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1 Introduction

General relativity and Yang-Mills theory feature many differences at the quantum level.
In the weakly interacting case, the quantization of the Einstein-Hilbert action leads to
divergent scattering amplitudes in the UV regime, while, on the Yang-Mills side, nice
features appear, like renormalizability, leading to asymptotic freedom of the theory at
high energy. Further, the Feynman diagrammatic expansion in the case of gravity is more
involved than the Yang-Mills one, given that the diffeomorphism on a Riemannian manifold
generates an infinite tower of graviton self-interactions, while on the gauge theory side
the diagrammatic expansion is under control even at higher order in perturbation theory,
leading to high-precision predictions. However, Bern, Carrasco, and Johansson (BCJ)
showed that, perturbatively, one can relate the scattering amplitudes in quantum gravity to
that in gauge theories [1, 2], as the low energy field theory version of the Kawai, Lewellen,
and Tye (KLT) relation for open and closed string amplitudes [3]. More precisely, the full
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color-dressed n-point tree amplitude in Yang-Mills theory can be organized in terms of
trivalent diagrams as

Atree
n =

∑
i∈trivalent

cini
Di

, (1.1)

where ci denotes the color factors, while ni, Di are the corresponding kinematic numerator
and propagator, respectively. In the case where the color factors satisfy the Jacoby identity
ci + cj + ck = 0, one can always arrange the kinematical numerators ni to obey the same
algebraic equations ni + nj + nk = 0. This is termed “color-kinematics duality” (CKD).
Once such relations are satisfied, the color factors can be replaced with the corresponding
kinematic numerators,

Mtree
n =

∑
i∈trivalent

nini
Di

(1.2)

yielding an amplitude of a gravitational theory. This is the so-called double copy relation.
More specifically, the resulting theory is the N = 0 supergravity (SUGRA or NS-NS gravity),
which describes Einstein-Hilbert gravity coupled to the dilaton field φ and the Kalb-Ramond
two-form B. In the Einstein frame, the action1 in D dimensions is given as [4]:

SN=0 = 2
κ2

∫
dDx

√
−g(x)

(
−R+ 4

D − 2∂µφ∂
µφ+ 1

12e
−8φ/(D−2)HλµνH

λµν
)
, (1.3)

where Hλµν = ∂λBµν + ∂µBνλ + ∂νBλµ is the field strength related to Bµν .
This paved the way for a deeper investigation of this surprising feature shared by

perturbative quantum gravity and Yang-Mills. Such investigations were carried out for a
great variety of gauge theories (see [5–8] for recent reviews). On the group theoretical side,
the color-kinematics duality provides a way to extend gauge invariance of two gauge theories
to a diffeomorphism symmetry [9–11], enjoyed by the gravitational theory. Furthermore, the
color-kinematic relations seem to imply a deeper structure than a simple relation between
numerators. Actually, it has been recently shown how BCJ numerators from amplitudes
with one massive scalar line in a gluon background, can be thought as obeying a Hopf
algebra [12–14].

Most importantly, the double copy provides a framework where calculations in both
theories can be carried out by using building blocks arising from the gauge theory, generating
results on the gravitational side. This makes the double copy an efficient tool to generate
gravitational amplitudes, in particular for the scattering of massive external lines, which are
needed for applications to black hole scattering [15–17]. This is important for high-precision
predictions [18] which will be required by future experiments carried on by the LIGO
and VIRGO collaborations [19, 20]. In this direction, the double copy of quantum field
theories propagating spinning particles is interesting. Particularly, ref. [21] showed, by
extending the KMOC formalism [22] to include spin, how the double copy of amplitudes
with massive vector bosons scattering off scalars, leads to classical amplitudes in a DG
background, capturing quadratic effects in the Pauli-Lubanski vector of the spinning particle.
In addition, [23, 24] showed that the double copy of scattering amplitudes with fermionic

1We use the mostly minus convention for the metric.
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lines leads to vector fields interacting through the dilaton and graviton. To achieve such
a result they employed symmetrization over the external particles polarization indices,
inspired by massive spinor helicity formalism [25, 26] which makes little group covariance
manifest. These lines of research of course hold at the quantum level, where scattering
amplitudes and gauge symmetry can be used as a leading guide to the reconstruction of the
double copy theory.

