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1 Introduction

The hypothetical particle axion provides an elegant solution to the long standing strong
CP problem [1–3]. Since its first proposal in late 1970s, tremendous efforts have been put
in various fields of physics to search this intriguing hypothesized particle, ranging from
particle physics, astronomy, cosmology to condensed matter and optical physics, etc. [4–9].

In the Peccei-Quinn (PQ) picture, axion corresponds to the pseudo-Nambu-Goldstone
boson (pNGB) resulting from the breaking of the global UPQ(1) symmetry. In the low-
energy regime, the most characteristic interaction of the axion is the coupling with the
topological gluon density, i.e., a/faGµνG̃µν , where Gµν is the gluon field strength tensor,
its dual is G̃µν = εµνρσG

ρσ/2 with εµνρσ the Levi-Civita antisymmetric tensor and fa
stands for the axion decay constant. The essential point of the PQ mechanism to solve
the strong CP problem relies on the cancellation of the CP violating term θGµνG̃µν in
QCD by the dynamical generation of a proper vacuum expectation value (VEV) from the
axion field. Different ultraviolet (UV) models in the new physics sector can lead to rather
different couplings of the axion with other standard-model (SM) particles, such as the
leptons, quarks, photon and W/Z bosons [2, 3, 10–13], although they can be constructed
to give a universal GG̃ coupling.

Due to the nonperturbative nature of the gluons in the low-energy region, the common
way to study the interactions of the axion is to first perform the axial transformation of
the quark fields to eliminate the a/faGµνG̃µν operator from the beginning and then match
to the axion chiral perturbation theory (χPT), which encodes the axion field together with
the pions in the SU(2) case, and the octet of π,K, η8 in the SU(3) case. On the other hand,
it is also possible to directly match the anomalous axion term a/faG

µνG̃µν with the χPT
operators. In this regard, it is reminded that the large mass of the singlet pseudoscalar η0
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(the dominant component of the physical η′ meson), compared to those of the pseudoscalar
octet π,K and η8, can be mainly attributed to the anomalous breaking of the QCD UA(1)
symmetry. Therefore, it implies that another way to introduce the axion field into χPT can
be similar to the case of the singlet η0. The pioneer work to study the influence of the η′

on the axion properties can trace back to refs. [14, 15]. Recently many works aiming at the
extended descriptions of the axion-η(′) interactions are proposed from different points of
view [16–25], including the axion production from the η/η′ and kaon decays, CP violating
axion signals, the axion-baryon couplings, the model-independent part of the axion-photon-
photon coupling, etc. In this work, we will further pursue a systematical calculation of the
axion-φ (φ = π, η, η′) interactions order by order within the U(3) χPT by employing the
δ expansion scheme [26–28], namely, a simultaneous expansion in powers of the momenta,
light-quark masses and 1/NC , i.e. δ ∼ p2 ∼ mq ∼ 1/NC . In addition, we also study
the relations of the model-independent two-photon couplings of the axion, together with
those of the π0, η and η′ mesons, by performing the next-to-leading order (NLO) U(3) χPT
calculations.

The layout of this paper is as follows. The relevant chiral Lagrangians up to NLO
are elaborated in section 2. We address the mixing formalism at leading order (LO) for
the four-particle system involving π0, η, η′ and the axion in section 3. The calculation of
the NLO mixing, the fits to relevant lattice data and numerical analyses of the transitions
matrix elements, and the masses of π0, η, η′ and the axion are given in section 4. The
two-photon couplings of the aforementioned four particles are then studied up to NLO in
the U(3) χPT in section 5. A short summary and conclusions are given in section 6.

2 Axion U(3) χPT up to next-to-leading order

The axion is characterized by the interaction with the gluons and its effective operators
can be written as

LGa = 1
2∂µa∂

µa+ a

fa

αs
8π

8∑
i=1

GiµνG̃
i,µν − 1

2m
2
a,0 a

2 , (2.1)

where Giµν and G̃iµν are the gluon field strength tensor and its dual, with i the color indices.
The second term in eq. (2.1) is considered to be model-independent, due to its relevance of
solving the strong CP problem. For the bare mass ma,0 of the axion in the third term, its
value is usually assumed to be vanishing in the minimal QCD axion setup [1–3], although
it is also possible to have a nonvanishing ma,0 to solve the strong CP problem [4–9, 29–
32]. The direct couplings of the axion with the photon and fermions heavily rely on the
specific model-building considerations in the BSM sector. In this work, we focus on the
axion interactions with the hadrons and photon that are purely induced by the effective
Lagrangian in eq. (2.1), i.e. the model-independent parts of the axion-hadron and axion-
photon interactions.

The next step is to match the effective Lagrangian in eq. (2.1) to the axion chiral
perturbation theory [33, 34], which provides a reliable framework to study the axion-hadron
interactions order by order. In the low-energy QCD, apart from the chiral symmetry
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breaking, another distinct feature is the QCD UA(1) anomaly, i.e. the anomalous breaking
of the UA(1) symmetry by topological charge density ω(x) = αsGµνG̃

µν/(8π), which gives
a natural explanation of the large mass of the singlet η0 even in the chiral limit. In this
work we will carry out the study sticking to the U(3) χPT by employing the large NC

argument [35–37]. This implies that one can explicitly include the axion field into the χPT
Lagrangian in a similar way as the situation of the η′. To be more specific, we use the
δ-expansion scheme to arrange the various contributions in U(3) χPT by simultaneously
considering the expansions in the momenta, light-quark masses and 1/NC [26–28].

To set up the notations, we briefly recapitulate the way to construct the LO operators
of U(3) χPT. From the large NC point of view, the singlet η0 would become the ninth
pNGB in the large NC and chiral limits, since the instanton effect via the QCD UA(1)
anomaly is 1/NC suppressed. Then, the dynamical fields in low energy QCD form the
pNGB nonet, which is usually parameterized as U = exp

(
i
√

2Φ/F
)
, with the pNGB nonet

matrix given by

Φ =


1√
2π

0 + 1√
6η8 + 1√

3η0 π+ K+

π− −1√
2π

0 + 1√
6η8 + 1√

3η0 K0

K− K
0 −2√

6η8 + 1√
3η0

 . (2.2)

The QCD UA(1) anomaly effect can be incorporated in effective Lagrangian via the oper-
ator − τ

2 (−i log detU)2, where τ corresponds to the topological susceptibility [28]. Taking
into account that detU = exp(Tr logU), the former operator can be cast as −3τη2

0/F
2,

which is nothing but the mass term for singlet η0 in the chiral limit. In practice it is
convenient to introduce M2

0 = 6τ
F 2 as the LO mass squared for η0. In the large NC counting

rule, the topological susceptibility τ and the pNGB decay constant F scale like O(1) and
O(
√
NC), respectively [28, 38], which indicate that M2

0 behaves as O(1/NC). Under the
PQ assumption, the CP violating θGG̃ term is canceled by the VEV part of the axion via
the aGG̃ term in eq. (2.1). Therefore, this indicates that the anomalous aGG̃ effect can be
included in the chiral effective Lagrangian in a similar fashion as the θ term, the latter of
which is discussed in great detail in ref. [28]. According to the recipe in the previous refer-
ence, the axion field can be introduced to the LO U(3) χPT together with the anomalous
mass for η0 via − τ

