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1 Introduction

In this paper, we shall search for consistent generalizations of the Veneziano amplitude [1]
and the Virasoro amplitude [2] with zero Regge intercept. For simplicity we shall only
consider the scattering of four massless bosonic states, in which case the tree-level open and
closed superstring amplitudes respectively reduce to the Veneziano and Virasoro amplitudes
with zero intercept. Both amplitudes may be written as infinite products with an infinite
number of simple poles.

So-called generalized Veneziano amplitudes and generalized Virasoro amplitudes are
defined by modifying these infinite products subject to some general physical constraints.
The name generalized Veneziano amplitude originates in [3], and the Coon amplitude [4]
is one well-studied example. In a companion paper [5], we detail the properties of the
Veneziano, Virasoro, and Coon amplitudes, including their unitarity, high-energy behavior,
low-energy expansion, and number theoretic properties.

Our present procedure is an extension and clarification of Coon’s original argument [4]
and related work [3]. These previous studies only considered generalized Veneziano ampli-
tudes, but we shall also consider the generalized Virasoro case. In either case, we simply
assume crossing symmetry in the Mandelstam variables and demand physical residues on
an a priori unspecified sequence of poles λn. In other words, we do not assume the mass
spectrum of the theory. Under our assumptions, we find that the poles λn must satisfy
an over-determined set of non-linear recursion relations. These recursion relations fix all
the subsequent poles in terms of the first three poles and highly constrain the space of
generalized Veneziano and generalized Virasoro amplitudes.

In the generalized Veneziano case, the recursion relations can be solved analytically.
The solutions correspond to the Veneziano amplitude, the one-parameter family of Coon
amplitudes, and a larger two-parameter family of amplitudes with an infinite tower of
spins at each mass level. This two-parameter family of solutions has been previously
identified [3, 4] but never systematically studied. Only the one-parameter sub-family of
Coon amplitudes has been studied in detail [5, 6]. In this paper, we shall systematically
analyze the entire two-parameter space of generalized Veneziano amplitudes. We also begin
an initial study of the unitarity properties of this space

In the generalized Virasoro case, we numerically demonstrate that the only consistent
solution to the aforementioned recursion relations is the string spectrum. That is, we do
not find any consistent generalized Virasoro amplitudes beyond the Virasoro amplitude
itself. We reached a similar, though less general, conclusion in [5] by failing to construct
a generalization of the Virasoro amplitude with the same poles as the Coon amplitude (a
so-called Virasoro-Coon amplitude).

The authors of [7] approach this same problem under a different set of assumptions
and reach many of the same conclusions that we reach here, such as the uniqueness of the
Virasoro amplitude. Our work is complementary.

Our approach is part of the modern S-matrix bootstrap program [8], a revival of an old
approach [9] which attempts to construct general amplitudes which satisfy various physical
properties without relying on an underlying dynamical theory.
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1.1 Conventions

In this paper, we shall only consider crossing-symmetric tree-level scattering amplitudes for
four massless external particles in weakly-coupled theories in d ≥ 3 spacetime dimensions.
We use units in which the lowest massive state of any particular theory has mass m2 = 1.
In open (closed) string theory, this choice corresponds to α′ = 1 (α′ = 4).

1.1.1 Kinematics

We shall primarily consider amplitudes stripped of their dependence on the polarizations
or colors of the scattered states, leaving functions A(sij) which depend only on the Man-
delstam variables sij = −(pi + pj)2,

s = s12 = s34 = 4E2 ≥ 0
t = s14 = s23 = −2E2(1− cos θ) ≤ 0
u = s13 = s24 = −2E2(1 + cos θ) ≤ 0 (1.1)

which satisfy the mass-shell relation s+ t+ u = 0. Here E and θ are the center-of-mass
energy and scattering angle, respectively. The inequalities refer to the physical scattering
regime with real sij .

1.1.2 Crossing

Crossing symmetry refers to permutation symmetry in (s, t) or (s, t, u). The Veneziano,
Virasoro, and Coon amplitudes were discovered under the assumption of crossing symmetry,
and we are searching for their generalizations.

Since s-channel and t-channel Feynman diagrams correspond to the same cyclic order-
ing, color-ordered amplitudes (e.g. gluon amplitudes) will have only s-channel poles and
t-channel poles and shall be denoted by A(s, t) to emphasize that they are analytic func-
tions of two complex variables. For these amplitudes, crossing symmetry is the requirement
that A(s, t) = A(t, s).

Amplitudes with poles in all three channels (e.g. graviton amplitudes) shall be denoted
by A(s, t, u). We shall regard these amplitudes as analytic functions of three complex vari-
ables restricted to the algebraic variety defined by s + t + u = 0. For these amplitudes,
crossing symmetry is the requirement that A(s, t, u) = A(σ(s), σ(t), σ(u)) for any permu-
tation σ of (s, t, u).

1.1.3 Analytic structure

The amplitude A(sij) is an analytic function of the complexified sij with simple poles and
branch cuts dictated by unitarity. At high-energy, we demand that A(sij)→ 0 vanishes
as |s| → ∞ with physical t, in analogy with the high-energy behavior of the Veneziano,
Virasoro, and Coon amplitudes [5].

Tree-level amplitudes have simple poles at sij = m2
n for each state n which couples to

the external states through the sij-channel. It is often assumed that physical tree-level
amplitudes are meromorphic, i.e. that A(sij) is analytic outside its simple poles with no
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branch cuts or other singularities. However, the Coon amplitude with q < 1 provides a
counterexample of a seemingly healthy non-meromorphic tree-level amplitude [5, 6].

In a physical four-point amplitude, the t-channel and u-channel poles should cancel on
each s-channel pole (and vice versa). Typically, the residue of each s-channel pole is then
a polynomial in t (after using the mass-shell relation to eliminate any u-dependence). The
highest power of t in this residue corresponds to the highest-spin state exchanged on that
pole. Non-polynomial residues can in principle result and may be Taylor expanded, corre-
sponding to the exchange of an infinite tower of spinning states. In any case, the residues
of these poles can be written as a sum of Gegenbauer polynomials and the amplitude may
be written as follows (under the assumption that A(sij) vanishes at high-energy [10]),

A(sij) =
∑
n

1
s−m2

n

∑
j

cn,j C
( d−3

2 )
j (cos θ) (1.2)

In a unitary theory, the partial wave coefficients cn,j > 0 will be positive.
We shall restrict our discussion to amplitudes with an infinite number of simple poles

(à la Veneziano, Virasoro, and Coon) because the assumptions of crossing symmetry, phys-
ical residues, and that A(sij) vanishes at high-energy imply that there must be an infinite
number of poles in each channel [10, 11]. The argument may be summarized as follows.
A crossing-symmetric tree-level amplitude A(s, t) = A(t, s) may be expanded on either its
s-channel or t-channel poles, leading to the following equality,

∑
n

fn(t)
s−m2

n

=
∑
n

fn(s)
t−m2

n

(1.3)

The functions fn(z) must be finite at each z = m2
n because the t-channel poles should

cancel on each s-channel pole. However, the left-hand side of (1.3) can then only produce
the t-channel poles which appear on the right-hand side if the sum over n is infinite.

1.1.4 Accumulations points

In this paper, we shall encounter two distinct notions of accumulation point spectra:

• infinite tower of masses m2
n < λ∞ with finite spin exchange at each mass level

• infinite tower of masses m2
n < λ∞ with infinite spin exchange at each mass level

for some finite accumulation point of masses 0 < λ∞ <∞.
Finite spin exchange results from a polynomial residue on a given mass pole and corre-

sponds to a finite tower of states at that mass level. The Coon amplitude with q < 1 exhibits
this type of accumulation point spectrum with λ∞ = 1

1−q . While there is yet no definitive
physical realization of the Coon amplitude, similar accumulation point spectra have been
found in a stringy setup involving open strings ending on a D-brane [12]. Most famously,
the hydrogen atom has a spectrum of this type with energy levels En = −13.6 eV/n2 and
an accumulation point at E∞ = 0.

