eS0

2π

∞∑
k=0

fk E
1/2+k = eS0

2π

(
w +

∞∑
k=1

fk w
2k+1

)
, (2.7)

where we’ve introduced the notation E = w2, and without loss of generality we have set
f0 = 1 (by changing S0). The function in round brackets will be referred to as f(w) and its
inverse (which exits by assumption) can be obtained using the Lagrange inversion theorem.
Notably, this has a powers series expansion in odd powers of f too

w(f) = f +
∞∑
k=1

wk f
2k+1 , (2.8)

and as a result the Taylor series

e−2βw(f)2 = 1− 2βf2 + 4πβ
∞∑
n=2

(2n+ 1)Pn−1(β) f2n , (2.9)

is even in f . Here Pn(β) is a degree n polynomial in β, which can easily be computed
explicitly for any fixed n. The tau-scaled spectral form factor (2.6) then expands as

Z(β + iT, β − iT )conn = eS0

4πβ

∫ Te−S0

0
df e−2βE(f)

=
∞∑
g=0

Pg−1(β)T 2g+1e−2gS0 = T

4πβ −
1

6πT
3e−2S0 + . . . (2.10)

This is the main result of this section. Computing the tau-scaled limit of the (connected)
spectral form factor using the non-perturbatively exact matrix integral formulation of 2d
dilaton gravities results in a universal series expansion in T 2g+1e−2gS0 . It is tempting
to interpret the term at order e−2gS0 as the τ -scaling limit of the perturbative genus g
wormhole amplitude in gravity. We will confirm below in section 2.2 that this is indeed the
case. Let us point out some noteworthy features of this expansion.

5Here we assume ρ0(E) grows monotonically, in order to have a unique solution. The conclusion (2.10)
remains true for non-monotonic spectra though, see appendix A.

6Some dilaton gravities have a non-zero threshold energy, but such modifications are straightforward to
incorporate.
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1. In the limit T →∞ this series approaches the (leading order) plateau

eS0

4πβ

∫ ∞
0

df e−2βw(f)2 =
∫ ∞

0
dE ρ0(E) e−2βE = Z0(2β) . (2.11)

Depending on the case, the series expansion can have a finite or an infinite radius
of convergence (as function of T ). However in all cases (with invertible spectrum)
the series converges to the exact answer for small enough T , and that answer has a
unique analytic continuation to all positive T . The examples in appendix A should
clarify this.

So, in the τ -scaling limit, the plateau is perturbatively accessible in the genus expansion.
Notice also that this is different from Borel resummation, since we are taking a limit
where some badly growing terms in the genus g go away.

2. The first two terms in the expansion (2.10) are theory-independent, meaning they do
not depend on the fk. The polynomial Pn(β) depends only on f2 . . . fn, so the higher
the genus the more we probe the UV part of the spectrum. The sign of each term
depends on these fk (and β) and are not-universal.

3. Theories with a nonzero Hagedorn temperature never reach a plateau when 2β < βH,
because for these cases the would-be plateau Z0(2β) is divergent. We can appreciate
this also using

∂TZ(β + iT, β − iT )conn = 1
4πβ e

−2βE(Te−S0 ) (2.12)

For Hagedorn spectra f(E) ∼ eβHE one finds E(f) = log(f)/βH +constant, and hence
indeed the τ -scaled spectral form factor grows without bounds for late times. This
Hagedorn growth at high energies only occurs for non-local theories, such as string
theories.

4. The sine kernel (2.3) or the associated level repulsion is generally considered to be
the hallmark feature of chaotic quantum systems, it is essentially synonymous with
random matrix universality. The scaling T 2g+1 contains the same information as this
sine kernel, and we consider it therefore to be the real-time version of random matrix
universality. Therefore these should be an argument why in any gravity model (beyond
2d dilaton gravity) there are contributions growing like T 2g+1 in the gravitational path
integral. This explanation we think should be intrinsically Lorentzian. A proposal
based on topology changing processes for how these powers of time can be explained,
analogous to the double-cone [3], will be presented elsewhere [38].

We further discuss this integral and its series expansion (2.10) for several examples, as
well as the modifications for non-monotonic spectra, in appendix A, in order not to disrupt
the flow of the paper.
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2.2 Euclidean wormholes and cancellations in volumes

We now switch gears, and move to the gravitational computation. For this we do an
expansion of the connected two-boundary observable in genus

Z(β + iT, β − iT )conn =
∞∑
g=0

e−2gS0 Zg(β + iT, β − iT )conn
?
+ non-perturbative , (2.13)

where the genus g gravitational wormhole amplitude is computed as

Zg(β1,β2)conn =
∫ ∞

0
db1b1

1
2π1/2β1

1/2 e
−

b21
4β1

∫ ∞
0

db2b2
1

2π1/2β2
1/2 e

−
b22

4β2 Vg,2(b1, b2) , (2.14)

with Vg,2(b1, b2) the (deformed) Weil-Petersson volume7 for a genus g wormhole with
(geodesic) boundaries with length b1 and b2. They are symmetric polynomial in b21 and b22
with a maximum total degree of 3g − 1. The way to compute these polynomials Vg,2(b1, b2)
in practice is using the Eynard-Orantin topological recursion [11, 23, 25, 39], with a spectral
curve y(z) (originating from (2.7)) given by8

y(z) = 1
2

∞∑
k=0

(−1)kfk z1+2k . (2.15)

We stress that these polynomials are the result of doing the gravitational path integral over
all metrics which are topologically a genus g connected wormhole in the dilaton gravity
with genus zero spectrum (2.7). In order to compare (2.14) to (2.10), we compute (2.14)
explicitly by writing the WP volume as

Vg,2(b1, b2) =
d1+d2=3g−1∑
d1,d2=0

V d1,d2
g,2

b2d1
1

4d1d1!
b2d2
2

4d2d2! , (2.16)

with some symmetric constants V d1,d2
g,2 . We obtain

Zg(β1, β2)conn = 1
π

d1+d2=3g−1∑
d1,d2=0

V d1,d2
g,2 β

1/2+d1
1 β

1/2+d2
2 . (2.17)

Continuing to Lorentzian signature and putting β = 0 (see below for finite β) this becomes

Zg(iT,−iT )conn = 1
π

(3g−1)/2∑
q=0

(−1)q T 2q+1
2q∑
d=0

(−1)d V d,2q−d
g,2 . (2.18)

Comparing to (2.10), we claim that in the τ -scaling limit for generic dilaton gravities we
should have

Zg(iT,−iT )conn = Pg−1(0)T 2g+1 . (2.19)
7Here we mean a slight generalisation of the Weil-Petersson volumes, which includes cases where we have

summed over defects [18, 19]. One might call these deformed Weil-Petersson volumes.
8Only for the spectral curve y(z) = sin(2πz)/(4π) do we obtain the true Weil-Petersson volumes.
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This is rather surprising because in (2.18) we have powers of T that are larger than 2g + 1,
and hence should dominate the τ -scaling limit. This indicates a novel cancellation between
the various coefficients of the volumes Vg,2(b1, b2)! More precisely we are claiming that for
any theory

2q∑
d=0

(−1)d V d,2q−d
g,2 = 0 , q > g ,

2g∑
d=0

(−1)d V d,2g−d
g,2 = π(−1)gPg−1(0) . (2.20)

These cancellations for q > g are quite surprising from the point of view of these polynomials,
but they are nevertheless true, as one can check case by case. The simplest example is
the genus g = 3 wormhole with q = 4. Based on dimensional analysis, one expects a term
proportional to T 9. However, this term is absent because of the cancellation9

1
2

8∑
d=0

(−1)d V d,8−d
3,2 = 1

324 −
5

324 + 77
1620 −

503
5670 + 607

11340 = 0 . (2.21)

This example is theory independent since it only depends on f1 = 1, but we stress that
more in general the V d1,d2

g,2 depend on all fk such that (2.10) predicts theory-dependent
cancellations. One checks easily case by case that cancellations indeed occur, more examples
are provided in appendix A.

To compute the τ -scaled spectral form factor for finite β, we can introduce symmetric
polynomials e2 = β1β2 and e1 = β1 + β2, and reorganize (2.17) into

Zg(β + iT, β − iT )conn = 1
π

(3g−1)/2∑
q=0

(−1)q eq+1/2
2

3g−1∑
m=2q

em−2q
1

× 2
q∑

d=0
(−1)d V d,m−d

g,2
m/2− d
m− q − d

(m− q − d)!
(q − d)!(m− 2q)! , (2.22)

where now e2 = β2 + T 2 and e1 = 2β.10 The constraint that this amplitude grows no faster
than T 2g+1 imposes that the coefficient of eq+1/2

2 vanishes for q > g

q∑
d=0

(−1)d V d,m−d
g,2

m/2− d
m− q − d

(m− q − d)!
(q − d)!(m− 2q)! = 0 , q > g ,m ≥ 2q , (2.23)

and furthermore there is a precise theory-dependent prediction for q = g

2
3g−1∑
m=2g

(2β)m−2q
g∑
d=0

(−1)d V d,m−d
g,2

m/2− d
m− g − d

(m− g − d)!
(g − d)!(m− 2g)! = π(−1)gPg−1(β) . (2.24)

The case m = 2q reduces to the β = 0 constraints (2.20) (taking into account the factor 1/2
mentioned above). The constraints with m > 2q represent additional cancellations which
we claim are satisfied by the genus g wormhole amplitudes of all dilaton gravities (with
matrix integral duals).

9For a list of volumes see for instance [40].
10For the term m = 2q the term with d = q receives an extra 1/2, which we left implicit.
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A happy consequence of the τ -scaling limit is that all terms with q < g are subleading.
These terms contain lower powers of T , but their coefficients are growing more and more
rapidly the lower the power of T , ultimately growing like (2g)!. This was conjectured in [41]
and proven in [42], see also (228) in [11] as Taylor series in b2. We make some further
comments on this in section 6.1. Including such terms makes the sum over genus very
complicated and one needs to resort to a Borel resummation in order to study it. The
τ -scaling limit thus gets rid of these intricacies, by selecting only the q = g term at each
genus. This is why the series is convergent, in part, and non-perturbative corrections are
not present.

We can also understand this from Efetov’s non-linear sigma model [13–15, 32] (which
described the τ -scaling limit) formulation of these quantities. The resolvent is represented
by a double integral over variables s11 and s22. The energy dependence in the action is
eS0E(s11 − s22), and the double integral is dominated by two saddle-points. The expansion
around the first saddle grows like (2g)! in the energy domain, whereas the expansion around
the second saddle gives a non-perturbative (in eS0) correction. We can now inverse Laplace
transform this to get a non-linear sigma model computation of Z(β). The energy integral
gives a delta function δ(β − eS0(s11 − s22)), which collapses the double integral to a single
integral. This single integral, notably, has just one saddle point, expanding around which
produces the sum over wormholes. Because there is only one saddle, there are no non-
perturbative corrections in the thermal ensemble. This calculation extends to the connected
spectral form factor, it becomes a bit messier but the conclusion remains the same.

In summary, there are two reasons why this genus expansion is convergent: the τ -scaling
limit gets rid of terms that grow too fast, and the genus expansion in the thermal ensemble
is more convergent than that in the microcanonical ensemble.11

3 Cancellations in topological gravity

In the previous section we found that there need to be non-trivial cancellations between the
coefficients of (deformed) Weil-Petersson volumes. In this section and the next we explain
how these relations come about. First we will consider topological gravity, i.e. the Airy
model, where many of these cancellations are known [26, 27] in the context of intersection
theory. In section 4 we will use open-closed duality to show that these very cancellations
of [26, 27] actually imply the growth T 2g+1e−2gS0 for all double-scaled matrix integrals,
including all models of dilaton gravity [18, 19, 30, 34, 43, 44].

We remind the reader that this T 2g+1e−2S0 is the type of series that we found earlier
will converge to the plateau. So, in part, these cancellations explain why the sum over
genus g wormholes converges (in the τ -scaling limit) to the plateau.

11One other way to see that perturbation theory in the microcanonical ensemble is more complicated is
because the integrals over b with the density of states of the trumpet are not convergent and need to be
defined using analytic continuation. This is true in the Airy case, in JT an additional complication is that
the volumes themselves contain pieces that grow like (2g)!. The τ -scaling limit cures the second, but not the
first complication, which is cured by going to the canonical ensemble.
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3.1 Ribbon graphs and intersection numbers

In 1991, Witten [45] showed that topological gravity is related to a matrix model with
spectral density

ρ0(E) = eS0E
1/2

2π . (3.1)

This spectral density occurs for any dilaton gravity at small enough energy, and is thus an
important first case to consider.

Small energy means that we are at small temperature and so huge asymptotic boundaries.
Since the partition functions Z(β1, . . . , βn) are given by integrals over the (deformed) Weil-
Petersson volumes (2.14), one might wonder what large βi implies for those volumes. It is
straightforward to see from the trumpet partition function [11]

Ztrumpet(β, b) = 1
2π1/2β1/2 e

− b
2

4β , (3.2)

that we now get contributions mostly from the region where b2 ∼ β, hence b2 is large. In
other words, we can consider the leading large bi terms in the (deformed) WP volumes.
These are theory-independent terms which have a have a clear geometric interpretation, as
we now point out, see also appendix C.3.

Since they are theory independent, we can start by considering the undeformed WP
volumes, which compute the volumes of moduli spaces of hyperbolic Riemann surfaces with
R = −2. As the boundaries of these Riemann surfaces are K = 0 geodesics we can use
Gauss-Bonnet to show that the area of such Riemann surfaces of genus g and n geodesic
boundary is given by

A = 2π(2g + n− 2) , (3.3)
and hence is a constant. This means that when we take the bi very large, the Riemann
surface needs to become a collection of very thin strips glued along trivalent vertices
(trivalent because we can consider the pair of pants decomposition of the Riemann surface).
In other words, the (deformed or undeformed) WP volumes reduce to the volume of moduli
space of trivalent ribbon graphs, see also figure 2.

These volumes are simple to compute, one can parameterize the moduli space of ribbon
graphs for a certain graph Γ by the lengths `j of the edges of the graph, those lengths
are constrained only by the fact that the sum of the lengths `ji of the edges forming a
certain boundary i add up to bi. Accounting for the standard symmetry factor in Feynman
diagrams one thus obtains

VΓg,n(b1 . . . bn) = 1
|Aut(Γg,n)|

6g−6+3n∏
j=1

∫ ∞
0

d`j
n∏
i=1

δ

bi −∑
ji

`ji

 . (3.4)

Summing over all Γg,n with a certain genus g can then indeed be checked to reproduce the
Airy volumes. But how is this related to intersection numbers? The crux of Kontsevich’s
seminal work [46] was the realization that these integrals can be represented equivalently as
(see also [47, 48])

Vg,n(b1 . . . bn) =
∑
Γg,n

VΓg,n(b1 . . . bn) =
∫
Mg,n

exp
(1

2

n∑
i=1

b2i ψi

)
. (3.5)
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1

3

2

Figure 2. The torus with one puncture V1,1(b) becomes a ribbon graph, when the hole b becomes
large. In this limit the moduli space is spanned by the lengths of the ribbons with the constraint
b = 2`1 + 2`2 + 2`3, and we integrate with the flat measure to recover V1,1(b) = b2/48.

The right hand side is in integral over the moduli space of Riemann surfaces. Just like for
the ordinary (deformed) WP volumes we include degenerate Riemann surfaces, which results
in the so-called Deligne-Mumford compactification of the moduli space of Riemann surfaces
Mg,n. Here the ψi denote the first Chern classes c1(Li) of some bundles of one forms Li

that are constructed as follows, see also appendix C. Take a punctured Riemann surface
and consider the cotangent space at each puncture x = xi. For each xi these cotangent
spaces depend on the moduli of the Riemann surface under consideration. The collection of
all those spaces is a bundle Li over Mg,n.

The key to proving the relation (3.5) is to realize that one can choose a specific one
form α in Li for which the curvature two-form dα = c1(Li) takes on a simple form [46].
The first step is to use the fact that there is an equivalence between the moduli space of
Riemann surfaces and the moduli spaces of ribbon graphs [49–51]. Concretely, one can
associate to every Riemann surface with n boundaries of lengths bi a unique ribbon graph
with lengths `j with again the sum of `ji constrained to bi. This map is provided by the
Jenkins-Strebel quadratic differential [51]. So we can exchange the fundamental domain
in terms of the Teichmuller coordinates bi and τi for a sum over ribbon graphs with the
simple constraint that the sum of lengths `ji is constrained to bi.12 In these coordinates,
Kontsevich found a local expression for a one form α whose curvature is constant13

ψi = dα = c1(Li) = 2
b2i

∑
j<k

d`ji ∧ d`ki . (3.6)

With this equation it is not hard to imagine that writing out the exponential in (3.5) generates
simply the flat measure in (3.4). The actual proof still involves some combinatorics [46],
but the point should be obvious. We want to emphasize that all this aside, the ψi are

12It is quite remarkable that the moduli space of Riemann surfaces is so simple in these coordinates `j .
One can think of `j as the propagation times of open strings, and this simplicity of moduli space is roughly
why open string field theory is simpler than closed string field theory.