An interesting question how we can apply the double copy relation directly at the
classical level. It is well-known that some classical solutions of YM theory can be related to
general relativity. This is first discovered by Monteiro, O’Connell, and White known as
the Kerr-Schild double copy [27], and then developed to a great extent [28–39]. However,
there are other approaches that work perturbatively and thus more similar to scattering
amplitudes, which can be accomplished at the level of effective action [40, 41] or for classical
solutions. The former turns out to breakdown at next-to-leading order due to the gauge
dependence and off-shell nature of the effective action. The latter is completely on shell
and thus more promising. It is first studied in [42], and later extended to higher orders [43],
bound states [44], as well as to incorporate spin effects [45, 46]. Specifically, in these
approaches, the basic idea is to iteratively solve the equations of motion (Wong’s equations
in the case of a charged particle in YM field [47]) to obtain classical observables such
as the radiation. Then, by adopting appropriate replacement rules of the color factors,
they recover the corresponding quantities in dilaton-gravity from YM theory. It should
be noted that differing from amplitudes where the locality structure is encoded by the
poles in the Feynman propagators, classical integrands do not enjoy such a feature, making
it difficult to recast the amplitude in a BCJ form. A way to tackle such a question was
provided by Shen [43], who showed that the double copy at the classical level could be
realized in an analogous way to the BCJ one from amplitudes by identifying the so-called
“double copy kernel”.

Recently, Plefka and one of the authors developed an alternative approach to pertur-
bative classical double copy [48], built upon the worldline quantum field theory (WQFT)
formalism developed by Plefka, Mogull, and Steinhoff [49]. The WQFT is designated
to model classical scatterings of compact objects in general relativity, and it has been
successfully extended to incorporate spin and finite-size effects [50–54]. To investigate
the classical double copy, the authors in [48] generalize the WQFT formalism to the case
of massive (colored) point particles coupled to a bi-adjoint scalar, Yang-Mills field, and
dilaton-gravity. The bi-adjoint scalar theory is employed to identify the double copy kernel
as in [43]. A double copy prescription for the eikonal phase is proposed and verified by
explicit calculations up to subleading order in all three theories. The advantage of this
approach is that classical observables are computed in a diagrammatic way, making it clear
to build a connection to scattering amplitudes.

From a more formal perspective, the WQFT provides a direct link between Feynman
diagrams and the classical equations of motion for a set of point particles in a gravitational
background. This holds given that such formalism is based on worldline particles, which,
once quantized by making use of a path integral [55–60] or by using BRST methods [61–63],
allows to resum the Feynman diagrams in the quantum theory implemented by the worldline.
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Inspired by the above results and, moreover, motivated by the phenomenological
applications of the double copy to the classical black hole scattering, we use the quantization
procedure with, in addition, the diagrammatic expansion from the WQFT, to study the
double copy of spinning worldlines as an extension to [48], so to be able to capture quadratic
effects in spin (quadrupole) in the double copy integrands for the binary gravitational
radiation and eikonal phase. This fills a gap in the literature, and, most importantly,
provides a general way of dealing with the double copy of WQFTs, when spin is included
in the dynamics. Indeed, we find that preserving R-symmetry and supersymmetry on
the worldline in the double copy procedure, allows us to completely fix both the classical
and quantum theory on the gravity side. Since SUSY is preserved by our double copy
prescription, the constraint algebra stays first class, thus allowing to quantize the worldline
particle. We verify such statements by direct inspection of the double copy integrands for
the leading binary radiation and the eikonal phase up to next-to-leading order against the
worldline theory we propose as a double copy.

In this article, we start by reviewing the general features of the WQFT and the double
copy for scalar particles in section 2. Then, in section 3 we coupled the N = 1 SUSY
model to a Yang-Mills background, evaluating the two-body radiation and three-body
eikonal phase. Next, in section 4 we show how to couple the N = 2 worldline particle to
the dilaton-gravity background, preserving supersymmetry on the worldline. Finally, in
section 5 we show how our double copy procedure from the N = 1 particle, naturally leads
to classical integrands generated by the N = 2 model in a DG background, proposing also
the quantum field theory related to the double copy of Dirac fermions in four dimensions.

2 Review of the worldline quantum field theory

In this section, we start by briefly reviewing the WQFT formalism and how to extract
classical observables by considering the scattering of massive scalar particles in general
relativity as an example. Then, we explain how the double copy relation is realized between
worldlines coupled to Yang-Mills theory and to dilaton-gravity, stressing the reduction of
the double copy kernel.

