
J
H
E
P
0
4
(
2
0
2
3
)
0
2
4

Published for SISSA by Springer

Received: January 6, 2023
Accepted: March 15, 2023

Published: April 5, 2023

Bi-η and bi-λ deformations of ZZZ4 permutation
supercosets

Ben Hoare,a Nat Levineb and Fiona K. Seiboldc
aDepartment of Mathematical Sciences, Durham University,
Durham DH1 3LE, U.K.

bLaboratoire de Physique and Institut Philippe Meyer, École Normale Supérieure,
Université PSL, CNRS, Sorbonne Université, Université Paris Cité,
24 rue Lhomond, Paris F-75005, France

cBlackett Laboratory, Imperial College,
London SW7 2AZ, U.K.
E-mail: ben.hoare@durham.ac.uk, nat.levine@phys.ens.fr,
f.seibold21@imperial.ac.uk

Abstract: Integrable string sigma models on AdS3 backgrounds with 16 supersymmetries
have the distinguishing feature that their superisometry group is a direct product. As a
result the deformation theory of these models is particularly rich since the two supergroups
in the product can be deformed independently. We construct bi-η and bi-λ deformations
of two classes of Z4 permutation supercoset sigma models, which describe sectors of the
Green-Schwarz and pure-spinor string worldsheet theories on type II AdS3 backgrounds
with pure R-R flux. We discuss an important limit of these models when one supergroup is
undeformed. The associated deformed supergravity background should preserve 8 super-
symmetries and is expected to have better properties than the full bi-deformation. As a
step towards investigating the quantum properties of these models, we study the two-loop
RG flow of the bosonic truncation of the bi-λ deformation.

Keywords: Integrable Field Theories, Sigma Models, String Duality

ArXiv ePrint: 2212.08625

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2023)024

mailto:ben.hoare@durham.ac.uk
mailto:nat.levine@phys.ens.fr
mailto:f.seibold21@imperial.ac.uk
https://arxiv.org/abs/2212.08625
https://doi.org/10.1007/JHEP04(2023)024


J
H
E
P
0
4
(
2
0
2
3
)
0
2
4

Contents

1 Introduction 1

2 Bi-η models 4

3 Bi-λ models 8
3.1 Limits 12
3.2 κ-symmetry in the GS case 14

4 Poisson-Lie duality 16
4.1 E model 17
4.2 Bi-η models 20
4.3 Bi-λ models 20
4.4 η–λ deformation 22

5 Renormalisability and scale invariance 24
5.1 RG flow for the bosonic bi-λ model 24

6 Conclusions 28

A Action of the η–λ deformation 30

1 Introduction

Integrable string sigma models on AdS3 backgrounds with 16 supersymmetries and sup-
ported by pure R-R flux have received considerable attention in recent years (for some re-
cent developments and further references, see [1–6]). One of their distinguishing features is
the direct product structure of their superisometry group and, as a result, their deformation
theory is particularly rich. For type II superstrings on AdS3×S3×T4 and AdS3×S3×S3×S1

supported by R-R flux, the superisometry groups are PSU(1, 1|2)×PSU(1, 1|2)×U(1)4 and
D(2, 1;α) × D(2, 1;α) × U(1) respectively. For the curved part of the geometry, the asso-
ciated worldsheet theories in the Green-Schwarz (GS) [7–10] and pure-spinor (PS) [11, 12]
formalisms contain sectors described by sigma models on Z4 permutation supercosets1

G×G
G0

, (1.1)

where G is a Lie supergroup and G0 is the diagonal even subgroup of the direct product.
1In the AdS3× S3×T4 and AdS3× S3× S3× S1 cases, the relevant Z4 supercosets capturing the curved

part of the geometry are
PSU(1, 1|2)× PSU(1, 1|2)

SU(1, 1)× SU(2) ,
D(2, 1;α)×D(2, 1;α)

SU(1, 1)× SU(2)× SU(2) .
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In both formalisms, the Z4 supercoset sigma models take the form

S = −T2

∫
d2x STr

(
g−1∂+g P− g

−1∂−g
)
, (1.2)

where T is the string tension, g(x±) ∈ G × G is a supergroup-valued field and STr is
an invariant bilinear form. The linear operator P− is a sum of projectors onto the Z4
graded subspaces of the Lie superalgebra g ⊕ g = Lie(G × G). In the Green-Schwarz
(GS) formalism, P− = P1 + 2P2 − P3 [13, 14], while in the pure-spinor (PS) formalism,
P− = P1 + 2P2 + 3P3 [15, 16] (henceforth referred to as the GS and PS cases). For both
choices of P− the action (1.2) is classically integrable — the equations of motion can be
written as the zero-curvature of a Lax connection [17, 18] and the Poisson bracket of the
Lax matrix is a Maillet bracket of twist form [19–21], ensuring that the conserved charges
extracted from the monodromy of the Lax matrix are in involution [22–25]. Recalling
that P0 and P2 project onto Grassmann-even subspaces of g ⊕ g, and P1 and P3 onto
Grassmann-odd subspaces, the bosonic truncation of both the GS and PS sigma models is
the symmetric space sigma model on the Z2 permutation coset

G×G
G , (1.3)

which is equivalent, upon gauge fixing, to the principal chiral model (PCM) on the group
G (where G is now an ordinary Lie group).

In this paper we explore integrable deformations of Z4 permutation supercoset sigma
models. Integrable deformations are typically associated with deformations of the underly-
ing symmetry group. In this case the direct product structure of the superisometry group
allows us to deform each copy of G independently. In particular, our goal will be to con-
struct bi-deformations of these models, with the two copies of G deformed with different
strengths. Constructing the bi-deformed models is important since it allows us to take the
limit where one copy of G is undeformed. The resulting model still has half the supersym-
metry of the original model, so can have “nicer” properties than if the symmetry is fully
deformed. One such example was recently studied in detail in [26]; starting from the bi-η
deformation of the AdS3 × S3 × T4 superstring [27, 28], in the limit where only one copy
of PSU(1, 1|2) is deformed, the geometry becomes smooth and the dilaton is constant.

The first type of bi-deformations that we discuss are the bi-η deformations. The η
deformation, or Yang-Baxter deformation, was introduced by Klimčík as an integrable
deformation of the PCM [29], and later generalised to the symmetric space [30] and Z4
supercoset sigma models [31–34]. There are three classes of η deformations: homogeneous,
split inhomogeneous or non-split inhomogeneous, depending on whether the operator R
defining the deformation solves the unmodified, split modified or non-split modified clas-
sical Yang-Baxter equation. For a given model, the symmetry algebra determines which
of these are possible and the full space of η deformations. The bi-η, or bi-Yang-Baxter
deformation, of the PCM [35] was an early example of a bi-deformation, which coincides
with the two-parameter deformation of the O(4) sigma model [36] for G = SU(2) [37].
It was subsequently generalised to the GS sigma model on Z4 permutation supercosets
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in [27]. In section 2 we review and further generalise this construction, and derive the bi-η
deformation of the PS sigma model on Z4 permutation supercosets. In particular, we will
allow the two copies of G to be deformed in different ways, which will be useful when we
discuss Poisson-Lie duality in section 4.2

In section 3 we construct the bi-λ deformations of the GS and PS Z4 permutation
supercoset sigma models. The λ deformation of the PCM and the symmetric space sigma
model was first constructed in [48, 49] generalising the G = SU(2) model of [50]. The
deformed model interpolates between the non-abelian T-dual of the original model [51]
and the (gauged) Wess-Zumino-Witten model [38–40, 52]. It was later generalised to both
the GS Z4 case [53] and the PS Z4 case [34]. As mentioned above, the bosonic truncation
of both the GS and PS Z4 permutation supercoset sigma models is the PCM. The bi-λ
deformation for this model was introduced in [54] and a Lax connection was constructed
in [55]. Therefore, the models we construct should give an embedding of this bosonic model
into string theory for G = PSU(1, 1|2) or D(2, 1;α). A potentially important limit, which
we discuss in some detail, is when one copy of G becomes undeformed. In this limit, undoing
the non-abelian T-duality in the undeformed copy of G, the resulting model is expected to
describe an embedding of the λ deformation of the PCM into string theory. Therefore, in
the limit λ→ 0 the bosonic truncation is just the WZW model. This deformation still has
half the supersymmetry of the undeformed model and, just as for the bi-η deformation,
the associated supergravity background may thus have “nicer” properties.

The split η deformation is known to be the Poisson-Lie dual [56, 57] of the λ deforma-
tion [34, 58], while the non-split η deformation is also dual up to analytic continuation [59–
62]. In section 4 we show that the bi-η and bi-λ models that we construct in sections 2
and 3 are similarly related by Poisson-Lie duality. This is achieved by showing that both
models follow from a first-order model, the E model [46, 62–64], on the Drinfel’d double,
generalising the duality-invariant action of [65, 66] underlying abelian T-duality. Starting
from this E model it is then possible to construct further bi-deformations. This includes
the η–λ deformation, where the η deformation is associated to one copy of G and the λ
to the other. The bosonic truncation of this model was earlier constructed via Poisson-Lie
duality and analytic continuation in [60]. Again, the Z4 generalisation is expected to define
an embedding into string theory.

Having constructed classical integrable bi-deformations, it is interesting to explore the
quantum properties of these models. In the context of string theory, a key question is
whether or not the deformations preserve Weyl invariance. Typically, the λ deformation
of Z4 supercosets leads to Weyl invariant string sigma models, while this is only the case
for the η deformation when the operator R is unimodular [67]. Examples of such unimod-

2It is known that WZ terms can be added to the PCM [38–42] and the GS Z4 permutation supercoset
sigma model [43] while preserving their classical integrability, and this should also be possible in the PS
case too as suggested in [11]. Doing so corresponds to supporting the AdS3 backgrounds by a mix of R-R
and NS-NS flux. Bi-η deformations in the presence of these WZ terms can still be constructed [44–46],
however, the operator R needs to satisfy an additional compatibility condition [47]. On the other hand,
Poisson-Lie duality in the presence of a WZ term is more subtle. While it is still possible to construct an
E model and integrate out degrees of freedom to obtain the (bi-)η deformation (with WZ term), it appears
that there is no isotropic subalgebra of the Drinfel’d double that gives a generalisation of the (bi-)λ model.
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ular operators for string sigma models have been studied for homogeneous [67, 68] and
non-split modified [28, 69] deformations. Weaker conditions that can be investigated are
renormalisability [36, 50, 60, 70] and scale invariance [71, 72], both of which are generically
preserved by these deformations. Much is known about the one-loop properties of the
bi-deformations — the bi-η and bi-λ deformations of the PCM are renormalisable [55, 60],
while the bi-deformations of the Z4 permutation supercoset string sigma models are ex-
pected to be scale and Weyl invariant (assuming unimodularity in the bi-η case) [28]. At
higher loops, less is known about the bi-deformations. Therefore, in section 5 we study
the renormalisation group flow of the bi-λ deformation of the PCM using the “tripled”
formulation introduced in [73, 74]. We show that, in this formulation, the model is renor-
malisable to all orders due to its manifest symmetries and the decoupling of certain fields.
We explicitly compute the two-loop beta function in a standard minimal scheme [75].

We conclude in section 6 with comments on our results and future directions.

2 Bi-η models

In this section we review the integrable bi-η deformation of the GS sigma model on Z4 per-
mutation supercosets [27]. We also write down an integrable action for the bi-η deformation
of the PS sigma model, generalising the one-parameter deformation of [33, 34].