13We are suppressing some factors of two and minus signs in the sum, associated for instance with cases
where one edges contributing twice to bi, see theorem 3.20 in [40]. These are not important for this intuitive
argument.
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simply two forms on Mg,n. In terms of Teichmuller coordinates bi and τi they have rather
complicated expressions, but in the `j coordinates they are constants.14

Introducing common notation for the 2k-forms (the k’th power of the Chern classes)

τk = ψki , (3.7)

and writing out the exponentials in (3.5) we arrive at the relation between (deformed) WP
volumes for large bi and so-called intersection numbers 〈τd1 . . . τdn〉 (for more about this
name see appendix C)

Vg,n(b1 . . . bn) =
∞∑
d1=0

b2d1
1

2d1d1! · · ·
∞∑

dn=0

b2dnn

2dndn!〈τd1 . . . τdn〉g , 〈τd1 . . . τdn〉g =
∫
Mg,n

ψd1
1 . . .ψdnn .

(3.8)
Because first Chern classes ψi are two-forms, and the dimension of the space Mg,n is
6g − 6 + 2n, there is an obvious selection rule

n∑
i=1

di = 3g − 3 + n , (3.9)

and from the definition, the correlators 〈τd1 . . . τdn〉 are symmetric under exchanging any
two labels. In terms of the n-boundary finite temperature partition function we then obtain

Z(β1 . . . βn)conn = β
1/2
1
π1/2 . . .

β
1/2
n

π1/2

∞∑
g=0

e−2gS0
∞∑
d1=0

(2β1)d1 · · ·
∞∑
d2=0

(2βn)dn〈τd1 . . . τdn〉g

= x
1/2
1

(2π)1/2 . . .
x

1/2
n

(2π)1/2 F(x1 . . . xn) , xi = 2βie−2S0/3 , (3.10)

with the generating functional

F(x1 . . . xn) =
∞∑
d1=0

xd1
1 · · ·

∞∑
dn=0

xdnn 〈τd1 . . . τdn〉 . (3.11)

By taking the large bi limit in Mirzakhani’s recursion relations [25, 52] (either in the answer
or in the derivation) one obtains a simple version of topological recursion for ribbon graphs,
see appendix C.4. This can be translated to simple recursion relations for intersection
numbers 〈τd1 . . . τdn〉, which are the expansion coefficients of ribbon graph volumes (3.8).

14To avoid confusion, the Weil-Petersson measure dbi ∧ dτi becomes only flat in the `j coordinates for
large bi [40]. So in general one can view Weil-Petersson volumes as integrating over the moduli space of
ribbon graphs, but with a non-flat measure. The integration domain is the same [49–51], but the integrand
is different.
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One finds eventually equation (25) in [53]15,16

(2k+1)
〈
τ2

0 τk

∞∏
j=0

τ
dj
j

〉
g

=
∞∏
j=0

dj∑
aj=0

dj !
aj !(dj−aj)!

〈
τ0τk−1

∞∏
j=0

τ
dj−aj
j

〉
g1

〈
τ3

0

∞∏
j=0

τ
aj
j

〉
g2

+2
∞∏
j=0

dj∑
bj=0

dj !
bj !(dj−bj)!

〈
τ2

0 τk−1

∞∏
j=0

τ
dj−bj
j

〉
g1

〈
τ2

0

∞∏
j=0

τ
bj
j

〉
g2

+ 1
4

〈
τ4

0 τk−1

∞∏
j=0

τ
dj
j

〉
g−1

.

(3.12)

These recursion relations encode the famous Korteweg-de Vries (KdV) hierarchy [59], which
is an infinite set of differential equations. The connection to the KdV hierarchy will prove
useful in our work, so we summarize it now.

3.2 KdV equations and intersection numbers

The KdV hierarchy consists of an infinite set of differential equations [45]

(2n+ 1)∂n∂2
0F = ∂n−1∂0F∂

3
0F + 2∂n−1∂

2
0F∂

2
0F + 1

4∂n−1∂
4
0F , n ≥ 0 . (3.13)

Here F is a function of an infinite set of parameters t0, t1, t2 . . . called KdV times and
∂i = ∂/∂ti. Often, these equations are presented in a slightly different way, by introducing
functions Rn and u of the KdV times

Rn = ∂n−1∂0F , R1 = ∂2
0F = u . (3.14)

By definition on then has
∂nu = ∂0Rn+1 . (3.15)

The functions Rn for n ≥ 0 are then determined recursively by the KdV hierarchy (3.13) as
functions of u

(2n+ 1)∂0Rn+1 = (∂0u)Rn + 2u∂0Rn + 1
4∂

3
0Rn , (3.16)

15This is quite teadious. We can rewrite the recursion relations of volumes in terms of recursion relations
for intersection numbers as in [54], but now using the volumes of ribbon graphs and without the κ two-forms.
What one obtains are the Dijkgraaf-Verlinde2 [55] version of the recursion relations, equation (7.27) in [56]
but with appropriate normalization. These recursion relations are not manifestly the same as the once
we wrote above, they correspond with the Virasoro constraint equations in the KdV formalism, whereas
our equations above literally follow from the KdV equations themselves. That these two infinite sets of
differential equations (and correspondingly, two infinite sets of recursion equations) are equivalent was proven
again in [56], see also [57, 58]. We explain these steps more carefully in section 3.2.

16The labels dj fix the genus g via the selection rule (3.9) and should be chosen such that g is a positive
integer (otherwise the correlator trivially vanishes). Applied to this case the selection rule reads

∞∑
j=0

(j − 1)dj + (k − 1) = 3g − 1 .

Similarly the correlators on the right side only get contributions from values aj and bj such that g1 ad g2 are
non-negative integers. We automatically have g1 + g2 = g, as one checks using the selection rules. There are
no eS0 in these equations, these are just statements about integrals of 2j forms over some symplectic manifold.
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the n = 0 version of this equation

∂0u = R0∂0u+ 2u∂0R0 + 1
4∂

3
0R0 (3.17)

has the solution R0 = 1. Using that R1 = u, one can then solve the n = 1 version of (3.16)
and obtain the solution17

R2 = 1
2u

2 + 1
12∂

2
0u . (3.18)

This can be continued recursively and n and so in principle one can find solutions to the
KdV equations in terms of one unknown function u. These functions Rn that one obtains
this way are (up to potential normalization factors appearing in various papers) known as
Gelfand-Dikii polynomials.

In fact the KdV hierarchy has one more equation, known as the string equation [45]

∂2
0F = t0 +

∞∑
i=0

ti+1∂0∂iF , (3.19)

which, via the definition of the Gelfand-Dikii polynomials becomes

0 =
∞∑
n=0

(tk − δk,1)Rk . (3.20)

Inserting the expressions for the Gelfand-Dikii polynomials in terms of powers of u (and
t0 derivatives thereof) this becomes a highly complicated equation for u, which is all that
remains to be solved of the KdV hierarchy of equations. But what does this have to do
with the intersection numbers we discussed previously?

The relation with intersection numbers is that this unknown function F is a generating
functional of intersection numbers [45, 46] (see appendix C.2 for more details about this)

F =
〈

exp
( ∞∑
k=0

tkτk

)〉
=
∑
{di}

∞∏
i=0

tdii
di!

〈 ∞∏
j=0

τ
dj
j

〉
. (3.21)

Bearing in mind that in the gravitational description one interprets 〈τd1 . . . τdn〉 as connected
correlators (3.10), it is also natural to consider the generating function of full (not per-se
connected) correlators

Z = exp(F ) . (3.22)

There are approximately a gazillion proofs for (3.21), but in the spirit of the discussion
we have had thus far we only mention one approach, due to Dijkgraaf-Verlinde2 [56], and
explained nicely by Witten [58]. The gist is that using standard manipulations one can
show that the solution F of the KdV hierarchy also satisfies linear differential equations [58]

LnZ = 0 , n ≥ −1 , (3.23)

with Ln satisfying the Virasoro algebra18

[Lm, Ln] = (m− n)Lm+n + δn+m,0
m(m2 − 1)

12 . (3.24)

17This is the standard Korteweg-de Vries equation ∂1u = u∂0u+ ∂3
0u/12.

18As a result, you actually only need to consider the equations for −1 ≤ n ≤ 2 [58].
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They are explicitly given by

Ln = 1
2

+∞∑
m=−∞

αmαn−m+1 + 1
16δn,0 , (3.25)

with creation and annihilation operators

αm =


1

21/2 (2m− 1)!! ∂m−1 m ≥ 1
1

21/2
1

(−2m−1)!! (t−m − δm,−1) m ≤ 0 .
(3.26)

Then one can show that these differential equations are equivalent to the topological recursion
relations that we found in appendix C.4 for the ribbon graph volumes Vg,n(b1 . . . bn). In
particular one can write the recursion relations of those volumes in terms of recursion
relations for the intersection numbers as in [54], the result is the Dijkgraaf-Verlinde2

recursion relation (equation (7.27) in [56] or (4.1) in [59])

(2n+3)!!
〈
τn+1

∏
i∈X

τki

〉
g

(3.27)

=
∑
j∈X

(2n+2kj+1)!!
(2kj−1)!!

〈
τkj+n

∏
i∈X/j

τki

〉
g

+ 1
2

n∑
m=1

(2m−1)!!(2n−2m−1)!!
〈
τm−1τn−m

∏
i∈X

τki

〉
g−1

+ 1
2

g∑
g′=0

∑
X1∪X2=X

n∑
m=1

(2m−1)!!(2n−2m+1)!!
〈
τm−1

∏
ii∈X1

τki1

〉
g′

〈
τn−m

∏
i2∈X2

τki2

〉
g−g′

We remind the reader that these correlators have an implicit genus, because of the selection
rule (3.9). If we assign genus g to the correlators on the first line, one sees that the
correlators on the second line have genus g − 1, and the ones on the final line have genera
g′ and g − g′. It is obvious then where each term comes from in the Mirzakhani recursion
relations for Vg,n(b1 . . . bn).

This is identical to the equations that one finds from writing out (3.23). To see this, one
writes Z in terms of F , and expands F as in (3.21) in powers of tk. In such an expansion, a
derivative ∂k is the creator of an extra τk

∂kF =
∑
{di}

∞∏
i=0

tdii
di!

〈
τk

∞∏
j=0

τ
dj
j

〉
, (3.28)

and multiplication with tk is like removing or annihilating a τk

tkF =
∑
di

∞∏
i=0

tdii
di!

〈
dkτ

dk−1
k

∞∏
j 6=k

τ
dj
j

〉
. (3.29)

Applying this several times one indeed recovers (3.27) (by comparing terms with identical
powers tdii ). Before proceeding we mention two special cases of (3.27). The case n = −1 is
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called the string equation, and is equivalent to (3.19)19〈
τ0

m∏
i=1

τki

〉
g

=
m∑
j=1

〈
τkj−1

m∏
i 6=j

τki

〉
g

, (3.30)

and the case n = 0 is called the dilaton equation (use the selection rule (3.9) to simplify
the prefactor) 〈

τ1

m∏
i=1

τki

〉
g

= −χ
〈 m∏
i=1

τki

〉
g

, χ = 2− 2g −m (3.31)

The first term in
L−1 = 1

4 t
2
0 −

1
2∂0 +

∑
m=1

1
2 tm∂m−1 , (3.32)

fixes the fact that 〈τn0 〉 = δn,3. Similarly, we can understand the term 1/16 in (3.25) as
fixing 〈τ1〉 = 1/24. Note that using equation (3.4) one finds V1,1(b) = b2/48 (see also [10]
and appendix C), from which we deduce 〈τ1〉 = 1/24. Furthermore from V0,3(b1, b2, b3) = 1
(the moduli space M0,3 is a point) one finds

〈
τ3

0
〉

= 1. These are the initial conditions for
the recursion relations.

As mentioned in footnote 18, beyond the n = −1 and n = 0, we only need the n = 1 and
n = 2 Virasoro conditions. Imposing these conditions results in non-linearities. Whereas
before acting with L−1 and L0 is first order in the derivatives w.r.t. tm, L1 and L2 contain
second order derivatives acting on Z = eF , resulting, for instance, in terms of the form
(∂0F )2 + ∂2

0F when converting to the free energy and giving rise to the final term in (3.27).
Instead of expanding the Virasoro constraints (3.23) in intersection numbers, we can

also just expand the KdV hierarchy (3.13) (and string equation). Since both sets of
equations carry identical information, so do the resulting recursion relations. One matches
in a straightforward manner each consecutive term in (3.13) with those in the recursion
relations (3.12). We proceed with (3.12) now.

3.3 Simplest cancellations

One can use this recursive version of the KdV equations (3.12) to get differential equations
for F(x1 . . . xn) (3.11) [53] which can then be solved exactly [53, 60]. For F(x) we start
from (3.12) with dj = 0

(2n+ 1)
〈
τ2

0 τn
〉

= 〈τ0τn−1〉
〈
τ3

0

〉
+ 2

〈
τ2

0 τn−1
〉〈
τ2

0

〉
+ 1

4
〈
τ4

0 τn−1
〉
, (3.33)

which, using the string equation (3.30) and 〈τn0 〉 = δn,3 simplifies to

2n〈τn−2〉 −
1
4 〈τn−5〉 = 0 . (3.34)

19Here and below g is determined using the selection rule (3.9), the correlator vanishes whenever g is not
a positive integer

m∑
i=0

ki = 3g − 2 +m.
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We can rewrite this recursion relation into a differential equation for F(x) by basically doing
the inverse of what took us from the KdV equations to (3.12).20 Multiplying with xn−1

and summing over n we find

2∂x
∑
n

xn〈τn−2〉 −
1
4
∑
n

xn−1〈τn−5〉 = 0 ⇒
(

2∂xx2 − 1
4x

4
)
F(x) = 0 . (3.35)

This equation has a unique solution once one impose that the linear term F(x) ⊃ x〈τ1〉 =
x/24

F(x) = 1
x2 exp

(
x3

24

)
. (3.36)

With the relation (3.10) this computes the exact one-boundary partition function for
topological gravity with spectrum (3.1), which reproduces the answer one obtains from
double scaling the exactly solvable Gaussian matrix integral [11]

Z(β) = eS0

4π1/2β3/2 exp
(1

3 β
3e−2S0

)
. (3.37)

We can obtain the two-boundary partition function in similar manner. For F(x1, x2)
one start from (3.12) with dj = δj,q

(2n+1)
〈
τ2

0 τnτq
〉

= 〈τ0τn−1〉
〈
τ3

0 τq
〉

+〈τ0τn−1τq〉+2
〈
τ2

0 τn−1
〉〈
τ2

0 τq
〉

+ 1
4
〈
τ4

0 τn−1τq
〉
. (3.38)

Using the string equation we find the relation

F(x1, x2, 0) =
∞∑
n=0

∞∑
q=0

xn1x
q
2 〈τ0τnτq〉 = (x1 + x2)

∞∑
n=0

∞∑
q=0

xn1x
q
2 〈τnτq〉 = (x1 + x2)F(x1, x2) .

(3.39)
Using tricks like this we find that multiplying (3.38) with xn1x

q
2 and summing over n and q

results term by term in

2∂1 x1(x1 + x2)F(x1, x2, 0)− (x1 + x2)F(x1, x2, 0) (3.40)
= x2 F(0, x2, 0)F(x1, 0, 0) + x1 F(x1, x2, 0)

+ 2x1 F(0, x2, 0)F(x1, 0, 0) + 1
4x2(x1 + x2)3 F(x1, x2, 0) .