Infinite spin exchange results from a non-polynomial residue on a given mass pole and
is generally considered unphysical. Indeed, sensible quantum field theories are typically
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assumed to have a finite number of particle types below any finite mass. In the case of finite
spin exchange, this assumption only fails at masses m2 ≥ λ∞. In the case of infinite spin
exchange, this assumption fails at all masses above the mass gap. Nevertheless, amplitudes
with infinite spin exchange were recently considered in [13]. Moreover, amplitudes with
this type of accumulation point were recently found to have interesting extremal properties
in the context of the EFT-hedron [14–17].

In any case, amplitudes with either type of accumulation point spectra are not well
understood and are fruitful examples for the study of general scattering amplitudes.

1.2 Outline

In section 2, we shall briefly review our conventions for the Veneziano, Virasoro, and
Coon amplitudes. In section 3, we review some complex analysis and motivate our infinite
product ansatz for the generalized Veneziano and generalized Virasoro amplitudes. In
section 4 and section 5, we respectively analyze the generalized Veneziano and generalized
Virasoro amplitudes by solving an infinite set of non-linear constraints on their poles λn.
Finally, in section 6, we discuss our results and present some questions for future research.

2 Veneziano, Virasoro, and Coon amplitudes

The Veneziano, Virasoro, and Coon amplitudes are each tree-level four point amplitudes
with an infinite sequence of simple poles and polynomial residues. A detailed review of
their properties may be found in [5]. The Coon amplitude was also recently discussed
in [6, 18, 19]. Here we shall briefly review our conventions and give each amplitude’s
infinite product representation.

2.1 Veneziano

The Veneziano amplitude AVen describes the scattering of four open strings and is a UV-
completion of maximally supersymmetric Yang-Mills field theory. The color-stripped tree-
level field theory amplitude which describes the scattering of any four massless particles in
the Yang-Mills supermultiplet is,

ASYM = P4
1
st

(2.1)

where P4 = O(s, t)2 is a kinematic pre-factor. For the four-gluon amplitude, P4 = F 4

where F is the linearized field strength. In tree-level open superstring theory, the color-
stripped amplitude which describes the same process is,

Aopen = P4AVen (2.2)

where,

AVen(s, t) = Γ(−s)Γ(−t)
Γ(1− s− t) = 1

st

∏
n≥1

(
1− s+t

n

)
(
1− s

n

)(
1− t

n

) (2.3)

Like the field theory factor 1
st , the Veneziano amplitude is symmetric in (s, t) and is a

meromorphic function with simple poles only.
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2.2 Virasoro

The Virasoro amplitude AVir describes the scattering of four closed strings and is a UV-
completion of maximal supergravity. The tree-level field theory amplitude which describes
the scattering of any four massless particles in the supergravity multiplet is,

ASG = P8

(
− 1
stu

)
(2.4)

where P8 = O(s, t, u)4 is a kinematic pre-factor. For the four-graviton amplitude, P8 = R4

where R is the linearized Riemann curvature. In tree-level closed superstring theory, the
amplitude which describes the same process is,

Aclosed = P8AVir (2.5)

where,

AVir(s, t, u) = Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u) = − 1

stu

∏
n≥1

(
1 + st+tu+us

n2 + stu
n3
)

(
1− s

n

)(
1− t

n

)(
1− u

n

) (2.6)

Like the field theory factor − 1
stu , the Virasoro amplitude is symmetric in (s, t, u) and is a

meromorphic function with simple poles only.

2.3 Coon

The Coon amplitude Aq is a generalization of the Veneziano amplitude with a real-valued
deformation parameter q ≥ 0. This deformation moves the poles of the Veneziano ampli-
tude from the integers to the q-integers,

[n]q = 1− qn
1− q −−−→

q→1
n (2.7)

The Coon amplitude may be written as an infinite product with a q-dependent pre-factor,1

Aq(s, t) =
{
q

ln(1+(q−1)s)
ln q

ln(1+(q−1)t)
ln q Θ(1− q) + Θ(q − 1)

}

× 1
st

∏
n≥1

(
1− s+t

[n]q + (1− q) st
[n]q
)

(
1− s

[n]q
)(

1− t
[n]q
) (2.8)

where the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. For 0 < q < 1,
the poles tend to an accumulation point at 1

1−q . For q ≥ 1, the poles tend to infinity. In
the limits q → 0 and q → 1, the Coon amplitude reproduces the field theory factor and the
Veneziano amplitude, respectively,

Aq(s, t) −−−→
q→0

1
st

Aq(s, t) −−−→
q→1

AVen(s, t) (2.9)

1A more natural expression for the Coon amplitude may be given in terms of a special function called
the q-deformed gamma function [5].
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For all q ≥ 0, the Coon amplitude is symmetric in (s, t) with simple poles only, but its mero-
morphicity is subtle. For 0 < q < 1, the pre-factor in (2.8) is explicitly non-meromorphic
with branch cuts at s, t = 1

1−q . This pre-factor ensures that the Coon amplitude has poly-
nomial residues. For q ≥ 1, there is no pre-factor, and the Coon amplitude is meromorphic.

3 Infinite products and Weierstrass factorization

As we have seen in (2.3), (2.6), and (2.8), the Veneziano, Virasoro, and Coon amplitudes
each have an infinite product form. Hence, we shall assume that more general tree-level
scattering amplitudes with an infinite sequence of simple poles may be similarly written as
infinite products. To motivate our ansatz for these generalized Veneziano and generalized
Virasoro amplitudes, we shall first review some complex analysis.

3.1 Some complex analysis

Let f : U → C be a function of one complex variable z on an open set U ⊂ C. We first
recall some standard definitions from single-variable complex analysis [20].

• f(z) is complex differentiable at a point z0 ∈ U if limz→z0
f(z)−f(z0)

z−z0
exists.

• f(z) is holomorphic on U if it is complex differentiable on U .

• f(z) is meromorphic on U if it is holomorphic on U except for a set of isolated points.

• f(z) is entire if it is holomorphic on the full complex plane.

• f(z) is complex analytic on U if for every z0 ∈ U it can be written as a convergent
power series f(z) = ∑∞

n=0 an (z − z0)n with an ∈ C.

It is a fundamental theorem of single-variable complex analysis that holomorphicity
is equivalent to complex analyticity, but with tree-level scattering amplitudes in mind, we
will be most interested in meromorphic functions.

A meromorphic function f(z) may always be written as the ratio of two holomorphic
functions and is characterized by its (possibly infinite) sequence of zeros ζn and poles λn
(counted with multiplicity). If these sequences are finite, then f(z) can be written as,

f(z) = zm eg(z)
∏
n(1− z/ζn )∏
n(1− z/λn) (3.1)

where |m| ∈ N is the order of the zero or pole at z = 0, g(z) is an entire function (so
that eg(z) has no zeros or poles), and the two finite products run over the non-zero zeros
and poles. We note that each numerator and denominator factor is separately linear in the
variable z. This factorization is a consequence of the fundamental theorem of algebra.

If f(z) is meromorphic but with an infinite number of zeros and poles, it will admit a
similar factorization. In this case, we may formally combine the two finite products in (3.1)
into one infinite product,

f(z) = zm eg(z) ∏
n

(1− z/ζn )
(1− z/λn) (3.2)

– 7 –



J
H
E
P
0
4
(
2
0
2
3
)
0
3
1

which converges if the zeros ζn and poles λn obey,
∑
n

∣∣∣∣ 1
ζn
− 1
λn

∣∣∣∣ <∞ (3.3)

However, the formal product (3.2) need not converge.
A convergent product representation of any function f(z) which is meromorphic on

the full complex plane is given by the Weierstrass factorization theorem [20]. To ensure
that this (possibly infinite) product converges, it is written in terms of the elementary
factors E`(z),

E`(z) =

(1− z) ` = 0
(1− z) exp

(
z
1 + z2

2 + · · ·+ z`

`

)
` ≥ 1

(3.4)

Using the elementary factors, it is always possible to find sequences Nn, Dn ∈ N and an
entire function g̃(z) such that,

f(z) = zm eg̃(z) ∏
n

ENn(z/ζn)
EDn(z/λn) (3.5)

where again |m| ∈ N is the order of the zero or pole at z = 0. Such a factorization always
exists but is not unique. For any Weierstrass factorization, the pre-factor eg̃(z) will have
neither zeros nor poles.