As outlined in the “Introduction” (section 1), Z4 permutation supercosets take the form

G×G
G0

, (2.1)

where G is a Lie supergroup and G0 is the diagonal even subgroup of F ≡ G×G. The Lie
superalgebra f ≡ g⊕ g = Lie(G×G) admits a Z4 automorphism

σ(XL, XR) = (XR, (p0 − p1)XL) , XL,R ∈ g , (2.2)

where p0 and p1 project onto the Grassmann-even and Grassmann-odd subspaces of g

respectively. This leads to a Z4 grading of g ⊕ g with the projectors Pi onto the grade-i
subspaces given by3

P0(XL, XR) = 1
2(p0(XL +XR), p0(XL +XR)) ,

P1(XL, XR) = 1
2(p1(XL − iXR), p1(XR + iXL)) ,

P2(XL, XR) = 1
2(p0(XL −XR), p0(XR −XL)) ,

P3(XL, XR) = 1
2(p1(XL + iXR), p1(XR − iXL)) .

(2.3)

To write down the deformed action it will be useful to introduce the operator

W = PL − PR , WP0,2 = P2,0W , WP1,3 = P3,1W , (2.4)
3Note that, strictly speaking, for this to be a Z4 grading of the real form, one needs different matrix

realisations of the superalgebra for each copy. Equivalently, we can modify the reality conditions obeyed
by the Grassmann-odd fields accordingly.
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where PL and PR project onto the left (first) and right (second) copies of g, along with the
Z2-symmetric bilinear form

STr
(
(XL, XR)(YL, YR)

)
= str(XLYL) + str(XRYR) , (2.5)

with str an ad-invariant bilinear form on g. For linear operators O on g⊕g we denote their
transpose with respect to this bilinear form as

STr
(
uOv

)
= STr

(
(Otu) v

)
. (2.6)

Note that we have

P ti = P4−i mod 4 , P tL,R = PL,R , W t = W . (2.7)

Action and equations of motion. The action of the bi-η deformation of the Z4 super-
coset sigma model (1.2) is of the form

SηL,ηR = −T2

∫
d2x STr

(
g−1∂+gP−

1
1−Rg(ηLPL + ηRPR)P−

g−1∂−g

)
. (2.8)

The two-dimensional base manifold is parametrised by x0 ≡ τ and x1 ≡ σ and we use
the light-cone coordinates x± = 1

2(x0 ± x1) and ∂± = ∂0 ± ∂1. The action is for the
supergroup-valued field g(x±) ∈ G×G and depends on three real parameters: T is an overall
constant (the string tension in the context of string theory), while ηL and ηR parametrise the
strength of deformation of the left and right copies of G respectively. The dressed operator
Rg = Ad−1

g RAdg is defined in terms of the deforming linear operator R : g ⊕ g → g ⊕ g.
Note that while PL and PR commute with Adg, they do not necessarily commute with
R.4 We take the operator R to have the following symmetry property with respect to the
bilinear form STr

Rt = −(η−1
L PL + η−1

R PR)R(ηLPL + ηRPR) , (2.9)

and to satisfy the (modified) classical Yang-Baxter equation

[RX,RY ]−R([RX,Y ] + [X,RY ]) = −
(
c2
LPL + c2

RPR
)
[X,Y ] , X, Y ∈ g⊕ g . (2.10)

Without loss of generality, the constants cL and cR can be either 0 (homogeneous), 1 (split)
or i (non-split). We treat all these cases on an equal footing, in particular allowing for
different classes of deformation for the two copies of G. Finally, the constant linear operator
P− (as well as its transpose P+ = Pt−) depends on the projectors Pj defined in (2.3). Its
explicit form, fixed by requiring the classical integrability of (2.8), is discussed below.

In terms of the auxiliary currents

A± := 1
1±Rg(ηLPL + ηRPR)P±

g−1∂±g , (2.11)

4In [27], R was taken to be of factorised form, i.e., R = RLL ⊕RRR, in which case PL and PR commute
with R.
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the equations of motion following from the action (2.8) and the zero-curvature equation
for g−1∂±g take the form

∂+(P−A−) + ∂−(P+A+) + [A+,P−A−] + [A−,P+A+] = 0 , (2.12)
∂+A− − ∂−A+ + [A+, A−]− ((cLηL)2PL + (cRηR)2PR)[P+A+,P−A−] = 0 . (2.13)

It is also insightful to define the quantities

B± = Adg P±A± , (2.14)

in terms of which the equations of motion take the manifestly Poisson-Lie symmetric form5

∂+B− + ∂−B+ = ([R(ηLPL + ηRPR)B+, B−] + [B+, R(ηLPL + ηRPR)B−]) . (2.15)

In section 4 we will show that the Poisson-Lie duals of the bi-η deformations constructed
here are the bi-λ deformations constructed in section 3.

Integrability and solutions for P±. The G0 gauge invariance of the model requires that

P± = ρP2 + α±P1 + α∓P3 + β+WP1 + β−WP3 . (2.16)

We would now like to find constant parameters α±, β± and ρ such that the equations (2.12),
(2.13) can be recast as the zero-curvature condition of a Lax connection, which gives a
strong indication that the model is classically integrable.6 A way to ensure this is if, upon
redefining the currents as J± = O±A± where O± are constant invertible linear operators,
the equations take the following form

∂+(P−J−) + ∂−(P+J+) + [J+, P−J−] + [J−, P+J+] = 0 ,
∂+J− − ∂−J+ + [J+, J−] = 0 ,

(2.17)

where P+ = P t− with P− = P1 + 2P2 − P3 in the GS case and P− = P1 + 2P2 + 3P3 in the
PS case. In both cases, the equations (2.17) follow from a Lax connection. In the GS case
the Lax connection is given by

L± = J
(0)
± + zJ

(1)
± + z∓2J

(2)
± + z−1J

(3)
± , (2.18)

where J (j)
± = PjJ± for j = 0, 1, 2, 3, while in the PS case it is

L± = J
(0)
± + z−1∓2J

(1)
± + z∓2J

(2)
± + z1∓2J

(3)
± . (2.19)

5From (2.10) it follows that R̂ = R(ηLPL +ηRPR) solves the (modified) classical Yang-Baxter equation

[R̂X, R̂Y ]− R̂([R̂X, Y ] + [X, R̂Y ]) = −
(
c2

Lη
2
LPL + c2

Rη
2
RPR

)
[X,Y ] , X, Y ∈ g⊕ g .

6The final step to prove Hamiltonian integrability would be to demonstrate that there are infinitely
many local conserved charges in involution. One way to do this is to show that the Poisson bracket of the
Lax matrix takes the form of a Maillet bracket governed by a twist function [22–25].
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In terms of the auxiliary currents A±, the equations (2.12), (2.13) depend only on the
combinations (cLηL)2 and (cRηR)2, so this will also be true for P±. For brevity, we define

aL = 1√
1 + (cLηL)2 , aR = 1√

1 + (cRηR)2 . (2.20)

Let us start with the GS case, for which it is known [27] that the solution is given by
eq. (2.16) with

ρ = 2aLaR , α± = ∓1 , β± = 0 . (2.21)

The currents appearing in the Lax connection are

J
(0)
± = A

(0)
± + (a2

L − a2
R)WA

(2)
± , J

(2)
± = (a2

L + a2
R − 1)A(2)

± ,

J
(1)
± = ξ1/2(A(1)

± + ωWA
(3)
± ) , J

(3)
± = ξ1/2(A(3)

± + ωWA
(1)
± ) ,

ω = aL − aR
aL + aR

, ξ = (a−1
L + a−1

R )2(a2
L + a2

R − 1)
4 .

(2.22)

In the PS case, we find the coefficients determining P± to be

ρ = 2aLaR , α± = (aL ± aR)2

aLaR(3− a2
L − a2

R) ∓ 1 , β± = a2
L − a2

R

aLaR(3− a2
L − a2

R) .
(2.23)

The bosonic currents J (0)
± , J (2)

± are the same as the GS case (2.22). For the fermions,
we have

J
(1)
± = ξ

1/2
± (A(1)

± + ω±WA
(3)
± ) , J

(3)
± = ξ

1/2
∓ (A(3)

± + ω∓WA
(1)
± ) , (2.24)

with

ω+ = aL− aR
aL + aR

, ω− = aL− aR
aL + aR

3 + a2
L + 4aLaR + a2

R

3 + a2
L− 4aLaR + a2

R

,

ξ+ = (a−1
L + a−1

R )2(a2
L + a2

R− 1)3

4(3− a2
L− a2

R)2 , ξ− = (a−1
L + a−1

R )2(a2
L + a2

R− 1)(3 + a2
L− 4aLaR + a2

R)2

4(3− a2
L− a2

R)2 .

(2.25)

Limits and truncations. In both the GS and PS cases the bosonic truncation of the
bi-η deformation gives the bi-η (or bi-Yang-Baxter) deformation of the PCM [35]. When
both ηL → 0 and ηR → 0 we find the undeformed sigma model (1.2) with P− → P− =
P1 + 2P2 − P3 in the GS case and P− → P− = P1 + 2P2 + 3P3 in the PS case as expected.
The symmetric deformation cLηL = cRηR = cη corresponds to the standard η deformation
of the Z4 supercoset, with the known result P− = P1 + 2

1+c2η2P2−P3 in the GS case [31, 32]
and P− = P1 + 2

1+c2η2 + 3+c2η2

1+3c2η2P3 in the PS case [33, 34].
Another interesting limit is when one deformation parameter is set to vanish, e.g.

ηR = 0. In this limit one copy of G is undeformed and the deformation preserves half the
supersymmetries of the original model. This limit (also including a WZ term) was studied
in detail for the AdS3× S3×T4 background [26], where it was observed that the deformed
background has particularly “nice” properties, including a smooth geometry and constant
dilaton.
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3 Bi-λ models

In this section we present the construction of the integrable bi-λ models on Z4 permutation
supercosets and their Lax connections.

Action and equations of motion. Recalling the construction of the standard λ-mod-
els [48, 53], the action of the integrable bi-λ models on Z4 permutation supercosets is
expected to take the form

kLSG/G(gL, AL; str) + kRSG/G(gR, AR; str) + bilinear ((AL+, AR+), (AL−, AR−)) , (3.1)

where gL,R are fields valued in the supergroup G, AL,R± are valued in the superalgebra g,
4πkL,R are (integer-quantized) levels and SG/G(g,A; str) denotes the action of the gauged
WZW model

SG/G(g,A; str) = −1
2

∫
d2x str(g−1∂+gg

−1∂−g) + SWZ(g; str)

+
∫

d2x str(A+g
−1∂−g − ∂+gg

−1A− +A+g
−1A−g −A+A−) . (3.2)

Here SWZ(g; str) denotes the Wess-Zumino term

SWZ(g; str) = 1
6

∫
d3x εijk str(g−1∂ig[g−1∂jg, g

−1∂kg]) . (3.3)

Given the form of (3.1) it is convenient to introduce a second bilinear form on f (in addition
to the one defined in (2.5)), which takes account of the different levels:

S̃Tr
(
(XL, XR)(YL, YR)

)
= kL str(XLYL) + kR str(XRYR)
= STr

(
(XL, XR)(kLPL + kRPR)(YL, YR)

)
.

(3.4)

We denote the transposes with respect to this new ad-invariant bilinear form as

S̃Tr
(
uOv

)
= S̃Tr

(
(OTu) v

)
, (3.5)

for linear operators O on g⊕ g. Note that we have

OT = (k−1
L PL + k−1

R PR)Ot(kLPL + kRPR) . (3.6)

Written using the bilinear form (3.4), our ansatz (3.1) for the actions of the bi-λ models is

S(g,A) = SG×G
G×G

(g,A; S̃Tr)−
∫

d2x S̃Tr(A+(Q− 1)A−) , (3.7)

where g = (gL, gR) ∈ G×G, A± = (AL±, AR±) ∈ g⊕ g and Q is a constant linear operator
on g⊕g. SG×G

G×G
(g,A; S̃Tr) denotes the action of the G×G

G×G gauged WZW model, which takes
the form (3.2), with the bilinear form (3.4). Starting from the action (3.7), the equations
of motion for the gauge fields take the simple form

g−1∂−g + g−1A−g = QA− , −∂+gg
−1 + gA+g

−1 = QTA+ , (3.8)

– 8 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
4

while the equation of motion for g = (gL, gR) ∈ G×G is

∂+(g−1∂−g + g−1A−g)− ∂−A+ + [A+, g
−1∂−g + g−1A−g] = 0 ,

⇐⇒
∂+A− − ∂−(−∂+gg

−1 + gA+g
−1) + [−∂+gg

−1 + gA+g
−1, A−] = 0 .