2.1 Basic of worldline quantum field theory

As introduced in [49], schematically, the action for WQFT consists of a field theory in the
bulk and the worldline actions

SWQFT = Sfield +
∑

Sworldline. (2.1)

In the case of a massive scalar particle coupled to pure gravity, the worldline action reads

S[xk; g] = −
∫ ∞
−∞

dτ m2 gµν
(
ẋµk ẋ

ν
k + aµka

ν
k + bµkc

ν
k

)
, (2.2)

where xµ is the spacetime coordinates. For completion, we have included the bosonic aµ and
fermionic bµ, cµ “Lee-Yang” ghosts, which arise from the metric-dependent path integral
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measure [64]. In the bulk, we have the usual Einstein-Hilbert action,

SEH = − 2
κ2

∫
d4x
√
−gR, (2.3)

where κ =
√

32πGN is the coupling constant, with GN being the Newtonian constant of
gravitation.

With the action, we can write down the WQFT partition function, which turns out to
be a fundamental object in the definition of observables,

ZWQFT =
∫
Dgµν eiSEH[g]

n∏
k=1

∫
Dxk eiS[xk;g] . (2.4)

Furthermore, it is noticed that the partition function is related to the eikonal phase via
exponentiation [49, 65]

ZWQFT = eiχ. (2.5)

To evaluate the path integral (2.4) one proceeds perturbatively. Firstly, we expand the
metric around the Minkowskian background as

gµν = ηµν + κhµν , (2.6)

where hµν is referred to as the graviton. Additionally, by using translational invariance of
the worldline path integral measure, we expand the configuration space variables around a
straight line background as

xµi (τ) = bµi + vµi τ + zµi (τ), (2.7)

such that the measure in the worldline path integral splits as Dx = Dz, leaving a functional
integration over the quantum fluctuations zi(τ) of the i-th particle. Then, going to energy
space for such a fluctuation

zµ(τ) =
∫ ∞
−∞

dω
2π e

iωτzµ(−ω) :=
∫
ω
eiωτzµ(−ω), (2.8)

one is able to derive the related worldline propagator

zµ zν
ω

= −iηµν
ω2 (2.9)

where we do not specify the iε prescription here since we are only interested in the integrands.
For more details on this we send the reader to [49, 53]. Then, in order to account interactions,
one needs to Fourier expand the graviton field as

hµν(x(τ)) =
∫
q
eiq·x(τ)hµν(−q) =

∞∑
n=0

in

n!

∫
q
eiq·(b+vτ) (z(τ) · q)n hµν(−q)

=
∞∑
n=0

in

n!

∫
q,ω1···ωn

eiq·bei(q·v+
∑n

k=1 ωk)τ
(

n∏
i=1

q · z(−ωi)
)
hµν(−q) .

(2.10)

– 5 –



J
H
E
P
0
4
(
2
0
2
3
)
0
0
8

Finally, plugging the above expansion in the WQFT action allows one to read out worldline
Feynman rules [48–50, 60], depending on the number of quantum fluctuations zi(ω), which
can be used to build up a diagrammatic expansion of the partition function in powers of
the gravitational coupling constant κ.

Once having a well-defined partition function, we can identify classical observables as
insertion of functions of the worldline variables inside (2.4). This way a classical observable
is defined as

O(bi, vi) = 〈Ô(x̂, ĥµν)〉 = Z−1
WQFT

∫
Dhµν eiSEH

(
n∏
k=1

∫
Dxk eiSk

)
O(xi(τ), hµν) (2.11)

and then, can be computed perturbatively using the Feynman rules derived from the WQFT
action as explained above. The result of this calculation consists in a perturbative expansion
of the observable, which is controlled only by the gravitational coupling constant κ, leading
then to what is known as a Post-Minkowskian (PM) expansion. We can also employ WQFT
to compute the gravitational radiation emitted in the process of scattering of the worldlines,
since it is going to be used in the next sections. Following the definition (2.11) we define
the gravitational radiation as

− ik2〈hµν(k)〉WQFT
∣∣∣
k2=0

= Z−1
WQFT

∫
Dhµν eiSEH

(
n∏
k=1

∫
Dxk eiSk

)(
−ik2hµν(k)

)
(2.12)

where, on the r.h.s. one has to use the on-shell condition on the external graviton i.e.
k2 = 0 and contract with a physical polarization tensor for the graviton, so to get a gauge
invariant object.

2.2 WQFT double copy

The double copy of spinless massive particles in the WQFT formalism was studied by one
of the authors and Plefka [48]. There are two key observations for the double copy in
the classical limit of scattering amplitudes. One is that the propagators have both single
and double poles, so the locality structure is unclear. In order to correctly identify the
propagator terms, one can employ the bi-adjoint scalar theory, in which the numerators are
trivial in the quantum theory. In this way, we can obtain the off-diagonal BCJ double copy
kernel for classical observables. The second observation is that at higher order in binary
systems, some of the color factors in YM theory will be vanishing due to the anti-symmetry
of the structure constant, whereas the corresponding numerators are required for the double
copy. To avoid this problem, we will use as many different worldlines as worldline- field
interactions occur. For example, at leading order of the eikonal phase, two worldlines are
sufficient, but at next-to-leading order, we will use three worldlines.