2 (−i log detU + a/fa)2 = − τ
2 (
√

6η0/F + a/fa)2. For phenomenological
convenience, we will always use the parameter M0 to replace the topological susceptibility
τ in the following discussions. On general grounds, the axion chiral transformation on the
quark fields needed to remove the aGG̃ term in eq. (2.1) is of the same type as the singlet
axial chiral transformation UA(1) that is parameterized as exp(iη0

√
2/3). This observation

drives to the necessity of adding together the fields of the axion and η0 in the large NC and
chiral limit, where the latter is a pNGB of QCD parameterized as coordinates in the coset
space UL(3)⊗UR(3)/UV (3) [39]. Under these circumstances, the LO U(3) χPT including
the axion field takes the form

LLO = F 2

4 〈uµu
µ〉+ F 2

4 〈χ+〉+ F 2

12M
2
0X

2 , (2.3)
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where the axion field is introduced via

X = log (detU) + i
a

fa
, (2.4)

and other basic χPT building blocks are given by

U = u2 = ei
√

2Φ
F , χ = 2B(s+ ip) , χ± = u†χu† ± uχ†u ,

uµ = iu†DµUu
† , DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) . (2.5)

Here, s, p, vµ, and aµ are external scalar, pseudoscalar, vector and axial-vector ex-
ternal sources, respectively, introduced as spurion fields. The quark-mass corrections are
introduced by fixing s = Mq ≡ diag(mu,md,ms). The parameter M0 in the last term of
eq. (2.3) corresponds to the leading-order mass of the η0, which squared is proportional to
the topological susceptibility [28]. The leading scaling behavior of M2

0 is O(1/NC) in the
δ-counting scheme [35–37].

Another approach frequently used in literature to introduce the axion field in χPT,
e.g. as those in refs. [33, 34], is to first perform the axial transformation of the quark fields
to eliminate the axion-gluon operator in eq. (2.1), i.e., by taking

q → e
i a
2fa

γ5Qaq , [q = (u, d, s)T] , (2.6)

where Qa is a 3× 3 matrix spanned in the light three-flavor space. Such a transformation
induces two additional terms in the effective Lagrangian (2.1): − aαs

8πfaGµνG̃
µν Tr(Qa) and

−∂µa
2fa q̄γ

µγ5Qaq. The former term exactly cancels the axion-gluon operator in eq. (2.1),
after taking the constraint Tr(Qa) = 1. While, the latter term describes the extra axion-
quark interaction that is induced by the axial transformation (2.6). In addition, it is
easy to demonstrate that this transformation will also introduce the axion field into the
quark masses: Mq → Mq(a) = e

i a
2fa

QaMqe
i a
2fa

Qa , which can lead to non-derivative axion
interactions. In the SU(3) χPT, the LO mass mixing between the axion and the neutral
unflavored π0 and η8 can be avoided by taking Qa ∝ M−1

q . However, in the U(3) case,
even if one imposes the latter form for Qa, the mixing between the axion and the singlet
η0 still exists at LO. Therefore, in this work we will not perform the transformation of
quark fields (2.6), and use instead the original U(3) Lagrangian in eq. (2.3) to proceed the
calculations. The physical results should be the same regardless of keeping the aGG̃ term
or replacing it via the axial transformation (2.6), although the intermediate steps in the
χPT calculations can look different.

In the rest of the discussions, we will stick to the method by including the axion
in the U(3) χPT through the X field of eq. (2.4). In this case, the axion U(3) χPT
Lagrangian coincides with the standard one with the obvious replacement of the X field.
When restricting to the axion-meson mixing, the relevant NLO Lagrangian under the δ-
counting rule consists of four operators

LNLO = L5〈uµuµχ+〉+ L8
2 〈χ+χ+ + χ−χ−〉 −

F 2 Λ1
12 DµXDµX −

F 2 Λ2
12 X〈χ−〉 , (2.7)
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where the first two terms accompanied by L5 and L8 share the same forms as those from
the conventional SU(3) χPT [38]. Within the framework of χPT, the NC order of a
given operator can be inferred by the number of traces in the flavor space [38]. Generally
speaking, one extra trace will bring one additional 1/NC suppression order to the effective
operator. By taking into account the identity of log detU = 〈logU〉, it is straightforward to
conclude that the first two terms in eq. (2.7) are counted as O(p4, NC), and the remaining
two terms with Λ1 and Λ2 that only appear in the U(3) case [28] are counted as O(p2, N0

C).
The two-photon decays of the light pseudoscalar mesons are governed by the Wess-

Zumino-Witten Lagrangian and the relevant LO Lagrangian [40, 41] is

LLO
WZW = −3

√
2e2

8π2F
εµνρσ∂

µAν∂ρAσ〈Q2Φ〉 , (2.8)

which is counted as O(p4, NC) in the δ-counting scheme. The quantity Q stands for the
matrix of the electric charges of the light quarks, i.e. Q = Diag

(
2e
3 ,−

e
3 ,−

e
3

)
, with e the

magnitude of the electron charge, and Aµ stands for the photon field. At NLO there are
two additional terms [42, 43]

LNLO
WZW = it1εµνρσ〈fµν+ fρσ+ χ−〉+ k3εµνρσ〈fµν+ fρσ+ 〉X , (2.9)

with
fµν+ = uFµνL u† + u†FµνR u , (2.10)

where FµνL = ∂µF νL − ∂µF νL − i[F
µ
L , F

ν
L ] and FµνR = ∂µF νR − ∂µF νR − i[F

µ
R, F

ν
R], with FµL =

vµ − aµ and FµR = vµ + aµ, denote the field strength tensors of left-hand and right-hand
external sources, respectively. One can take FµL=F

µ
R= −eQAµ to obtain the interaction

vertexes with photons. The t1 and k3 terms in eq. (2.9) belong to the O(p6, NC) and
O(p4, N0

C) types of operators in the δ counting, respectively. When restricting to the
pseudoscalar-photon-photon case, the Lagrangian (2.9) reduces to

LNLO
WZW = t1

32
√

2B
F

εµνρσ∂
µAν∂ρAσ〈

(
MqΦ + ΦMq

)
Q2〉

+ 16k3εµνρσ∂
µAν∂ρAσ〈Q2〉

(√2
F
〈Φ〉+ a

fa

)
. (2.11)

According to the Lagrangians in eqs. (2.3) and (2.8), the LO interactions of the axion with
the pNGBs and photons are purely caused by the mixing of the axion and the neutral
unflavored pNGBs. Therefore it is mandatory to first address the axion-pNGBs mixing
problem.