If, in fact, the formal product (3.2) converges, then the entire functions g(z) and g̃(z)
which appear in (3.2) and the general Weierstrass factorization (3.5) are related by,

exp
(
g(z)− g̃(z)

)
= exp

{∑
n

Nn∑
`=0

(z/ζn)`
`

−
∑
n

Dn∑
`=0

(z/λn)`
`

}
(3.6)

where the sums ∑n are over the non-zero zeros and poles.
For example, the gamma function Γ(z) has the following infinite product representation

in Weierstrass form,

Γ(z) = e−γEz
1
z

∏
n≥1

1(
1 + z/n

)
e−z/n

(3.7)

where γE is the Euler-Mascheroni constant and the denominators are just the elementary
factors E1(−z/n). This infinite product clearly demonstrates the simple poles of the gamma
function at the non-positive integers, but without the factors e−z/n (from the elementary
factors) the product would diverge.

The Weierstrass factorization theorem is no longer applicable if the zeros and poles are
bounded and tend to a common limit point ζ∞ = λ∞ <∞ because then f(z) is no longer
meromorphic at z = λ∞. In this case, however, we may still factorize the function f(z) in
a form analogous to (3.2). Such a factorization will not need elementary factors because
the elementary factors do not improve the convergence of the infinite product in the case
that ζ∞ = λ∞ <∞. Moreover, the pre-factor eg(z) in this factorization will have no zeros
or poles of finite order but may have essential singularities, branch points, etc. since in this
case the function f(z) is not meromorphic at z = λ∞.
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3.2 Ansatz for infinite product amplitudes

We shall now use the infinite product factorization described above to motivate the ansatz
for our generalized Veneziano and generalized Virasoro amplitudes. While a Weierstrass
factorization (3.5) necessarily exists for all meromorphic functions of a single complex vari-
able, there is no analogous theorem for functions of several complex variables. Moreover,
while tree-level amplitudes are expected to be meromorphic functions of the Mandelstam
variables, this need not be true. The Coon amplitude with q < 1 is non-meromorphic.
Thus, we shall proceed without assuming meromorphicity. Instead, we shall simply write
down and analyze an infinite product ansatz analogous to (3.2).

We begin with the generalized Veneziano case. Our crossing symmetric tree-level
generalized Veneziano amplitude A(s, t) should have an infinite sequence of simple poles λn
in both the s-channel and the t-channel. We shall assume that the leading poles are at s = 0
and t = 0 and that the amplitude reduces to field theory at low-energy,

A(s, t) = 1
st

(
1 +O(s, t)

)
(3.8)

Without loss of generality, we assume the poles are ordered λn > λn−1 and choose λ1 = 1.
These assumptions can always be made true by a relabeling of the poles and a choice of
units. Beyond these assumptions, the poles are wholly unspecified. In addition to its poles,
A(s, t) will have an infinite sequence of t-dependent s-zeros ζn(t) and an identical sequence
of s-dependent t-zeros ζn(s).

Ignoring issues of convergence momentarily, we shall consider the following ansatz
which satisfies these constraints and resembles the infinite product representation of the
Veneziano amplitude (2.3),

A(s, t) =W(s, t) 1
st

∏
n≥1

1−An(s+ t) +Bnst

(1− s/λn)(1− t/λn) (3.9)

where An and Bn are yet undetermined coefficients and the pre-factor W(s, t) = W(t, s)
has neither zeros nor poles below the largest mass pole, i.e. for |s|, |t| < λ∞ where λ∞ may
be finite or infinite. The pre-factor W(s, t) is analogous to the pre-factor eg(z) in (3.2)
and has the low-energy behavior W(s, t) = 1 + O(s, t). We note that the numerator and
denominator of the infinite product in (3.9) are both separately linear in s and t so that
the zeros and poles in either channel can be written as,

1
s

∏
n≥1

(
1− s/ζn (t)

)
(1− s/λn) or 1

t

∏
n≥1

(
1− t/ζn (s)

)
(1− t/λn) (3.10)

with the zeros given by,

ζn(x) = 1 −Anx
An −Bnx

(3.11)

In this form, the amplitude resembles the Weierstrass factorization (3.5) but without the
elementary factors. The formal product in (3.9) converges if the coefficients An and Bn
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and the poles λn obey,

∑
n≥1

∣∣∣∣An − 1
λn

∣∣∣∣ <∞ ∑
n≥1

∣∣∣∣Bn − 1
λ2
n

∣∣∣∣ <∞ (3.12)

We shall return to this ansatz in section 4.
We now consider the generalized Virasoro case. Our crossing symmetric tree-level

generalized Virasoro amplitude A(s, t, u) should have an infinite sequence of simple poles λn
in the s-channel, t-channel, and u-channel. We shall again assume that the leading poles
are at s = 0, t = 0, and u = 0 and that the amplitude reduces to field theory at low-energy,

A(s, t, u) = − 1
stu

(
1 +O(s, t, u)

)
(3.13)

Without loss of generality, we assume the poles are ordered λn > λn−1 and choose λ1 = 1.
Beyond these assumptions, the poles are again wholly unspecified.

Again momentarily ignoring issues of convergence, we shall consider the following
ansatz which satisfies these constraints and resembles the infinite product representation
of the Virasoro amplitude (2.6),

A(s, t, u) =W(s, t, u)
(
− 1
stu

) ∏
n≥1

1 +An(st+ tu+ us)−Bnstu
(1− s/λn)(1− t/λn)(1− u/λn) (3.14)

where An and Bn are yet undetermined coefficients and the (s, t, u)-symmetric pre-factor
W(s, t, u) has neither zeros nor poles below the largest mass pole, i.e. for |s|, |t|, |u| < λ∞
where λ∞ may again be finite or infinite. As before, the pre-factor W(s, t, u) is analogous
to the pre-factor eg(z) in (3.2) and has the low-energy behavior W(s, t, u) = 1 +O(s, t, u).
We note that the numerator and denominator of the infinite product in (3.14) are both
separately linear in s, t, and u. Moreover, there is no term proportional to s+ t+ u in
the numerator because this combination vanishes on-shell for massless external states. The
formal product in (3.14) converges if the coefficients An and Bn and the poles λn obey,

∑
n≥1

∣∣∣∣An − 1
λ2
n

∣∣∣∣ <∞ ∑
n≥1

∣∣∣∣Bn − 1
λ3
n

∣∣∣∣ <∞ (3.15)

We shall return to this ansatz in section 5.
In both the generalized Veneziano and generalized Virasoro case, demanding that

the t-channel poles cancel on each s-channel pole will enforce strong constraints on the
undetermined coefficients An and Bn as well as the poles λn. In the following two sections,
we shall analyze these constraints in detail.

4 Generalized Veneziano amplitudes

In this section, we shall systematically analyze our infinite product ansatz (3.9) for the
generalized Veneziano amplitude.
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4.1 Veneziano truncation

We first recall the infinite product form (2.3) of the Veneziano amplitude, which has simple
poles at each non-negative integer. The residue of the massless s-channel pole is 1/t, and
the residue of each massive pole at s = N is a polynomial of degree-(N − 1) in t. The
Veneziano amplitude achieves these residues because on each s-pole, its zeros cancel the
t-poles, leaving a finite polynomial in t. This cancellation can be described in terms of the
numerator factors,

Nn(s, t) = 1− (s+ t)/n (4.1)

When s = N , each numerator factorNN+n(N, t) = n
N+n(1− t/n) cancels the t-channel pole

from the factor (1− t/n)−1, and the infinite product truncates. In short, the condition,

NN+n(N,n) = 0 (4.2)

ensures that the Veneziano amplitude has polynomial residues.