(3.9)

If we integrate out the auxiliary field A± in the action (3.7) we find the sigma model
action

S(g) = −1
2

∫
d2x S̃Tr

(
g−1∂+g

Q+ Ad−1
g

Q−Ad−1
g

g−1∂−g

)
+ SWZ(g; S̃Tr) . (3.10)

This action is invariant under the formal Z2 transformation

g → g−1 , kL,R → −kL,R , Q → Q−1 . (3.11)

Integrability and solutions for Q. Since we are interested in constructing models on
the Z4 permutation supercoset (2.1), we require that the action (3.7) is invariant under the
G0 gauge symmetry

(gL, gR)→ (g−1
0 gLg0, g

−1
0 gRg0) , g0(x) ∈ G0 ,

(AL±, AR±)→ (g−1
0 AL±g0 + g−1

0 ∂±g0, g
−1
0 AR±g0 + g−1

0 ∂±g0) .
(3.12)

The most general Q built from P0,1,2,3 and W consistent with gauge invariance is

Q = 1 + (k−1
L PL + k−1

R PR)
(
(α1 + β1W )P1 + α2P2 + (α3 + β3W )P3

)
,

QT = 1 + (k−1
L PL + k−1

R PR)
(
(α3 + β1W )P1 + α2P2 + (α1 + β3W )P3

)
.

(3.13)

Substituting the equations of motion for A± (3.8) into the equations of motion for
g (3.9) we find

∂+(QA−)− ∂−A+ + [A+,QA−] = 0 ,
∂+A− − ∂+(QTA+) + [QTA+, A−] = 0 .

(3.14)

Making the ansatz J± = O±A± where O± are constant invertible linear operators, we
would now like to find for which parameters αj , βj in (3.13) these equations are equivalent
to the zero-curvature ones (2.17). The resulting models can be understood as bi-λ models
with both copies of g being λ deformed with different strengths.

The models we are constructing will depend on three parameters. In the following
discussion we use two different sets of parameters {kL, kR, γ} and {k, λ, χ}, related to each
other as

kL = k
1− λ
1 + λ

χ+ λ

1− χλ , kR = k
1− λ
1 + λ

χ−1 + λ

1− χ−1λ
, γ = k

1− λ
1 + λ

, (3.15)

and

λ = γ(kL + kR)−
√

(γ2 + k2
L)(γ2 + k2

R)
γ2 − kLkR

,

χ = γ(kL − kR) +
√

(γ2 + k2
L)(γ2 + k2

R)
γ2 + kLkR

,

k = kLkR − γ2 +
√

(γ2 + k2
L)(γ2 + k2

R)
kL + kR

.

(3.16)
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Requiring kL, kR and k to be positive leads to the following two regimes

|λ| < 1 , |λ| < χ < |λ|−1 , γ > 0 ,
|λ| > 1 , |λ|−1 < χ < |λ| , γ < 0 .

(3.17)

The coupling k only appears as an overall coefficient rescaling the action, so drops out of
the equations of motion. The classically integrable choices for the linear operator Q, i.e.,
the values of the coefficients in (3.13), and the operators O± defining the Lax connection
will then be determined in terms of the remaining couplings λ and χ.

We find the following solution7 corresponding to the GS case

Q = 2χ
1 + χ2

(
P0W

2
χ + λ−2W 2

χP2 + λ−1WχP1W
−1
χ + λW−1

χ P3Wχ

)
,

QT = 2χ
1 + χ2

(
P0W

2
χ + λ−2W 2

χP2 + λW−1
χ P1Wχ + λ−1WχP3W

−1
χ

)
,

(3.18)

with

O+ = 2χ
1 + χ2

(
P0W

2
χ + λ−1P2 + λ

1
2P1Wχ + λ−

1
2P3W

−1
χ

)
,

O− = 2χ
1 + χ2

(
P0W

2
χ + λ−1P2 + λ−

1
2P1W

−1
χ + λ

1
2P3Wχ

)
.

(3.19)

Here we have defined the operator

Wχ := 1 + χ+ (1− χ)W
2√χ = 1

√
χ
PL +√χPR , W−1

χ = Wχ−1 , W t
χ = W T

χ = Wχ .

(3.20)
We note the relation

Q(λ, χ)−1 = Q(λ−1, χ−1) , (3.21)

meaning, in combination with (3.11), that the resulting sigma model action is invariant
under the following Z2 transformation acting on fields and parameters

g → g−1 , k → −k , λ→ λ−1 , χ→ χ−1 , (3.22)

or equivalently, in terms of the parameters {kL, kR, γ} (3.16),

g → g−1 , kL → −kL , kR → −kR , γ → γ . (3.23)

In terms of the parameters {kL, kR, γ} we find that Q in (3.18) has the form (3.13) as
required, with the parameters α1,2,3 and β1,3 given by

α1 = γ2(kL + kR) + 2γkLkR
kLkR − γ2 , α3 = γ2(kL + kR)− 2γkLkR

kLkR − γ2 ,

α2 =
4γkLkR

(
γ(kL + kR) +

√
(γ2 + k2

L)(γ2 + k2
R)
)

(kLkR − γ2)2 , β1 = β3 = γ2(kL − kR)
kLkR − γ2 .

(3.24)
7We have checked that (3.18) is the unique solution in the GS case perturbatively around χ = 1. This

solution can be found assuming the ansatz (3.13) for Q, along with a similar one for O± and solving the
resulting equations. In section 4 we show that it also follows from PL dualising the bi-η model of [27].
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In the PS case we find the following solution8 for Q

Q = 2χ
1 + χ2

(
P0W

2
χ + λ−2W 2

χP2 + λ−1WχP1W
3
χ + λ−3W 3

χP3Wχ

)
,

QT = 2χ
1 + χ2

(
P0W

2
χ + λ−2W 2

χP2 + λ−3W 3
χP1Wχ + λ−1WχP3W

3
χ

)
,

(3.25)

with

O+ = 2χ
1 + χ2

(
P0W

2
χ + λ−1P2 + λ−

3
2P1Wχ + λ−

1
2P3W

3
χ

)
,

O− = 2χ
1 + χ2

(
P0W

2
χ + λ−1P2 + λ−

1
2P1W

3
χ + λ−

3
2P3Wχ

)
.

(3.26)

Again this solution satisfies the relation (3.21) implying that the resulting sigma model
action is invariant under the Z2 transformation (3.22), or equivalently (3.23). Furthermore,
again writing in terms of the parameters {kL, kR, γ} we find that it takes the form (3.13)
as required.

Bosonic truncation. The bosonic truncations of the GS and PS cases both give the
same bi-λ model on the Z2 permutation coset

G×G
G , (3.27)

where G is now an ordinary Lie group. This model was introduced in [54] and shown to
be classically integrable in [55] — its Lax connection follows from the bosonic truncation
of (2.18) or (2.19). Explicitly, the action is given by

S(g,A) = SG×G
G×G

(g,A; T̃r)− h
∫

d2x Tr(A+P2A−) , (3.28)

where the coupling h is given by

h =
4γkLkR

(
γ(kL + kR) +

√
(γ2 + k2

L)(γ2 + k2
R)
)

(kLkR − γ2)2 , (3.29)

g = (gL, gR) ∈ G×G, A± = (AL±, AR±) ∈ g⊕ g and P2(XL, XR) = 1
2(XL −XR, XR −XL).

The bilinear forms Tr and T̃r are defined analogously to the superalgebra counterparts STr
and S̃Tr in (2.5), (3.4),

Tr
(
(XL, XR)(YL, YR)

)
= tr(XLYL) + tr(XRYR) ,

T̃r
(
(XL, XR)(YL, YR)

)
= kL tr(XLYL) + kR tr(XRYR) ,

(3.30)

in terms an ad-invariant non-degenerate bilinear form tr on g, and kL and kR.
The action (3.28) has a G gauge symmetry acting as in eq. (3.12) with g0 ∈ G, and is

also invariant under the Z2 transformation (3.23), under which the coupling h transforms as

h→ 2hkLkR
2kLkR + h(kL + kR) . (3.31)

We will investigate this bosonic model further in section 5 when we discuss its two-loop
RG flow.

8Again we have checked that this is the unique solution perturbatively around χ = 1.
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3.1 Limits

Symmetric λ model. The symmetric limit χ→ 1, or equivalently kL → kR = k, corre-
sponds to the standard λ deformation of the Z4 supercoset (with deformation parameter
λ = k−γ

k+γ and WZ level k). Since the two levels are equal in this limit, the left and right
symmetries are deformed in the same way and with the same deformation parameter. The
resulting action takes the form

S(g,A) = kSG×G
G×G

(g,A; STr)− k
∫

d2x STr
(
A+(Q− 1)A−

)
. (3.32)

In this limit the formulae (3.18), (3.25) above for the operator Q reproduce the known
ones for λ deformed Z4 cosets in the GS and PS formalisms. We obtain in the GS case [53]

Q = P0 + λ−2P2 + λ−1P1 + λP3 , (3.33)

and in the PS case [34]

Q = P0 + λ−2P2 + λ−1P1 + λ−3P3 . (3.34)

NATD-λ model. A second interesting limit is to take χ→ λ, or equivalently kR →∞,
while zooming in on gR = 1 according to

gR = exp
(
vR
kR

)
, vR ∈ g , (3.35)

which, as we will argue, gives the non-abelian T-dual (NATD) of the single-sided λ-
deformation. Under the G0 gauge symmetry (3.12) vR transforms as

vR → g−1
0 vRg0 . (3.36)

After taking the limit, the resulting gauge-invariant action is

S(gL, vR, AL,R) = kLSG/G(gL, AL; str) +
∫

d2x str
(
vRF+−(AR)

)
−
∫

d2x STr
(
A+Q̂A−

)
,

(3.37)
where F+−(AR) = ∂+AR−−∂−AR++[AR+, AR−] and Q̂ = limkR→∞

(
(kLPL+kRPR)(Q−1)

)
.

In the limit kR →∞ we have (3.16)

γ = kL
1− λ2

2λ , (3.38)

and in terms of the parameters kL and λ we find in the GS case

Q̂ = kL
1− λ2

λ

(
2λ−1P2 + P1 − P3 + 1− λ2

2λ PR(P1 + P3)
)
, (3.39)

and in the PS case

Q̂ = kL
1− λ2

λ

(
2λ−1P2 − λ−2(P1 − P3) + 3 + λ2

2λ PR(P1 + P3) + 1 + λ2

λ3 PL(P1 + P3)
)
.

(3.40)

– 12 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
4

From the action (3.37) we can obtain two integrable sigma models. The first is given
by integrating out the auxiliary fields AL± and AR±. This is the same procedure that
gives the sigma model (3.10) from (3.7), hence it follows that the resulting action is a
limit of (3.10). Moreover, this model is the non-abelian T-dual, with respect to GR, of the
second sigma model, which is obtained by instead integrating out the auxiliary field AL±
and the Lagrange multiplier vR, i.e., imposing AR± = g̃−1∂±g̃ where g̃ ∈ G. Under the G0
gauge symmetry (3.12) the field g̃ transforms as

g̃ → g̃g0 . (3.41)

To interpret this second model let us just integrate out the Lagrange multiplier vR
to give

S(gL, AL, g̃) = kLSG/G(gL, AL; str)−
∫

d2x STr
(
(AL+, g̃

−1∂+g̃)Q̂(AL−, g̃
−1∂−g̃)

)
. (3.42)

As discussed above, the bosonic truncations of the GS and PS cases both give the same
model. Since in the truncated model G0 = G, we can use the gauge symmetry (3.41) to
fix g̃ = 1, while Q̂ = −2kL(1− λ−2)P2. Therefore, the action of the bosonic truncation is

S(gL, AL) = kLSG/G(gL, AL; tr) + kL(1− λ−2)
∫

d2x tr(AL+AL−) , (3.43)

which we recognise as the well-known λ deformation of the PCM [48] with level kL. It
follows that the action (3.42) can be interpreted as the single-sided λ deformation of the
Z4 supercoset sigma model (1.2).