Using again the string equation F(x1, 0, 0) = x2
1 F(x1) = exp

(
x3

1/24
)
one can rearrange this

into (
1− 1

4x1x2(x1 + x2) + 2x1(x1 + x2)
x2 + 2x1

∂1

)
F(x1, x2, 0) exp

(
−x

3
1 + x3

2
24

)
= 1 . (3.41)

This simplifies tremendously by introducing the coordinate a = x1x2(x1 + x2) and naming
the function outside the braces f(a), then Mathematica spits out the unique solution (the
boundary condition comes from taking x1 = 0 and using F(0, x2, 0) = exp

(
x3

2/24
)
as above)(

1− 1
4a+ 2a∂a

)
f(a) = 1 , f(0) = 1 ⇒ f(a) = (2π)1/2

a1/2 exp
(
a

8

)
Erf
(
a1/2

23/2

)
. (3.42)

20The difference is that here we consider all n, but only one insertion from the exponential, whereas in
the KdV hierarchy we consider the whole exponential but fixed n.
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From this one then obtains finally the exact answer for F(x1, x2)

F(x1, x2) = (2π)1/2

(x1x2)1/2(x1 + x2)3/2 exp
( 1

24(x1 + x2)3
)
Erf
( 1

23/2 (x1x2(x1 + x2))1/2
)
,

(3.43)
and using (3.10) one finds the exact connected two-boundary partition function [21]

Z(β1, β2)conn = eS0

4π1/2(β1 + β2)3/2 exp
(1

3(β1 + β2)3e−2S0

)
Erf
(
((β1β2(β1 + β2))1/2e−S0

)
.

(3.44)
Note that this epressions indeed reduces to (A.1) in the τ -scaling limit.

A comment on unstable surfaces. We pause to make one comment about (3.36)
and (3.43). Notice that they contain the terms 1/x2 and 1/(x1 + x2), which, from our
conversion from the recursion relation to the differential equation should not be there.
Nevertheless, these are correct and should be included, they represent the contributions
at (g, n) = (0, 1) and (0, 2), which are degenerate surfaces, i.e they have zero area. In the
mathematics literature they go under the name unstable surfaces. The matrix integral
calculations naturally include these cases and also in the gravity calculations they should
be there. From the recursion relation we can also see that they are there if we continue to
negative n and q. For instance from (3.34) we see that the boundary condition 〈τ1〉 = 1/(24)
determines 〈τ−2〉 = 1, but 〈τn〉 with n < −2 (along side with n = −1, 0) still vanish. This
gives the 1/x2 indeed. Furthermore, this also implies that 〈τ0τ−1〉 = 1.

Cancellations for two boundaries. As explained in the recent paper by Eynard,
Lewanski and Ooms [27], something interesting happens when we write F(x1, x2) as a
series expansion (using the known expansions of Erf and exponentials, see for instance
equation (2.13) in [60]) in elementary symmetric polynomials e1 = x1 + x2 and e2 = x1x2:

F(x1, x2) =
∞∑
g=0

g∑
m=0

em2 e
3g−1−2m
1

3m

24gm!(g −m)!
1

2m+ 1(−1)m . (3.45)

The label g refers to genus, because of the weight e−2gS0 that each term acquires in terms
of βi variables (3.10). Let us compare this with the generic expansion of F(x1, x2) in
elementary symmetric polynomials and intersection numbers, following from (3.11) (this is
elementary, but slightly teadious to find)

F(x1, x2) =
∑
g

(3g−1)/2∑
m=0

em2 e
3g−1−2m
1

×
m∑
p=0
〈τpτ3g−1−p〉

3g − 1− 2p
3g − 1− p−m

(3g − 1− p−m)!
(m− p)!(3g − 1− 2m)! (−1)p+m . (3.46)

Notice that this is identical to the term of top degree m = 3g − 1 in (2.22), which is no
accident because topological gravity is the case t2, t3 · · · = 0 in section 2 in which case only
the top degree survives. This should become more clear in section 4. We left implicit the
factor 1/2 for the case p = m = (3g − 1)/2.
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The noteworthy observation is that the exact expression (3.45) at fixed genus g has a
maximal power eg2, where the selection rule (3.9) of intersection theory allows also for powers
em2 with g < m < (3g − 1)/2. This implies highly non-trivial cancellations in intersection
numbers
m∑
p=0
〈τpτ3g−1−p〉

3g − 1− 2p
3g − 1− p−m

(3g − 1− p−m)!
(m− p)!(3g − 1− 2m)! (−1)p = 0 , g < m < (3g − 1)/2 .

(3.47)
The simplest case m = (3g − 1)/2 has appeared in the literature before, for instance [26]
(theorem 8) ∑

d1+d2=3g−1
〈τd1τd2〉 (−1)d1 = 0 . (3.48)

Now, these cancellations (3.47) are exactly the same as the highest degree cancellations
m = 3g − 1 that we predicted for volumes (2.23) associated with generic spectra. This is
obvious because the expansion coefficients in (2.16) for the volumes are exactly identical to
the intersection number in (3.8)

Vg,d1,d2 = 2d1+d2〈τd1τd2〉g , (3.49)

which for topological gravity are nonzero only if d1 + d2 = 3g − 1 (3.9). So, for topological
gravity the only non-trivial cancellations in (2.23) are m = 3g − 1, the other cases are
trivially satisfied because of the selection rule (3.9).

The fact that (3.45) has a maximal power eg2 directly implies that the genus g wormhole
in topological gravity grows for late times no faster than

Zg(β + iT, β − iT )conn =

genus g wormholes

β + iT β − iT

. . . ∼ T 2g+1e−2gS0 , (3.50)

because for late enough times e1 ∼ β and e2 ∼ T 2. We have shown that the cancellations in
the volumes required to make this happen can be derived directly from the KdV equations.
The question then arises whether this is also true for generic dilaton gravity theories, or
generic spectral curves ρ0(E). We will demonstrate in section 4 that this is the case, the
universal scaling (3.50) can be derived using the KdV hierarchy.

To set up that argument, we first introduce a generalization of the cancellations (3.45)
in F(x1, x2) to the n-boundary correlators in topological gravity F(x1 . . . xn).

3.4 Multi-boundary cancellations

Just like for the cases F(x1) and F(x1, x2) that we presented in section 3.3, one can get an
exact formula for the n-boundary correlators in topological gravity F(x1 . . . xn) via the KdV
recursion relations. This was shown by Liu and Xu [61], who found a recursive formula to
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compute F(x1 . . . xn) from F(x1 . . . xm) with m < n. The proof, nor the particular equation,
is particularly insightful, the point is that precise formulas exist and follow purely from KdV.

These formulas can then be expanded in elementary symmetric polynomials [27], like
we did for the two point function in (3.45). From the intersection number formula (3.11)
and simple dimensional analysis we get an expansion of the type

F(x1 . . . xn) =
∞∑
g=0

∞∑
m1=0

· · ·
∞∑

mn=0
em1

1 em2
2 . . . emnn Cg(m2 . . .mn) ,

n∑
j=1

jmj = 3g − 3 + n ,

(3.51)
where the constraint on the powers comes from the selection rule (3.9). For clarity

e1 =
n∑
j=1

xj , e2 =
n∑

j1<j2=1
xj1xj2 , e3 =

n∑
j1<j2<j3=1

xj1xj2xj3 , (3.52)

etcetera. Crucially, Eynard, Lewanski and Ooms [27] found that many of the naively allowed
expansion coefficients identically vanish

Cg(m2 . . .mn) = 0 ,
n∑
j=2

mj > g . (3.53)

This generalizes the fact that the highest power in (3.45) is eg2. They impressively checked
this vanishing for all n and g ≤ 7, and for all g and n ≤ 3, using the explicit formulas of
Liu and Xu [61] (see also [60]) and the KdV equations (in various forms).

Taken at face value, this new constraint (3.53) does not seem too constraining on the
individual powers of e3, e4 . . . , because the original selection rule does not allow m3 to grow
faster than g, or m4 faster than 3g/4 etcetera. So one may wonder if, beyond m = 2, these
cancellations (3.53) have any intuitive physical interpretation, we will now demonstrate
that they do.

4 Universal cancellations in dilaton gravity via open-closed duality

In this section we show that the constraint (3.53) on the total power of e2, e3 . . . implies
(and in fact is identical to) the universal maximal growth (3.50) for all double scaled matrix
models (with square root edges (2.7)), not just topological gravity. This late-time wormhole
universality, in turn, is key for the emergence of the plateau, which, in turn, is gravity’s
way of saying it is a discrete quantum system [2].

Readers familiar with how those models are described using the KdV hierarchy may
skip to section 4.2, for didactic purposes we will go slower.

4.1 KdV equations around different backgrounds

We have learned that because of the relation of the volumes with ψi classes for topological
gravity (3.5)

Vg,n(b1 . . . bn) =
∫
Mg,n

exp
(

1
2

n∑
i=1

b2i ψi

)
=
∞∑
d1=0

b2d1
1

2d1d1! · · ·
∞∑

dn=0

b2dnn

2dndn!〈τd1 . . . τdn〉g , (4.1)
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that n-boundary partition functions can be expressed in terms of intersection numbers, as
in (3.10).

More in general, there is such a relation for all double scaled matrix integrals with a
leading order spectrum of the type (2.7)

ρ0(E) = eS0

2π

∞∑
k=0

fk E
k+1/2 , f0 = 1 . (4.2)

In this more general case the volumes are computed in terms of intersection numbers as

Vg,n(b1 . . . bn) =
∞∑
d1=0

b2d1
1

2d1d1! · · ·
∞∑

dn=0

b2dnn

2dndn!

〈
τd1 . . . τdn exp

( ∞∑
k=2

γkτk

)〉
g

, (4.3)

with a relation fk(γi) that we have yet to determine. Notice that we can get the correlators
on the right from the same generating functional F that satisfies the KdV hierarchy (3.21),
by expanding around a different set of KdV times tk total = γk + tk

F =
〈

exp
( ∞∑
k=0

tk totalτk

)〉
=
∞∏
i=0

∑
di

tdii
di!

〈 ∞∏
j=0

τ
dj
j exp

( ∞∑
k=2

γkτk

)〉
=
∞∏
i=0

∑
di

tdii
di!

〈 ∞∏
j=0

τ
dj
j

〉
γk

,

(4.4)

where in the last equality we have introduced shorthand notation 〈. . .〉γk for correlators in
the presence of an extra exponential of τk operators.

There are several ways to appreciate that (4.3) calculates the correlators of a double
scaled matrix integral [11] with a spectral curve of the type (4.2) (or some model of two
dimensional (dilaton) gravity). One way is to write out the Virasoro constraints (3.23); but
with the more generally correct form for the creation and annihilation operators (we can
always set γ0 = γ1 = 0)

αm =


1

21/2 (2m− 1)!! ∂m−1 m ≥ 1
1

21/2
1

(−2m−1)!! (t−m − δm,−1 + γ−m) m ≤ 0 .
(4.5)

We can use the definition of F (4.4) to see that we still have the property that a derivative
with respect to tk is the creator of an τk

∂kF =
∑
{di}

∞∏
i=0

tdii
di!

〈
τk

∞∏
j=0

τ
dj
j

〉
γk

, (4.6)

and furthermore multiplication with tk is still like removing or annihilating a τk

tkF =
∑
{di}

∞∏
i=0

tdii
di!

〈
dkτ

dk−1
k

∞∏
j 6=k

τ
dj
j

〉
γk

. (4.7)

Then we can write out the generators Ln (3.25) and use Z = exp(F ) to obtain recursion
relations that are analogous to the Dijkgraaf-Verlinde2 ones (3.27) but which depend
explicitly on the γk, because γk appears in (4.5). These recursive equations to compute
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〈τd1 . . . τdn〉γk can then be recovered alternatively from the topological recursion [62] relations
between volumes with spectral curve (4.2), demonstrating the equivalence.

We emphasize again that we are always dealing with the same function F , the same KdV
hierarchy (3.13) and the same string equation (which features the invariant tk total = tk +γk)

0 =
∞∑
k=0

(tk + γk − δk,1)Rk , (4.8)

which in a correlation function reduces to the generalization of (3.30)〈
τ0

n∏
i=1

τki

〉
γk

−
∞∑
j=1

γj+1

〈
τj

n∏
i=1

τki

〉
γk

=
n∑

m=1

〈
τkm−1

n∏
i 6=m

τki

〉
γk

. (4.9)

For multi-critical points with Ek+1/2 edge only γk+1 is nonzero and we recover the n = 0
case of formula (4.1) in [59] (the formulas are more symmetric if we view the −δk,1 as
γ1 = −1 instead, which we will adopt below).

Let us now compute the spectrum ρ0(E) that follows from (4.4). For this we need to
be a bit more clever with the genus counting parameter and define [48]

F (eS0 , γk) =
∞∑
g=0

e−2gS0

〈
exp

( ∞∑
k=0

γkτk

)〉
g

, Rk+1(eS0 , γk) = ∂0 ∂k F (eS0 , γk) , (4.10)

with again u(eS0 , γk) = R1(eS0 , γk). Using the selection rule (3.9) we observe that this is
related to F via F (eS0 , γk) = e−2S0F (γkeS02(1−k)/3). Using these relations one rewrites the
KdV recursion relations for Rn (3.16) as (all equations below implicitly have the functions
of u(eS0 , γk) that we just defined)

(2n+ 1)∂0Rn+1 = ∂0uRn + 2u∂0Rn + e−2S0 1
4∂

3
0Rn , 0 =

∞∑
k=0

γkRk . (4.11)

This redefinition may seem a bit like wasted energy, but the benifit is that we can now
very easily solve the recursion relation to leading order in eS0 , because we can neglect the
final term. With seed R0 = 1, one finds Rk = uk/k! and the leading order string equation
becomes quite simple

− γ0 =
∞∑
k=1

γk
uk

k! = G(u) . (4.12)

One can then use this simple structure to find Z(β) to leading order as follows [48, 63–65].
In all the expressions we have written down so far t0 was set to zero, but this makes using
the KdV hierarchy impossible since there are ∂0s everywhere. Thus we need to consider
a partition function Z(β, t0) with non-zero t0. For that we need to use the contributions
from unstable surfaces discussed below (3.43). In particular, consider

∂0Z(β, t0) = eS0 β
1/2

π1/2

∑
d

(2β)d〈τ0τd〉γk = eS0 1
2π1/2β1/2

∞∑
d=0

(2β)dRd = eS0 e2βu

2π1/2β1/2 ,

(4.13)
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where we used that a derivative w.r.t. to t0 inserts a factor of τ0,21 the definition Rk+1 =
∂0 ∂k F and that Rd = ud/d!. Integrating (4.13), using that γ0 = −G(u) such that dγ0 =
−G′(u)du, and putting t0 = 0 again one obtains the leading order solution [48]

Z(β) = eS0

2π1/2β1/2

∫ ∞
−2u0

duG′(−u/2) e−βu , (4.14)

with u0 the smallest positive solution to G(u0) = 0. The spectral density is then found to be

ρ0(E) = eS0

π

∫ E

E0
duG

′(−u/2)√
E − u

, (4.15)

with E0 = 2u0. In the case of JT we have

G(−u/2) = u1/2

2π I1(2πu1/2), (4.16)

which gives E0 = 0 and the density to be the sinh. More in general, one finds an expansion
of ρ0(E) in terms of Ek+1/2 as in (2.7) but with expansion coefficients that depend on γk
non-linearly because E0 depends non-linearly on these couplings. To sum things up: (4.3)
computes volumes of two dimensional (dilaton) gravity theories, and the leading order
spectrum can be found more or less directly from the KdV equations.22

Before we proceed let us make two comments that will be important later.

1. JT gravity corresponds to the case

γn+1 = (−1)n+1 (2π2)n

n! , (4.17)

which indeed reproduces the series expansion of ρ0(E) = eS0 sinh
(
2πE1/2

)
/4π2. Of

course we also have the known expression for the Weil-Petersson symplectic form [47]

Vg,n(b1 . . . bn) =
∫
Mg,n

exp
(

2π2κ+ 1
2

n∑
i=1

b2i ψi

)
, (4.18)

where the κ class represents the Weil-Petersson two form on punctured Riemann
surfaces. If we compare this with our current construction we recover the known
duality [47, 66]

e2π2κ ⇔ exp
( ∞∑
k=2

(−1)k (2π2)k−1

(k − 1)! τk

)
, (4.19)

which is to be understood as holding within expectation values.

2. This relation between an exponential of τk operators and matrix integrals with
different spectral densities should be considered an example of open-closed (string)

21To be very precise here: we work to first order in perturbation theory in t0, which will be enough as we
will later set t0 to zero again.

22Some extra overall eE0β in the integral (2.10) does not change any of the statements about the
power series.
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duality. For instance in (4.3) the left-hand side is the “closed” picture, we compute
n-boundary amplitudes in a specific gravity theory. But, the right-hand side is a sum
over m ≥ n-boundary amplitudes in topological gravity

〈τd1 . . . τdn〉γk = 〈τd1 . . . τdn〉+
∞∑
k1=2

γk1〈τd1 . . . τdnτk1〉

+ 1
2

∞∑
k1=2

∞∑
k1=2

γk1γk2〈τd1 . . . τdnτk1τk2〉+ . . . (4.20)

This should be viewed as the “open” description [67]. The identity (4.19) should be
interpreted in the same way. The κ two forms are integrated over Mg,n, whereas the
τk correspond with Chern classes c1(La)∧k associated with m−n extra marked points
xa integrated over Mg,m with m ≥ n. In string language, the exponential of τk’s is
like inserting D-branes (exponentials of boundaries), see also figure 3.