3 Revisiting the mixing formalism at LO

In principle, there are both kinetic and mass mixings between different states [44, 45].
At LO in the δ counting, the π0, η, η′ and a will get mixing purely via the mass terms
from the Lagrangian (2.3), while the kinetic mixing only starts to appear in the NLO
Lagrangian (2.7). We calculate the mixing of the axion and π0, η, η′ order by order below.
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In refs. [46–49], the η–η′ mixing has been studied up to next-to-next-to leading order
in the δ expansion in the isospin limit. As first pointed out in ref. [46], it is convenient to
use the η̊ and η̊

′ that are diagonalized at LO, if one attempts to perform a systematical
higher-order calculation in the U(3) chiral theory relying on the δ counting. The key reason
is that the LO mixing vertex of the η8 and η0 is formally counted as the same order of
their LO masses, implying that an infinity insertion of the LO mixing vertex of η0 and η8
in the loop calculations will not get suppressed in the δ-counting scheme, see figure 1 of
ref. [46] for illustrations. This cumbersome problem can be avoided by first performing
the LO diagonalization of η8 and η0 and using the LO diagonalized fields η̊ and η̊′, whose
relations are given by (

η̊

η̊
′

)
=
(
cθ −sθ
sθ cθ

)(
η8
η0

)
, (3.1)

with cθ = cos θ and sθ = sin θ. The reason behind is that the mixing strengths between
η̊ and η̊

′ are suppressed at least by one higher order in the δ-counting rule. From the
Lagrangian (2.3), the LO mixing angle θ and masses of η̊ and η̊′ can be calculated

m2
η = M2

0
2 +m2

K
−

√
M4

0 −
4M2

0 ∆2

3 + 4∆4

2 , (3.2)

m2
η′ = M2

0
2 +m2

K
+

√
M4

0 −
4M2

0 ∆2

3 + 4∆4

2 , (3.3)

sin θ = −


√√√√

1 +
(
3M2

0 − 2∆2 +
√

9M4
0 − 12M2

0 ∆2 + 36∆4)2
32∆4


−1

, (3.4)

where ∆2 = m2
K
−m2

π, and mπ and mK are the LO masses of the pion and kaon in the
isospin symmetric limit, respectively.

New subtle complexities will arise when simultaneously including the π0, the axion a, η
and η′. On one hand, the isospin breaking (IB) contributions can not be ignored any more,
since the mixings between the π0 and the remaining fields η, η′ and a are caused by the IB
effects. It is noted that we only consider the IB effects arising from the strong interaction,
namely the mass difference between the up and down quarks. On the other hand, the
mixings between the axion a and other fields π0, η and η′ are suppressed by the factor F/fa.
Additional power counting rules will be introduced to simplify the discussions, apart from
the conventional δ-counting that is widely employed in the η–η′ case. Generally speaking,
the magnitudes of the IB corrections are around 1 ∼ 2%. Compared to the correction
in the δ counting, which can be naively estimated to be around 30% [1/(NC = 3)], it is
justified to just keep the leading nonvanishing IB terms. The magnitude of the axion-related
suppression factor F/fa is definitely much more smaller than that of the IB corrections.
Therefore, at the current stage, it is safe to just take the leading F/fa terms. More precisely,
we aim at the systematical calculations of the higher-order corrections in the δ-counting
scheme by keeping the leading IB and F/fa terms in this work.
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Similarly as the η–η′ case, it is much more convenient to use the fields π0, η, η′

and a that already diagonalize LO mass term to systematically calculate the higher-order
corrections. Notice that we have used η̊ and η̊

′ to denote the LO diagonalized η and η′

fields in the isospin symmetric case, while η and η′ stand for the fields after including the
IB effects. As stated before, the leading terms in the IB and F/fa expansions will be kept
in our calculation and, in this case, one can obtain the diagonalized states π0, η, η′ and a
by performing the following field redefinitions

π0

η

η′

a

 =


1 +O(v2) −v12 −v13 −v14

v12 1 +O(v2) −v23 −v24
v13 v23 1 +O(v2) −v34
v14 v24 v34 1 +O(v2)



π0

η̊

η̊
′

a

 , (3.5)

where π0 and a correspond to the bare states entering in the Lagrangian (2.3). The matrix
elements vij are determined by the mass mixing terms from the LO Lagrangian (2.3), and
their explicit expressions are found to be

v12 = − ε√
3
cθ −
√

2sθ
m2
π −m2

η

, (3.6)

v13 = − ε√
3

√
2cθ + sθ

m2
π −m2

η′
, (3.7)

v14 = M2
0 ε

3
√

2(m2
a,0−m2

π)
F

fa

[
sθ(cθ −

√
2sθ)(m2

a,0 +m2
π −m2

η)
(m2

a,0−m2
η)(m2

η −m2
π) −

cθ(
√

2cθ + sθ)(m2
a,0 +m2

π −m2
η′)

(m2
a,0−m2

η′)(m2
η′ −m2

π)

]
,

(3.8)

v24 = − M2
0 sθ√

6(m2
a,0−m2

η)
F

fa
, (3.9)

v34 = M2
0 cθ√

6(m2
a,0−m2

η′)
F

fa
, (3.10)

where mπ, mη and mη′ correspond to the LO masses of the π, η and η′ mesons, and
ε = B(mu − md) corresponds to the leading strong IB factor. Regarding the matrix
element v23 in eq. (3.5), it describes the IB contribution to the η–η′ mixing, which is
expected to play negligible roles comparing with the SU(3) symmetry breaking effects.
Therefore in this work we will neglect the IB contributions to the η–η′ mixing, i.e., v23
will be set to zero throughout. At the LO electromagnetic (EM) correction, the Dashen’s
theorem tells us that the EM corrections to the kaon masses equal to the mass differences
of the pions [43, 50], i.e. (m2

K+ −m2
K0)EM = m2

π+ −m2
π0 , and at this order one can write

ε ≡ B(mu −md) = m2
K+ −m2

K0 − (m2
π+ −m2

π0).
After the diagonalization at LO, the mass of the axion field a is found to be

m2
a = m2

a,0 + M2
0F

2

6f2
a

[
1 +

c2
θM

2
0 (2m2

a,0 −m2
η′)

(m2
a,0 −m2

η′
)2 +

s2
θM

2
0 (2m2

a,0 −m2
η)

(m2
a,0 −m2

η)2

]
+O(ε) , (3.11)
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which by taking ma,0 = 0 reduces to the minimal setup of the QCD axion case

m2
a = M2

0F
2

6f2
a

[
1− c2

θM
2
0

m2
η′
− s2

θM
2
0

m2
η

]
+O(ε) . (3.12)

It should be stressed that the neat analytical expressions in eqs. (3.6)–(3.12) are obtained
by keeping the leading IB effects in π0–a and π0–η(′) mixing and neglecting the IB contri-
butions to the a–η(′) mixing and the masses of the axion and pNGBs. The concise formulas
in eqs. (3.11) and (3.12) give us direct access to estimate the influences from the pertinent
η–η′ mixing parameters to the axion mass in different scenarios. We take the minimal QCD
axion case, i.e. eq. (3.12), to carry out some exploratory phenomenological discussions.

By taking the LO expressions of the η–η′ mixing in eqs. (3.2), (3.3) and (3.4), it is easy
to demonstrate that the axion mass squared can be recast as

m2
a = F 2

f2
a

M2
0m

2
π(2m2

K
−m2

π)
8M2

0m
2
K
− 2m2

π(M2
0 − 6m2

K
)− 6m4

π

, (3.13)

which reduces to the well celebrated result m2
a = F 2m2

π/(4f2
a ) [2] by keeping the leading

expansions of m2
π/m

2
K

and m2
π/M

2
0 .