In contrast with the symmetric λ deformation (3.32)–(3.34), which has no global sym-
metries, the action (3.42) has a global G symmetry acting as9

g̃ → `g̃ , ` ∈ G . (3.44)

Therefore, for the AdS3 Z4 permutation supercosets in footnote 1, the corresponding su-
pergravity backgrounds are expected to preserve 8 supersymmetries. As discussed in the
“Introduction” (section 1), it is natural to expect that as a result they will have “nicer”
properties than the generic deformations that preserve no supersymmetries [26]. As we
will discuss in section 4, it is also possible to η deform the left copy of G, instead of λ
deforming, to give an η–λ model generalising that of [60].

Bi-NATD model. Starting from either of the above limits it is then possible to take a
further limit to give the bi-NATD model. In the symmetric λ model (3.32) we take k →∞
and λ → 1, while zooming on g = 1. On the other hand, starting from the NATD-λ
model (3.37), we take kL →∞, while zooming in on gL = 1. The resulting model is

S(v,A) =
∫

d2x STr
(
vF+−(A)− 2γA+P−A−

)
,

F+−(A) = ∂+A− − ∂−A+ + [A+, A−] ,
(3.45)

9After using the gauge symmetry to fix g̃ = 1 in the bosonic truncation, this global symmetry acts as
gL → `gL`

−1, AL± → `AL±`
−1 in the action (3.43).
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where v = (vL, vR) ∈ g⊕g, A± = (AL±, AR±) ∈ g⊕g, and we recall that P− = P1 +2P2−P3
for the GS case and P− = P1 + 2P2 + 3P3 for the PS case. The bi-NATD model is given
by integrating out the auxiliary field A± in the action (3.45), while instead integrating
out the Lagrange multiplier v gives A± = g−1∂±g and we recover the Z4 supercoset sigma
models (1.2) if we set γ = T

4 .

λ→ 0 limit. The final limit we discuss is λ→ 0, which is equivalent to γ →
√
kLkR (3.15)

or h→∞ (3.29). In this limit we are left with the parameters {χ, k} or {kL, kR} related as

χ =
√
kL
kR

, k =
√
kLkR . (3.46)

We can see the importance of this limit by taking it in the bosonic truncation (3.28).
Doing so, the coefficient of the final term diverges, hence the equation of motion for P2A±
simply becomes P2A± = 0, which we can solve by setting AL± = AR± = B±. Substituting
this into (3.28) gives the action of the (GkL ×GkR)/GkL+kR gauged WZW model

S(gL, gR, B) = kLSG/G(gL, B; str) + kRSG/G(gR, B; str) , (3.47)

which, as we discuss in section 5, is a fixed point of the RG flow. Further taking kR →∞
while zooming in on gR = 1 according to (3.35), the second gauged WZW action in (3.47)
becomes a flatness constraint on the gauge field B± and we can use the G gauge symmetry
to fix B± = 0. Therefore, we find the WZW action with level kL, which we can also recover
as the λ→ 0 limit of (3.43), i.e., the two limits commute.

Taking the λ → 0 limit in the Z4 supercoset bi-λ model (3.7), we similarly observe
that the operators Q and QT diverge, due to the negative powers of λ in their expres-
sions (3.18), (3.25). It again follows that the equations of motion (3.8) will set certain
components of the gauge fields to vanish. In the GS case, however, due to the positive
powers of λ in (3.18) it is not clear if the λ → 0 limit will be well-defined. The PS
case (3.25) behaves more straightforwardly like the bosonic truncation and we find

P2A± = 0 , P1A± = 0 , P3A± = 0 . (3.48)

We thus obtain the action of the (GkL × GkR)/(G0)kL+kR gauged WZW model. It would
then be interesting to investigate the further limit kR →∞ and whether it agrees with the
λ → 0 limit of (3.37) in the PS case (3.40) (and also in the GS case (3.39) assuming the
λ→ 0 limit exists).

3.2 κ-symmetry in the GS case

Z4 permutation supercoset sigma models are of interest in the context of string theory [10],
e.g., those mentioned in footnote 1. In this context, the GS string sigma model should
be invariant under a local fermionic κ-symmetry to ensure that the theory describes the
correct number of fermionic degrees of freedom [76–78]. The κ-symmetry of the model
ensures that the deformed background satisfies a set of generalised supergravity equations
of motion [79], which should also imply scale invariance [72]. Moreover, due to the lack of
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isometries we expect the bi-λ deformations to be Weyl invariant, similarly to the symmetric
λ deformation limit [67].

Here we show that the bi-λ deformation in the GS case (3.7), (3.18) has a local fermionic
κ-symmetry.10 To do so, we follow the construction given in [53] for the symmetric λ
deformation. We start by considering a local GL ×GR symmetry acting infinitesimally on
the fields as

δg = εLg − gεR , δA+ = [εL, A+]− ∂+εL , δA− = [εR, A−]− ∂−εR , εL, εR ∈ g .

(3.49)
The action (3.7) transforms as

δS =
∫

d2x S̃Tr
(
(QT εL − εR)∂+A− − (εL −QεR)∂−A+ + εL[A+,QA−]− εR[QTA+, A−]

)
.

(3.50)
Requiring that the derivative terms vanish we have

εR = QT εL , εL = QεR . (3.51)

In the GS case

QQT = QTQ = 1 + (λ−4 − 1)P2 + (1 + λ−2)2 1− χ2

1 + χ2WP2 , (3.52)

hence the compatibility of the two equations (3.51) implies that P2εL = P2εR = 0.
We are left with the variations

δg = εg − gQT ε , δA+ = [ε,A+]− ∂+ε δA− = [QT ε,A−]− ∂−QT ε ,

δS =
∫

d2x S̃Tr
(
ε([A+,QA−]−Q[QTA+, A−])

)
, ε ∈ g , P2ε = 0 .

(3.53)

When ε = P0ε the variation of the action vanishes demonstrating the invariance of the
action under the G0 gauge symmetry (3.12).11

For κ-symmetry we instead require that the variation vanishes for some Grassmann-
odd quantity ε = (P1 + P3)ε = ε(1) + ε(3). Using the explicit form of the operators Q and
QT in the GS case (3.18), we find that the variation of the action is proportional to

δS ∼
∫

d2x STr
(
ε(Wχ[J (1)

+ , J
(2)
− ]− λ−1W−1

χ [J (2)
+ , J

(3)
− ])

)
∼
∫

d2x STr
(
ε([J (1)

+ , J
(2)
− ]− [J (2)

+ , J
(3)
− ])

)
,

(3.54)

10Note that this is not the full κ-symmetry of the GS string sigma model on AdS3 × S3 × T4 and
AdS3 × S3 × S3 × S1 since the Z4 permutation supercoset sigma model only describes a sector of the
theory. Nevertheless, the undeformed supercoset model has a κ-symmetry in the GS case and we expect
any deformation consistent with string theory to preserve this.

11In the PS case, we also have that P1ε = P3ε = 0 follow from the compatibility of the two equa-
tions (3.51). Therefore, the only local symmetry with infinitesimal action (3.49) is the G0 gauge symme-
try (3.12).
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where ε= 2χ
1+χ2 (P1Wχ+λ−1P3W

−1
χ )ε. On the other hand, considering the sigma model (3.7)

on a curved background, we find that the non-vanishing components of the energy-momen-
tum tensor are proportional to

T±± ∼ S̃Tr[A±(QQT − 1)A±] ∼ STr[J (2)
± J

(2)
± ] , (3.55)

in the GS case. Therefore, after writing in terms of the auxiliary currents J± and redefining
ε, we find that both the variation of the action and the energy-momentum tensor are
independent of λ and χ (up to constants of proportionality). It follows that the variation
of the action (3.54) vanishes on the Virasoro constraints T±± = 0 if either ε(1) = [J (2)

− , κ(1)]+
with κ(1) = P1κ

(1) or ε(3) = [J (2)
+ , κ(3)]+ with κ(3) = P3κ

(3) [13, 80].12 In the first case we
have ε(3) = 0, which implies ε = Wχε

(1) and the infinitesimal transformations of the fields
are given by

δg = Wχε
(1)g − gλW−1

χ ε(1) , ε(1) = [J (2)
− , κ(1)]+ , κ(1) = P1κ

(1) ,

δA+ = Wχ([ε(1), A+]− ∂+ε
(1)) , δA− = λW−1

χ ([ε(1), A−]− ∂−ε(1)) .
(3.56)

In the second case, ε(1) = 0, hence ε = λW−1
χ ε(3) and the infinitesimal transformations of

the fields are given by

δg = λW−1
χ ε(3)g − gWχε

(3) , ε(3) = [J (2)
+ , κ(3)]+ , κ(3) = P3κ

(3) ,

δA+ = λW−1
χ ([ε(3), A+]− ∂+ε

(3)) , δA− = Wχ([ε(3), A−]− ∂−ε(3)) .
(3.57)

4 Poisson-Lie duality

In this section we show that the bi-λ models introduced in section 3 are the Poisson-Lie
duals of the bi-η deformed GS and PS models defined in section 2, with R solving the
split modified classical Yang-Baxter equation,13 and parameters related by (T, ηL, ηR) =(
4γ, γkL ,

γ
kR

)
. This provides an explicit construction of the bi-λ models.

Poisson-Lie duality is a generalisation of abelian and non-abelian T-duality to sigma
models that do not necessarily have global symmetries, but whose currents K± ∈ f obey
the Poisson-Lie symmetric equation of motion

∂+K− + ∂−K+ + [K+,K− ]̃f = 0 , (4.1)

where [·, ·]̃f denotes the Lie bracket on a dual Lie algebra f̃. The presence of the two algebraic
structures f and f̃ makes it possible to construct an E model, with degrees of freedom in
the Drinfel’d double Lie(D) = d = f + f̃. Provided there exists an ad-invariant bilinear
form on d with respect to which the two Lie algebras are isotropic, one can construct two

12Here [·, ·]+ denotes the anticommutator.
13They are also the Poisson-Lie duals of the bi-η deformed models with non-split operator R upon analytic

continuation.
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sigma models by integrating out the degrees of freedom associated to the dual Lie algebra:
integrating out the degrees of freedom in f̃ one gets a sigma model on F̃\D ∼= F, while
integrating out the degrees of freedom in f one obtains a sigma model on F\D ∼= F̃. The
two sigma models produced through this procedure are then said to be Poisson-Lie dual to
each other.14 Introducing a gauge field it is also possible to obtain Poisson-Lie dual sigma
models on coset spaces.

The η deformation of the GS and PS Z4 cosets are indeed characterised by equations
of motion of the form (4.1), see (2.15). Choosing the E model and the two subalgebras
f and f̃ appropriately, this will lead to respectively the η and λ deformations of the GS
and PS Z4 model. In this section we extend this to the case of the bi-η deformations and
find their dual bi-λ models. We also construct hybrid deformations, with one copy of the
symmetry algebra η deformed and the other λ deformed.

4.1 E model

We start by summarising the construction of the E model on the Drinfel’d double. For
additional details the reader is referred to the review [34], from which most of the notation
is taken.