3. Another side of the coin is the relation with ribbon graphs. We demonstrated in
section 3.1 that topological gravity can be thought of in the same way as JT gravity,
but where the higher genus Riemann surfaces one glues to are ribbon graphs with
large lengths bi. In turn, the full JT theory also has a ribbon graph interpretation;
actually two, related by open-closed duality.

The open side of the interpretation is essentially rewriting (4.20) in terms of ribbon
graphs using Kontsevich’s insights, which we explained in section 3.1. The crucial
thing there is then that the JT ribbon graphs in the open description are sums of
the usual (Airy) ribbon graphs, but with additional faces that are weighted by the γi
instead of the b2i /2.

The closed perspective is that one takes the usual (Airy) ribbon graphs, but when
computing the volume of moduli space one uses not the flat measure, rather the κ
class implies a non-trivial measure

µ({ˆ̀i},{bi})JT = exp
(

2π2κ+ 1
2

n∑
i=1

b2i ψi

)
= exp

−6g−6+2n∑
i<j

W−1
ij dˆ̀

i∧dˆ̀
j

, (4.21)

with Wij the matrix
Wij =

∑
p∈γi∩γj

cos θp . (4.22)

Here γi are 6g − 6 + 2n distinct simple closed geodesics with length ˆ̀
i, and θp is the

intersection angle between two of them. These ˆ̀
i are crucially not the same as the

lengths `j we encountered around equation (3.4). For ˆ̀
i we picked a set of simple

closed geodesics γi on the surface, whereas in (3.4) we looked at the edges of a ribbon
graph associated to the surface. How to construct the γi from the ribbon graph is
non-trivial. From the ribbon graph, as explained in [40] there is an algorithmic way of
constructing the simple closed geodesics (these can be disjoint unions of curves also)
but since the ribbon graph is trivalent23 one will get 6g − 6 + 3n geodesics, which are

23The moduli space of ribbon graphs of other valency have dimension strickly less than 6g − 6 + 2n.
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complicated action

simple observable

=
∑

simple action

complicated observable

. . .

Figure 3. Open-closed duality in a nutshell. Here we have in mind computing V1,1(b) in the theory
with an exponential of τk inserted in the action, see (5.9) below. Either we use the complicated
action (5.9) (left); or we expand out the deformations (right), in which case we have a sum over
cusp-defects but we just use the simple JT gravity action at the cost of computing a more complicated
observable with many boundaries (or operators). Alternatively, in the context of this section, we
could think of the left picture as JT gravity and the right picture as Airy with an exponential
of (4.19) inserted. The idea is always the same.

n too many. One can eliminate them by noticing that the analogue of the matrix Wij

will have rank 6g − 6 + 2n and so there is a set of rows and colums one can select to
get the right geodesics. This is thus rather cumbersome, but luckily at large bi the `i
and ˆ̀

i have a simple relation [40], resulting in (3.6).

At any rate, the closed picture is thus more complicated only in the sense that we
would have to write (4.21) in terms of the edge lengths `i of the usual ribbon graphs.

Another point to note is that the relation with the perhaps more familiar measure
in terms of the Fenchel-Nielsen length and twist coordinates (bj , τj) is also not easy.
One would have to write the twist and length variables in terms of the edge variables
`j of ribbon graphs. The relation with the ˆ̀

i is a bit easier, but then one still needs
to convert ˆ̀

i to the `i variables, which as explained above, is hard.

The point is that you can compute complicated things in a simple theory (many-boundary
observables in topological gravity) and learn about simple things in a complicated theory
(few-boundary observables in generic two-dimensional gravity models). Eynard, Lewanski
and Ooms have such a complicated claim (3.53) in a simple theory, we will recast this into
a simple claim (2.10) in complicated theories.

4.2 Universal cancellations in all theories

Consider now the two-boundary correlator in a generic background γk, or for any double
scaled matrix integral with square root spectral edge. According to (3.10) and (4.3) we have

Z(β1, β2)conn = β
1/2
1
π1/2

β
1/2
2
π1/2 F(2β1, 2β2)γk = β

1/2
1
π1/2

β
1/2
2
π1/2

∞∑
g=0

e−2gS0 Fg(2β1, 2β2)γk , (4.23)
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with the generating functional

Fg(x1, x2)γk =
∞∑
d1=0

∞∑
d2=0

xd1
1 x

d2
2

〈
τd1τd2 exp

( ∞∑
k=2

γkτk

)〉
g

. (4.24)

Now let us introduce a new infinite set of variables yi(tk) such that

γk =
∞∑
i=0

yki . (4.25)

Then expanding out the generating functional gives

Fg(x1, x2)γk =
∞∑
m=0

1
m!

∞∑
i1=0
· · ·

∞∑
im=0

Fg(x1, x2, yi1 . . . yim) , (4.26)

which features the n ≥ 2-boundary correlators of topological gravity

Fg(x1 . . . xn) =
∞∑
d1=0
· · ·

∞∑
dn=0

xd1
1 . . . xdnn 〈τd1 . . . τdn〉g

=
∞∑

m1=0
· · ·

∞∑
mn=0

em1
1 em2

2 . . . emnn Cg(m2 . . .mn) , (4.27)

which as we discussed around (3.53) has a constrained expansion in elementary symmetric
polynomials

Cg(m2 . . .mn) = 0 ,
n∑
j=2

mj > g . (4.28)

For late times in the spectral form factor computation x1 ∼ iT and x2 ∼ −iT , but none
of the yi scale in any way with T , these are just parameters inherent to the theory. This
means that e2 ∼ e3 ∼ · · · ∼ T 2 and therefore

em1
1 em2

2 . . . emnn ∼ T 2
∑n

j=2 mj . (4.29)

The power of T that appears here is precisely the expression that was constrained by the
KdV equations to be upper bound by 2g. Hence we have derived that Fg(x1, x2)γk grows
no faster than T 2g for generic γk

Cg(m2 . . .mn) = 0 ,
n∑
j=2

mj > g ⇒ Zg(β + iT, β − iT )conn ∼ T 2g+1e−2gS0 . (4.30)

In summary, we have used the KdV equations to prove a universal late-time scaling be-
havior for genus g wormhole amplitudes in generic double scaled matrix integrals (or two
dimensional gravity models). We explained in section 2 why this behavior was key for the
emergence of the plateau.

In fact we believe that the arrow works both ways

Cg(m2 . . .mn) = 0 ,
n∑
j=2

mj > g ⇔ Zg(β + iT, β − iT )conn ∼ T 2g+1e−2gS0 , (4.31)

in other words this new type of wormhole universality at late times also implies all of
the cancellations that Eynard, Lewanski and Ooms [27] found. We demonstrate this in
appendix B.
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5 KdV equations in dilaton gravity and the matrix integral

In the previous sections we primarily focused on the intersection theory and its integrable
structure by itself, but there is actually a natural interpretation in dilaton gravity and the
matrix integral of all this stuff as well. The general message that we want to convey here is
that the KdV equations seem to have a lot of applications in gravity, it seems like we have
just scratched the surface.

In section 5.1 we prove that the τk can be interpreted as local operators in dilaton
gravity which create cusps (sharp defects [18, 19, 68]). KdV backgrounds with different
γk correspond with inserting a gas of such cusps in JT gravity, this changes the dilaton
potential, and in that sense the different KdV backgrounds are different dilaton gravity
models.

The KdV equations mostly describe how observables in dilaton gravity change under
changes in the action, the answer is basically that we compute things with a new spectral
curve. Likewise, the string-and dilaton equations have an interpretation in dilaton gravity as
transformation rules for observables under changes in the action. They reduce to analogues
of the Dijkgraaf-Verlinde2 loop equations [56].

In section 5.2 we present a clean matrix integral dual for the τk operators, improving
on equations that appeared in [36, 37, 43, 69, 70].

5.1 Dilaton gravity

We start with remembering the relation (4.3) between Weil-Petersson volumes and τk
correlators in the JT gravity background (4.19)

Vg,n(b1 . . . bn) =
∞∑
d1=0

b2d1
1

2d1d1! · · ·
∞∑

dn=0

b2dnn

2dndn!〈τd1 . . . τdn〉κ . (5.1)

Furthermore [19, 71–74] we also know that correlators of defects with opening angle αi < π

in JT gravity are analytic continuations of Weil-Petersson volumes to bi = iαi

〈OD(α1) . . .OD(αn)〉g conn = Vg,n(iα1 . . . iαn)

=
∞∑
d1=0

(−1)d1

2d1d1! α
2d1
1 · · ·

∞∑
d1=0

(−1)dn
2dndn! α

2dn
1 〈τd1 . . . τdn〉κ , (5.2)

with OD(α) the dilaton gravity operator that creates a defect with opening angle α,24 [68]
(using Gauss-Bonnet one can check that this indeed creates the expected angular defect [68,
76])

OD(α) ⇔
∫

d2x
√
g e−(2π−α)Φ ⇔

conical defect

α. . .
(5.3)

24One can use several quantization schemes for defects in JT gravity [18, 75], leading to slightly different
expressions for the defect operator. We are using the most intuitive conventions of [18]. The first equality
in (5.4) is scheme-independent, the second equality can be directly modified to a different scheme. The
scheme of [75] may be more appropriate for doing semiclassics with the action in (5.9).
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Equation (5.2) basically means that this defect operator is a generating functional of τk
operators

τk ⇔ (−1)k 2kk!
(2k)! ∂

2k
α OD(α)|α=0 ⇔ (−1)k

(2k − 1)!!

∫
dx2√gΦ2k e−2πΦ , (5.4)

where in the second equality we inserted the dilaton gravity meaning of OD(α). Another
way of stating this is that we have the obvious identity∫

d2x
√
g e−(2π−α)Φ ⇔ exp

(1
2(iα)2ψextra

)
, α < π . (5.5)

Here ψextra is the first Chern class attached to the extra marked point, constructed in a
similar way as (3.5). The same equation (5.4) is found by working directly with geodesic
boundaries and expanding around b = 0 whilst using the dilaton gravity description of a
geodesic boundary [34]25

OG(b) ⇔ e−S0

∫
d2x
√
g e−2πΦ cos(bΦ) ⇔

geodesic boundary

b. . .
(5.6)

We learn from (5.4) that the τk operators should be interpreted in JT gravity as cusps
(infinitely sharp defects α = 0) with an additional insertion of Φ2k at the cusps. This fits
nicely with the stringy intuition that local vertex operators (here τk) can be viewed as
closed string states coming in from ∞, the infinity is the fact that the cusp is infinitely
sharp and the state is specified by the Φ2k

τk ⇔ (−1)k

(2k − 1)!!

∫
dx2√gΦ2k e−2πΦ ⇔

(nearly) cusp defect

α = 0. . .
(5.7)

Suppose now that we take the KdV hierarchy and we consider the following total
background γk

exp
(

2π2κ+
∞∑
k=2

tkτk

)
= exp

( ∞∑
k=2

γkτk

)
, (5.8)

where the relation between γk and tk follows from the expansion of the κ class in τk
operators (4.19). Because the 2π2κ is specifying JT gravity, we can view the remainder of
the exponential as an operator insertion in JT gravity. Using the dictionary (5.4) we find
that, because the tkτk are in the exponential, we obtain a deformation of the JT gravity
dilaton potential

exp
(

2π2κ+
∞∑
k=2

tkτk

)
⇔ exp

(
S0χ+ 1

2

∫
d2x
√
gΦ(R+2)+

∫
d2x
√
g
∞∑
k=2

(−1)k

(2k−1)!! tkΦ2k e−2πΦ
)
.

(5.9)
25The reader should not dwell on the e−S0 prefactor here, which just signifies that we choose to count

this as a hole rather than a local operator topologically. For defects and τk operator insertions there is no
such prefactor.
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These deformations span the class of dilaton gravities that were discussed in [18, 19, 77].
This formula is exactly true as long as the deformation decays for large Φ no slower
than e−πΦ.

Consider now the string equation (4.9) which for JT gravity γj+1 = −(−2π2)j/j!
becomes ∞∑

a=0

(−2π2)a

a!

〈
τa

n∏
i=1

τki

〉
κ

=
n∑

m=1

〈
τkm−1

n∏
i 6=m

τki

〉
κ

. (5.10)

Note that the operator that is being “inserted” on the left (replacing the role of the so-called
puncture operator τ0 in topological gravity) is related through (5.2) with a Weil-Petersson
volume evaluated at α = 2π. We can then rewrite the string equation by summing over
the other τk in the correlator with appropriate prefactors, such that they correspond with
inserting geodesic boundaries too as in (5.1). One finds that the string equation becomes

Vg,n+1(2πi, b1 . . . bn) =
∫ b1

0
da1a1 Vg,n(a1, b2 . . . bn) +· · ·

∫ bn

0
danan Vg,n(b1 . . . bm−1, an) .

(5.11)
One can indeed check this explicitly, for instance

V1.2(2πi, b) = b4

192 + π2 b
2

24 =
∫ b

0
daa V1,1(a) , V1,1(a) = a2

48 + π2

12 . (5.12)

This relation (5.11) should be viewed as the first term in the Taylor expansion of Mirzakhani’s
recursion around b = 2πi. Indeed, Mirzakhani’s recursion relations are [25, 52]

b Vg,n+1(b, B)

= 1
2

∫ ∞
0

db′b′ db′′b′′D(b, b′, b′′)
(
Vg−1,n+2(b′, b′′, B) +

∑
stable

Vh1,n1(b′, B1)Vh2,n2(b′′, B2)
)

+
n∑
i=1

∫ ∞
0

db′b′ (b− T (b, b′, bi))Vg,n−1(b′, B/bi) , (5.13)

with

D(b, b′, b′′) = 2 log
(
eb/2 + e(b′+b′′)/2

e−b/2 + e(b′+b′′)/2

)
, T (b, b′, b′′) = log

(
cosh b′′

2 + cosh b−b′
2

cosh b′′

2 + cosh b+b′
2

)
. (5.14)

Inserting b = 2πi (and being careful with branchcuts upon doing the analytic continuation
from real b) one obtains

D(2πi, b′, b′′) = 0 , T (2πi, b′, bk) = 2πi θ(b′ − bk) , (5.15)

which reduces the recursion relation (5.13) directly to (5.11). The other Virasoro con-
straints (3.23) in the KdV hierarchy compute subleading terms in the Taylor expansion of
the volumes around b = 2πi.

For instance, working out the L0 constraint (or dilaton equation) for JT gravity gives
∞∑
a=0

(2a+ 3)(−2π2)a

a!

〈
τa+1

n∏
i=1

τki

〉
κ

=
n∑

m=1
(2ki + 1)

〈 n∏
i=1

τki

〉
κ

, (5.16)

– 29 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
8

which in terms of volumes becomes(2
b
∂b + ∂2

b

)
Vg,n+1(b = 2πi, b1 . . . bn) =

(
n+

n∑
i=1

bi∂bi

)
Vg,n(b1 . . . bn) , (5.17)

this relation one can again check explicitly, for instance for V1,2(b, b1) and V1,1(b1). In terms
of partition functions (3.10) the string equation (5.11) becomes

Z(b = 2πi, β1 . . . βn)conn = 2
n∑
i=1

βi Z(β1 . . . βn)conn , (5.18)

and the dilaton equation (5.17) becomes

(2
b
∂b + ∂2

b

)
Z(b = 2πi, β1 . . . βn)conn = 2

n∑
i=1

βi∂βi Z(β1 . . . βn)conn . (5.19)

These identities are the equivalent of what Dijkgraaf-Verlinde2 [56] called loop equations
for topological gravity. In the latter case the right hand side of the dilaton equation is
also equal to −3χZ(β1 . . . βn)conn, as in (3.31). This is not true for JT gravity, because the
selection rule (3.9) is violated by the κ classes in the exponential. However, it turns out [40]
we also have an equation

1
b
∂b Z(b = 2πi, β1 . . . βn)conn = −χZ(β1 . . . βn)conn , (5.20)

such that the dilaton equation simplifies to

∂2
b Z(b = 2πi, β1 . . . βn)conn =

(
2

n∑
i=1

βi∂βi − 2χ
)
Z(β1 . . . βn)conn . (5.21)

We are interested in understanding these equations (and if possible the other Ln
constraints) directly from the dilaton gravity path integral, in the spirit of having a better
gravity understanding of the KdV hierarchy. Based on equation (5.5) and

∞∑
a=0

(−2π2)a

a! τa = exp
(1

2(2πi)2ψextra

)
, (5.22)

one might think that this corresponds with a blunt defect α = 2π, which is essentially an
area operator (or a marked point which is integrated over spacetime, without creating any
source of curvature in that spacetime as backreaction)

∞∑
a=0

(−2π2)a

a! τa
?⇔

∫
d2x
√
g = A ⇔ marked point without curvature source .