For the LO fit in ref. [51], the value of M0 is determined to be M0 = 820.0MeV, which
leads to

mη = 493.6MeV, mη′ = 957.7MeV, θ = −19.6◦ . (3.14)

By substituting these values to eqs. (3.8)–(3.11) with ma,0 = 0, we obtain

ma = 6.1µeV1012 GeV
fa

, v14 = −0.012
fa

, v24 = −0.035
fa

, v34 = −0.026
fa

, (3.15)

where the mass agrees well with the recent determinations [34, 52]. The units of the
numbers in the numerators of v14/24/34 are taken as GeV here. Nevertheless, it is clear
that the LO predictions for the masses of η and η′ in eq. (3.14) are still not satisfactory
when compared to their physical values. In naively estimating mη and mη′ by the physical
masses of η and η′, the axion mass can be predicted from eq. (3.12) with the result

ma = 9.7µeV1012 GeV
fa

, v14 = −0.011
fa

, v24 = −0.028
fa

, v34 = −0.026
fa

, (3.16)

with M0 = 820MeV and θ = −19.6◦. In turn, if we take M0 = 820MeV and θ = −10.0◦

the result turns out to be

ma = 14.5µeV1012 GeV
fa

, v14 = −0.008
fa

, v24 = −0.015
fa

, v34 = −0.027
fa

. (3.17)

The obvious changes of the predictions in eqs. (3.15)–(3.17) by taking different phenomeno-
logical inputs for the mη̄ and mη̄′ , give hints that there could be potentially noticeable
higher order corrections. This urges us to further continue the NLO calculations and verify
their impacts on the axion properties.
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4 Mixing at NLO and phenomenological discussions

Up to the NLO in the δ counting, the bilinear terms involving the π0, η, η′ and the axion
field a, which are diagonalized at LO, can be generally written as

L = 1 + δηk
2 ∂µη∂

µη+ 1 + δη
′

k

2 ∂µη
′∂µη′+ δηη

′

k ∂µη∂
µη′−

m2
η + δm2

η

2 η η−
m2
η′ + δm2

η′

2 η′ η′− δηη
′

m2η η
′

+ 1 + δπk
2 ∂µπ

0∂µπ0 + δπηk ∂µπ
0∂µη+ δπη

′

k ∂µπ
0∂µη′−

m2
π + δm2

π

2 π0 π0− δπηm2π
0η− δπη

′

m2 π
0η′

+ 1 + δak
2 ∂µa∂

µa+ δaπk ∂µa∂
µπ0 + δaηk ∂µa∂

µη+ δaη
′

k ∂µa∂
µη′−

m2
a + δm2

a

2 a a− δaπm2a π0

− δaηm2a η− δaη
′

m2a η
′ ,

(4.1)
where the δXk with subscript k denotes the corrections from higher orders to the kinetic
terms and other δj corresponds to the higher order contributions to the mass terms. It
is noted that the higher derivative terms are contributed by the O(p6) and higher-order
operators [49] and hence are absent at NLO. Comparing with the results of only focusing
the η–η′ mixing in refs. [49, 51], we extend the calculations by simultaneously including
the π0 and the axion a in the above equation. All the δi parameters in eq. (4.1) can be
calculated order by order in the U(3) chiral perturbation theory. Their explicit expressions
calculated from the NLO Lagrangians of eq. (2.7) are given in the appendix.

Aside from the mass mixing terms, one also has to deal with the kinetic mixing at
NLO. This can be done in a two-step procedure [49]. In the first step, not only one needs
to eliminate the kinetic mixing terms, but also one should make sure that all the fields are
in the canonical normalization, i.e., the bilinear derivative term of each field is multiplied
by 1/2. In the second step, the mass mixing will be handled by an orthogonal matrix that
does not spoil the already accomplished diagonalization of the kinetic-energy term [44, 45].
We will stick to the δ expansion up to NLO in all of these procedures. The diagonalized
canonical fields, which are labeled with hats on top of each state, can be obtained via the
following field redefinitions

π̂0

η̂

η̂′

â

 =


1 −y12 −y13 −y14
y12 1 −y23 −y24
y13 y23 1 −y34
y14 y24 y34 1

×


1− x11 −x12 −x13 −x14
−x12 1− x22 −x23 −x24
−x13 −x23 1− x33 −x34
−x14 −x24 −x34 1− x44



π0

η

η′

a

 , (4.2)

where the xij and yij are introduced to deal with the kinetic and mass mixing terms,
respectively. The matrix elements of xij are found to be

x11 = −δ
π
k

2 , x12 = −δ
πη
k

2 , x13 = −δ
πη′

k

2 , x14 = −δ
aπ
k

2 , x22 = −δ
η
k

2 ,

x23 = −δ
ηη′

k

2 , x24 = −δ
aη
k

2 , x33 = −δ
η′

k

2 , x34 = −δ
aη′

k

2 , x44 = −δ
a
k

2 , (4.3)
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and the expressions of the yij read

y12 =
δπηm2 +x12(m2

η +m2
π)

m2
η −m2

π

, y13 =
δπη

′

m2 +x13(m2
η′ +m2

π)
m2
η′
−m2

π

, y14 =
δaπm2 +x14(m2

a,0 +m2
π)

m2
a,0−m2

π

,

y23 =
δηη
′

m2 +x23(m2
η +m2

η′)
m2
η′
−m2

η

, y24 =
δaηm2 +x24(m2

η +m2
a,0)

m2
a,0−m2

η

, y34 =
δaη
′

m2 +x34(m2
η′ +m2

a,0)
m2
a,0−m2

η′
.

(4.4)
By keeping the contributions up to NLO, the masses of the diagonalized canonical

states take the form

m2
π̂ = m2

π + δm2
π
−m2

πδ
π
k , (4.5)

m2
η̂ = m2

η + δm2
η
−m2

ηδ
η
k , (4.6)

m2
η̂′ = m2

η′ + δm2
η′
−m2

η′δ
η′

k , (4.7)

m2
â = m2

a + δm2
a
−m2

a,0δ
a
k , (4.8)

and the kaon mass squared up to NLO is similarly given by

m2
K̂

= m2
K

+ δm2
K
−m2

K
δKk . (4.9)

Up to NLO the relations between the physical states (denoted by the hatted fields) and
the LO diagonalized ones reduce to

π̂0

η̂

η̂′

â

 =


1− x11 −x12 − y12 −x13 − y13 −x14 − y14
−x12 + y12 1− x22 −x23 − y23 −x24 − y24
−x13 + y13 −x23 + y23 1− x33 −x34 − y34
−x14 + y14 −x24 + y24 −x34 + y34 1− x44



π0

η

η′

a

 . (4.10)

To combine the LO relation (3.5), the mixing matrix between the physical states and
the bare ones are given by

π̂0

η̂

η̂′

â

 =


1 + z11 −v12 + z12 −v13 + z13 −v14 + z14
v12 + z21 1 + z22 z23 −v24 + z24
v13 + z31 z32 1 + z33 −v34 + z34
v14 + z41 v24 + z42 v34 + z43 1 + z44



π0

η̊

η̊
′

a

 , (4.11)

where the NLO corrections are collected in the zij and their explicit forms are given by

z11 = −x11 ,

z12 = −x12 − y12 − v12x22 + v13(y23 − x23) ,
z13 = −x13 − y13 − v13x33 − v12(y23 + x23) ,
z14 = −x14 − y14 − v12(x24 + y24)− v13(x34 + y34) ,
z21 = −x12 + y12 + v12x11 ,

z22 = −x22 ,
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z23 = −x23 − y23 ,

z24 = −x24 − y24 ,

z31 = −x13 + y13 + v13x11 ,

z32 = −x23 + y23 ,

z33 = −x33 ,

z34 = −x34 − y34 ,

z41 = −x14 + y14 + v14x11 + v24(x12 − y12) + v34(x13 − y13) ,
z42 = −x24 + y24 + v24x22 + v34(x23 − y23) ,
z43 = −x34 + y34 + v34x33 + v24(x23 + y23) ,
z44 = −x44 . (4.12)

As a result of combining eqs. (4.11) and (3.1), one can obtain
π̂0

η̂

η̂′

â

 =


1 + z11 cθ(−v12 + z12) + sθ(−v13 + z13) −sθ(−v12 + z12) + cθ(−v13 + z13) −v14 + z14
v12 + z21 cθ(1 + z22) + sθz23 −sθ(1 + z22) + cθz23 −v24 + z24
v13 + z31 cθz32 + sθ(1 + z33) −sθz32 + cθ(1 + z33) −v34 + z34
v14 + z41 cθ(v24 + z42) + sθ(v34 + z43) −sθ(v24 + z42) + cθ(v34 + z43) 1 + z44



π0

η8
η0
a

 .