Similar to the case in Einstein gravity, we can consider a massive point charge coupled
to Yang-Mills field Aaµ in the worldline formalism2

Spc =
∫

dτ
(
−m2 ẋ

2−ic̄αċα−gẋµAaµqa
)
, (2.13)

2Note that our convention is slightly different from [48]. Specifically, the kinetic terms of the “color
wave function” are different by a minus sign, leading to a sign change of the color charges. Moreover, some
quantities are denoted by different symbols.
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where g is the coupling constant of YM theory. We have introduced the bosonic auxiliary
“color wave function” c̄α, cα to carry the color degrees of freedom, with α being the index
of the representation of the gauge group. It is not necessary to choose a specific gauge
group, but for convenience, one can use the usual SU(N) and work in the fundamental
representation. The global SU(N) symmetry, c→ Uc, c̄→ c̄U †, gives rise to the conserved
current qa = c̄α(T a)αβcβ, with (T a)αβ, where T a are the gauge group generators3 in the
fundamental representation, while we use lowercase Latin letters a, b, c, . . . as the adjoint
indices. This conserved current is interpreted as the color charge of the point particle
and is directly related to the classical color in Wong’s equations [47]. In WQFT, besides
the perturbative expansion of coordinate variable xµ as in (2.7), we also expand the color
variables around a constant background

cα(τ) = uα + λα(τ), (2.14)

and similarly for c̄α. Consequently, the physical quantities depend on the background
color charge

Ca = ūα(T a)αβuβ . (2.15)

The double copied worldline theory corresponding to (2.13) is a massive scalar particle
coupled to dilaton-gravity. The worldline action simply reads

Spm =
∫

dτ
(
−m2 e

2κφgµν ẋ
µẋν

)
, (2.16)

where φ denotes the dilaton.
The double copy relation between the eikonal of Yang-Mills theory χYM and dilaton-

gravity χDG at N(n−1)LO can be expressed as

χYM
n = −(ig)2n

∫
dµ1,2,...,(n+1)(0)

∑
i,j

CiKij Nj , (2.17a)

χDG
n = −

(
κ

2

)2n ∫
dµ1,2,...,(n+1)(0)

∑
i,j

NiKij Nj , (2.17b)

where Ci,Nj are the arrays of color factors and kinematic numerators, respectively, which
should be arranged to satisfy color-kinematic duality. Kij is the BCJ double copy kernel
that are derived from bi-adjoint scalar theory coupled to spinless worldlines, which, for
brevity, will not be presented in this article. We have also defined the integral measure as

dµ1,2,...,n(k) =
n∏
i=1

(
d4qi

(2π)4 e
iqi·bi δ̂ (qi ·pi)

)
δ̂(4)

( n∑
i=1

qµi − k
µ
)
, (2.18)

with pµi = miv
µ
i being the kinetic momentum, and qi is the total outgoing momentum of

gluons or gravitons attached to a worldline.
3In our convention, we choose the commutator of the generators as [T a, T b] = fabcT c.
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At LO, the double copy structure is simple since there is only one color factor. We now
present the calculation at NLO as an example to show how WQFT double copy works. The
color factors can be arranged as

C(123)
i =

{
(C1 ·C2) (C1 ·C3) ,

(
Cab1 C

a
2C

b
3

)
,
(
Cba1 C

a
2C

b
3

)}
C(0)
i = fabcCa1C

b
2C

c
3,

(2.19)

where we have used Cab1 = ūα(T a)αβ(T b)βγuγ , and fabc is the structure constant. Note that
there are also C(231)

i , C(312)
i which can be obtained by simply rotating the indices (1, 2, 3)

in C(123)
i . Together, they compose a 10-dimensional array of color factors. Due to the

commutation relation of the group generators, the color factors satisfy

Cab1 C
a
2C

b
3 − Cba1 C

a
2C

b
3 = fabcCc1C

a
2C

b
3. (2.20)

The BCJ kernel Kij is block-diagonal, and the blocks corresponding to the color factors
in (2.19) are

K(123)
ij = 1

q2
2q

2
3


q2·q3
ω2

1

1
ω1
− 1
ω1

1
ω1

0 0
− 1
ω1

0 0

 , K(0)
ij = 2

q2
1q

2
2q

2
3
. (2.21)

For further convenience, we define4

ω1 = p1 · q2, ω2 = p2 · q3, ω3 = p3 · q1. (2.22)

Explicit calculations shows that both the eikonal phases in YM and dilaton-gravity can be
expressed in terms of the same numerators

N (123)
j =

{
n0 ,

n1
2 ,
−n1

2

}
N (0)
j = n1,

n0 = p1 ·p2 p1 ·p3 n1 = q2 ·p3 p1 ·p2 − q3 ·p2 p1 ·p3 − q2 ·p1 p2 ·p3.