(5.23)
This turns out to be almost correct, but not quite. Correlators of blunt defects α = 2π were
discussed around equation (4.23) and (4.18) in [75]. The JT gravity connected n-boundary
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path integral with m such defects inserted results in26∫
β1...βn conn

DgDΦ
(∫

d2x
√
g

)m
e−IJT[g,Φ] =

(
2

n∑
i=1

βi

)m
Z(β1 . . . βn)conn , (5.24)

which exponentiates indeed to equation (4.23) in [75]∫
β1...βn conn

DgDΦ exp
(
λ

∫
d2x
√
g

)
e−IJT[g,Φ] = exp

(
2λ

n∑
i=1

βi

)
Z(β1 . . . βn)conn , (5.25)

meaning we have shifted the overall energy scale with E0 = 2λ. Our operator reproduces
this behavior, up to contact terms. Indeed we have for instance (using again the string
equation)

∞∑
a1=0

(−2π2)a1

a1!

〈
τa1

∞∑
a2=0

(−2π2)a2

a2! τa2

〉
κ

=
〈 ∞∑

a2=0

(−2π2)a2+1

(a2 + 1)! τa2

〉
κ

, (5.26)

which translated to Weil-Petersson volumes means

Vg,2(2πi, 2πi) =
∫ 2πi

0
daa Vg,1(a) 6= 0 . (5.27)

These contributes from two operators coming into contact give corrections such as the
second term in

Z(b= 2πi, b= 2πi,β1 . . .βn)conn =
(

2
n∑
i=1

βi

)2
Z(β1 . . .βn)conn+

∫ 2πi

0
daaZ(b= a,β1 . . .βn)conn ,

(5.28)
which are absent for the blunt defects α = 2π. In contrast, for topological gravity [55] the
operator on the left-hand side of the string equation is τ0, and there are then no contact
terms because there is no τ−1. This is why in topological gravity τ0 is exactly the area
operator, also called puncture operator P .

The blunt defects α = 2π in JT gravity likewise have no contact terms [75] (in hyperbolic
geometry this is because there is no geodesic that only surrounds a number of these blunt
defects, but no handles). Our operators do, because they are built up out of an infinite
number of sharp cusps. Their amplitudes are by construction analytic continuations of
Weil-Petersson volumes, the blunt defects differ from this by the subtraction of contact
terms. Therefore for α > π we rather have a relation like

exp
(1

2(iα)2ψextra

)
minus contact terms ⇔

∫
d2x
√
g

2π
γ(1−α/2π)e

−(2π−α)Φ , α>π .

(5.29)
So a description of blunt defects in terms of cohomology is a but more subtle, we understand
that such a description is currently under construction [78].

26If we are more careful with prefactors in [75] we see that actually the relevant operator is εA, then the
Weil-Petersson volumes contribute ε 2πχ = 0 and the trumpets contribute ε

∫
du
√
h = βi indeed. We use

the quantization scheme of [75] here because it is more suitable for making contact with semiclassics, in that
scheme for α ∼ 2π there is roughly an extra prefactor 2π − α in (5.3), this is the 2π/γ(1− α/2π) in (5.29)
when α is close to 2π, and ε = 2π − α.
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Note also that on the path integral level, the fact that we get a simple shift in the
energy can also be understood from the fact that adding the area integral εA to the JT
action can be removed by shifting the dilaton, which in turn causes a boundary term to
appear that induces the shift in energy.

In summary, we can trust the dilaton gravity interpretation of the τk in (5.4) completely
(also when inserting these τk in the action), as long as we do not insert infinite sums that
conspire to defects with α < π, at which point contact terms (dis)appear.

We end this section with some further comments and open questions.

1. It would be nice to have an exact description of our infinite sum (5.23) in dilaton
gravity, then one could write up the dilaton gravity action for all minimal models (by
turning off the KdV times γk (4.19) that took us from topological gravity to JT in the
first place).27 There is a description of topological gravity as pure Einstein-Hilbert
gravity [56] (section 7.2), where the other minimal models have corrections in the
action of the type (notice that equation (3.31) is then obvious via Gauss-Bonnet)

τn ∼
∫

d2x
√
gRn . (5.30)

It would be interesting to see how that worldsheet metric g and the JT gravity
metric-and dilaton are related, particularly because there are no AdS2 asymptotics in
the first description.

2. It would be interesting to have some dilaton gravity understanding of the operator
on the left-hand side of the dilaton equation(s) (5.20) and (5.21), analogous to how
the string equation involves an area operator (5.23), in the spirit of having a better
gravity understanding of the KdV hierarchy. In the quantization scheme of [19] we
can immediately understand (5.20)28

∞∑
a=0

(−2π2)a

a! τa+1 minus contact terms ⇔
∫

d2x
√
g
εΦ− 1

2π = L−A
2π = −χ ,

(5.31)
where we used the boundary conditions on Φ to show that the boundary contribution
(the length L) to the area A cancels in this observable, and the bulk part of the area
evaluates indeed to 2πχ. To be clear, in the ⇔ we used our dictionary (5.7), and then
we used the JT gravity description to find that the operator on the left computes the
Euler character. This precisely reproduces the equation (5.20), which can be viewed
as a subset of the KdV equations.

The operator in the dilaton equation (5.21) generates a (infinitesimal) metric rescaling
(hence the name dilaton equation), which boils down to rescaling the boundary lengths
∞∑
m=0

λm

m!

(
2

n∑
i=1

βi∂βi − 2χ
)m

Z(β1 . . . βn)conn = e−2λχ Z(β1e
2λ . . . βne

2λ)conn . (5.32)

27See [30, 79, 80] for some (not obviously related) progress in that direction.
28The −A/2π comes from the α−1∂α working on the 2π−α prefactor in the defect operator OD(α) in the

quantization scheme of [19].
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We can appreciate this by translating the operator in the left hand side of (5.21) to
dilaton gravity variables, which indeed gives the generator of metric rescalings in the
JT gravity action (for the χ part we remind ourselves of the relation between S0 and
Φ0, see for instance [81])
∞∑
a=0

(2a+ 1)(−2π2)a

a! τa+1 minus contact terms ⇔
∫

d2x
√
g 2 Φ +

∫
∂

du
√
hΦ .

(5.33)
So the simplest L−1 and L0 of the KdV equations have JT gravity interpretations as
describing the covariant transformation rules of observables under certain changes of
parameters in the action. This makes sense, as the KdV equations essentially state
how F changes with the KdV times tk. The other KdV equations LnZ = 0 with
n > 0 are essentially equivalent to (5.9) in combination with the statement that these
deformed theories are matrix integrals with different spectral curves ρ0(E) [19]. These
constraints state how observables change under changes in the dilaton gravity action
with tk and k > 1, namely by changing the spectral curve.

The string-and dilaton equation are special cases describing the flow under changes
of t0 and t1. This means that given the dictionary (5.7) one can derive the KdV
hierarchy from the JT gravity path integral formulation, essentially.

3. Let us emphasize that without summing over the τk, that the KdV equations should
be interpreted as recursion relations between cusps in JT gravity on closed manifolds.
Without knowledge of explicit Weil-Petersson volumes these relations seem miraculous.
It would be interesting to find an independent dilaton gravity calculation of even the
simplest examples, for instance the correlator of one cusp on the torus

∫
torus

DgDΦ e−IJT

∫
d2x
√
g e−2πΦ Φ2k = k = 0 , k 6= 1 . (5.34)

Intersection theory predicts in particular that this vanishes for all k 6= 1 and it would
be interesting to have a direct dilaton gravity argument for this.

Remember furthermore the relation (5.5)∫
d2x
√
g e−(2π−α)Φ ⇔ exp

(1
2(iα)2ψextra

)
, α < π , (5.35)

and notice that the right-hand side is even in α. This implies that correlators of cusps
multiplied with odd powers Φ2k+1 vanish identically in JT gravity (on any surface,
and regardless of other operators)∫

d2x
√
g e−2πΦ Φ2k+1 = 0 . (5.36)

This too is mysterious without explicit knowledge of the volumes, it boils down to
understanding why the Weil-Petersson volumes are even polynomials of b2i . One
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can view this as a redundancy, or a null deformation of the type discussed in [44].
Indeed, one can add terms like (5.36) to the JT action as in (5.9) without affecting
any observables. So theories whose actions differ by terms of the type (5.36) are
completely equivalent, and having them or not having them is a gauge choice. As
a simple check on this, notice that a potential U(Φ) as in (5.36) is in the kernel of
equation (1.4) in [18], the spectral curve (and thus all observables) remain unaffected.
This redundancy is also why (5.6) is an analytic continuation of (5.5), one can replace
the cosine by either one of the exponentials without changing any observables.
It is natural to wonder if there is some contour-integral argument for (5.36), directly
in the dilaton gravity formulation (without going through the volumes).

5.2 Matrix integral

As the final element in the web of dualities between intersection numbers, matrix integrals
and dilaton gravities we present the matrix integral interpretation of the ψ-classes. We claim
that every insertion of τk corresponds with the following counterclockwise contour integral
around the real axis (a contour above and below the real axis, the latter is denoted by R)

τk ⇔
(−1)k+1

i
1

(2k+1)!!

∮
R

dEEk+1/2 Trδ(H−E) = (−1)k+1

i
1

(2k+1)!!

∮
R

dEEk+1/2 ρ(E) .

(5.37)
We will derive this equation momentarily, but let us first give a few basic checks that it is
correct, and show how this equation is useful in practice. (To our knowledge, this equation
and its practical use are new, whereas versions of (5.56) were known.)

As a first check notice that ρ0(E) has no poles on the real axis, for instance for JT gravity
ρ0(E) = eS0 sinh

(
2πE1/2

)
/4π2 for positive energies and zero otherwise. So we recover the

statement that 〈τk〉0 = 0, which is true for generic backgrounds γp. In intersection theory
this follows from the selection rule (3.9), which for g = 0 we can rewrite as

n∑
i=1

(ki − 1) + k = −2 , ki ≥ 2 , (5.38)

where the ki come from expanding out the background and ki ≥ 2 because γ0 = γ1 = 0 (in
particular, γ0 = 0 is important). The left-hand side is non-negative so this is never satisfied,
so 〈τk〉0 = 0 indeed.29

At non-zero genus we obtain finite answer, because Ek+1/2ρ(E)g generically has poles
at E = 0. To appreciate how this arises we can consider the inverse Laplace transform
of (2.14)

Zg(β) =
∫ ∞

0
dE e−βE ρg(E) ⇒ ρg(E) =

∫ ∞
0

dbb 1
2πE1/2 cos

(
bE1/2

)
Vg,1(b) , (5.39)

where the volume is an even polynomial (2.16)

Vg,1(b) =
∞∑
d=0

Vg,d
b2d

4dd! ⇒ ρg(E) = 1
2π

∞∑
d=0

Vg,d (−1)d+1 (2d+ 1)!!
2d E−d−3/2 . (5.40)

29Notice that the cases k ≤ −2 can and do give nonzero answers at genus zero, as we found around
equation (3.36).
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Using this expressions and picking up the pole at the origin we obtain

〈τk〉g = (−1)k+1

i
1

(2k + 1)!!

∮
R

dE Ek+1/2ρ(E)g (5.41)

=
∞∑
d=0

Vg,d(−1)k+d 1
2d

1
2πi

∮
0

dE E−1+k−d = 1
2k Vg,k , (5.42)

which means that the operator (5.37) computes the expansion coefficients of the volumes.
In other words our matrix integral definition (5.37) is recovering the expansion of volumes
in intersection numbers (4.3) (in a generic background γk)

Vg,n(b1 . . . βn) =
∞∑
d1=0

b2d1
1

2d1d1! · · ·
∞∑

dn=0

b2dnn

2dndn!〈τd1 . . . τdn〉g . (5.43)

The equation above was for n = 1 but it is obvious that this extends to generic n.
As a further check on this we can compute the disk with a puncture. This example

involves picking up the pole at E1 = E2 of the genus zero wormhole, equation (139) in [11],

〈ρ(M)τk〉0 conn = (−1)k+1

i
1

(2k + 1)!!

∮
R

dE Ek+1/2〈ρ(M)ρ(E)〉0 conn (5.44)

= (−1)k

i
1

(2k + 1)!!
1

4π2M1/2

∮
M

dE Ek(E +M) 1
(E −M)2

= 1
2π

(−1)k

(2k − 1)!!M
k−1/2 , (5.45)

such that

〈Z(β)τk〉0 conn = 1
2π

(−1)k

(2k − 1)!!

∫ ∞
0

dM e−βM Mk−1/2 = (−1)k

2k+1π1/2 β
−1/2−k . (5.46)

We can compare this with the prediction that one gets by viewing the trumpet as a
generating function for these one-point functions, along the lines of (5.6)

Ztrumpet(β, b) = 1
2π1/2β1/2 e

− b
2

4β =
∞∑
k=0

b2k

2kk!
(−1)k

2k+1π1/2 β
−1/2−k =

∞∑
k=0

b2k

2kk!〈Z(β)τk〉0 conn ,

(5.47)

which indeed gives the same answer on the nose. Finally we also recover the statement
that the cylinder amplitude vanishes in intersection theory (or the genus zero two point
function)30

〈τnτk〉0 = (−1)n+1

i

1
(2n+ 1)!!

∮
R

dE En+1/2〈ρ(E)τk〉0 conn

= (−1)n+1+k

2πi
1

(2n+ 1)!!(2k − 1)!!

∮
R

dEEn+k = 0 . (5.48)

30Actually, if we include the contribution from unstable surfaces, we should continue to all integers n and
k, in which case we get 〈τ−1−kτk〉0 = (−1)k. This is consistent with the 1/(x1 + x2) in (3.43).
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For generic backgrounds γk this follows from the same logic as around (5.38) (but with −1
on the right).

Now we explain how to derive this equation (5.37) for τk. The first step is proving an
identity that appears in [37, 69], which holds miraculously for each arbitrary (but fixed)
number E0

Tr
( 1
y−H

)
−Tr(1)

y

=
∞∑
k=1

(−1)k+1(−y−E0)−k−1/2(−y+E0)−1/2 Tr
(
(H+E0)k−1/2(H−E0)1/2

)
+
. (5.49)

The branchcuts of the roots are chosen in the usual way, we have (−y − E0)−k−1/2 > 0
when y < −E0 and (−y +E0)−1/2 > 0 when y < E0. Let us prove this equation for y > E0
and real, after collecting all the signs it simplifies slightly

Tr
( 1
y −H

)
− Tr(1)

y
=
∞∑
k=1

(y + E0)−k−1/2(y − E0)−1/2 Tr
(
(H + E0)k−1/2(H − E0)1/2

)
+

=
∞∑
q=1

1
yq+1 Tr(Hq) . (5.50)

The + means we should expand in powers of 1/H and keep only the terms with positive
powers of H in the resulting series. To check this, one explicitly expands the binomials in
1/H , and then rearranges the resulting triple sum to collect the terms that multiply Tr(Hq),
for fixed q. The double sum at fixed q surprisingly spits out 1/yq+1, and we recover the
large y expansion of the left-hand side [43].

Now we can consider the following double scaling limit of (5.49) where we take y =
−E0 − z2, shift also H by E0 and send E0 →∞

Tr
( 1
z2 +H

)
− Tr(1)
E0 + z2 =

∞∑
k=1

(−1)kz−2k−1Wk−1(H) , (5.51)

where we have introduced the so called scaling polynomials of [37]

Wk−1(H) = lim
E0→∞

(2E0)−1/2 Tr
(
Hk−1/2(H − 2E0)1/2

)
+
. (5.52)

The + is confusing in this context, because it is unclear what the expansion in powers of
H means upon double scaling. Below we will give a more correct formula that does not
involve the subscript + anymore, but is purely based on a contour integral, and therefore
does make sense in the double scaling continuum limit.