(4.13)
Alternatively one could also use the quark-flavor bases of ηq and ηs, and they relate with
the octet-singlet η8, η0 bases via(

η8
η0

)
=


√

1
3 −

√
2
3√

2
3

√
1
3

( ηq
ηs

)
, (4.14)

where the constituent quark contents of ηq and ηs are (ūu + d̄d)/
√

2 and s̄s, respectively.
The LO diagonalized η̊, η̊′ states can be decomposed in terms of the quark-flavor base(

η̊

η̊
′

)
=
(

cosφqs − sinφqs
sinφqs cosφqs

)(
ηq
ηs

)
, (4.15)

with φqs = θid+θ and the ideal mixing angle θid = arcsin(
√

2/
√

3). Therefore, by combining
eqs. (4.11) and (4.15), one can in turn obtain the relations between the physical states and
those in the quark-flavor bases. The results share the same forms as those in eq. (4.13)
with the explicit replacement of the angle θ by the angle φqs defined in eq. (4.15).

The two-angle mixing formula proposed in ref. [27] gives an intuitive relation between
the physical states denoted by η̂(′) here and the ones in octet-singlet basis(

η̂

η̂′

)
= 1
F

(
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)(
η8
η0

)
, (4.16)

which naturally reduces to the conventional mixing relation with one angle by taking
F8 = F0 = F and θ0 = θ8 = θ. Similarly one could also introduce the two-angle mixing
formalism to the quark-flavor base(

η̂

η̂′

)
= 1
F

(
Fq cos θq −Fs sin θs
Fq sin θq Fs cos θs

)(
ηq
ηs

)
. (4.17)
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Figure 1. The masses of η and η′ as functions of mπ (left panel) and the pion-mass dependences
of the η–η′ mixing angle in the quark-flavor basis (right panel). The lattice data of the η/η′ masses
are taken from ETMC [53], UKQCD [54], RBC/UKQCD [55], HSC [56] and RQCD [57]. For the
η/η′ masses from ref. [57], only the results from the ensemble with approximately physical mass of
strange quark are included. The lattice data of mixing angles in the quark-flavor base are taken
from ref. [53].

Remarkable progress has been made in recent years for the lattice calculation of the
η–η′ system. Both their masses and mixing angles at different pion masses are obtained
by many lattice collaborations. In this work, we fix the unknown low-energy constants
(LECs) of χPT by performing fits to relevant lattice data, including the η/η′ masses and
their mixing angle at differentmπ, the weak decay constants of pion and kaon, and the pion-
mass dependences of mK . Apart from the lattice data of the η/η′ masses at unphysically
large mπ from the ETMC [53], UKQCD [54], RBC/UKQCD [55], HSC [56] that have been
analyzed in refs. [49, 51], we also include the new results from the RQCD collaboration [57]
in the present study. In order to make direct comparisons of other data, only the lattice
simulations with physical strange quark mass from ref. [57] are taken into account here.
The various lattice data of the masses for η and η′ are shown in the left panel of figure 1,
together with their mixing angles in the quark-flavor base in the right panel. To be in
accordance with the lattice setup, we take the average of θq and θs to fit the latter data
set. It is noted that the phenomenological determinations also favor rather similar values
for θq and θs [49, 58, 59]. The decay constants Fq and Fs defined in the mixing matrix
of the quark-flavor base as functions of pion masses are provided by the lattice study [53]
and we will take these kinds of data in our fits too, as shown in figure 2. For the pion-
mass dependences of the Fπ, FK and mK , we take into account the lattice data up to
m2
π = 0.1GeV2, as explicitly illustrated in figure 3.
The values of the LECs from the fits are summarized in table 1. The resulting curves

for the masses of η and η′ and their mixing angles from the fits are given in figure 1. It
is noted that the LO fit to the masses of η and η′ with just the single parameter M0 can
reasonably reproduce the lattice data with M0 = 820MeV [49, 51]. Therefore we will fix
M0 at this value during the NLO fits. It is verified that by releasing the M0 the fits do
not improve and the values of the parameters in table 1 barely change. The resulting
parameters from the revised NLO fits are close to the previous ones given in refs. [49, 51].
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Figure 2. The decay constants of Fq and Fs defined in eq. (4.17) as functions of mπ. The lattice
data are taken from ref. [53].
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Figure 3. The pion-mass dependences of Fπ, FK and mK . The lattice data in the left and central
panels are from refs. [60, 61]. The data in the right panel are from ref. [62].

Parameters NLO Fit
F (MeV) 91.05+0.42

−0.44

103 × L5 1.68+0.05
−0.06

103 × L8 0.88+0.04
−0.04

Λ1 −0.17+0.05
−0.05

Λ2 0.06+0.08
−0.09

χ2/(d.o.f.) 219.9/(111–5)

Table 1. The values of the LECs from the NLO fit.

With the fitted parameters in table 1, we are ready to predict the important quantities
related with the axion.

Since the bare mass of the axion, i.e. ma,0 in eq. (2.1), is explicitly kept throughout our
calculations, e.g. eqs. (4.8), (3.6)–(3.10) and (4.4), it is straightforward for us to explore
the so-called axion-like scenarios by assigning some specific nonvanishing values to ma,0.
Nevertheless, in this work we will mainly focus on the phenomenological predictions for the
QCD-axion scenario by taking ma,0 = 0 in eq. (2.1). The explicit values of the transition
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matrix elements in eq. (4.13) between the physical states of π̂0, η̂, η̂′, â and the bare states
of π0, η8, η0, a are determined to be

π̂0

η̂

η̂′

â

 = MLO+NLO


π0

η8
η0
a

 , (4.18)

with

MLO+NLO =


1 + (0.015± 0.001) 0.017 + (−0.010± 0.001) 0.009 + (−0.007± 0.001) 12.1+(0.48±0.08)

fa

−0.019 + (0.007± 0.001) 0.94 + (0.21± 0.01) 0.33 + (−0.22± 0.03) 34.3+(0.9±0.2)
fa

−0.003 + (−0.003± 0.000) −0.33 + (−0.18± 0.03) 0.94 + (0.13± 0.02) 25.9+(−0.5±0.1)
fa

−12.1+(−0.20±0.03)
fa

−23.8+(1.6+0.8
−0.8)

fa

−35.7+(−5.7+1.6
−1.7)

fa
1 + 27.6±1.0

f2
a

 ,

(4.19)
where the first and second entries in each matrix element correspond to the LO and NLO
contributions, respectively. For the numbers in the last row and last column accompanying
1/fa, they are given in units of MeV, while the number accompanying 1/f2

a is given in
units of MeV2. The main focus of our work is the relative corrections from the NLO part
compared to the LO one.