4.2 Generalized Veneziano truncation

We now return to our generalized Veneziano ansatz (3.9). We shall demand that the zeros
and poles of this amplitude cancel in a similar fashion as those of the Veneziano amplitude.
We first demand that the residue at s = 0 is 1/t so that the amplitude reproduces the
massless spectrum of super Yang-Mills analogously to the Venziano amplitude,

Res
s=0
A(s, t) = 1

t
=⇒ W(0, t)

∏
n≥1

1− Ant

1− t/λn
= 1 (4.3)

which implies that W(0, t) = 1 and An = 1/λn since W(s, t) has neither zeros nor poles.
In other words, the coefficients An are determined by the poles λn.

Next, in analogy with the truncation condition for the Veneziano amplitude (4.2), we
demand that the generalized numerator factor,

Nn(s, t) = 1−An(s+ t) +Bnst (4.4)

obeys the generalized truncation condition,

NN+n(λN , λn) = 0 (4.5)

so that NN+n(λN , t) ∝ (1− t/λn) and the infinite sequence of t-channel poles cancels on
each s-channel pole.2 This truncation condition determines the coefficients Bn in terms of
the poles λn,

Bn = λk + λn−k − λn
λnλn−kλk

k = 1, 2, . . . , n− 1 (4.6)

2At this point, we are no longer considering the most general possible infinite product amplitude but
are instead working in close analogy with the Veneziano amplitude. A more general truncation condition,
NN+n+α(λN , λn) = 0 for some positive integer α, is considered in [7].
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For fixed n ≥ 2, both k and k′ = n− k yield the same equation for Bn so that there are
⌊
n
2
⌋

independent equations for Bn, where bxc is the floor function. The coefficient B1 is left
undetermined, the coefficients B2 and B3 are uniquely determined, and the coefficients Bn
with n ≥ 4 are all over-determined.

This over-determination of the Bn highly constrains the poles. Any sequence of
poles λn must leave the following combination independent of k for all n ≥ 2,

Λn(k) = λk + λn−k − λn
λn−kλk

(4.7)

We shall refer to these equations as the generalized Veneziano amplitude constraints.
The Veneziano solution λn = n (i.e. the string theory spectrum) solves these constraints
with Λn(k) = 0 for all n and k. We shall search for other, more general sequences of
poles λn which solve the generalized Veneziano amplitude constraints.

4.3 Generalized Veneziano amplitude constraints

Since Λn(k) must be independent of k, we may fix n ≥ 2 and choose two distinct values
of (k, k′) in the appropriate range to find,

Λn(k) = Λn(k′) =⇒ λk + λn−k − λn
λn−kλk

= λk′ + λn−k′ − λn
λn−k′λk′

(4.8)

This equation is a non-linear recursion relation for the poles λn of order max(k, k′) which
determines all the λn with n > max(k, k′) in terms of the lower λn (except for n = k + k′,
in which case the equation is vacuous). Because we are free to choose (k, k′) within the
appropriate range, the poles λn must solve an infinite set of these non-linear recursion
relations. This system is highly constrained, and there is no guarantee that a general
solution (other than the Veneziano solution) exists!

It turns out, however, that from (4.8) we can derive a simple first-order recursion
relation which determines all the poles λn with n ≥ 4 in terms of λ1, λ2, and λ3. We
consider the following three equations for fixed n ≥ 4,

Λn(1) = Λn(2) Λn(1) = Λn(3) Λn−1(1) = Λn−1(2) (4.9)

These three equations include the poles λ1, λ2, λ3, λn−3, λn−2, λn−1, and λn, but we may
eliminate λn−3 and λn−2 to find the following first order recursion relation for λn in terms
of only λ1, λ2, λ3, and λn−1,

λn = aλn−1 + b

cλn−1 + d
(4.10)

where the coefficients a, b, c, and d are given by,

a = λ2(1− 2λ3 + λ2λ3) = (1 + x)(x2 + xy − y)
b = λ2(λ3 − λ2) = (1 + x)y > 0
c = 1 + λ2

2 − λ2 − λ3 = x2 − y
d = λ2(λ3 − λ2) = (1 + x)y > 0 (4.11)
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Here we have defined the positive numbers x = λ2 − λ1 = λ2 − 1 > 0 and y = λ3 − λ2 > 0,
using the fact that the poles λn > λn−1 are ordered. The recursion relation (4.10) was
derived for n ≥ 4 but is in fact true for all n ≥ 1 if we define λ0 = 0. For n = 1, 2, 3, (4.10)
is only vacuously true and does not determine λ1, λ2, or λ3. The choice λ1 = 1 simply
sets our units, and the free parameters λ2 and λ3 (or equivalently x and y), define a two-
parameter space of possible solutions in the region x, y > 0. The string spectrum λn = n

is at the point x = y = 1 of this two-parameter space.

4.4 Solving the Riccati relation

The recursion relation (4.10) is known as the Riccati recursion relation with constant
coefficients, and its solutions are well known. An exhaustive study of non-linear recursion
relations of this kind may be found in [21].

Although the Riccati recursion relation (4.10) is generally non-linear, there is a curve
c = x2 − y = 0 in parameter space where it becomes linear,

λn = xλn−1 + 1 (4.12)

and yields the Coon spectrum (relabeling x→ q),

λn = 1− qn
1− q (4.13)

The Coon spectrum reproduces the string spectrum at q = 1 and accounts for all the
spectra reviewed in section 2. For q > 1, the poles grow exponentially, and for 0 < q < 1,
they monotonically accumulate to the limit point λ∞ = 1

1−q .
Beyond these well-studied solutions, there is, however, a much larger space of solu-

tions to (4.10) with c = x2 − y 6= 0. In this case, the non-linear first-order recursion rela-
tion (4.10) can be reduced to a linear second-order recursion relation using the following
change of variables,

cλn + d = (a+ d)zn+1
zn

(4.14)

with the boundary condition z0 = 1. Substituting this expression into (4.10), we find,

zn+2 − zn+1 +Rzn = 0 (4.15)

with the positive coefficient R given by,

R = ad− bc
(a+ d)2 = y

(1 + x)(x+ y) > 0 (4.16)

The solutions of this linear recursion relation are governed by the quadratic equation,

r2 − r +R = 0 (4.17)

whose roots are,

r± = 1±
√

1− 4R
2 (4.18)

We shall separately analyze the cases R 6= 1
4 and R = 1

4 .
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4.4.1 The case R 6= 1
4

If R 6= 1
4 , then the roots r+ 6= r− are distinct and zn is given by,

zn = z1 − r−
r+ − r−

rn+ + r+ − z1
r+ − r−

rn− (4.19)

Subsequently, λn is given by,

λn = (1 + x)(1− pn)
(1− xp)− (1− x/p)pn (4.20)

with p = r−/r+ so that |p| ≤ 1. We shall refer to these solutions as p-type spectra. These
spectra were first identified in [4] and were later called Möbius trajectories in [3]. Our
parametrization in terms of p is novel and can be clearly related to the first three mass
levels through the parameters x and y since,

p = p(x, y) = 1−
√

1− 4y/(1 + x)(x+ y)
1 +

√
1− 4y/(1 + x)(x+ y)

(4.21)

When p = x or p = x−1, these spectra reduce to the Coon solution (4.13) with q = p < 1
or q = p−1 > 1, respectively.

The expression (4.20) solves the generalized Veneziano amplitude constraints (4.7) for
all x, y > 0, but the resultant λn will not necessarily be monotonically ordered and positive.
We shall now determine the values of x and y which yield a monotonically increasing
sequence of poles λn.