The action of the E model for the group-valued field l ∈ D, with gauge field A ∈ h =
Lie(H),15 is

SE =
∫

d2x 〈〈l−1∂τ l, l
−1∂σl〉〉+ 1

6

∫
d3x εijk〈〈l−1∂il, [l−1∂jl, l

−1∂kl]〉〉

− 2
∫

d2x 〈〈Aτ , l−1∂σl〉〉 −
∫

d2x 〈〈(l−1∂σl − Aσ), E(l−1∂σl − Aσ)〉〉 .
(4.2)

The operator E : d → d satisfies E2 = 1 and is symmetric with respect to the invariant
bilinear form 〈〈·, ·〉〉 on d, so that 〈〈EX,Y 〉〉 = 〈〈X, EY 〉〉 for any two elements X,Y ∈ d. Let
us now consider a subalgebra b ⊂ d that is isotropic, i.e., 〈〈X,Y 〉〉 = 0 for any two elements
X,Y ∈ b. We call B the associated Lie group. Sending l→ bl where b ∈ B, and integrating
out the degrees of freedom associated to b,16 one gets the following model on B\D/H,

S = 1
2

∫
d2x 〈〈(l−1∂+l − A+), EP(E + 1)(l−1∂−l − A−)〉〉

− 1
2

∫
d2x 〈〈(l−1∂−l − A−), EP(E − 1)(l−1∂+l − A+)〉〉

+
∫

d2x εµν〈〈l−1∂µl,Aν〉〉+ 1
6

∫
d3x εijk〈〈l−1∂il, [l−1∂jl, l

−1∂kl]〉〉 .

(4.3)

We recall that we use light-cone coordinates x± = 1
2(τ±σ), ∂± = ∂τ±∂σ and our convention

for the antisymmetric Levi-Civita symbol is ε+− = −ε−+ = −1/2. The projector P satisfies
14One can also consider other decompositions d = f1 + f2, where only f2 is an isotropic subalgebra.

Integrating out the associated degrees of freedom generates new Poisson-Lie dual models.
15The Lie algebra h is required to be isotropic with respect to the invariant bilinear form 〈〈·, ·〉〉. For the

purposes of recovering the bi−η and bi-λ deformations, the Lie group H will be identified with G0 in (2.1),
see eq. (4.11).

16This is possible as long as Ad−1
l b and E Ad−1

l b have trivial intersection.
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im[P] = E Ad−1
l b (im denotes the image, not the imaginary part) and ker[P] = Ad−1

l b.
By virtue of the condition E2 = 1 also EP(E ± 1) are projectors, with

im[EP(E ± 1)] = Ad−1
l b , ker[EP(E ± 1)] = e∓ , (4.4)

where e∓ are the eigenspaces of E with eigenvalues ∓1. All this ensures that the action (4.3)
has a gauge symmetry

l→ blh , A± → h−1A±h+ h−1∂±h , (4.5)

with b(x) ∈ B and h(x) ∈ H.
Choosing the operator E , as well as the Drinfel’d double d and its isotropic algebra b,

appropriately, the action (4.3) gives the bi-η, bi-λ and η–λ deformations. We discuss these
choices below.

Drinfel’d double. The η deformation is governed by an antisymmetric linear operator
R satisfying the (in)homogeneous Yang-Baxter equation (2.10), which for convenience we
rewrite in the form

(R± ĉ)[X,Y ]R = [(R± ĉ)(X), (R± ĉ)(Y )] , [X,Y ]R = [R(X), Y ] + [X,R(Y )] , (4.6)

with ĉ = cLPL + cRPR. At this point we already see the emergence of a dual Lie algebra f̃,
which as a vector space is the same as f, but endowed with the Lie bracket [·, ·]R, known
as the R-bracket. In what follows we restrict to the case cL = cR = c ∈ R 6=0, so that the
operator R satisfies the split inhomogeneous Yang-Baxter equation in both the left and the
right copy, and without loss of generality we fix c = 1. More general cases of c can then be
obtained simply through rescalings of R.

Then, we define
fdiag = {((X,X)), X ∈ f} , (4.7)

as well as
f̃ = {(((R+ 1)X, (R− 1)X)), X ∈ f} . (4.8)

Both fdiag and f̃ are Lie algebras. This is obvious for the former, while for the latter it is
a consequence of the inhomogeneous Yang-Baxter equation. Moreover, they are isotropic
with respect to the bilinear form

〈〈((X1, Y1)), ((X2, Y2))〉〉 = S̃Tr [X1X2]− S̃Tr [Y1Y2] , (4.9)

where S̃Tr was defined in (3.4). Again, for fdiag this is obvious, while for f̃ one needs to use
the antisymmetry of R with respect to S̃Tr. We then construct the Drinfel’d double

d = fdiag + f̃ . (4.10)

Notice that the Drinfel’d double is the same as in the one-parameter case, the only modi-
fication lies in the bilinear form (4.9).

For general Z4 supercosets F/F0, we take the Lie algebra h to be

h = {((X,X)), X ∈ f(0) = Lie(F0)} , (4.11)

and write A± = ((A±,A±)) with A± ∈ f(0), where f(0) denotes the grade-0 subalgebra of
the Z4 graded superalgebra f. For the Z4 permutation supercosets (2.1) in which we are
interested, we have f = g + g and f(0) = g0 is the diagonal bosonic subalgebra.
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Operator E. We define

PG = γk̂−1
(
P0 + 1

2(P− + P+)
)
, PB = γ

2 k̂
−1(P− − P+) , k̂ = kLPL + kRPR ,

(4.12)
where P± are the quantities appearing in the η deformed action, defined in (2.16), with
coefficients given by (2.21) for the GS case and in (2.23) for the PS case. We also make
the identification

ηL = γ

kL
, ηR = γ

kR
, (4.13)

so that PG and PB depend only on γ, kL, kR. We then introduce the E operator which acts
on ((X,Y )) ∈ d as17

E((X,Y )) = ((−((P λ+)−1 − P λ−)−1(((P λ+)−1 + P λ−)X − 2Y ),
((P λ−)−1 − P λ+)−1(((P λ−)−1 + P λ+)Y − 2X) )) ,

(4.14)

where P λ± are defined implicitly through the relations

(PG)−1PB −PG +PB(PG)−1PB − (PG)−1−PB(PG)−1 = −2((P λ+)−1−P λ−)−1((P λ+)−1 +P λ−) ,
(PG)−1PB −PG +PB(PG)−1PB + (PG)−1 +PB(PG)−1 = +4((P λ+)−1−P λ−)−1 ,

(PG)−1PB +PG−PB(PG)−1PB − (PG)−1 +PB(PG)−1 = −4((P λ−)−1−P λ+)−1 ,

(PG)−1PB +PG−PB(PG)−1PB + (PG)−1−PB(PG)−1 = +2((P λ−)−1−P λ+)−1((P λ−)−1 +P λ+) .
(4.15)

Important identities are P λ+ = (P λ−)T , where T denotes the transpose with respect to S̃Tr
of (3.4), as well as

PE ≡ PG + PB = (1 + P λ−)−1(1− P λ−) = −(1− (P λ−)−1)(1 + (P λ−)−1)−1 , (4.16)

and
ker [EP(E ± 1)] =

{(
X, (P λ∓)±1X

)
, X ∈ f

}
. (4.17)

It is possible to check that in the symmetric case kL = kR = k one recovers

P λ− = λP0 + λ2P2 + λP1 + λ−1P3 , λ = k − γ
k + γ

, (4.18)

in the GS case, and
P λ− = λP0 + λ2P2 + λP1 + λ3P3 , (4.19)

in the PS case. These are the usual combination of projectors arising in the action of the
(one-parameter) λ deformation, with the relation P λ− = Q−1 + (λ− 1)P0.

17This is the same type of ansatz as for the one-parameter λ deformation. With respect to the notation
in [34] we remove the tilde P̃λ± → Pλ±. This definition of E is such that

E((X,X)) = P−1
G PB((X,X))− (PG − PB(P−1

G )PB)((X,−X)) .
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4.2 Bi-η models

To obtain the action of the bi-η deformation we take b = f̃ and fix the gauge l = ((g, g)) ∈
Fdiag. An ansatz for EP(E ± 1) with image and kernel satisfying (4.4) is given by

EP(E ± 1)((X,Y )) = (((Rg + 1)f±K±, (Rg − 1)f±K±)) , K± = Y − (P λ∓)±1X , (4.20)

where Rg = Ad−1
g RAdg. The functions f± are fixed by requiring that (4.20) is a projector,

leading to
f± =

(
(1− (P λ∓)±1)Rg − (1 + (P λ∓)±1)

)−1
. (4.21)

Plugging into (4.3) and using the identities (4.16) one arrives at the action

S = −2
∫

d2x S̃Tr
[
(g−1∂+g−A+)γk̂−1(P0 +P−) 1

1−Rgγk̂−1(P0 +P−)
(g−1∂−g−A−)

]
.

(4.22)
At this point we would like to integrate out the gauge fields A± ∈ g0 in order to obtain

the action in sigma-model form. The equation of motion for A+ reads

P0C− = 0 , C− = (P0 + P−) 1
1−Rgγk̂−1(P0 + P−)

(g−1∂−g −A−) , (4.23)

from which we can deduce that

C− = P−
1

1−Rgγk̂−1P−
g−1∂−g . (4.24)

Replacing in the action gives

S = −2γ
∫

d2x STr
[
g−1∂+gP−

1
1−Rgγk̂−1P−

g−1∂−g

]
. (4.25)

Therefore, upon identifying the parameters

T = 4γ , ηL = γ

kL
, ηR = γ

kR
, (4.26)

we recover the two-parameter η deformation (2.8) of the GS and PS sigma model respec-
tively (P± take different forms in the two models). Note however that this construction
assumed that R satisfies the split inhomogeneous Yang-Baxter equation in both left and
right copy.

4.3 Bi-λ models

To obtain the action of the dual λ-model we take b = fdiag. An arbitrary element of D can
be parametrised as l = ((g′g, g′)) = ((g′, g′))((g, 1)), with ((g′, g′)) ∈ Fdiag and ((g, 1)) ∈ F+.
The gauge freedom of (4.3) then allows to choose l = ((g, 1)).

From the conditions (4.4) it follows that the image of EP(E ± 1) should be Ad−1
l b =

((Ad−1
g , 1))fdiag, which motivates the ansatz (the kernel remains the same)

EP(E ± 1)((X,Y )) = ((Ad−1
g f±K±, f±K±)) , K± = Y − (P λ∓)±1X . (4.27)
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Requiring that these are projectors further selects

f± = 1
1− (P λ∓)±1 Ad−1

g

. (4.28)

Plugging this into (4.3) gives

S = −1
2

∫
d2x S̃Tr

[
(g−1∂+g −A+ + Ad−1

g A+)
1 + Ad−1

g P λ−

1−Ad−1
g P λ−

(g−1∂−g −A− + Ad−1
g A−)

]

+ 1
2

∫
d2x S̃Tr

[
A+(g−1∂−g + ∂−gg

−1)−A−(g−1∂+g + ∂+gg
−1)
]

+ 1
2

∫
d2x S̃Tr

[
A+g

−1A−g −A+gA−g−1
]

+ SWZ(g; S̃Tr) .
(4.29)

The final step to obtain the bi λ-model consists in integrating out the gauge fields A± ∈ g0.
For this we follow but slightly modify the procedure used in the previous subsection for
the η deformation. The equation of motion for A+ reads

P0C− = 0 , C− = (kLPL + kRPR)(1− P λ−) 1
1−Ad−1

g P λ−
(g−1∂−g −A− + Ad−1

g A−) .