Using the definition of an FZZT brane [11, 12, 30, 34, 69, 79, 80, 82–88]

OFZZT(z) = Trlog
(
z2+H

)
−Tr(1) log

(
z2
)

=
∫ z

∞
dw2w

(
Tr
( 1
w2+H

)
−Tr(1)

w2

)
(5.53)

and its relation with a geodesic boundary [34] (we are not giving any topological weight to
FZZT branes here, this is an irrelevant choice)

OG(b) = −e
−S0

2πi

∫ +i∞

−i∞
dz ebz OFZZT(z) , (5.54)
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we obtain an expansion of the geodesic boundary in scaling polynomials31

OG(b) = e−S0

b

1
2πi

∫ +i∞

−i∞
dz ebz 2z

(
Tr
( 1
z2 +H

)
− Tr(1)
E0 + z2

)
= 2 e−S0

∞∑
k=1

(−1)kWk−1(H)1
b

1
2πi

∫ +i∞

−i∞
dzebzz−2k

= e−S0
∞∑
k=0

(−1)k+1 b2k

(2k)!
2

2k + 1Wk(H) . (5.55)

Comparing with the expansion of a geodesic boundary in cusp defects (5.6), we find
the identification of the τk insertions with the scaling polynomials [37]

OG(b) = e−S0
∞∑
k=0

b2k

2kk! τk ⇒ τk ⇔ (−1)k+1 2
(2k + 1)!!Wk(H) . (5.56)

Now the question is what the correct implementation of Wk(H) in the double scaling limit
is. In (5.52) the last square root (H−2E0)1/2 is on the branchcut, so depending on whether
H takes values slightly above or below the real axis we get respectively a factor ±i. We
thus have two possible contours for the eigenvalues of H in this observables. We claim that
the correct combination is the average of both contours

Wk(H) = i
2

∫
R+iε

dE Ek+1/2 Tr δ(H − E)− i
2

∫
R−iε

dE Ek+1/2 Tr δ(H − E) (5.57)

We can flip the orientation of the first contour, so that this becomes a counterclockwise
contour integral around the real axis, which picks up any poles that might occur on the
real axis in the integrand

Wk(H) = 1
2i

∮
R

dE Ek+1/2 Tr δ(H − E) . (5.58)

This reproduces our original claim (5.37), which we have independently proven to be correct
above, by reproducing all intersection numbers from it.

To close off this section we remark how this relates to the Kontsevich matrix integral [46]
and the equation (5.9). We have

∞∏
i=1

det
(
1 +H/z2

i

)
= exp

( ∞∑
i=1

OFZZT(zi)
)
⇔ exp

( ∞∑
k=2

tk(zj) τk
)
,

tk(zj) = −(2k − 1)!!
∞∑
i=1

z−2k−1
i , (5.59)

where in the first equality we used det(A) = exp(Tr(log(A))), and in the second equality
we computed the w integral in (5.53) using the expansion in scaling polynomials (5.51),
and identified the τk’s using (5.56). Kontsevich proved that this identity is correct, namely

31It is important that the FZZT branes actually have their poles at z = −ε ± i
√
H [43], such that in

reality the integrand contains (z + ε)−2k. Since b > 0 we can close the contour to z = −∞, and there is no
pole at infinity because of the second term on the first line.
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inserting the left hand side in a matrix integral with a spectral curve corresponding to KdV
times γk generates a matrix integral whose spectral curve corresponds with KdV times
γk + tk(zj). He did this by proving that the right-hand side equals F for those KdV times
(with F the function that satisfies the KdV hierarchy (3.13)), see also appendix C.2.

In essence, this relation is the raison d’etre of the scaling polynomials, we can start
with a Gaussian matrix integral (which double scales to topological gravity [11]) and turn
on some scaling polynomials in the action to get a double scaled theory whose spectral
curve has tk(zj) turned on.

6 Concluding remarks

We end this paper with three comments.
In section 6.1 we use the KdV equations (3.12) to demonstrate that the (2g)! growth

in volumes Vg,2(b1, b2) for generic models comes from terms in the polynomials with order
one powers of b21 and b22. This is part of the reason why the genus expansion converges in
the τ -scaling limit.

In section 6.2 we contemplate the multi-boundary generalization of our discussion, in
particular we consider the multi-boundary generalization of the τ -scaled spectral form factor
and discuss cancellations.

In section 6.3 we explain the logical need for a Lorentzian interpretation of the cancella-
tions and the universal scaling behavior (3.50) of late-time genus g wormholes, and preview
how this comes about by thinking about Lorentzian topology change in JT gravity [38].

6.1 Open-closed duality and factorial growth

As a final application of the KdV equations in gravity we want to give an intuitive argument
explaining that the famous (2g)! growth in volumes Vg,2(b1, b2) for generic models of dilaton
gravity comes from terms in the polynomials with order one powers of b21 and b22 (so not
scaling with g). Therefore they will not survive in our T → ∞ limit, which acts at each
genus g individually because we also send eS0 →∞. This is part of the explanation why
the genus expansion is convergent in our setup, see section 2.2.

For concreteness we consider the constant term in the polynomials (4.3)

Vg,2(0, 0) =
〈
τ2

0 exp
( ∞∑
k=2

γkτk

)〉
g

. (6.1)

We would like to argue that this grows as (2g)! for large genus g, and that the terms with
large powers of b21 and b22 do not. The basic intuition is that for small powers of b2i , following
the selection rule (3.9), we can get many, many low-dimensional forms such as τ2 coming
out of the exponential, and it makes sense that such correlators with many, many operators
would grow factorially. On the other hand, for large powers of b2i the selection rule (3.9)
does not allow for that many operators to come down from the exponential (for the maximal
power no operators come from the exponential and we are effectively computing Airy
volumes again). With relatively fewer operators, it is hard to imagine factorial growth.
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We believe this intuition should universally hold, but to make our point concrete we
will here focus on the (2, 3) minimal string with spectrum [11, 69]

2πe−S0ρ0(E) = E1/2 + t2
3 E

3/2 . (6.2)

This has an eigenvalue instanton saddle near E = −3/t2 in the matrix integral and therefore,
following the techniques of section 5.6 in [11] one expects factorial growth of the type (in
this section we ignore for simplicity of presentation most sub-exponential g-dependence)

Vg,2(0, 0) = 〈τ2
0 exp(t2τ2)〉g ∼ (2g)! t3g2 , (6.3)

where we used (4.15) and the fact that u0 = 0 for this deformation. This arises from
intersection theory as follows. Using the selection rule (3.9) we immediately obtain the
correct scaling with t2

Vg,2(0, 0) = t3g−1
2

(3g − 1)!〈τ
2
0 τ

3g−1
2 〉g . (6.4)

Now we want to prove that the correlator 〈τ2
0 τ

3g−1
2 〉g for large genus grows as (5g)!, such

that combined with the 1/(3g)! we get the predicted double factorial growth. For this we
can use the happy fact that we can rewrite the KdV recursion (3.12) entirely as a recursion
relation for

f(g) = 〈τ0τ1τ
3g−2
2 〉g = 1

3g − 1〈τ
2
0 τ

3g−1
2 〉g , (6.5)

by considering k = 2 and d2 = 3g − 2 with all other dj = 0, and repeatedly using the
string-and dilaton equations (3.30) and (3.31) to eliminate excess τ0 and τ1’s in all terms.
For large genus, the dominant contributions to (3.12) in this setup come from the first, and
the last term. One can check this by first assuming that this is true, then one finds the
recursion relation

f(g) ∼ g5f(g − 1) ⇒ f(g) ∼ (5g)! . (6.6)

One then checks that with this g!5 growth the other terms in the recursion relation
become subleading indeed. Being more careful with all the prefactors and sub-factorial
g-dependence one can recover the full prediction of the eigenvalue instanton from this
recursion relation (3.12).

6.2 Multi-boundary generalization

Let us briefly comment on the multi-boundary generalization of the story that we have
presented here.32 For instance, we could consider the three-boundary generalization of the
spectral form factor

Z(β + iT1, β + iT2, β + iT3)conn , T1 + T2 + T3 = 0 , (6.7)

in the generalized τ -scaling limit where τ1 = T1e
−S0 and τ2 = T2e

−S0 remain finite (and
their difference remains finite as well). The triple energy integral in (2.1) is then dominated

32We thank Douglas Stanford for discussions on this.
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by E1, E2 and E3 all close together, and we can use the three-boundary generalization of
the sine-kernel (2.3), which can be found for instance in [12]. Doing the Fourier transforms
over the small energy differences explicitly, one finds a generalization of the ramp-and
plateau (2.5)

Z(β+iT1,β+iT2,β−iT1−iT2)conn =
∫ ∞

0
dEe−3βE



0 T1
2π+ T2

2π <ρ0(E)
T1
2π+ T2

2π−ρ0(E) T1
2π <ρ0(E)< T1

2π+ T2
2π

T2
2π

T2
2π <ρ0(E)< T1

2π

ρ0(E) ρ0(E)< T2
2π ,

(6.8)
where we have specialized to T2 < T1. Following the steps that led to (2.10), this can be
massaged into

Z(β+iT1,β+iT2,β−iT1−iT2)conn = eS0

6πβ

∫ τ2

0
df e−3βE(f)− eS0

6πβ

∫ τ1+τ2

τ1
df e−3βE(f), (6.9)

for instance for topological gravity E(f) = f2 this is simply the sum of three Erf functions.
For infinite times the first term produces the generalized plateau value Z(3β), which comes
from terms in the triple sum where all energies coincide. However, notice that if one Taylor
expands this in e−S0 that we again get a series in powers of e−2S0 starting at e−2S0 , whereas
the three-boundary connected amplitudes scale as e−(2g+1)S0 with g the genus. So, unlike
for the two-boundary spectral form factor we do not see any obvious way to reproduce this
tau-scaled answer from the sum over wormhole geometries with three boundaries, at least
for now.

In some sense this emphasizes how nice it is that this worked for two boundaries, but
on the other hand it also shows that we might still need D-brane effects to understand more
complicated phenomena.

One thing that does happen for any number of boundaries is that the cancellations
in intersection theory (3.53) constrain the volumes in a non-trivial manner for all theories.
Namely with the constraint T1 + · · ·+ Tn = 0 we find the generalization of (4.29) for any of
the times Ti →∞

em1
1 em2

2 . . . emnn ∼ T
2
∑n

j=2 mj

i . (6.10)

The power of T that appears here is precisely the expression that was constrained by the
KdV equations to be upper bound by 2g, therefore the maximal power of any of the times
Ti is constrained

Zg(β + iT1 . . . β + iTn)conn ∼ T 2g+1
i e−(2g+n−2)S0 , T1 + · · ·+ Tn = 0 . (6.11)

On the other hand dimensional analysis of the volumes for generic dilaton gravities would
again suggest that naively we could get powers up to T 3g−2+n

i . So there are also major
cancellations in Vg,n(b1 . . . bn) for generic dilaton gravity models. It remains to be seen
whether or not those are related with explaining a generalization of the ramp-and plateau
such as (6.9). That would be interesting.
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6.3 Universal powers of time via Lorentzian topology change

We want to stress that recovering the universal growth T 2g+1 is highly non-trivial from the
Euclidean gravitational path integral at genus g. In 2d dilaton gravity, we understand why
this happens, namely because of known cancellations in intersection numbers. But the scaling
of wormhole amplitudes with T 2g+1 for late times should hold for essentially any gravity
model in a regime dominated by black holes, because of random matrix universality [15].

It is likely that one could argue that late-time physics is effectively dominated by the
near-horizon region of black holes, where one often recovers JT gravity. Nevertheless we do
not think an explanation in terms of intersection numbers for real-life black holes is fully
satisfactory.

Instead, we view the fact that the scaling T 2g+1 is highly non-trivial in Euclidean
signature (requiring quite miraculous, exact cancellations) as a sign that we should really be
looking for a Lorentzian picture. After all, without Lorentzian large times there is nothing
in the genus g amplitudes alerting us of any cancellations. Because of the universality, we
think the Lorentzian picture should be sufficiently simple (unlike the Euclidean story), in
the sense that one could imagine a generalization to higher dimensional black holes.

We believe that we have found such an interpretation by thinking about Lorentzian
topology change. The idea is that we can build Lorentzian wormhole geometries using
the crotch singularities of Louko-Sorkin [76, 89].33 For late enough times, the locations of
the crotches (these are the places where baby universes or wormholes are born, and die)
should behave approximately as zero modes. These 2g zero modes give a volume factor T 2g,
which along with the usual factor T from the rotational zero mode of the double cone [3]
reproduces the universal T 2g+1.

We will present this picture elsewhere in more detail, with concrete calculations in JT
gravity [38].
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A Examples

We invite interested readers to take their favorite spectral curve y(z) of the form (2.15),
compute the genus g wormhole using topological recursion, and compare the result with the
expansion (2.10). It is satisfactory to see that they match, especially given how non-trivial
the cancellations (2.23) are.

33For other recent appearances of singular spacetimes in Lorentzian signature see for instance [90].
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Figure 4. The τ -scaling limit of the sum over genus g wormholes in the Airy model (A.2)
up to g = gmax (numbers shown) with eS0 = 10 and β = 1/2. This series converges to the exact
expression (A.1) for all T (infinite radius of convergence) and in particular it converges to the plateau.

It is quite elementary to proof this experimentally for fixed genus and generic spectral
curve (2.15) by computing both sides for generic fk, but we leave explicit expressions out
to spare the reader’s eyes. Instead let us go through a few basic examples where we also
have an analytic formula for the inverse of the spectrum E(f).

Topological gravity. The Airy model has spectral curve ρ0(E) = eS0E1/2/2π, so the
inverse spectrum is E(f) = f2 and (2.6) evaluates to (we introduce τ = Te−S0) [21, 22]

Z(β + iT, β − iT )conn = eS0

4πβ

∫ τ

0
df e−2βE(f) = eS0

27/2π1/2β3/2 Erf
(
21/2β1/2Te−S0

)
(A.1)

Using Erf(∞) = 1 we see the plateau value Z0(2β) or the Airy model. The (convergent)
Taylor expansion is

Z(β+iT, β−iT )conn = 1
4πβ T−

1
6π T

3e−2S0 + β

10π T
5 e−4S0− β2

21π T
7 e−6S0 + β3

54π T
9 e−8S0 . . .

(A.2)
This expansion is recovered on the nose using topological recursion with the spectral curve
y(z) = z/2, see figure 4. The volumes to be used in (2.14) in this case are

V1,2(b1, b2) = b41 + 2b22b21 + b42
192

V2,2(b1, b2) = b10
1 + 15b22b81 + 58b42b61 + 58b62b41 + 15b82b21 + b10

2
4423680

V3,2(b1, b2) = 5b16
1 + 200b22b14

1 + 2156b42b12
1 + 8048b62b10

1 + 12140b82b81 + symmetric
4280706662400 (A.3)

In the final term in (A.2), a possible T 9e−6S0 does not appear because of the cancella-
tion (2.21). Notice that the cancellations are exact, in line with the statement that (2.3) is
effectively exact in the τ -scaling limit. At genus 4 there is another cancellation responsible
for the lack of an T 11e−8S0 term, and so on.
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JT gravity. For JT gravity the spectrum is ρ0(E) = eS0 sinh
(
2πE1/2

)
/4π2 [91–94] so

the inverse spectrum is E(f) = arcsinh2(2πf)/4π2. Using

∫ E(τ)

0
dE ∂Ef(E) e−2βE =

∫ E(τ)1/2

0
dw ∂wf(w) e−2βw2 =

∫ E(τ)1/2

0
dw cosh(2πw) e−2βw2

,

(A.4)

one computes the exact tau-scaled connected spectral form factor (2.10) as [22]

Z(β+iT,β−iT )conn = eS0

29/2π1/2β3/2 e
π2
2β Erf

(
21/2β1/2

(
arcsinh

(
2πTe−S0

)
/2π−π/2β

))
− eS0

29/2π1/2β3/2 e
π2
2β Erf

(
21/2β1/2

(
arcsinh

(
−2πTe−S0

)
/2π−π/2β

))
.

(A.5)

We recognize the JT disk for T =∞ using Erf(±∞) = ±1. For large β this reduces to the
Airy answer since at low energies the spectrum reduces to the Airy spectrum. The Taylor
series in T 2g+1 starts with

Z(β + iT, β − iT )conn = 1
4πβ T −

1
6π T

3 e−2S0 + 3β + 4π2

30π T 5 e−4S0

− 15β2 + 60π2β + 64π2

315π T 7 e−6S0 + . . . (A.6)

These are the same coefficients found by taking the Weil-Peterson volumes, doing the Laplace
transforms with the trumpet partition functions (2.14), and then taking the τ -scaling limit.
The first such volume is

V1,2(b1, b2) = 1
192(4π2 + b21 + b22)(12π2 + b21 + b22) (A.7)

The higher genus examples you should keep hidden away in your Mathematica code. One
feature worth noting is that for b1 � 1 and b2 � 1 these reduce to the Airy volumes (A.3),
see section 3.1. Notice again there is no T 9e−6S0 because of the cancellation (2.21).