We first note that R > 1
4 implies that the parameter p = r−/r+ = eiφ is a phase so that

the λn are periodic as a function of n. These periodic solutions always produce negative
(and thus unphysical) λn. The condition R > 1

4 is equivalent to y > x(1+x)
3−x , so this region

of parameter space is ruled out.
We now consider 0 < R < 1

4 which corresponds to 0 < y < x(1+x)
3−x . In this case, the

roots r± are real and positive, so the parameter p is in the range 0 < p < 1. To determine
whether the λn increase monotonically in this region, we shall momentarily treat n as a
continuous variable so that λn → λ(n) is an analytic function of n with a discrete set of
singularities at the points n = n∗ on the complex n-plane,

n∗ =
ln
(1−xp

1−x/p
)

ln p − 2πik
ln p (4.22)

with k ∈ Z. Since d
dnλ(n) > 0 for all real n ≥ 0, the function λ(n) can only fail to be

monotonic if there is a singularity n∗ > 0 on the real n-axis such that limn→n∓∗ λ(n) = ±∞.
From (4.22), we see that there is at most one such singularity with k = 0, which occurs if
and only if,

0 < 1− xp
1− x/p < 1 (4.23)

We first suppose that (4.23) is satisfied with 1− xp > 0 and 1− x/p > 0, which then im-
plies 1− xp < 1− x/p and thus p > 1. Since 0 < p < 1, we must instead have 1− xp < 0
and 1− x/p < 0. To proceed, we shall separately consider the cases 0 < x < 1 and x ≥ 1.
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• For 0 < x < 1, it is not possible to fulfill the condition 1− xp < 0, so the whole
region corresponding to 0 < R < 1

4 and 0 < x < 1 yields monotonically increasing
and positive λn.

• For x ≥ 1, the condition 1− x/p < 0 is always satisfied, but 1− xp < 0 implies,

x >
1

p(x, y) =⇒
(
x− 1
x+ 1

)2
>
x(1 + x)− (3− x)y

(1 + x)(x+ y) =⇒ y > x2 (4.24)

Therefore, when either 1 ≤ x < 3 and x2 < y < x(1+x)
3−x or when x ≥ 3 and y > x2, the

function λ(n) has a singularity at finite n = n∗ > 0 and is not monotonic. Moreover,
in this region, the limit point λ∞ = 1+x

1−xp < 0 is negative and thus non-physical.

4.4.2 The case R = 1
4

If R = 1
4 , then the roots r+ = r− are equal and zn is given by,

zn = 1
2n
(

1 + 1− x
2x n

)
(4.25)

Subsequently, λn is given by,
λn = (1 + x)n

2x+ (1− x)n (4.26)

We shall refer to these solutions as r-type spectra (where the r is for rational). The expres-
sion (4.26) solves the generalized Veneziano amplitude constraints (4.7) for all x > 0, but
the resultant λn will only be monotonically ordered and positive for 0 < x ≤ 1. When x > 1,
the limit point λ∞ = 1+x

1−x < 0 is negative and thus non-physical. When x = 1, this solution
reduces to the string spectrum λn = n. Notably, these r-type solutions were not identified
in the previous literature [3, 4].

4.4.3 Summary

We have now fully classified all the monotonically ordered and positive solutions of the
generalized Veneziano amplitude constraints (4.7). These solutions exist in the region of
the xy-plane defined by,{

0 < x < 1 , 0 < y ≤ x(1 + x)
3− x

}
∪
{

1 ≤ x , 0 < y ≤ x2
}

(4.27)

where again x = λ2 − λ1 > 0 and y = λ3 − λ2 > 0 are positive parameters which determine
the second and third masses. This region and the various solutions are shown in figure 1.
Notably, all the non-monotonically-ordered solutions to the Riccati equation (4.10), i.e. the
points within the excluded regions of parameter space, yield negative λn and are unphysical.

For completeness, we shall rewrite all the solutions and the ranges of their parameters.
The Coon spectra have one free parameter and are given by,

λn = 1− qn
1− q 0 < q <∞ (4.28)
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0 1

1

x

y

string spectrum x = y = 1
Coon spectra y = x2

r-type spectra y = x(1 + x)/(3− x)
p-type spectra
unphysical spectra

Figure 1. The two-parameter space of solutions to the generalized Veneziano amplitude constraints.
The point x = y = 1 corresponds to the string spectrum. The solid black line corresponds to the
one-parameter subspace of Coon spectra. The dashed black line corresponds to the one-parameter
subspace of r-type spectra. The yellow region corresponds to the two-parameter subspace of p-type
spectra. The red region corresponds to unphysical spectra with negative mass squared.

where q is related to the parameters x and y by x = q and y = q2. The p-type spectra have
two free parameters and are given by,

λn = (1 + x)(1− pn)
(1− xp)− (1− x/p)pn 0 < x <∞ 0 < p < min(1, x−1)

p 6= x, x−1 (4.29)

where we have excluded p = x, x−1 to avoid double-counting the Coon spectra. Finally,
the r-type spectra have one free parameter and are given by,

λn = (1 + x)n
2x+ (1− x)n 0 < x < 1 (4.30)

The string spectrum λn = n is located at x = y = 1 in parameter space and can be obtained
by taking various limits of each of these solutions. All of these spectra have a finite
accumulation point λ∞, except for the Coon spectra (4.28) with q ≥ 1 (which includes the
string spectrum at q = 1).

Although we derived these solutions from the Riccati relation (4.10), they do in fact
satisfy the full generalized Veneziano amplitude constraints (4.7). For each case, we may
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compute Λn(k) and verify that it is independent of k. Since any solution of the generalized
Veneziano amplitude constraints (4.7) necessarily satisfies the Riccati relation (4.10), we
have thus fully solved (4.7). Explicitly, the Λn(k) are given by,

Coon : Λn(k) = 1− q

p-type : Λn(k) = 1
(1 + x) ·

(1− xp)2 − (1− x/p)2pn

(1− xp) − (1− x/p) pn

r-type : Λn(k) = 1− x
1 + x

· 4x+ (1− x)n
2x+ (1− x)n (4.31)

These three expression can be written in a universal form,

Λn(k) = 1
λ∞

+ 1
λ−∞

− λn
λ∞λ−∞

(4.32)

where we have defined the (possibly infinite) quantities λ±∞ = limn→±∞ λn. We have,

Coon (q < 1) : 1
λ∞

= 1− q 1
λ−∞

= 0

Coon (q ≥ 1) : 1
λ∞

= 0 1
λ−∞

= 1− q

p-type : 1
λ∞

= 1− xp
1 + x

1
λ−∞

= 1− x/p
1 + x

r-type : 1
λ∞

= 1− x
1 + x

1
λ−∞

= 1− x
1 + x

(4.33)

When λ∞ is finite, it is of course the limit point of poles. The quantity λ−∞ does not have
a clear physical interpretation but is still useful to define.

Finally, we note that with An = 1/λn and Bn = Λn/λn, all of the solutions we find give
convergent infinite product amplitudes (3.9) satisfying the convergence condition (3.12).
As we noted above, the coefficient B1 is undetermined by our constraints, but we shall
choose B1 = Λ1/λ1 to fit the pattern. This choice will not affect our subsequent analysis.

4.5 Polynomial residues?

We derived the spectra above from the generalized Veneziano amplitude constraints (4.7),
which we in turn derived by demanding that the infinite sequence of t-channel poles cancels
on each s-channel pole within our infinite product ansatz (3.9). However, this truncation
condition will not necessarily imply that our generalized Veneziano amplitudes have poly-
nomial residues. With our explicit expressions for the poles λn and the coefficients An
and Bn, we can explicitly compute the residues of (3.9).