(4.30)
A complication arises because of the presence of the (kLPL+kRPR) term in C−. We however
observe that the auxiliary operator

Q = (1− P λ−)−1(Q−1 − P λ−) , (4.31)

with Q defined in (3.18) for the GS case and (3.25) for the PS case satisfies, in both cases,

Q(1− P λ−)−1(k−1
L PL + k−1

R PR)Pi = 0 , i = 1, 2, 3 . (4.32)

From (4.32) if follows that the equation of motion (4.30) can be rewritten

Q(P λ−)−1Ĉ− = 0 , Ĉ− = P λ−
1

1−Ad−1
g P λ−

(g−1∂−g −A− + Ad−1
g A−) , (4.33)

from which we deduce that

Ĉ− = Q−1 1
1−Ad−1

g Q−1 (g−1∂−g −A− + Ad−1
g A−) . (4.34)

Injecting into the action (4.29) leads to

S = −1
2

∫
d2x S̃Tr

[
(g−1∂+g)

Q+ Ad−1
g

Q−Ad−1
g

(g−1∂−g −A− + Ad−1
g A−)

]

− 1
2

∫
d2x S̃Tr

[
g−1∂+g(1 + Ad−1

g )A−
]

+ SWZ(g; S̃Tr) .

(4.35)

Finally, one can check that the terms involving A− cancel, owing to condition Q−1P0 = P0,
and the action of the λ-model, without gauge fields, becomes

S = −1
2

∫
d2x S̃Tr

[
(g−1∂+g)

Q+ Ad−1
g

Q−Ad−1
g

(g−1∂−g)
]

+ SWZ(g; S̃Tr) . (4.36)
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This is precisely the action of the bi-λ deformation in sigma model form as obtained
in (3.10). Therefore, the bi-λ deformation is the Poisson-Lie dual of the bi-η deformation
for operators R satisfying the split inhomogeneous Yang-Baxter equation.

4.4 η–λ deformation

Let us now take advantage of the E-model formulation to derive new hybrid deformations,
with one copy of the symmetry algebra η deformed, and the other λ deformed. We write
f = gL⊕gR, where we keep track of the two different copies of g with the labels “L” and “R.”
Any element X ∈ f can therefore be written X = (XL, XR) where XL ∈ gL and XR ∈ gR.
Clearly, also the diagonal algebra (4.7) takes this direct sum structure,

fdiag = {(((XL, XR), (XL, XR)))} = gdiag,L ⊕ gdiag,R , (4.37)

where
gdiag,L = {((XL, XL))} , (4.38)

and similarly for the right copy. It is clear that gdiag,L and gdiag,R are algebras on their own.
For operators R of the form R = RL ⊕ RR, with RL,R : gL,R → gL,R (this is in particular
true if the operator R is of Drinfel’d-Jimbo type), also the algebra f̃ defined in (4.8) takes
this direct sum structure, with

f̃ = ((((RL + 1)XL, (RR + 1)XR), ((RL − 1)XL, (RR − 1)XR))) = g̃L ⊕ g̃R , (4.39)

where
g̃L = (((RL + 1)XL, (RL − 1)XL)) , (4.40)

and similarly for the right copy. Due to the requirement on R also g̃L and g̃R are algebras.
These are then four subalgebras of the Drinfel’d double

d = fdiag ⊕ f̃ = gdiag,L ⊕ gdiag,R ⊕ g̃L ⊕ g̃R . (4.41)

They are all isotropic with respect to the bilinear form (4.9).
We have seen in the previous two sections that integrating out the degrees of freedom

associated to f̃ = g̃L⊕ g̃R one gets the (bi-)η deformation, while integrating out the degrees
of freedom associated to fdiag = gdiag,L ⊕ gdiag,R one gets the (bi-)λ-model instead. But
one can do more. In particular, one can integrate out the degrees of freedom associated to
f1 = gdiag,L⊕ g̃R or f2 = g̃L⊕gdiag,R. This is possible because both f1 and f2 are subalgebras
of d which are isotropic with respect to the bilinear form (4.9). The resulting models will
be hybrid η − λ deformations.

Without loss of generality (it is always possible to relabel the left and right copies),
let us consider the case where we integrate out

f2 = g̃L ⊕ gdiag,R ≡ bL ⊕ bR ≡ b . (4.42)

Naively the resulting model should be η deformed in the left copy and λ deformed in the
right copy, with additional non-trivial coupling terms between the two copies. An arbitrary
element l ∈ D can be decomposed into

l = bL(((gL, g′RgR), (gL, g′R))) = bL(((1, g′R), (1, g′R)))(((gL, gR), (gL, 1))) , (4.43)
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where bL ∈ BL and (((1, g′R), (1, g′R))) ∈ BR. After gauge fixing the left-acting B symmetry
we are left with the representative

l = (((gL, gR), (gL, 1))) . (4.44)

Let us now turn to the definition of the projectors EP(E ± 1), satisfying the two
constraints (4.4). In particular, the image should be im[EP(E ± 1)] = Ad−1

l b. From (4.44)
it follows that Ad−1

l = (((Ad−1
gL
,Ad−1

gR
), (Ad−1

gL
, 1))), and we recall that b is defined in (4.42).

An ansatz with the correct image is therefore given by

EP(E ± 1)((X,Y )) =
(((

RL,gL + 1 0
0 Ad−1

gR

)
f±K±,

(
RL,gL − 1 0

0 1

)
f±K±

))
, (4.45)

and we recall the (unmodified) kernel

K± = Y − (P λ∓)−1X , X = (XL, XR) , Y = (YL, YR) . (4.46)

We use a vector/matrix notation where the first component is in the left copy and the
second component is in the right copy. The unknown f± can be seen as 2 × 2 matrices,
and are fixed by requiring that EP(E ± 1) are projectors. We find

f± =
(
f±,LL f±,LR
f±,RL f±,RR

)
=
((

RL,gL − 1 0
0 1

)
− (P λ∓)±

(
RL,gL + 1 0

0 AdgR

))−1

. (4.47)

Then, the gauge field A ∈ h is as before, A = ((A,A)) with A ∈ g0. While it is possible
to further decompose A = (AL,AR), from the definition of the diagonal subalgebra g0 it
follows that AL = AR.

Using the definition of the inner product 〈〈·, ·〉〉 of (4.9), and after some manipulation
explained in appendix A, the action of the hybrid model can be put in the form

S = −1
2

∫
d2x S̃Tr

[
J+
(
2PL +PR(1 + Ad−1

gR
P λ−)(1−P λ−)−1

)
O−1

(
J−−A−+PR Ad−1

gR
A−

)]
− 1

2

∫
d2x S̃Tr

[
J+(1 + Ad−1

gR
)PRA−

]
+SWZ(gR; S̃Tr)

+
∫

d2x S̃Tr
[
A+O−1

(
J−−A−+PR Ad−1

gR
A−

)]
,

(4.48)
where

O = 1
2PL(P−1

E −RL,gL) + PR(1−Ad−1
gR
P λ−)(1− P λ−)−1 , (4.49)

and
J± = g−1∂±g , g = (gL, gR) ∈ GL ×GR . (4.50)

The action is invariant under the gauge symmetry

gL → gLg0 , gR → g−1
0 gRg0 , A± → g−1

0 A±g0 + g−1
0 ∂±g0 , g0(x) ∈ G0 . (4.51)
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5 Renormalisability and scale invariance

In this section we discuss quantum aspects of the bi-deformed models. Our main focus will
be the RG flow for the bosonic bi-λ model, demonstrating its all-loop renormalisability in
a “tripled” formulation and explicitly computing its two-loop beta function in a particular
subtraction scheme.

Before we turn to the bosonic truncation, let us briefly comment on the deformed Z4
permutation supercoset models. For these to define consistent string sigma models, we re-
quire that they are Weyl invariant,18 hence at one-loop the background fields solve the type
II supergravity equations. We will return to this in the “Conclusions” (section 6). However,
it follows from the results of [81], that, in the PS case, the bi-η model (2.8), (2.16), (2.23)
and bi-λ model (3.10), (3.25) are one-loop renormalisable, and if the superalgebra g has a
vanishing Killing form (as is the case for both psu(1, 1|2) and d(2, 1;α)) they are one-loop
scale invariant, a necessary condition for Weyl invariance.19

5.1 RG flow for the bosonic bi-λ model

The bosonic bi-λ model (3.28) on G×G
G is not scale invariant, but it was observed in [55] to

be renormalisable at one loop with only the coupling h running. Thus it provides a further
example of the general expectation that integrable sigma models are renormalisable, or
stable under RG flow [82, 83].

Here, following the approach used in [73] for the standard λ deformation, we will make a
path integral transformation to a “tripled” formulation, after which certain fields decouple,
leaving a model that is manifestly renormalisable to all orders due to its symmetries. The
key transformation is to exchange the auxiliary fields AL,R± for Lorentz scalars

Ai+ = h−1
i ∂+hi , Ai− = h̄i∂−h̄

−1
i , hi, h̄i ∈ G , i = L,R . (5.1)

Applying the Polyakov-Wiegmann identity [84], a certain combination of fields g̃i = hi gi h̄i
decouples leaving the Lagrangian20

L = ki LG(g̃i) + L′ , L′ = −ki
(
LG(hi) + LG(h̄i)

)
+ Tr[aij Ji+K̄j−] , (5.2)

aij =
(
kL + 1

2h −1
2h

−1
2h kR + 1

2h

)
ij

, Ji+ = h−1
i ∂+hi , K̄i− = ∂−h̄ih̄

−1
i . (5.3)

Here we are summing over repeated indices i, j = L,R and LG denotes the Lagrangian of
the WZW model for the group G. The resulting sigma model has a “tripled” target space

18In the context of the pure-spinor worldsheet theory in conformal gauge, the action should have conformal
symmetry, zero central charge and a nilpotent fermionic operator.

19This follows since the theories have a G0 gauge invariance, under which the Lax connection transforms
as a connection, and satisfy a “Bianchi completeness” condition [81]. A sufficient condition for the latter
is that the currents J± appearing in the Lax connection (2.19) are of the form J± = O±(g)g−1∂±g, where
the linear operators O±(g) : g→ g are invertible.

20Note that here we take S = 1
4πα′

∫
d2xL, hence the couplings kL,R and h in this section are equal to

those in section 3 and section 4 multiplied by 4π. α′ is understood as a loop-counting parameter, which
may be set to one for convenience.
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(G×G)3. The decoupled Lagrangian for g̃i is conformal on its own, leaving the “truncated”
model L′ to determine the RG flow of the bi-λ model.

Since the transformation (5.1) is non-local it gives rise to a finite one-loop determinant

∆L = −2cG
(
LG(hih̄i) + qTr[J+iK̄i−]

)
, (5.4)

where the local ambiguity parametrised by q should be fixed to q = 0 to preserve the G
gauge symmetry

hi → hig , h̄i → g−1h̄i , g(x) ∈ G . (5.5)
This has the effect of shifting the WZ levels ki → k̃i = ki + 2cG in L′

L′ = −k̃i
(
LG(hi) + LG(h̄i)

)
+ Tr[ãij Ji+(h)K̄j−(h̄)] , ãij =

(
k̃L + 1

2h −1
2h

−1
2h k̃R + 1

2h

)
ij

.

(5.6)

The Lagrangian L′ (5.6) can be viewed as a degenerate gauge-invariant limit of a coupled
G4 model of the type studied in [85].

In addition to the G gauge symmetry (5.5), the Lagrangian L′ (5.6) is invariant un-
der a (G(x−) × G(x+))2 chiral gauge symmetry, which is an artefact of the change of
variables (5.1)

hi → ui(x−)hi , h̄i → h̄i vi(x+) ,
(
(uL, vL), (uR, vR)

)
∈
(
G(x−)×G(x+)

)2
. (5.7)

Crucially, up to the definition of the WZ levels and the coupling h, the theory L′ is the
unique one with these symmetries. As such, it must be renormalisable to all orders with
only h running (since the WZ levels do not run).