For the mixing strengths between the π̂0 and η0,8, and also the mixing between the η̂(′)

and the π0, which are all proportional to the leading IB factor ε, the NLO parts in the δ
counting gives rather large relative corrections compared to the LO results, ranging from
around 60% up to 100%. For the η–η′ mixing, it is also found that the NLO contribution
can be as large as around 60% relative to the LO part. However, it is interesting to note
that all the mixing strengths between the axion and the light-flavor pseudoscalar π0, η, η′,
i.e. the numbers in the last column and the last row, the relative NLO corrections in the
δ counting to the LO parts are small, ranging from around 2% up to around 15%. The
uncertainties of the mixing strengths given in eq. (4.19), estimated by the using the error
bands of the LECs in table 1, turn out to be mild as well.

The contributions from the LO and NLO parts to the mass squared of the light-flavor
pseudoscalar mesons and the axion in eqs. (4.5)–(4.9) are found to be

mπ̂ =
[
134.90 + (0.10± 0.07)

]
MeV ,

mK̂ =
[
489.2 + (5.0+3.4

−3.5)
]
MeV ,

mη̂ =
[
490.2 + (60.9+10.2

−10.0)
]
MeV ,

mη̂′ =
[
954.3 + (−28.4+11.9

−12.6)
]
MeV ,

mâ =
[
5.96 + (0.12± 0.02)

]
µeV1012 GeV

fa
, (4.20)

where the first and second entries inside the square brackets denote the results from the
LO and NLO terms, respectively. Comparing with the LO case, it is clear that the NLO
correction brings the η mass much closer to its physical value. When compared with the
LO case, the NLO correction brings the η mass much closer to its physical value, although
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it somewhat worsens the description of the η′ mass. However, we should notice that while
the NLO contribution to the η′ mass is quite small, less than 3% of the LO value, it is a 12%
for the η mass, which allows us to match its experimental value. The NLO contribution to
the axion mass turns out to be rather small.

5 Two-photon couplings

Relying on the previous results of the mixing relations, we are ready to study the two-
photon decays of the π0, η, η′ and a, based on the LO and NLOWZW operators in eqs. (2.8)
and (2.11), respectively. By inserting the mixing relations (4.11) into the LO WZW La-
grangian (2.8) and neglecting all the IB terms, the two-photon couplings of the physical
states read

LLO
WZW = −3

√
2e2

8π2F
εµνρσ∂

µAν∂ρAσ
{

1 + x11

3
√

2
π̂0

+
[
cθ − 2

√
2sθ

3
√

6
(1 + x22) + sθ + 2

√
2cθ

3
√

6
(x23 − y23)

]
η̂+

+
[
sθ + 2

√
2cθ

3
√

6
(1 + x33) + cθ − 2

√
2sθ

3
√

6
(x23 + y23)

]
η̂′+

+
[

(cθ − 2
√

2sθ)v24 + (sθ + 2
√

2cθ)v34

3
√

6

+(cθ − 2
√

2sθ)(x24 + y24) + (sθ + 2
√

2cθ)(x34 + y34)
3
√

6

]
â

}
, (5.1)

where all of the NLO terms are introduced through the mixing. Since we stick to the NLO
calculation, only the LO mixing relations (3.5) are needed to insert into the NLO WZW
Lagrangian (2.11) and the resulting two-photon interactions are given by

LNLO
WZW = e2

F
εµνρσ∂

µAν∂ρAσ
{

32m2
πt1

3 π̂0

+ 32
9
√

3

{
−9
√

2sθk3 + t1
[
cθ(7m2

π − 4m2
K)− 2

√
2sθ(m2

K + 2m2
π)
]}
η̂

+ 32
9
√

3

{
9
√

2cθk3 + t1
[
2
√

2cθ(2m2
π +m2

K) + sθ(7m2
π − 4m2

K)
]}
η̂′

+32
27

{
9k3

(
F

fa
−
√

6sθv24 +
√

6cθv34

)
+t1

[
−
√

3sθ(4
√

2v24m
2
π − 7v34m

2
π + 2

√
2v24m

2
K + 4v34m

2
K)

+
√

3cθ(4
√

2v34m
2
π + 7v24m

2
π + 2

√
2v34m

2
K − 4v34m

2
K)
]}
â

}
.

(5.2)
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The two-photon decay amplitude of φ → γ(k1)γ(k2) with φ = π0, η, η′ and a can be
written as

Tφ→γγ = e2εµνρσk
µ
1 ε
ν
1k

ρ
2ε
σ
2Fφγγ , (5.3)

where the two-photon coupling strengths Fφγγ read

Fπ0γγ = 1
4π2F

+ 1
4π2F

x11−
64
3F t1m

2
π , (5.4)

Fηγγ = cθ−2
√

2sθ
4
√

3π2F
(1+x22)+ sθ+2

√
2cθ

4
√

3π2F
(x23−y23)+ 64

√
6

3F sθk3

−64
√

3
27F t1

[
cθ(7m2

π−4m2
K)−2

√
2sθ(m2

K+2m2
π)
]
, (5.5)

Fη′γγ= sθ+2
√

2cθ
4
√

3π2F
(1+x33)+ cθ−2

√
2sθ

4
√

3π2F
(x23 +y23)− 64

√
6

3F cθk3

−64
√

3
27F t1

[
sθ(7m2

π−4m2
K)+2

√
2cθ(m2

K+2m2
π)
]
, (5.6)

Faγγ = (cθ−2
√

2sθ)v24 +(sθ+2
√

2cθ)v34

4
√

3π2F

+(cθ−2
√

2sθ)(x24 +y24)+(sθ+2
√

2cθ)(x34 +y34)
4
√

3π2F
− 64
√

6
3F k3

(
F

fa
−
√

6sθv24 +
√

6cθv34

)
− 64

27F t1
[
−
√

3sθ(4
√

2v24m
2
π−7v34m

2
π+2
√

2v24m
2
K+4v34m

2
K)

+
√

3cθ(4
√

2v34m
2
π+7v24m

2
π+2
√

2v34m
2
K−4v24m

2
K)
]
. (5.7)

We use the decay widths of π0 → γγ, η → γγ and η′ → γγ from the most recent PDG
average [63] to estimate their two-photon couplings

FExp
π0γγ = 0.274± 0.002GeV−1 , (5.8)

FExp
ηγγ = 0.274± 0.006GeV−1 , (5.9)

FExp
η′γγ = 0.344± 0.008GeV−1 . (5.10)

Those couplings can be then exploited to determine the NLO LECs from the WZW La-
grangian (2.9) entering in eqs. (5.4)–(5.6). Their explicit values turn out to be

t1 = −(4.4± 2.3)× 10−4 GeV−2 , k3 = (1.25± 0.23)× 10−4 , (5.11)

leading to

Fπ0γγ = 0.276± 0.001GeV−1 , (5.12)
Fηγγ = 0.276± 0.009GeV−1 , (5.13)
Fη′γγ = 0.343± 0.012GeV−1 , (5.14)

which perfectly reproduce the experimental inputs.
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With the values of the NLO LECs of LNLO
WZW in eq. (5.11) and the fitted parameters in

table 1, we can now give our prediction to the two-photon coupling of the axion Faγγ up
to NLO in the δ counting

Faγγ = − [20.1 + (0.5± 0.1)]× 10−3

fa
, (5.15)

where the first entry in the numerator on the right hand side corresponds to the LO
contribution and the second one denotes the NLO contribution. The two-photon coupling
Faγγ is related with the gaγγ used in refs. [34, 52] via

gaγγ = 4παemFaγγ = − αem2πfa
(
1.63± 0.01

)
, (5.16)

where the numbers inside the bracket can be compared to the results of 1.92 ± 0.04 [34]
and 2.05±0.03 [52] from the SU(2) and SU(3) χPT analyses up to NLO, respectively. The
determination of the magnitude of gaγγ from the NLO U(3) calculation looks a bit smaller
than those from the NLO studies in the SU(2) and SU(3) cases. It is noted that the chiral
loops start to appear at NLO in the SU(2) and SU(3) χPT in the conventional chiral power
counting. While, in the δ-counting scheme, the chiral loops only enter at NNLO in the
U(3) χPT. To consistently take into account all the pieces of the two-photon coupling of
the axion at NNLO in the U(3) χPT, one also needs to extend the axion-meson mixing
calculations at the same order and we leave this task to a future work.