In this case plotting the first few terms of (A.6) does not immediately converge to the
plateau. The reason is that the Taylor expansion of (A.5) has a finite radius of convergence
Te−S0 < 1/2π. This in turn is happens because E(f) has a branchcut for 2πif < −1,
so the Taylor series is only guaranteed to converge in the disk with radius 1/2π. This
same argument applies to the exact answer (A.5) because of the arcsinh(2πTe−S0). But for
Te−S0 < 1/2π the series converges uniquely to (A.5), and it’s analytic continuation to all
T > 0 is obviously real and smooth, and includes the plateau, see figure 5.

Other minimal strings. As final example for the fact that the cancellations (2.23) occur
for all spectra, and that the resulting perturbative genus expansion (2.10) converges to the
plateau, we consider

f(E) = 2πe−S0ρ0(E) = E1/2 + t2
3 E

3/2 . (A.8)
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Figure 5. The τ -scaling limit of the sum over genus g wormholes in JT gravity (A.5) with eS0 = 10
and β = 1/2. We have not shown individual terms in the series, because it converges only when
Te−S0 < 1/2π, which is a very short time on this plot. Importantly though, the sum over all genus
uniquely gives the exact answer (A.5). The JT plateau is much higher and hence reached much later
than the Airy plateau, because of the exponentially larger spectral density.

This is an example of the (2, p) minimal string with odd p for which the spectrum is [11, 69]

2πe−S0ρ0(E) = (2κ)1/2

p
sinh

(
p

2arccosh
(

1 + E

κ

))
= 1
p
E1/2 Up−1

((
1 + E

κ

)1/2)
, (A.9)

where the even Chebychev polynomials give an expansion in positive integer powers of
1 + E/κ. With p = 3 and t2 = 2/κ this becomes our example. These models have known
dilaton gravity interpretations [30, 79, 95]. Using the first expression one finds (the same
follows from Lagrange inversion)

E(f) = 4
t2

sinh2
(1

3arcsinh
(3t1/22

2 f

))
. (A.10)

The exact connected spectral form factor in the τ -scaling limit becomes

Z(β + iT, β − iT )conn = eS0

4πβ

∫ E(τ)1/2

0
dw ∂wf(w) e−2βw2

= eS0

8πβ

∫ +E(τ)1/2

−E(τ)1/2
dw (1 + t2w

2) e−2βw2
. (A.11)

A nice thing about the (2, p) minimal models is that we know E(f) as meromorphic functions,
not just as Taylor series so we can plot the exact answer of this integral, see figure 6.

The resulting Taylor expansion

Z(β + iT, β − iT )conn = 1
4πβ T −

1
6π T

3 e−2S0 + 3β + 2t2
30π T 5 e−4S0

− 6β2 + 12t2β + 7t32
126π T 7 e−6S0 + . . . (A.12)

is again reproduced by the relevant volumes, which we emphasize requires t2-dependent
cancellations. Much like in the JT example, the series expansion has some finite radius of

– 44 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
8

5 10 20 50
0.5

1.0

1.5

2.0

2.5

02

all genus

T7 3 1

Figure 6. The τ -scaling limit of the sum over wormholes in the (2, 3) minimal model (A.8)
with t2 = 1, eS0 = 10 and β = 1/2. The series expansion converges to the exact answer for
T < 2eS0/3t1/2

2 = 20/3 and diverges otherwise, but the resummed series has a unique analytic
continuation which reproduces the exact answer for all T > 0.

convergence Te−S0 < 2/3t1/22 because E(f) has a branchcut when if < 2/3t1/22 . For t2 > 0
though E(f) is smooth so the series will converge to the exact answer. This is the generic
case for monotonic spectra, since there will be several point where df/dE = 0, indicating
singular behavior in E(f) and hence a finite radius of convergence. Nevertheless E(τ) for
τ > 0 is smooth for monotonic spectra, thus the series uniquely continues to the exact
answer. As mentioned below (2.10), turning on t3 only affects amplitudes for g ≥ 3, for
instance for generic tk in (2.7) the expansion one obtains from either the integral (2.10) or
topological recursion is

Z(β + iT, β − iT )conn = · · ·+ 3β + 2t2
30π T 5 e−4S0 − 30β2 + 60t2β + 6t3 + 35t22

630π T 7 e−6S0 + . . .

(A.13)

Non-monotonic spectra. For non-monotonic spectra in general there are several solution
E1(f) . . . En(f) for the inverse spectrum and we get other corrections to for instance (2.6).

For concreteness we can first consider the case (A.8) but with t2 = −x2 < 0

f(E) = 2πe−S0ρ0(E) =E1/2−x2
3 E

3/2 =

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Emax =x2 = 1

E

.

(A.14)
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Figure 7. For non-monotonic spectra the tau-scaled connected spectral form factor has discontinu-
ities at certain points, in the case (A.15) shown here one has a discontinuity in the first derivative.
In the case (A.18) relevant for black holes the discontinuity is in the second derivative, we used
x2 = 1, eS0 = 10 and β = 1/2.

This attains a maximum 2/3x1/2
2 at Emax = 1/x2 and vanishes beyond Eedge = 3/x2.

Starting from the first line in (2.5) one now obtains

Z(β + iT, β − iT )conn = eS0

4πβ

∫ min(τ.τmax)

0
df e−2βE1(f) − eS0

4πβ

∫ min(τ,τmax)

0
df e−2βE2(f) ,

(A.15)
where the two solutions of the inverse spectrum are the two sheets of the analytic continuation
of (A.10)

E1(f) = 4
x2

sin2
(

1
3arcsin

(
3x1/2

2
2 f

))
, E2(f) = 4

x2
sin2

(
π

3−
1
3arcsin

(
3x1/2

2
2 f

))
, (A.16)

where we restricted the arcsin to the principle branch. The point now is that the gravitational
expansion will only reproduce the first integral in (A.15). This is obvious from the discussion
below (A.10), since the genus g Euclidean wormhole amplitudes have trivial analytic
continuation to t2 < 0. The radius of convergence of that expansion in this case is precisely
T = eS0τmax for obvious reasons. One noteworthy new feature of is a discontinuity in the
first derivative at τmax, an effect that the Taylor series does not capture, see figure 7

This example was not particularly relevant for black hole physics, where we want a
spectrum with Cardy growth at large energies, not one that develops a second edge Eedge,
as was the case above. The simplest non-monotonic case for which ρ0(E) grows for large E
has a maximum and a minimum, as in the simple example with t2 = −5 and t3 = −15

f(E) = 2πe−S0ρ0(E) = E1/2 − 5
3E

3/2 + E5/2 =

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.1

0.2

0.3

0.4

Emin = 0.72 . . .

τmin = 0.27 . . .

τmax = 0.32 . . .

E1(f)

E2(f)

E3(f)

E

.

(A.17)
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Let us name the local maximum and minimum of f τmax and τmin. In these cases one
obviously finds three real solutions E1(f) . . . E3(f) for times τmin < τ < τmax, and the exact
answer for the tau-scaled connected spectral form factor that one obtains concordantly has
three terms

Z(β+iT,β−iT )conn = eS0

4πβ

∫ min(τ,τmax)

0
df e−2βE1(f)

− eS0

4πβ

∫ min(τ,τmax)

τmin
df e−2βE2(f)+ eS0

4πβ

∫ τ

τmin
df e−2βE3(f) . (A.18)

Again, one checks case by case via explicit computations that the genus g wormhole
amplitude exactly reproduce the first of these integrals. For T < eS0τmin this is the full
answer, so the sum over geometries reproduces the ramp-plateau exactly, for those early
times. The corrections on the second line are non-perturbative corrections, and the salient
feature is again that they come bearing a discontinuity in the second derivative of the
tau-scaled spectral form factor at T = eS0τmin. One can see this because near the minimum
we have an expansion starting with (where c > 0 an order one number)

E2(f) = Emin − c (f − τmin)1/2 + . . . , E3(f) = Emin + c (f − τmin)1/2 + . . . (A.19)

Thus the leading corrections from the second line in (A.18) look like (again C > 0 an order
one number)

Z(β + iT, β − iT )conn = perturbative− C (T − Tmin)3/2 θ(T − Tmin) e−S0/2 + . . . (A.20)

This is non-perturbative, since the Heaviside makes these corrections not contribute in a
Taylor series around T = 0. These corrections have no obvious geometric explanation, for
instance one would require a fractional Euler character for a dual geometry.

B From powers of time to multi-boundary cancellations

In this appendix we argue that the arrow in (4.31) also works the other way, thus the
universal scaling T 2g+1 for all dilaton gravities implies also all of the cancellations of [27].
In a generic background we have

F(x1, x2)γk =
∑
d1,d2

xd1
1 x

d2
2 〈τd1τd2〉γk . (B.1)

The deformations we are interested in have γ0 = γ1 = 0. Suppose now we Taylor expand
the exponential in (4.24) in γk
Fg(x1,x2)γk

=
3g−1∑
d1=0

xd1
1 x

3g−1−d1
2 〈τd1τ3g−1−d1〉+γ2

3g−2∑
d1=0

xd1
1 x

3g−2−d1
2 〈τd1τ3g−2−d1τ2〉+. . .

=
d/2∑
m=0

em2 e
d−2m
1

m∑
p=0
〈τpτd−p〉

d−2p
d−p−m

(d−p−m)!
(m−p)!(d−2m)! (−1)p+m (B.2)

+γ2

d/2−1/2∑
m=0

em2 e
d−1−2m
1

m∑
p=0
〈τpτd−1−pτ2〉

d−1−2p
d−1−p−m

(d−1−p−m)!
(m−p)!(d−1−2m)! (−1)p+m+. . .

– 47 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
8

In each term in the expansion one can then track the power of e2 and e1 to get more generic
cancellation relations, namely the power of e2 may never exceed g, because we should have
T 2g+1 for all γk. Hence

m∑
p=0
〈τpτ3g−2−pτ2〉

3g − 2− 2p
3g − 2− p−m

(d− 1− p−m)!
(m− p)!(d− 1− 2m)! (−1)p = 0 , m > g . (B.3)

More generally the terms multiplying γk for k ≥ 2 result in the new constraints

m∑
p=0
〈τpτ2mmax−pτk〉

2mmax − 2p
2mmax − p−m

(2mmax − p−m)!
(m− p)!(2mmax − 2m)! (−1)p = 0 ,

2mmax = 3g − k , m > g . (B.4)

The term where m = mmax is most symmetric and becomes

3g−k∑
p=0
〈τpτkτ3g−p−k〉(−1)p = 0 . (B.5)

We want to prove (4.31) by using open-closed duality for generic backgrounds γk

Fg(x1, x2)γk =
∞∑
m=0

1
m!

∑
i1...im

Fg(x1, x2, αi1 . . . αim)

=
m1+2m2=3g−1∑

m1,m2=0
e1(x)m1e2(x)m2 Cg(m1,m2)γk , (B.6)

combined with the fact that the maximal scaling T 2g+1 implies

Cg(m1,m2)γk = 0 , m2 > g . (B.7)

The idea is to expand each term in the middle expression of (B.6) into powers of
e1(x), e2(x) and en(α), and collecting the terms where all those powers are fixed numbers.
Then we demand from (B.7) that when the power q of e2(x) exceeds g, that the function
multiplying it must vanish. This function will depend on e1(x) and en(α), all of which are
independent free parameters, indeed the infinite number of free parameters γk maps to ∞
free parameters αi or equivalently to free parameters en(α). Therefore the vanishing of the
functions multiplying e2(x)q requires the vanishing of the coefficients of each term in the
expansion of those functions in powers of e1(x) and en(α), giving a bunch of constraints.
Because the terms for each m in (B.6) are homogeneous polynomials of inequivalent degree
3g − 1 +m, terms with inequivalent m cannot contribute terms with the same powers of
e1(x), e2(x) and en(α). Therefore the constraint that the coefficients multiplying e2(x)q

must vanish for q > 2 in the left of (B.6) implies the same property on each of the terms in
the middle of (B.6), so

Cg(m1,m2)γk = 0 , m2>g ⇒ maximal power e2(x)g in Fg(x1,x2,α1 . . .αm) . (B.8)
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We also used that each term in the sum over i1 . . . im is linearly independent, as there are
∞ independent free parameters αi. We claim that for each fixed number of boundaries
2 + n we have

maximal power e2(x)g in Fg(x1, x2, α1 . . . αn) ⇒ Cg(m2 . . .mn+2) = 0 ,
j+n∑
j=2

mj > g .

(B.9)

We now prove this for the three boundary case n = 1. In general, one can use the
following property of elementary symmetric polynomials

en(x⊕ α) = en(α) + e1(x)en−1(α) + e2(x)en−2(α) , (B.10)

to expand Fg(x1, x2, α1 . . . αn) into the building blocks discussed above. For Fg(x1, x2, α)
one requires

e1(x⊕ α) = e1(x) + α , e2(x⊕ α) = e1(x)α+ e2(x) , e3(x⊕ α) = e2(x)α . (B.11)

Inserting this in the general equation, and absorbing some combinatorial prefactors in
Cg(m2,m3) for visual purposes, one finds

Fg(x1, x2, α) =
2m2+3m3=3g∑
m2,m3=0

m3+m2∑
q=m3

3g−m2−m3−q∑
p=m2+2m3−q

αpe1(x)3g−p−2qe2(x)q Cg(m2,m3) . (B.12)

The terms with q > g can be rearranged as

Fg(x1,x2,α)⊃
3g/2∑
q=g+1

3g−2q∑
p=0

αpe1(x)3g−p−2qe2(x)q
p∑

m3=0

min(p−m3 ,3g/2−q−m3/2)∑
k=0

Cg(q−m3+k,m3) .

(B.13)
The constraint that one should impose is that the coefficients of αpe2(x)q vanish for all p
and for q > g

p∑
m3=0

min(p−m3 , 3g/2−q−m3/2)∑
k=0

Cg(q −m3 + k,m3) = 0 , q > g . (B.14)

Clearly having the correct summation ranges is crucial. For p = 0 there is one term and
the constraint becomes

Cg(q, 0) = 0 , q > g , (B.15)

which is just the old n = 0 two boundary constraint. To prove (4.31) it is key to impose
the constraints in the correct order, working by induction in p. When we now consider
p = 1, the term with m3 = 0 already vanishes because of (B.15). When m3 = 1 only k = 0
contributes and we find the new constraint

Cg(q − 1, 1) = 0 , q > g . (B.16)

Since q > g implies q + k > g this means all terms with m3 = 1 will vanish for arbitrary p.
This process will continue, at fixed p we can prove that the terms with m = p vanish such
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that we always only need to deal with one term at p+ 1, this is obvious using induction.
Therefore we have obtained the set of constraints

Cg(q − r + k, r) = 0 , g < q ≤ 3g/2 , 0 ≤ r ≤ 3g − 2q , k ≥ 0 . (B.17)

Because 2m2 + 3m3 ≤ 3g we have m3 ≤ g and therefore one checks that (B.17) covers all
cases in (4.31) for n = 1

Cg(m2,m3) = 0 , m2 +m3 > g , 2m2 + 3m3 ≤ 3g . (B.18)

It seems highly plausible that this proof extends to generic n, though it requires some
combinatorics.

C Intersection theory and volumes of moduli space

The heart of the paper is concerned with intersection theory and how various intersection
numbers are associated with the volumes of moduli space of Riemann surfaces. The
intersection theory we will need is a fascinating branch of mathematics that produced many
beautiful and deep results. We now dive a bit into these mathematics, we will try to keep it
as low brow as possible, combining various insights from [40, 46, 56, 96, 97].

First, let us start with a bit of motivation as to why we would want to study an
intersection theory in the context of JT gravity. This has a rather extended history, but
we can roughly summarize it as follows. The moduli space of Riemann surfaces of genus g
and n punctured is a well motivated and studied object. To understand this space better,
one can wonder what happens when one intersects the moduli space with various other
subspaces with different co-dimensions. A particularly simple example of this is to consider
an intersection such that generically the intersection is just a bunch of points. By counting
these points one can learn some more about the geometry of the moduli space. In particular,
since subspaces are dual to forms by Poincaré duality, such intersection numbers can even
tell us the volume of the moduli space as we will explain below. These volumes are crucial
for the understanding of higher-genus corrections to the JT path integral [11, 23, 47].