We shall explicitly demonstrate the two-loop renormalisability of the truncated
model (5.6) using a particular “GB subtraction scheme” [75] (see also the discussion in [74]
and references therein), in which a general bosonic sigma model

S = − 1
4πα′

∫
d2x (Gmn(ϕ)ηab +Bmn(ϕ)εab) ∂aϕm∂bϕn

= 1
4πα′

∫
d2x (G(ϕ) +B(ϕ))mn ∂+ϕ

m∂−ϕ
n ,

(5.8)

has the two-loop beta function21

d

dt
(Gmn +Bmn) = α′ β(1)

mn +α′2 β(2)
mn + . . . (5.9)

= α′ R̂mn +α′2
1
2

(
R̂klpnR̂mklp−

1
2R̂

lpk
nR̂mklp + 1

2R̂kmnlH
kpqH l

pq

)
+ . . . .

Here Hmnk = 3∂[mBnk] and R̂ is the curvature of the generalized connection Γ̂kmn =
Γkmn(G) − 1

2H
k
mn and α′ is understood as a loop-counting parameter that we will set

to one.
Let us now compute the Riemann tensor and H-flux corresponding to the La-

grangian (5.6). To account for the gauge symmetry, we first introduce a “regulator” explic-
itly breaking it. We do this by simply taking the matrix ãij in eq. (5.6) to be a generic 2×2

21In the beta function (5.9) we have dropped possible diffeomorphism terms LX(G + B)mn and exact
terms ∂[mYn], since here they are fixed to zero by global symmetry.
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matrix. We then compute the Riemann tensor and H-flux for the regulated theory before
projecting out the “pure gauge” direction and taking the regulator to zero, i.e., setting ãij
to its value in eq. (5.6). This is equivalent to the proper gauge-fixing procedure explained
in footnote 38 of [74].

Choosing a convenient frame to diagonalise the metric Gmn

ds2 = Gmndϕ
mdϕn = k̃I

2 Tr[EIEI ] , I = (i, ı̄) , i = L,R , ı̄ = L̄, R̄ ,

Ei = Ji + cijK̄j , E ı̄ = dijK̄j , Ji = h−1
i dhi , K̄i = dh̄ih̄

−1
i ,

cij = ãij

k̃i
, k̃i dijdik = k̃jδjk− k̃icijcik ,

(5.10)
where we take dij to be symmetric and denote its inverse by q = d−1, and expanding
the frame field in terms of generators TA of the Lie algebra g, EI = EAITA, the H-flux
H = dB = 1

6HAI,BK,CLE
AI ∧ EBK ∧ ECL is given by

HAi,Bk,Cl = − i2fABC k̃i δikl , HAı̄,Bk̄,Cl̄ = − i2fABC
∑
j

αijkl ,

HAi,Bk,Cl̄ = 0 , HAi,Bk̄,Cl̄ = − i2fABC k̃i

(cq)ik(cq)il +
∑
j

cijqjkqjl

 ,

αijkl = k̃j

(
qjiqjkqjl + 2(cq)ji(cq)jk(cq)jl −

∑
m,σ

[(cq)jσ(i)cjmqmσ(k)qmσ(l)]
)
.

(5.11)
Here we have indicated sums over indices explicitly, σ are the three cyclic permutations of
{i, k, l}, (cq) = c · q denotes the usual matrix product and δikl is 1 when i = k = l and 0
otherwise.

From Cartan’s structure equation dEM +ω̂M
NE

N = TM with torsion TM = 1
2H

M
NPE

N∧
EP (here with M = A, I) we can compute the torsionful spin connection

ω̂AiCl =
∑
Bk

AiklfABCE
Bk̄ , ω̂AiCl̄ =

∑
Bk

BiklfABCE
Bk̄ , ω̂Aı̄Cl̄ =

∑
Bk

CiklfABCE
Bk̄ ,

Aikl = −iδil(cq)ik , Bikl = i [(cq)ik(cq)il−
∑
j

cijqjkqjl] ,

Cikl = − i

2k̃i

∑
j

[k̃idijqjkqjl− k̃kdkjqjiqjl + k̃ldljqjkqji +αijkl] .

(5.12)
The torsionful Riemann curvature tensor is defined by 1

2R̂
M
NPQE

P ∧EQ = dω̂MN+ω̂MP ∧
ω̂PN . Rotating from Ei, E ı̄ back to the basis Ji, K̄i, fixing the gauge h̄R = 1, projecting
out the corresponding directions, and setting ãij to its value in eq. (5.6), we obtain the
following non-zero components

R̂AiCl,DL̄,EL̄ = fABCf
B
DE

(−1)l−1hi−1k̃L(h+ 2k̃L)(h+ 2k̃R)3−i

2(4k̃Lk̃R + hk̃L + hk̃R)2 , i, l = L,R ,

R̂AL̄Cl,DL̄,EL̄ = fABCf
B
DE

(−1)l(h+ 2k̃L)(h+ 2k̃R)(2k̃Lk̃R + hk̃Lk̃R)
2(4k̃Lk̃R + hk̃L + hk̃R)2 , l = L,R ,

(5.13)
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and the remaining components of the H-flux become

HAi,Bk,Cl = − i2fABC k̃i δikl , HAL̄,BL̄,CL̄ = − i2fABC k̃L ,

HAi,Bk,CL̄ = − i2fABC k̃i δik ciL , HAi,BL̄,CL̄ = − i2fABC k̃i ciL .
(5.14)

Substituting eqs. (5.13), (5.14) into the beta function (5.9), we find that the Lagrangian
L′ is indeed renormalisable with only the coupling h running according to

d

dt
h = 2cG

(h + 2k̃L)(h + 2k̃R)(2k̃Lk̃R + h(k̃L + k̃R))
(4k̃Lk̃R + h(k̃L + k̃R))2

×
(

1 + cG

h(4k̃Lk̃R + h(k̃L + k̃R))3

(
32k̃3

Lk̃
3
R + 64hk̃2

Lk̃
2
R(k̃L + k̃R) + 3h4(k̃L + k̃R)2

+4h3(k̃L + k̃R)(2k̃L + k̃R)(k̃L + 2k̃R) + 8h2k̃Lk̃R(5k̃2
L + 9k̃Lk̃R + 5k̃2

R)
))

.

(5.15)

The leading term in eq. (5.15) agrees with the one-loop result of [55], with the coupling of
that paper identified as λthere = (k̃L + k̃R)/(2h+ k̃L + k̃R).

The two-loop fixed points h = −2k̃L,−2k̃R,−2k̃Lk̃R/(k̃L + k̃R) and h → ∞ are the
same in this scheme as those at one loop up to the correction ki → k̃i. At the fixed points
h = −2k̃L and h = −2k̃R (related by the Z2 transformation (3.23)), the bi-λ model becomes
the (GkL−kR×GkR)/GkL and (GkL×GkR−kL)/GkR gauged WZW models respectively [55].
This may be seen by explicitly integrating out the gauge fields and substituting h = −2k̃1,2.
The fixed point h = −2 k̃Lk̃R

k̃L+k̃R
is related by the Z2 transformation (3.23) to the fixed

point h → ∞, which, as discussed in section 3, gives the (GkL × GkR)/GkL+kR gauged
WZW model.

In the symmetric limit kL = kR ≡ k when the bi-λ deformation reduces to the standard
λ-deformation of the coset G×G

G , the two-loop beta function (5.15) matches the known one
in the same scheme [73],22

d

dt
k = 0 , d

dt
λ = −cG

kL
λ

[
1− cG(1− 3λ2)

2k(1− λ2)

]
, λ−1 ≡ h

kL
+ 1 . (5.16)

In the limit kR →∞, which corresponds to the NATD of the λ-model, the result (5.15)
reproduces the two-loop beta function of the λ-model in the same scheme as [73] (see
also [86])

d

dt
kL = 0 , d

dt
λ = −2cG

kL

(
λ

1 + λ

)2 [
1− 2cGλ

2(1− 2λ)
kL(1− λ)(1 + λ)3

]
, λ−1 ≡ h

2kL
+ 1 .

(5.17)
22As explained in appendix A of [73], the correct result (5.16) for the λ model on the coset F

G = G×G
G is

obtained by substituting cF = c2(G) and cG = 1
2 c2(G) in the general formulae of that paper, where c2(G)

is the dual Coxeter number of G.
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Further taking the limit kL →∞ (holding h = 2kL(λ− 1) fixed), which corresponds to the
bi-NATD of the PCM, reproduces the scheme-invariant two-loop beta function of the PCM

d

dt
h = cG + 1

2c
2
Gh−1 . (5.18)

Finally, let us note that there is a curious weak-coupling limit

kL, kR → +∞ , h→ −∞ , h̄ ≡ −h− 4kLkR
kL + kR

fixed , k̄ ≡ kR − kL fixed , (5.19)

in which the two-loop beta function (5.15) becomes that of the PCM with WZ term in the
same subtraction scheme (extending the one-loop observation of [55])

d

dt
h̄ = cG

(
1− k̄2

h̄2

)[
1 + 1

2cGh̄−1
(

1− 3k̄2

h̄2

)]
,

d

dt
k̄ = 0 . (5.20)

It remains to be understood if there is a first-principles explanation of this fact.

6 Conclusions

In this paper we have constructed and investigated integrable bi-deformations of Z4 per-
mutation supercoset sigma models with superisometry group G × G. These are ex-
pected to define integrable deformations of type II superstrings on AdS3 × S3 × T4 and
AdS3×S3×S3×S1. Starting from the classically integrable GS and PS sigma models (1.2),
with P− = P1 + 2P2 − P3 and P− = P1 + 2P2 + 3P3 respectively, we constructed their bi-η
and bi-λ deformations in section 2 and section 3. In section 4 we showed that these models
are related by Poisson-Lie duality, with each obtained by integrating out different degrees of
freedom from the same E model on the Drinfel’d double. This also allowed us to construct
an η–λ deformation, with one copy of G η deformed and the other copy λ deformed.

The particular form of the bi-η and bi-λ models suggests an underlying pattern in
the deformations. It would be interesting to uncover this by extending the construction
to general Z2N permutation (super)cosets, generalising the results of [34]. Moreover, in
addition to PS and GS type models, it is known that for N > 2 there are other choices
of P− that define classically integrable sigma models [87] and these should also admit bi-η
and bi-λ deformations.

An important open problem is the explicit construction of the type II supergravity
backgrounds for the bi-deformations of AdS3× S3×T4 and AdS3× S3× S3× S1. The type
II supergravity equations of motion imply one-loop Weyl invariance, a basic consistency
condition for string sigma models. Below we summarise what is known in the literature
for deformations of AdS3 × S3 × T4 and its non-abelian T-duals.

The bi-η deformation has been studied in detail [28] in the case where the opera-
tor R is built from two psu(1, 1|2) Drinfel’d-Jimbo solutions of the non-split inhomoge-
neous Yang-Baxter equation. When both Drinfel’d-Jimbo solutions are associated to the
fermionic Dynkin diagram of psu(1, 1|2), the background solves the type II supergrav-
ity equations. For other Dynkin diagrams, the background instead solves the generalised
equations of [72, 79] (see also [88]). This follows the general pattern that supergravity back-
grounds are associated to unimodular operators R [67], which in turn define unimodular
Lie (super)algebras f̃ (4.10) through the R-bracket. It would be interesting to understand
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the precise form of the unimodularity condition for the bi-η deformation, in particular for
operators R that mix the left and right copies of the symmetry algebra.