6 Summary and conclusions

In this work, U(3) chiral perturbation theory is demonstrated to be able to provide a useful
framework to calculate the matrix elements of the mixing between the π0, η, η′ and the
axion order by order in the joint expansions of the momenta, light-quark masses and 1/NC ,
i.e. the δ-counting scheme. We have performed the complete calculation of the axion-meson
mixing and the two-photon couplings of the axion and light-flavor pseudoscalar mesons up
to NLO in the δ-counting rule within the framework of the U(3) chiral perturbation theory.
The unknown chiral low-energy constants are fixed through the fits to a large amount of
lattice QCD data, consisting of the pion-mass dependences of η–η′ mixing data, kaon mass,
and the decay constants of the pion and kaon. Reasonable reproductions of the various
lattice data are achieved with the U(3) contributions up to NLO. The mixing matrix
elements of the π0, η, η′ and the axion are then further used to calculate their two-photon
couplings, together with the NLO Wess-Zumino-Witten Lagrangian, where the parameters
in the latter Lagrangian are fixed by the experimental two-photon couplings of the π0,
η and η′.

The determined chiral low-energy constants are then used to predict the QCD-axion
masses, the mixing strengths of the axion and the π0, η, η′, and the two-photon coupling of
the QCD axion. The NLO contributions in the δ counting to the various axion quantities
relative to the LO ones are found to be small. This work paves the way to systematically
calculate the interactions between the axion and the light-flavor pseudoscalar mesons π, K,
η and η′ order by order in the joint expansions of momenta, light-quark masses and 1/NC .
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A Next-to-leading order coefficients for bilinear terms

Substituting the LO mixing relations of eq. (3.5) into the NLO Lagrangian (2.7), one can
calculate all the NLO pieces of the bilinear terms in eq. (4.1) and their explicit expres-
sions read

δπηk = −8L5

3F 2

{
2v12

[
m2
K(2c2

θ+2
√

2cθsθ+s2
θ)−m2

π(2+2
√

2cθsθ−s2
θ)
]

+
√

3ε(
√

2sθ−cθ)

−2v13(m2
K−m2

π)(
√

2c2
θ−cθsθ−

√
2s2
θ)
}

+Λ1sθ(cθv13−sθv12),

(A.1)

δπηm2 = −16L8

3F 2

[
4v12m

2
K(m2

K−m2
π)(2c2

θ+2
√

2cθsθ+s2
θ)−4v13m

2
K(m2

K−m2
π)(
√

2c2
θ−cθsθ

−
√

2s2
θ)−2

√
3m2

πε(cθ−
√

2sθ)
]
−Λ2

3

{
2v12sθ

[
2m2

K(
√

2cθ+sθ)+m2
π(sθ−2

√
2cθ)

]
+2v13

[
m2
K(−
√

2c2
θ−2cθsθ+

√
2s2
θ)+m2

π(
√

2c2
θ−cθsθ−

√
2s2
θ)
]

+
√

6sθε
}
,

(A.2)

δπη
′

k = 8L5

3F 2

{
2v12(m2

K−m2
π)(
√

2c2
θ−cθsθ−

√
2s2
θ)+
√

3ε(
√

2cθ+sθ)+2v13
[
−m2

K(c2
θ

−2
√

2cθsθ+2s2
θ)+m2

π(2−2
√

2cθsθ−c2
θ)
]}

+Λ1cθ(−cθv13 +sθv12) ,

(A.3)

δπη
′

m2 = 16L8

3F 2

[
4v12m

2
K(m2

K−m2
π)(
√

2c2
θ−cθsθ−

√
2s2
θ)−4v13m

2
K(m2

K−m2
π)(c2

θ−2
√

2cθsθ+2s2
θ)

+2
√

3m2
πε(
√

2cθ+sθ)
]

+ Λ2

3

{
2v13cθ

[
2m2

K(−cθ+
√

2sθ)−m2
π(cθ+2

√
2sθ)

]
+2v12

[
m2
K(
√

2c2
θ+2cθsθ−

√
2s2
θ)+m2

π(−
√

2c2
θ+cθsθ+

√
2s2
θ)
]

+
√

6cθε
}
,

(A.4)

δak = 8L5

3F 2

{
v2

24

[
2m2

K(2c2
θ+2
√

2cθsθ+s2
θ)+m2

π(−c2
θ−4
√

2cθsθ+s2
θ)
]

+4v24v34

[
m2
K(−
√

2c2
θ

+cθsθ+
√

2s2
θ)+m2

π(
√

2c2
θ−cθsθ−

√
2s2
θ)
]

+v2
34

[
2m2

K(c2
θ−2
√

2cθsθ+2s2
θ)
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+m2
π(c2

θ+4
√

2cθsθ−s2
θ)
]}

+ 1
6Λ1

{(
F

fa

)2
+2
√

6(v34cθ−v24sθ)
F

fa
+6c2

θv
2
34 +6s2

θv
2
24

−12cθsθv24v34

}
,

(A.5)

δaπk = 8L5

3F 2

{
−4c2

θm
2
Kv12v24 +m2

π

[
3v14 +s2

θ(−v12v24 +2
√

2v13v24 +2
√

2v12v34 +v13v34)

+2cθsθ(2
√

2v12v24 +v13v24 +v12v34−2
√

2v13v34)+c2
θ(v12v24−2

√
2v13v24

−2
√

2v12v34−v13v34)
]

+2m2
K

[
c2
θ(
√

2v13v24 +
√

2v12v34−v13v34)−s2
θ(v12v24

+
√

2v13v24 +
√

2v12v34 +2v13v34)−cθsθ(v122
√

2v24 +v12v34 +v13v24−v132
√

2v34)
]

+
√

3
[
sθ(−

√
2v24 +v34)+cθ(v24 +

√
2v34)

]
ε
}

+Λ1(v12sθ−v13cθ)
(

1√
6
F

fa
−v24sθ+v34cθ

)
,

(A.6)

δaηk = 8L5

3F 2

[
2v24m

2
K(2c2

θ+2
√

2cθsθ+s2
θ)+v24m

2
π(−c2

θ−4
√

2cθsθ+s2
θ)−2v34(m2

K−m2
π)

(
√

2c2
θ−cθsθ−

√
2s2
θ)
]

+Λ1sθ

(
− 1√

6
F

fa
+v24sθ−v34cθ

)
,

(A.7)

δaη
′

k = −8L5

3F 2

[
2v24(m2

K−m2
π)(
√

2c2
θ−cθsθ−

√
2s2
θ)−2v34m

2
K(c2

θ−2
√

2cθsθ+2s2
θ)