We shall denote the Coon amplitudes by Aq(s, t), the p-type amplitudes by Ap(s, t),
and the r-type amplitudes by Ar(s, t). We may then manipulate (3.9) and write each
of these amplitudes in a form such that each factor in its infinite product is manifestly
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convergent. For the Coon amplitudes, we have,

Aq(s, t) =Wq(s, t)
1
st

∏
n≥1

(1− q̂n−αq(s)−αq(t))(1− q̂n)
(1− q̂n−αq(s))(1− q̂n−αq(t))

αq(s) =
ln
(
1 + (q − 1)s

)
ln q (4.34)

where q̂ = min(q, q−1). For the p-type amplitudes, we have,

Ap(s, t) =Wp(s, t)
1
st

∏
n≥1

(1− pn−αp(s)−αp(t))(1− pn)
(1− pn−αp(s))(1− pn−αp(t))

αp(s) =
ln
(

(1+x)−(1−xp)s
(1+x)−(1−x/p)s

)
ln p (4.35)

Finally, for the r-type amplitudes, we have,

Ar(s, t) =Wr(s, t)
1
st

∏
n≥1

1−
(
αr(s) + αr(t)

)
/n(

1− αr(s)/n
)(

1− αr(t)/n
)

αr(s) = 2xs
1 + x− (1− x)s (4.36)

In each case, the functions α(s) are the respective amplitudes’ leading Regge trajectory
and obey α(λN ) = N .

For simplicity, we have omitted the exponential factors needed to make the infinite
product of each factor in (4.36) convergent. As in the infinite product representation for the
Veneziano amplitude (2.3), these factors cancel between the numerator and denominator.

From these expressions, we may simply compute the residues at s = λN for N ≥ 1.
We recall that the residue of the massless pole at s = 0 is 1/t by construction. For the
massive poles, we find the following. For the Coon amplitudes with q ≥ 1, we have,

Res
s=λN

Aq(s, t) =Wq(λN , t)
qN

λN

N−1∏
n=1

(
qn

λn
t+ 1

)
(4.37)

For the Coon amplitudes with q < 1, we have,

Res
s=λN

Aq(s, t) =Wq(λN , t)
qN

λN

1
(1− t/λ∞)N

N−1∏
n=1

(
qn

λn
t+ 1

)
(4.38)

For the p-type amplitudes, we have,

Res
s=λN

Ap(s, t) =Wp(λN , t)
pN

λN

x2(1− p2)2[
p(1− xp)− (p− x)pN

]2
× 1

(1− t/λ∞)N
N−1∏
n=1

((1− xp)pn − (1− x/p)
(1 + x)(1− pn) t+ 1

)
(4.39)
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Finally, for the r-type amplitudes, we have,

Res
s=λN

Ar(s, t) =Wr(λN , t)
1
λN

4x2(
2x+ (1− x)N

)2
× 1

(1− t/λ∞)N
N−1∏
n=1

(2x− (1− x)n
(1 + x)n t+ 1

)
(4.40)

Using the quantities λ±∞ defined above, we may write these expressions in the following
universal form,

Res
s=λN

A(s, t) =W(λN , t)
1
λN

(
1− λN

λ∞

)(
1− λN

λ−∞

)

× 1
(1− t/λ∞)N

N−1∏
n=1

[( 1
λn
− 1
λ∞
− 1
λ−∞

)
t+ 1

]
(4.41)

Ignoring for now the W(s, t) pre-factors, only the amplitudes Aq(s, t) with q ≥ 1 have
polynomial residues. In other words, the amplitudes with accumulation point spectra
all have non-polynomial residues! In each case, though, the non-polynomial behavior is
captured by the factor (1− t/λ∞)−N which multiplies a degree-(N − 1) polynomial in t.

This, however, is not the end of the story. It may be possible to find a pre-factorW(s, t)
which cancels the non-polynomial factors (1− t/λ∞)−N on each pole. We recall that the
pre-factor obeys W(s, t) = 1 +O(s, t). We must then require W(λN , t) ∝ (1− t/λ∞)N
for all N ≥ 1 to cancel the non-polynomial factors in each residue. A natural guess is
simply W(s, t) = (1− t/λ∞)α(s) for the appropriate Regge trajectory α(s).3 In fact, any
pre-factor W(s, t) which cancels the non-polynomial behavior on every residue must be
proportional to this guess, but this guess is not generally crossing symmetric. Only for the
Coon amplitude do we have,

(1− t/λ∞)αq(s) = (1− s/λ∞)αq(t) = qαq(s)αq(t) (4.42)

As described in section 2, this pre-factor is explicitly non-meromorphic and introduces
branch cuts beginning at s, t = λ∞ = 1

1−q . We recall, however, that we explicitly al-
lowed for such non-meromorphic behavior in the pre-factor of our ansatz (3.9) so long
as W(s, t) had no zeros nor poles in the region |s|, |t| < λ∞. For the p-type and r-type am-
plitudes, the crossing-symmetric guessW(s, t) = (1− t/λ∞)α(s)(1− s/λ∞)α(t) adds further
non-polynomial behavior to each residue which cannot be fixed by any other crossing sym-
metric factor. Hence, we conclude that we can only cancel the non-polynomial residues in
the case of the Coon amplitude with q < 1. We thus take,

Wq<1(s, t) = qαq(s)αq(t) and Wq≥1(s, t) =Wp(s, t) =Wr(s, t) = 1 (4.43)

since there is no way to construct a crossing-symmetric pre-factor which cancels the non-
polynomial behavior of each residue for the p-type and r-type amplitudes.

3A more general pre-factor is considered in [7].
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Of all the spectra which solve the generalized Veneziano amplitude constraints (4.7),
only the Coon spectra (4.13) can be included in an infinite product amplitude with polyno-
mial residues. Moreover, for q < 1 polynomial residues can only be achieved by introducing
the non-meromorphic pre-factor Wq(s, t) = qαq(s)αq(t).

The other generalized Veneziano amplitudes Ap(s, t) and Ar(s, t) do not have polyno-
mial residues, but the non-polynomial behavior of their residues is captured by the universal
factor (1− t/λ∞)−N . These residues can be expanded in t for all |t| < λ∞, resulting in
infinite spin exchange on each massive pole as described in section 1. By construction, the
massless poles have finite spin exchange with `max = 1 (from the residue 1/t multiplied by
the kinematic pre-factor P4 = O(t2) described in section 2).

4.6 Unitarity?

Although the non-polynomial residues of Ap(s, t) and Ar(s, t) are novel, these amplitudes
may still be interesting. Amplitudes with non-polynomial residues have appeared in the
context of extremized EFT-hedron bounds [14, 15]. Moreover, it has been recently shown
that amplitudes with non-polynomial residues may be unitary [13]. The unitarity properties
of the Coon amplitudes were also recently studied in [5, 6, 18, 19]. Here we shall begin a
unitarity analysis of the generalized Veneziano amplitudes.

In a unitary theory, the residue of each pole of the four-point amplitude must have
an expansion on the Gegenbauer polynomials with positive partial wave coefficients. This
expansion is described in (1.2). Several useful properties of the Gegenbauer polynomials
are listed in the appendix of [5]. One particularly useful property is that the product of
two Gegenbauer polynomials has a positive expansion on the Gegenabauer polynomials.

The unitarity properties of a given theory may depend on the number of spacetime
dimensions d. The Coon amplitudes exhibit a particularly rich dimension-dependence [6].
For q > 1, the Coon amplitude is non-unitary in any dimension. For 0 < q ≤ 2

3 , the Coon
amplitude is unitary in any dimension. For 2

3 < q ≤ 1, the Coon amplitude is unitary
below a q-dependent critical dimension dc(q). At q = 1, this critical dimension dc(1) = 10
reproduces the critical dimension of the superstring. We shall derive similar results for the
larger space of generalized Veneziano amplitudes.