Less is known for the bi-λ deformation. It is expected that the corresponding back-
ground will solve the type II supergravity equations since the lack of isometries means
that the generalised supergravity equations are equivalent to the standard supergravity
equations. Moreover, the degrees of freedom that are integrated out in the E model are
associated to the unimodular Lie (super)algebra fdiag (4.10). For the symmetric λ deforma-
tion, a candidate supergravity background has been written down in [89]. An alternative
dilaton and set of R-R fluxes supporting the same metric and B-field was given earlier
in [54]. This second background is expected to be the bosonic Poisson-Lie dual23 of the
symmetric η deformation. This is in contrast to the first background, corresponding to
the symmetric λ deformation [53], which is the Poisson-Lie dual with respect to the full
superisometry algebra. It would be interesting to construct the generalisation of both these
backgrounds for the bi-deformed λ models. The two bi-deformed backgrounds would have
the same metric (and no B-field) [55] as each other, but would be supported by different
dilatons and R-R fluxes.

To gain a better understanding of the bi-λ deformations, and λ deformations more
generally, it is informative to take the λ → 0 limit. As recalled in section 3, taking this
limit in the bosonic truncation gives the (GkL ×GkR)/GkL+kR gauged WZW model. This
is a CFT, hence the associated metric and B-field can be completed, with the requisite flat
directions and a non-trivial dilaton, to a supergravity background, i.e., there are no R-R
fluxes. By analogy with the AdS2 × S2 × T6 case [54, 59, 90, 91], we expect this NS-NS
background to be the λ → 0 limit of the bosonic Poisson-Lie dual background, while for
the bi-λ deformation we expect R-R fluxes and a more complicated dilaton. In addition to
taking the λ→ 0 limit at the level of the supergravity background, it would be important
to understand it abstractly in the sigma model (3.7), particularly in the GS case (3.18)
given the simple form of the κ-symmetry transformations (3.56), (3.57) in this limit.

Similarly, very little is known about the η–λ deformation. We again expect that
the backgrounds will solve the type II supergravity equations assuming that the operator
R satisfies a unimodularity condition, or equivalently the Lie (super)algebra f2 (4.42) is
unimodular. The η–λ deformation can be understood as the single-sided Poisson-Lie dual
of the bi-η deformation, and in the η → 0 limit becomes the single-sided λ deformation. On
general grounds, it is expected that this single-sided λ deformation is the same as (3.42)
(up to interchanging the two copies of G), which is found by first taking kR → ∞ in the
bi-λ model to give the NATD-λ model (3.37) and then undoing the non-abelian T-duality.
However, this remains to be confirmed.

A supergravity background embedding the λ deformation of the PCM, i.e., the bosonic
truncation of the single-sided λ deformation, is given in [54]. By a similar logic to before,
this should correspond to the single-sided bosonic Poisson-Lie dual of the single-sided η

deformation. We note however, that this background has imaginary R-R fluxes. Super-
23By this we mean Poisson-Lie dualising the symmetric η deformation (ηL = ηR) with the operator R

built from the Drinfel’d-Jimbo solution associated to the distinguished Dynkin diagram with respect to the
bosonic subalgebra. For a discussion of Poisson-Lie dualities with respect to subalgebras see [61].
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gravity backgrounds for a different type of η–λ deformation were discussed in [92]. These
are based on (super)cosets of the form F/F0 and formally both η and λ deforming the
(super)isometry group F at the same time [60]. Trying to do this puts a strong constraint
on the operator R defining the η deformation, which implies that the extra deformation
acts trivially in many cases of interest.

The single-sided λ deformation is particularly interesting since it has global G sym-
metry, so describes supersymmetric string backgrounds. The presence of supersymmetry
may mean the resulting supergravity backgrounds have certain “nicer” properties, as hap-
pened for the single-sided η deformation in [26]. Moreover, the WZW model appears as
the bosonic truncation in the further limit λ→ 0.

Beyond one-loop Weyl invariance, it would also be interesting to investigate the higher-
loop properties of these models. In section 5 we investigated the higher-loop renormalisabil-
ity of the bosonic truncation of the bi-λ model. We showed that in a “tripled” formulation
certain fields decouple and the bosonic bi-λ model becomes manifestly renormalizable to
all orders due to the symmetries. Therefore, it could be insightful to try to use a similar
approach to study the bi-λ deformations of Z4 permutation supercosets.
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A Action of the η–λ deformation

Using the definition of the bilinear form 〈〈·, ·〉〉 as in (4.9), together with the projectors
EP(P ± 1) of (4.45), the action (4.3) can be expanded into24

S = 1
2

∫
S̃Tr

[
(JL+ −AL+, JR+ −AR+)

(
RL,gL + 1 0

0 Ad−1
gR

)
f+K̃+

]

− 1
2

∫
S̃Tr

[
(JL+ −AL+,−AR+)

(
RL,gL − 1 0

0 1

)
f+K̃+

]

− 1
2

∫
S̃Tr

[
(JL− −AL−, JR− −AR−)

(
RL,gL + 1 0

0 Ad−1
gR

)
f−K̃−

]
24In this appendix we use the shorthand notation

∫
≡
∫

d2x.
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+ 1
2

∫
S̃Tr

[
(JL− −AL−,−AR−)

(
RL,gL − 1 0

0 1

)
f−K̃−

]

− 1
2

∫
S̃Tr

[
(JL+, JR+)(AL−,AR−)t

]
+ 1

2

∫
S̃Tr

[
(JL−, JR−)(AL+,AR+)t

]
+ 1

2

∫
S̃Tr

[
(JL+, 0)(AL−,AR−)t

]
− 1

2

∫
S̃Tr

[
(JL−, 0)(AL+,AR+)t

]
+ SWZ(gR; S̃Tr) ,

(A.1)

where
K̃+ = (PL − P λ−)J− − (1− P λ−)A− ,

K̃− = (PL − (P λ+)−1)J+ − (1− (P λ+)−1)A+ .
(A.2)

Adding the first two lines together, as well as the third and fourth line, gives

S = 1
2

∫
S̃Tr

[
(JL+ −AL+, JR+ −AR+ + Ad−1

gR
AR+)

(
2 0
0 Ad−1

gR

)
f+K̃+

]

− 1
2

∫
S̃Tr

[
(JL− −AL−, JR− −AR− + Ad−1

gR
AR−)

(
2 0
0 Ad−1

gR

)
f−K̃−

]

− 1
2

∫
S̃Tr

[
(0, JR+)(AL−,AR−)t

]
+ 1

2

∫
S̃Tr

[
(0, JR−)(AL+,AR+)t

]
+ SWZ(gR; S̃Tr) .

(A.3)
Using the explicit expression of K̃± in (A.2) and defining

M± =
(

2 0
0 Ad−1

gR

)
f± , (A.4)

this becomes

S = 1
2

∫
S̃Tr

[
(J+ −A+ + PR Ad−1

gR
A+)M+

(
(PL − P λ−)J− − (1− P λ−)A−

)]
− 1

2

∫
S̃Tr

[
(J− −A− + PR Ad−1

gR
A−)M−

(
(PL − (P λ+)−1)J+ − (1− (P λ+)−1)A+

)]
− 1

2

∫
S̃Tr [J+PRA−] + 1

2

∫
S̃Tr [J−PRA+] + SWZ(gR; S̃Tr) .

(A.5)
Grouping the terms of the form JJ , JA, AJ and AA together gives

S = 1
2

∫
S̃Tr

[
J+M+(PL − P λ−)J−

]
− 1

2

∫
S̃Tr

[
J−M−(PL − (P λ+)−1)J+

]
− 1

2

∫
S̃Tr

[
J+M+(1− P λ−)A−

]
− 1

2

∫
S̃Tr [J+PRA−]

+ 1
2

∫
S̃Tr

[
J−M−(1− (P λ+)−1)A+

]
+ 1

2

∫
S̃Tr [J−PRA+]

− 1
2

∫
S̃Tr

[
A+(1− PR AdgR)M+

(
(PL − P λ−)J− − (1− P λ−)A−

)]
+ 1

2

∫
S̃Tr

[
A−(1− PR AdgR)M−

(
(PL − (P λ+)−1)J+ − (1− (P λ+)−1)A+

)]
+ SWZ(gR; S̃Tr) .

(A.6)
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Now, recall that P λ+ and P λ− are transpose to each other with respect to S̃Tr so one can write

S = 1
2

∫
S̃Tr

[
J+
(
M+(PL − P λ−)− (PL − (P λ−)−1)MT

−

)
J−
]

+ 1
2

∫
S̃Tr

[
J+
(
−M+(1− P λ−)− PR + (PL − (P λ−)−1)MT

−(1− PR Ad−1
gR

)
)
A−

]
+ 1

2

∫
S̃Tr

[
A+

(
(1− (P λ−)−1)MT

− + PR − (1− PR AdgR)M+(PL − P λ−)
)
J−
]

+ 1
2

∫
S̃Tr

[
A+

(
(1− PR AdgR)M+(1− P λ−)− (1− (P λ−)−1)MT

−(1− PR Ad−1
gR

)
)
A−

]
+ SWZ(gR; S̃Tr) .

(A.7)
To make progress we note the useful identities

M+(PL−P λ−) + (1 + Ad−1
gR

)(1−Ad−1
gR

)−1PR =
(
M+(1−P λ−) +PR

)
(PL +PR(1−Ad−1

gR
)−1) ,
(A.8)

and

(1− PR AdgR)M+(PL − P λ−)− PR = (1− PR AdgR)M+(1− P λ−)((1− PR Ad−1
gR

))−1

= −(1− (P λ−)−1)MT
−

= −(PL − (P λ−)−1)MT
− − PRMT

− .

(A.9)

From this we deduce that

M+(PL − P λ−)− (PL − (P λ−)−1)MT
−

=
(
−2PL − PR(1 + Ad−1

gR
P λ−)(1− P λ−)−1

)
(1− (P λ−)−1)MT

− .
(A.10)

Finally, the action becomes

S = −1
2

∫
S̃Tr

[
J+
(
2PL + PR(1 + Ad−1

gR
P λ−)(1− P λ−)−1

)
O−1

(
J− −A− + PR Ad−1

gR
A−

)]
− 1

2

∫
S̃Tr

[
J+(1 + Ad−1

gR
)PRA−

]
+ SWZ(gR; S̃Tr)

+
∫

S̃Tr
[
A+O−1

(
J− −A− + PR Ad−1

gR
A−

)]
,

(A.11)
where

O = 1
2PL(P−1

E −RL,gL) + PR(1−Ad−1
gR
P λ−)(1− P λ−)−1 . (A.12)

Using the identities(
2PL + PR(1 + Ad−1

gR
P λ−)(1− P λ−)−1

)
O−1

= 2
(
PL + PR(1− P λ−)−1

)
O−1 − PR (A.13)

= 2
(
PL + PR Ad−1

gR
P λ−(1− P λ−)−1

)
O−1 + PR , (A.14)
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we provide two alternative formulations of the action. The first is

S = −
∫

S̃Tr
[
J+
(
PL + PR(1− P λ−)−1

)
O−1

(
J− −A− + PR Ad−1

gR
A−

)]
+ 1

2

∫
S̃Tr

[
J+PR

(
J− −A− + Ad−1

gR
A−

)]
− 1

2

∫
S̃Tr

[
J+(1 + Ad−1

gR
)PRA−

]
+ SWZ(gR; S̃Tr)

+
∫

S̃Tr
[
A+O−1

(
J− −A− + PR Ad−1

gR
A−

)]
,

(A.15)

while the second is

S = −
∫

S̃Tr
[
J+
(
PL + PR Ad−1

gR
P λ−(1− P λ−)−1

)
O−1

(
J− −A− + PR Ad−1

gR
A−

)]
− 1

2

∫
S̃Tr

[
J+PR

(
J− −A− + Ad−1

gR
A−

)]
− 1

2

∫
S̃Tr

[
J+(1 + Ad−1

gR
)PRA−

]
+ SWZ(gR; S̃Tr)

+
∫

S̃Tr
[
A+O−1

(
J− −A− + PR Ad−1

gR
A−

)]
.
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