+v34m
2
π(−c2

θ−4
√

2cθsθ+s2
θ)
]

+Λ1cθ

(
1√
6
F

fa
−v24sθ+v34cθ

)
,

(A.8)

δm2
a

= 16L8

3F 2

{
8(
√

2v2
24 +v34v24−

√
2v2

34)cθ(m2
K−m2

π)m2
Ksθ+c2

θ

[
4(2v2

24−2
√

2v34v24

+v2
34)m4

K−4m2
π(2v2

24−2
√

2v34v24 +v2
34)m2

K+3m4
π(v2

24 +v2
34)
]

+s2
θ

[
4(v2

24

+2
√

2v34v24 +2v2
34)m4

K−4m2
π(v2

24 +2
√

2v34v24 +2v2
34)m2

K+3m4
π(v2

24 +v2
34)
]}

+Λ2

9

{
v24

[
−2
√

6m2
K(
√

2cθ+sθ)+
√

6m2
π(2
√

2cθ−sθ)
] F
fa

+v34

[
2
√

6m2
K(cθ−

√
2sθ)

+
√

6m2
π(cθ+2

√
2sθ)

] F
fa

+6v2
24

[
2m2

Ksθ(
√

2cθ+sθ)+m2
πsθ(−2

√
2cθ+sθ)

]
+6v2

34

[
2m2

Kcθ(cθ−
√

2sθ)+m2
πcθ(cθ+2

√
2sθ)

]
+12v24v34

[
−m2

K(
√

2c2
θ+2cθsθ

−
√

2s2
θ)+m2

π(
√

2c2
θ−cθsθ−

√
2s2
θ)
]}

,

(A.9)

δaηm2 = −16L8

3F 2

{
−v24

[
4m2

K(m2
K−m2

π)(2c2
θ+2
√

2cθsθ+s2
θ)+3m4

π

]
+4v34m

2
K(m2

K−m2
π)(
√

2c2
θ

−cθsθ−
√

2s2
θ)
}
−Λ2

18

{[
2
√

6m2
K(
√

2cθ+sθ)+
√

6m2
π(−2

√
2cθ+sθ)

] F
fa
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+12v24sθ

[
−2m2

K(
√

2cθ+sθ)+m2
π(2
√

2cθ−sθ)
]

+12v34

[
m2
K(
√

2c2
θ+2cθsθ−

√
2s2
θ)

+m2
π(−
√

2c2
θ+cθsθ+

√
2s2
θ)
]}

,

(A.10)

δaη
′

m2 = −16L8

3F 2

{
4v24m

2
K(m2

K−m2
π)(
√

2c2
θ−cθsθ−

√
2s2
θ)−v34

[
4m2

K(m2
K−m2

π)(c2
θ−2
√

2cθsθ

+2s2
θ)+3m4

π

]}
−Λ2

18

{[
2
√

6m2
K(−cθ+

√
2sθ)−

√
6m2

π(cθ+2
√

2sθ)
] F
fa

+12v24

[
m2
K(
√

2c2
θ+2cθsθ−

√
2s2
θ)+m2

π(−
√

2c2
θ+cθsθ+

√
2s2
θ)
]

−12v34cθ

[
2m2

K(cθ−
√

2sθ)+m2
π(cθ+2

√
2sθ)

]}
,

(A.11)

δaπm2 = 16L8

3F 2

{
−4m4

K

[
(2v12v24−

√
2v13v24−

√
2v12v34 +v13v34)c2

θ+sθ(v12(2
√

2v24 +v34)

+v13(v24−2
√

2v34))cθ+s2
θ(v12v24 +

√
2v13v24 +

√
2v12v34 +2v13v34)

]
+2m2

π

[
2c2
θ(2v12v24−

√
2v13v24−

√
2v12v34 +v13v34)m2

K

+2cθsθ(2
√

2v12v24 +v13v24 +v12v34−2
√

2v13v34)m2
K+
√

3εcθ(v24 +
√

2v34)

+sθ(2sθ(v12v24 +
√

2v13v24 +
√

2v12v34 +2v13v34)m2
K+
√

3ε(v34−
√

2v24))
]

+3m4
π

[
v14−(c2

θ+s2
θ)(v12v24 +v13v34)

]}
−Λ2

18

{
−6ε

(
F

fa
−
√

6sθv24 +
√

6cθv34

)
+v12

[
−2
√

6m2
K(
√

2cθ+sθ)+
√

6m2
π(2
√

2cθ−sθ)
] F
fa

+v13

[
2
√

6m2
K(cθ−

√
2sθ)

+
√

6m2
π(cθ+2

√
2sθ)

] F
fa

+12v12v24sθ

[
2m2

K(
√

2cθ+sθ)+m2
π(−2

√
2cθ+sθ)

]
+12(v12v34 +v13v24)

[
−m2

K(
√

2c2
θ+2cθsθ−

√
2s2
θ)+m2

π(
√

2c2
θ−cθsθ−

√
2s2
θ)
]

+12v13v34cθ

[
2m2

K(cθ−
√

2sθ)+m2
π(cθ+2

√
2sθ)

]}
.

(A.12)

δπk = 8L5m
2
π

F 2 , (A.13)

δm2
π

= 16L8m
4
π

F 2 , (A.14)

δKk = 8L5m
2
K

F 2 , (A.15)

δm2
K

= 16L8m
4
K

F 2 , (A.16)

δηk = 8L5[c2
θ(4m2

K−m2
π)+4

√
2cθ(m2

K−m2
π)sθ+(2m2

K+m2
π)s2

θ]
3F 2 +s2

θΛ1 , (A.17)
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δη
′

k = 8L5[c2
θ(2m2

K+m2
π)+4

√
2cθ(−m2

K+m2
π)sθ+(4m2

K−m2
π)s2

θ]
3F 2 +c2

θΛ1 , (A.18)

δηη
′

k = −16L5(m2
K−m2

π)(
√

2c2
θ−cθsθ−

√
2s2
θ)

3F 2 −cθsθΛ1 , (A.19)

δm2
η

= 16L8

3F 2 [c2
θ(8m4

K−8m2
Km

2
π+3m4

π)+8
√

2cθm2
K(m2

K−m2
π)sθ+(4m4

K−4m2
Km

2
π+3m4

π)s2
θ]

+2
3sθ[2

√
2cθ(m2

K−m2
π)+(2m2

K+m2
π)sθ]Λ2 ,

(A.20)

δm2
η′

= 16L8

3F 2 [c2
θ(4m4

K−4m2
Km

2
π+3m4

π)+8
√

2cθm2
K(−m2

K+m2
π)sθ+(8m4

K−8m2
Km

2
π+3m4

π)s2
θ]

+2
3cθ[cθ(2m

2
K+m2

π)+2
√

2(−m2
K+m2

π)sθ]Λ2 ,

(A.21)

δηη
′

m2 = −64L8m
2
K(m2

K−m2
π)(
√

2c2
θ−cθsθ−

√
2s2
θ)

3F 2

−2
3 [
√

2c2
θ(m2

K−m2
π)+cθ(2m2

K+m2
π)sθ+

√
2(−m2

K+m2
π)s2

θ]Λ2 .

(A.22)

Although the NLO formulas in eqs. (A.13)–(A.22) can be found in ref. [49], we show their
explicit expressions here for the sake of completeness.
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