4.6.1 Analytic results

We begin with a dimension-agnostic analysis which will provide sufficient but not strictly
necessary conditions for unitarity. We define z = cos θ, where θ is the scattering angle in
the center-of-mass frame, so that t = 1

2s(z−1). In terms of z, the residue of the generalized
Veneziano amplitude at the massive pole s = λN is given by,

Res
s=λN

A(s, t) =W
(
λN ,

1
2λN (z − 1)

) 1
λN

(
1− λN

λ∞

)(
1− λN

λ−∞

)
(4.44)

× 1(
1− 1

2(z − 1)λN/λ∞
)N N−1∏

n=1

[( 1
λn
− 1
λ∞
− 1
λ−∞

)
λN
2 (z − 1) + 1

]
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The z-independent factor,

1
λN

(
1− λN

λ∞

)(
1− λN

λ−∞

)
(4.45)

is always a positive number. The z-dependent factor,

W
(
λN ,

1
2λN (z − 1)

)(
1− 1

2(z − 1)λN/λ∞
)N (4.46)

has a positive expansion on the Gegenbauer polynomials since positive powers of z have a
positive expansion on the Gegenbauer polynomials [5]. In the case of the Coon amplitude
(for any q), this factor simply equals one. In all other cases, the factor W(s, t) = 1, and
we may use the binomial theorem to write,

1(
1− 1

2(z − 1)λN/λ∞
)N =

(
1 + λN

2λ∞

)−N ∞∑
k=0

(
N + k − 1

k

)(
λN

λN + 2λ∞

)k
zk (4.47)

which is a sum of powers of z with manifestly positive coefficients. It remains to study the
polynomial part of the residue,

N−1∏
n=1

[( 1
λn
− 1
λ∞
− 1
λ−∞

)
λN
2 z −

( 1
λn
− 1
λ∞
− 1
λ−∞

)
λN
2 + 1

]
(4.48)

This factor will be a sum of powers of z with manifestly positive coefficients if,

1
λn
− 1
λ∞
− 1
λ−∞

≥ 0 and
( 1
λn
− 1
λ∞
− 1
λ−∞

)
λN
2 ≤ 1 (4.49)

for n = 1, 2, . . . , N − 1 for each N ≥ 1. Because the poles are ordered λn > λn−1, these
conditions are satisfied for all n at fixed N if,

1
λN−1

− 1
λ∞
− 1
λ−∞

≥ 0 and
(

1− 1
λ∞
− 1
λ−∞

)
λN
2 ≤ 1 (4.50)

where we have used λ1 = 1. These conditions are in turn satisfied for all N if,

1
λ∞
− 1
λ∞
− 1
λ−∞

≥ 0 and
(

1− 1
λ∞
− 1
λ−∞

)
λ∞
2 ≤ 1 (4.51)

Rearranging, we find,

1
λ−∞

≤ 0 and 3
λ∞

+ 1
λ−∞

≥ 1 (4.52)

We have carefully written these conditions in terms of the reciprocals 1/λ∞ and 1/λ−∞
since λ∞ or λ−∞ may be infinite.

The conditions (4.52) are satisfied as follows. For the Coon amplitudes with q < 1, the
first condition is trivially satisfied since 1/λ−∞ = 0, leaving only the second condition,

Coon (q < 1) : 3(1− q) ≥ 1 =⇒ q ≤ 2
3 (4.53)
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For the Coon amplitudes with q ≥ 1, we have 1/λ∞ = 0, and the two conditions become,

Coon (q ≥ 1) : 1− q ≤ 0 =⇒ q ≥ 1
1− q ≥ 1 =⇒ q ≤ 0 (4.54)

which is never satisfied. For the p-type amplitudes, the two conditions become,

p-type : 1− x/p
1 + x

≤ 0 =⇒ x ≥ p

3 1− xp
1 + x

+ 1− x/p
1 + x

≥ 1 =⇒ x ≤ 3p
1 + p+ 3p2 (4.55)

Finally, for the r-type amplitudes, the two conditions become,

r-type : 1− x
1 + x

≤ 0 =⇒ x ≥ 1

4 1− x
1 + x

≥ 1 =⇒ x ≤ 3
5 (4.56)

which is never satisfied.
In summary, we have found that the Coon amplitudes with 0 < q ≤ 2

3 are unitary in
any dimension, in agreement with [6]. Moreover, we have analytically demonstrated that
the p-type generalized Veneziano amplitudes with p ≤ x ≤ 3p/(1 + p+ 3p2) are unitary in
any dimension. These inequalities define a region of parameter space with infinite critical
dimension. In terms of the parameters x and y, the first inequality p ≤ x becomes y ≤ x2

while the second inequality becomes f−(x) ≤ y ≤ f+(x), where,

f±(x) = x2(6 + x− 3x2 ±
√

9− 6x− 11x2)
9− 3x− 5x2 + 3x3 (4.57)

This infinite critical dimension region is displayed in figure 2.
While the conditions (4.52) are sufficient to prove unitarity in all dimensions, they are

by no means necessary. In general, for a given finite dimension d, the unitary region in the
xy-plane will be larger than the region of infinite critical dimension.

4.6.2 Numerical results

To study the regions of parameter space with finite critical dimension, we shall employ
numerical methods to analyze the first few partial wave coefficients. One cannot mathe-
matically prove unitarity by examining a finite number of partial wave coefficients, but if
any of those coefficients are negative, then the amplitude in question is non-unitary.

In this way, one can find evidence for the critical dimension of the superstring by com-
puting one of the first partial wave coefficients of the Veneziano amplitude, c3,0 ∝ 10− d.
Similarly, one can deduce that the Coon amplitudes with q > 1 are non-unitary by com-
puting the coefficient c2,0 ∝ 1− q [5]. In this spirit, we hope to provide some evidence
on the qualitative structure of the unitary regions of parameter space for the generalized
Veneziano amplitudes.
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0 2
3

1

1

x

y

string spectrum
Coon spectra
r-type spectra
unitary in d ≤ 4
unitary in d ≤ 6
unitary in d ≤ 10
unitary in all d
non-unitary
unphysical spectra

Figure 2. The two-parameter space of solutions to the generalized Veneziano amplitude constraints
with unitary regions in various dimensions. The blue region is unitary in all dimensions and includes
the Coon amplitudes with 0 < q ≤ 2

3 . The dark green region is unitary in d ≤ 10 and includes the
Veneziano amplitude at x = y = 1. The middle green region is unitary in d ≤ 6. The light green
region is unitary in d ≤ 4. The blue region was computed analytically, and the green regions were
computed by numerically analyzing the first few partial wave coefficients cn,j .

The analytic expressions for the partial wave coefficients cn,j are given by the following
overlap integral against the Gegenbauer polynomials [5],

cn,j = N ( d−3
2 )

j

∫ 1

−1
dz (1− z2)

d−4
2 C

( d−3
2 )

j (z)× Res
s=λn

A
(
s,

1
2s(z − 1)

)
(4.58)

where the residue is given by (4.41) and the normalization is,

N ( d−3
2 )

j = 2d−5(2j + d− 3)
Γ(j + 1)Γ(d−3

2 )2

πΓ(j + d− 3) (4.59)

The apparent poles in this formula at d = 3 are a remnant of the normalization of the
Gegenbauer polynomials and can be trivially removed by a change in normalization.

For the p-type and r-type amplitudes which exhibit infinite spin exchange, the coeffi-
cients cn,j with n ≥ 1 will generally be non-zero for all spins j ≥ 0. Remarkably, Mathemat-
ica can explicitly compute these integrals in terms of generalized hypergeometric functions.
The expressions are incredibly long, so we shall omit them here. Instead, we shall numer-
ically examine the region of parameter space where cn,j ≥ 0 for 1 ≤ n ≤ 4 and 0 ≤ j ≤ 3
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in several dimensions, namely d = 4, 6, 10. The unitary regions of parameter space are
displayed in figure 2. The qualitative structures of these regions do not appreciably change
upon probing larger values of n or j.

As expected, the unitary region in d dimensions envelopes those in d′ > d dimensions,
and they all contain the region of infinite critical dimension. For d ≤ 10 the unitary region
includes the Veneziano amplitude at x = y = 1. The unitary region also appears to contain
some r-type amplitudes, albeit with finite critical dimension. It would be interesting to
study the features of figure 2 in more detail. Perhaps the methods of [5, 6, 18, 19] which
were used to study the Coon amplitudes could be adapted to study the unitary properties
of generalized Veneziano amplitudes.

5 Generalized Virasoro amplitudes

In this section, we shall systematically analyze our infinite product ansatz (3.14) for the
generalized Virasoro amplitude.