Another motivation as to why intersection numbers are interesting is that they have
deep relation with a matrix integral, as conjectured by Witten [58] and proven by Kontsevich
in [46]. This matrix integral describes the low energy sector of the matrix model dual to JT
gravity and can also be extended to describe the full JT theory. In fact, as explained in
section 3.1, these intersection numbers compute the volumes of moduli space of trivalent
ribbon graphs. These ribbons are the propagators of a matrix integral a la t’Hooft [98] (the
relevant matrix integral is the Kontsevich matrix integral, which is graph dual or color-flavor
dual to the standard matrix integral that for instance [11] use).

C.1 What is being intersected?

Let us consider a Riemann surface Σg,n with genus g and n punctures at fixed xi. Such a
surface can be obtained by considering a polygon in the hyperbolic disk and identifying the
sides in the appropriate way. For instance by identifying the opposite sides of a hyperbolic
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rectangle one gets a punctured torus. To understand what is being intersected, we will start
off with defining various two-forms. These have a concrete definition, resulting in certain
limiting cases in simple explicit expressions (3.6).

We start with our geometry Σg,n and construct the cotangent space T ∗xΣg,n of one-forms
at x = xi. This one-complex-dimensional space depends on the moduli of Σg,n and so we
can consider the collection of all cotangent spaces at x = xi as a function of the moduli
of Σg,n. This collection is a complex line bundle, which we denote by Li. We can now
choose an element of this bundle and compute its curvature two form, this two-form is
usually referred to as the first Chern class of Li, and denoted ψi = c1(Li). Notice that by
Poincare duality ψi corresponds to codimension two submanifolds of Mg,n and it is these
submanifolds whose intersections one can count.

The intersection number of two co-dimension two submanifolds in some manifold can
be represented by the wedge product of the two forms Poincare dual to the submanifolds.
Likewise, wedge products of ψi integrated over Mg,n count the intersection of codimension
two submanifolds in Mg,n. This means that if we consider integrals of a top-dimensional form

∫
Mg,n

ψd1
1 · · ·ψ

dn
n ,

n∑
i=1

di = 3g − 3 + n , (C.1)

the integral describes the intersection of the n submanifolds (or rather cycles) dual to ψdii .
These are the intersection numbers discussed in the main text.34

Before proceeding we make two comments.

1. Instead of Mg,n (which is non-compact) one considers the so-called Deligne-Mumford
compactification Mg,n which includes degenerate Riemann surfaces at the boundary
of moduli space. These surfaces have regions where locally the surface looks like two
discs with their centers identified. See figure 8 (left) for an example that is counted in
the moduli space of punctured tori M1,1.

2. The spaces Mg,n are not manifolds, but orbifolds. We can understand this because
we can view Mg,n as Teichmuller space Tg,n ∼ H3g−3+n modulo identifications under
the mapping class group, and these identifications can create Zm conical singularities
in the resulting space Mg,n, making them orbifolds. For instance, the keyhole M1,1 =
H/SL(2,Z) has one α = π and α = 2π/3 conical singularity, see figure 8 (right)
and [96].

For orbifolds Chern numbers need not be integers, in general they will be rational
numbers. This makes the terminology intersection “number”, which one thinks of as
an integer, odd. In general they are rational numbers for the compact orbifolds Mg,n,
just like their Euler character.

34For this to be a bona fide intersection number this should be a topological invariant and for that it
is crucial to view the ψi as representatives of classes of the second cohomology group, and similarly the
codimension two submanifolds should be viewed as codimension two cycles in the relevant homology group.
For instance, see Bézout’s theorem for the simplest example of intersection numbers of curves in the real
projective plane.
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A A′

B B′C

ππ
3

π
3

Figure 8. Degenerate once punctured torus that is included in the Deligne-Mumford compactification
M1,1 of M1,1 (left). The orbifold M1,1 = H/SL(2,Z) is the interior of the keyhole with extra
identification of the half-lines AB and A′B′ and of the arcs CB and CB′ [96] (right). There is an
α = π total angle when one circles around C and an α = 2π/3 total angle when one travels around
B = B′. So, M1,1 is not a smooth manifold, but indeed an orbifold.

C.2 Kontsevich and Witten

The objective in intersection theory on the moduli space of Riemann surfaces is to calcu-
late (C.1). This is a complicated endeavour, not only because at large genus and n there
are many different integrals to consider, but also because the ψi itself are hard to find
since Mg,n is complicated in general. However in the early nineties the work of Witten and
Kontsevich [45, 46] showed that there is a combinatorial solution to the problem involving
ribbon graphs. We have already explained how this works in section 3, here we provide an
alternative (and historically more chronological) story.

One starts by considering the generating functional of the correlators (3.21)

F =
〈

exp
( ∞∑
k=0

tkτk

)〉
=
∑
di

∞∏
i=0

tdii
di!

〈 ∞∏
j=0

τ
dj
j

〉
, 〈τk1 · · · τkn〉g =

∫
Mg,n

ψd1
1 · · ·ψ

dn
n . (C.2)

Witten conjectured [45] that this F is the so-called τ -function of the KdV hierarchy, which
is a fancy way to say that it satisfies the differential equations (3.13). As we explained in
the main text, one can use this to get recursion relations (3.27) for the intersection numbers,
which can be used to compute all intersection numbers given the seeds of the recursion

〈τ0τ0τ0〉0 = 1, 〈τ1〉1 = 1
24 . (C.3)

The first of these correlators is just a reflection of the fact that the moduli space of the three
punctured sphere is a so the correlator can be normalized to one. The second correlator
is a statement about the moduli space of the punctured torus and can be understood in
various ways, for instance see [96].

The proof of this conjecture was given by Kontsevich [46], who found a way to simply
compute the function F and checked that it was indeed a τ -function. His methods start with
the story we presented in section 3.1. He first considered another generating function (3.8)

Vg,n(b1 . . . bn) =
∞∑
d1=0

b2d1
1

2d1d1! · · ·
∞∑

dn=0

b2dnn

2dndn!〈τd1 . . . τdn〉g =
∫
Mg,n

exp
(1

2

n∑
i=1

b2i ψi

)
, (C.4)
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and realized that using Penner coordinates `j for Mg,n, the Chern classes ψi can be brought
into the simple form (3.6), such that (after some combinatorics) this generating functional
is seen to compute the volume of moduli space of ribbon graphs with fixed boundary lengths
bi (3.4)35

Vg,n(b1 . . . bn) =
∑
Γg,n

VΓg,n(b1 . . . bn) ,

VΓg,n(b1 . . . bn) = cΓ
|Aut(Γ)|

6g−6+3n∏
j=1

∫ ∞
0

d`j
n∏
i=1

δ

bi −∑
ji

`ji

 . (C.5)

These Penner coordinates `j (which are more open-string like whereas the Fenchel-Nielsen
length-twist coordinates are more like a closed string parameterization) originate from
constructing the Riemann surface by gluing together flat fixed-width strips of lengths `i at
vertices where all the curvature is then localized. These strips naturally form a ribbon graph.
The division by the mapping class group, which makes the moduli space so complicated
in general, is avoided since there is no constraint on the lengths of the strips [46], except
for the symmetry factor 1/|Aut(Γ)| from overcounting cases where say `1 and `2 label
interchangeable edges, so one should only integrate over `1 > `2.

Equation (C.5) looks simple. For instance for V1,1(b) there is only one ribbon graph,
see figure 2. There are three edges and so three lengths `i. The length b of the boundary is
given by 2(`1 + `2 + `3) = b, since one traverses the edges twice. Since Aut(Γ) = 6 one finds
the correct answer

V1,1(b) = 1
Aut(Γ)

∫ ∞
0

d`1
∫ ∞

0
d`2

∫ ∞
0

d`3 δ(`1+`2+`3−b/2) = 1
6

∫ b/2

0
d`1

∫ b/2−`1

0
d`2 = b2

48 .

(C.6)

Unfortunately life is not so simple. In practice it is hard to find all topologically distinct
ribbon graphs for given g and n. Moreover, the linear constraints bi = Aij`j define a
polytope, and it is not in general very simple to compute its volume because of these linear
constraints. A simple way to get rid of those constraint is integrating over bi. In particular,
as Kontsevich noticed, matters simplify drastically when considering a Laplace transform.
Doing the bi integrals first, the volumes simplify tremendously

n∏
i=1

∫ ∞
0

dbi e−zibi
6g−6+3n∏
j=1

∫ ∞
0

d`j
n∏
i=1

δ

bi −∑
ji

`ji

 =
6g−6+3n∏
j=1

1
zj1 + zj2

, (C.7)

and applying the same Laplace transform to (C.4) one obtains Kontsevich’s famous formula

∑
Γ

22g−2+n

|Aut(Γ)|

6g−6+3n∏
j=1

1
zj1 + zj2

=
∞∑
ki=0
〈τk1 . . . τkn〉g

n∏
i=1

(2ki)!
2kiki!

1
z2ki+1
i

. (C.8)

35The constant cΓ is the flat, but non-unit measure on the moduli space of ribbon graphs. Suppose the
lengths constrains read bi = Aij`j and we form the square matrix B by using the first n columns of A, then
cΓ = 22g−2+n/ det(B) [40].
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At this point we have given the i’th boundary some flavor zi. Suppose that we have N
flavors za at our disposal, then it makes sense to consider a sum of the above sum where
we sum over all possible flavors for all boundaries, including a symmetry factor 1/(dj)! in
this sum when dj physically indistinguishable boundaries τj appear. If we then also sum
over n and g, the right hand side becomes precisely F , where the KdV times tk in (C.2)
are related with the flavors za as

tk = (2k)!
2kk!

N∑
a=0

1
z2k+1
a

. (C.9)

The left hand side becomes a sum over all ribbon graphs Γ with any number of boundaries,
any genus, and any flavor on any of the boundaries, weighed by a symmetry factor 1/|Aut(Γ)|
that always appears in Feynman diagrams and with each edge contributing a weight
2/(zj1 + zj2).

Kontsevich recognized that these are nothing but the Feynman rules of an N by N
matrix integral, but counting only fully connected diagrams. Taking into account the fact
that fully connected diagrams exponentiate to the full theory, Kontsevich concluded [40]

eF =

∫
dX exp

(
i
6 TrX3 − 1

2 TrX2Z

)
∫

dX exp
(
− 1

2 TrX2Z

) , (C.10)

where the eigenvalues of Z are za, and X is integrated over all Hermitian matrices. The
propagator is obviously correct, and the X3 interaction generates trivalent ribbon graphs.
Not only does this solve intersection theory, Kontsevich also checked explicitly that this
expression for F is a τ -function, proving Witten’s conjecture [45].

C.3 Relation between the moduli space of ribbon graphs and Riemann
surfaces

We gather for clarity some discussion that already appeared in the main text about the
relation between the volumes of ribbon graphs and the volumes of Riemann surfaces.
Remember that using Gauss-Bonnet with R = −2 and K = 0

χ = 1
4π

∫ √
gR− 1

2π

∫ √
hK = − 1

2π

∫ √
g = − A

2π , (C.11)

that we deduced around (3.3) that Weil-Petersson volumes reduce to volumes of ribbon
graphs for large b. Weil-Petersson volumes are calculated by invoking the symplectic
structure and using the Weil-Petersson two-form ΩWP(b1, . . . , bn) to get a volume form eΩWP

Vg,n(b1 · · ·n) =
∫
Mg,n

eΩWP (C.12)

Using (C.4) this implies

ΩWP →
n∑
i=1

b2i
2 ψi (C.13)
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Terms linear in bi can be argued from the SL(2,R) BF gauge theory to not exist as hyperbolic
holonomies with positive and negative bi are conjugate, so everything needs to be even in
bi. Therefore (see also [99])

ΩWP = ωWP +
n∑
i=1

b2i
2 ψi , (C.14)

with ωWP the Weil-Petersson symplectic form on the moduli space of Riemann surfaces
with bi = 0.

This relation thus tells us that Weil-Petersson volumes are computed using intersection
theory of not only the ψ classes, but together with the Weil-Petersson symplectic form
ωWP. It is this extra class that causes the WP volumes to obtain their intricate polynomials
structure with coefficients that have various powers of π. In fact it is customary to write
ωWP as

ωWP = 2π2κ, (C.15)

with κ a rather standard two-form one an also consider on the moduli space of Riemann
surfaces, but whose definition is more complicated and will not be given here, but see [45].

To understand ωWP more physically, note that when it is absent and we just discuss
trivalent ribbon graphs, there is a matrix model (C.10) that also computes these volumes,
with

F =
〈

exp
( ∞∑
k=0

tkτk

)〉
=
∑
di

∞∏
i=0

tdii
di!

〈 ∞∏
j=0

τ
dj
j

〉
, (C.16)

and
tk = (2k)!

2kk! TrZ−(2k+1) (C.17)

The asymptotic expansion in Z means that when we want to compute the intersection theory
relevant for the volumes of ribbon graphs, we need to take derivatives with respect to the
tk’s and then set all tk’s to zero. The theory with all the tk = 0 is the unperturbed matrix
model and is precisely the double scaled Gaussian matrix model without any determinants
inserted. To get more general double scaled models the only thing one then has to do is to
simply not set all the tk to zero afterwards, but set them to specific values γk. It turns out
that one wants to set them to

γn = −(−2π2)n−1

(n− 1)! . (C.18)

To see how this connects to ωWP, notice that the b dependent part will give us the τ
correlators, which are obtained by taking derivatives of F and so the term eωWP is equivalent
to what we set the tk’s to after we are done with taking derivatives. Thus the role of ωWP
is to deform the double scaled gaussian matrix model to one with a more general potential,
specifically the one relevant for JT gravity. Thus we have the relation (4.19)

〈(. . . )eωWP〉 =
〈

(. . . )e
∑

k
γkτk

〉
. (C.19)

To summarize what we have learned so far. We have introduced the notion of inter-
section numbers on the moduli space of Riemann surfaces. By invoking an open string
parameterization of the moduli space we showed that the volume of moduli space of ribbon
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graphs is related to these intersection numbers. Finally by noticing that for large bi the
bordered Riemann surfaces turn into ribbon graphs, we could make a clear relation between
Weil-Petersson volumes and volumes of moduli space of ribbon graphs. In particular that
deforming to the JT matrix model is equivalent to freezing some of the tk to some non-trivial
value given by (C.18).

C.4 Topological recursion for ribbon graphs

Here we discuss a simplification of Mirzakhani’s recursion relation for the Weil-Petersson
volumes at large bi and thus becoming a recursion relation for the volumes of moduli space
of ribbon graphs. This was also shown in [40].

The derivation of Mirzakhani’s recursion [52] proceeds by considering an experiment
where we take an external geodesic with length b and shoot in geodesics orthogonal to it
into the surface. We track where those geodesics end up. The crux of the calculation comes
down to doing this experiment within a single three holed sphere with boundaries b, b′ and
b′′ from which one gets the identify

b = T (b, b′, b′′) + T (b, b′′, b′) +D(b, b′, b′′) (C.20)

with symmetry
T (b, b′, b′′) = T (b′, b, b′′) , (C.21)

this measures the length along b of geodesics that end up on b′ (or the other way around).
The function D(b, b′, b′′) is the length along b of geodesics that self-intersect before reaching
a boundary, or that end up back on the b geodesic. The full recursion relation reads [25]

b Vg,n+1(b, B)

= 1
2

∫ ∞
0

db′b, db′′b′′D(b, b′, b′′)
(
Vg−1,n+2(b′, b′′, B) +

∑
stable

Vh1,n1(b′, B1)Vh2,n2(b′′, B2)
)

+
n∑
i=1

∫ ∞
0

db′b′ (b− T (b, b′, bi))Vg,n−1(b′, B/bi) . (C.22)

One now just has to compute these functions. For ribbon graphs this is borderline trivial.
One obtains a piecewise function

T (bi, bj , bk) = `ij , D(ti, tj , tk) = 2`ii , (C.23)

where `ij is the length of the ribbon graph shared between boundaries bi and bj . There are
essentially two ribbon graphs that the three holed sphere can degenerate into, depending
on the sizes b, b′ and b′′.

1. When bi > bj + bk the Riemann surface becomes

bi

bi

bjbk (C.24)
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and one reads off immediately for instance T (bi, bj , bk) = bj etcetera, because a fraction
bj of the geodesics starting on bi end up on bj (or all geodesics starting on bj end on bi).

2. When neither of the lengths is bigger than the sum of the two others the Riemann
surfaces looks like

bi

bj
bk bk (C.25)

and one can solve for the lengths of the edges, to find for instance T (bi, bj , bk) =
(bi + bj − bk)/2.

These piecewise linear functions can also be obtained directly as limits of the formulas
for finite lengths in [25]. One also checks obviously that this reproduces the correct Airy
volumes. It is entirely consistent to think of Riemann surfaces with large boundaries as
ribbon graphs, for all purposes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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