5.1 Virasoro truncation

We first recall the infinite product form (2.6) of the Virasoro amplitude, which has simple
poles at each non-negative integer. After applying the mass-shell relation s+ t+ u = 0,
the residue of the massless s-channel pole is 1/t2, and the residue of each massive pole
at s = N is a polynomial of degree-(2N − 2) in t. The Virasoro amplitude achieves these
residues because on each s-pole, its zeros cancel the t-poles and u-poles, leaving a finite
polynomial in t. This cancellation can be described in terms of the numerator factors,

Nn(s, t, u) = 1 + (st+ tu+ us)/n2 + stu/n3 (5.1)

When s = N , each numerator factor NN+n(N, t,−N − t) ∝ (1− t/n)(1− u/n) cancels
both the t-channel and u-channel pole factors (1− t/n)−1(1− u/n)−1, and the infinite
product truncates. In short, the condition,

NN+n(N,n,−N − n) = 0 (5.2)

ensures that the Virasoro amplitude has polynomial residues.
These features bare a striking resemblance to those of the Veneziano amplitude. Hence,

our analysis of the generalized Virasoro amplitude (3.14) will mirror our analysis of the
generalized Veneziano amplitudes in the previous section.

5.2 Generalized Virasoro truncation

We now return to our generalized Virasoro ansatz (3.14). We shall demand that the zeros
and poles of this amplitude cancel in a similar fashion as those of the Virasoro amplitude.
We first demand that the residue at s = 0 is 1/t2 so that the amplitude reproduces the
massless spectrum of supergravity analogously to the Virasoro amplitude,

Res
s=0
A(s, t, u) = 1

t2
=⇒ W(0, t,−t)

∏
n≥1

1− Ant
2

1− t2/λ2
n

= 1 (5.3)
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which implies that W(0, t,−t) = 1 and An = 1/λ2
n since W(s, t, u) has neither zeros nor

poles. In other words, the coefficients An are again determined by the poles λn.
Next, in analogy with the truncation condition for the Virasoro amplitude (5.2), we

demand that the generalized numerator factor,

Nn(s, t, u) = 1 +An(st+ tu+ us)−Bnstu (5.4)

obeys the generalized truncation condition,

NN+n(λN , λn,−λN − λn) = 0 (5.5)

so that NN+n(λN , t,−λN − t) ∝ (1− t/λn)(1− u/λn) and the infinite sequence of t-poles
and u-poles cancels on each s-channel pole. This truncation condition determines the
coefficients Bn in terms of the poles λn,

Bn =
λ2
k + λkλn−k + λ2

n−k − λ2
n

λ2
nλn−kλk(λk + λn−k)

k = 1, 2, . . . , n− 1 (5.6)

For fixed n ≥ 2, both k and k′ = n− k yield the same equation for Bn so that there are
again

⌊
n
2
⌋
independent equations for Bn. Once more, the coefficient B1 is left undetermined,

the coefficients B2 and B3 are uniquely determined, and the coefficients Bn with n ≥ 4 are
all over-determined.

As in the previous section, this over-determination of the Bn highly constrains the
poles. Any sequence of poles λn must leave the following combination independent of k for
all n ≥ 2,

Λn(k) =
λ2
k + λkλn−k + λ2

n−k − λ2
n

λn−kλk(λk + λn−k)
(5.7)

We shall refer to these equations as the generalized Virasoro amplitude constraints. The
Virasoro solution λn = n (i.e. the string theory spectrum) solves these constraints with
Λn(k) = −1/n for all n and k. We shall now search for other, more general sequences of
poles λn which solve the generalized Virasoro amplitude constraints.

5.3 Generalized Virasoro amplitude constraints

Since Λn(k) must be independent of k, we may fix n ≥ 2 and choose two distinct values
of (k, `) in the appropriate range to find,

λ2
k + λkλn−k + λ2

n−k − λ2
n

λn−kλk(λk + λn−k)
=
λ2
` + λ`λn−` + λ2

n−` − λ2
n

λn−`λ`(λ` + λn−`)
(5.8)

We may then solve this equation for λn in terms of λk, λn−k, λ`, and λn−`,

λn =
√
λkλn−k(λn−k+λk)(λ2

n−`+λn−`λ` +λ2
` )−λ`λn−`(λn−`+λ` )(λ2

n−k+λn−kλk+λ2
k)

λkλn−k(λn−k+λk)−λ`λn−`(λn−`+λ`)
(5.9)

As in the generalized Veneziano case, the first three poles are free parameters, and (5.9)
determines all the subsequent poles in terms of λ1, λ2, and λ3. We shall again define the
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positive numbers x = λ2 − λ1 = λ2 − 1 > 0 and y = λ3 − λ2 > 0, using the fact that the
poles λn > λn−1 are ordered. The choice λ1 = 1 simply sets our units.

For n = 4 and n = 5, there is a unique choice of (k, `) and thus a single equation
determining λ4 = λ4(x, y) and λ5 = λ5(x, y). For n = 6, we can write two different
equations for λ6 = λ6(x, y). These equations are exceedingly large and include several
nested radicals. Equating these two expressions implicitly defines a curve in the xy-plane.
Any solution of the generalized Virasoro amplitude constraints must be on this curve.
We have analyzed this curve numerically and verified that it passes through x = y = 1.
Repeating this process at n = 7 yields a second curve in the xy-plane, and any solution
of the generalized Virasoro amplitude constraints must again be on this curve. Through
a straightforward numerical analysis, we find that the λ6 and λ7 curves only intersect
at x = y = 1, corresponding to the string spectrum.

In other words, only the string spectrum λn = n satisfies the generalized Virasoro
amplitude constraints (5.7). Thus, the construction which led to several infinite families
of generalized Veneziano amplitudes fails to yield any new generalizations of the Virasoro
amplitude. The closed string is highly constrained.

6 Discussion

In this paper, we have systematically analyzed generalizations of both the Veneziano and
Virasoro amplitudes by considering the infinite product ansatz (3.9) and (3.14). Demand-
ing that the poles cancel on each residue, we arrived at the generalized Veneziano and
generalized Virasoro amplitude constraints, (4.7) and (5.7), respectively. These constraints
are equivalent to an infinite set of non-linear recursion relations obeyed by the poles of
each amplitude.

In the generalized Veneziano case, we solved the recursion relations analytically by
reducing them to the Riccati recursion relation (4.10). The solutions corresponded to the
Veneziano amplitude, the one-parameter family of Coon amplitudes, and a larger two-
parameter family of amplitudes with an infinite tower of spins at each mass level. Of these
generalized Veneziano amplitudes, only the Veneziano and Coon amplitudes have polyno-
mial residues. We also began an initial study of the unitarity properties of these amplitudes
and found that a subspace of them, including the Coon amplitudes with 0 < q ≤ 2

3 , are
unitary in any dimension. A larger subspace is unitary with finite critical dimension.

In the generalized Virasoro case, we numerically demonstrated that the only consistent
solution to the generalized Virasoro amplitude constraints is the string spectrum. These
infinitely many constraints did not allow any deviation outside of closed string theory. Our
results are consistent with those of [5, 7].

In future work, it would be interesting to explore where the low-energy expansion co-
efficients of the generalized Veneziano amplitudes Ap(s, t) and Ar(s, t) lie in relation to the
EFT-hedron [15] and other positivity bounds [14]. The low-energy expansion coefficients
of the Coon amplitudes were recently studied in this context in [5, 6]. It would also be
interesting to further study the unitarity properties of these amplitudes. Further general-
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izations of this work may study other truncation conditions leading to polynomial residues
for our infinite product ansatz. Recent progress in this direction has been made in [7].

Finally, we hope to find a definitive field theory or string theory realization of the
Coon amplitudes or their generalizations. Recently, accumulation point spectra like those
exhibited by Coon amplitudes were found in a setup involving open strings ending on a
D-brane [12]. Moreover, accumulation point spectra have appeared in various contexts in
the modern S-matrix bootstrap program, so it is imperative to better understand the Coon
amplitudes’ physical origins.
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