(2.23)

Obviously, they satisfy the color-kinematic duality since n1
2 −

−n1
2 = n1. Similarly, we can

obtain the other two blocks of the kernel K(231)
ij ,K(312)

ij and the corresponding numerators
N (231)
j ,N (312)

j by relabeling the labels (1, 2, 3). Thus the eikonals can be decomposed as

χYM
2 = −g4

∫
dµ1,2,3(0)

∑
i,j

(
C(0)
i K

(0)
ij N

(0)
j +

(
C(123)
i K(123)

ij N (123)
j + cyclic

))
(2.24)

χDG
2 = −κ

4

16

∫
dµ1,2,3(0)

∑
i,j

(
N (0)
i K

(0)
ij N

(0)
j +

(
N (123)
i K(123)

ij N (123)
j + cyclic

))
.

This prescription agrees with the double copy of scattering amplitudes in scalar QCD, given
that the eikonal is directly related to the classical limit of the 6-scalar amplitude [66]. This
completes the story of the double copy of eikonal phase at NLO in the WQFT formalism.

4Note that due to different convention, the off-diagonal components of the BCJ kernel are different by a
minus sign from [48].
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We note that the 10-dimensional BCJ kernel is actually reducible, as a consequence of
the fact that the color factors form a over-completed basis. Specifically, from C(123)

i and
K(123)
ij we see that the contributions to the YM eikonal from the color factors Cab1 C

a
2C

b
3 and

Cba1 C
a
2C

b
3 are different only by a minus sign. We can thus use the Jacobi identity (2.20) to

simplify their contributions to χYM
2

Cab1 C
a
2C

b
3

n0
q2

2q
2
3ω1

+ Cba1 C
a
2C

b
3
−n0
q2

2q
2
3ω1

= fabcCc1C
a
2C

b
3

n0
q2

2q
2
3ω1

. (2.25)

This is guaranteed by the fact that Cab1 , C
ba
1 do not appear in the classical equations of

motion, so they must be removed in the final solutions [47]. After the reduction, the YM
eikonal can be rewritten as

χYM
2 = −g4

∫
dµ1,2,3(0)

{
fabcCc1C

a
2C

b
3

(( n0
q2

2q
2
3ω1

+ cyclic
)

+ 2n1
q2

1q
2
2q

2
3

)
+
(

(C1 ·C2)(C1 ·C3)
(q2 ·q3 n0
q2

2q
2
3ω

2
1

+ n1
q2

1q
2
2ω1

)
+ cyclic

)
.

}
(2.26)

We can reduce the full 10-dimensional BCJ double copy kernel to 4 dimensions

Kij =


q2·q3
q2

2q
2
3ω

2
1

0 0 1
q2

2q
2
3ω1

0 q1·q3
q2

1q
2
3ω

2
2

0 1
q2

1q
2
3ω2

0 0 q1·q2
q2

1q
2
2ω

2
3

1
q2

1q
2
2ω3

1
q2

2q
2
3ω1

1
q2

1q
2
3ω2

1
q2

1q
2
2ω3

2
q2

1q
2
2q

2
3

 . (2.27)

The associated arrays of color factors and numerators are

Ci =
{
(C1 ·C2)(C1 ·C3), (C1 ·C2)(C2 ·C3), (C1 ·C3)(C2 ·C3), fabcCa1C

b
2C

c
3
}

(2.28)

Nj =
{
n0, n′0, n′′0, n1

}
, (2.29)

where n′0 = p1 ·p2 p2 ·p3 and n′′0 = p1 ·p3 p2 ·p3 are obtained by relabeling (1, 2, 3) in n0.
In this new basis of the color factors, we no longer explicitly have the Jacobi identities,

whereas the color-kinematics duality is hidden in that such a decomposition is possible. The
number of independent color factors also agrees with that of the 6-quark amplitude in QCD
in the Melia basis [67]. It is straightforward to check that the double copy relation (2.17)
still works.

The advantage of the reduced BCJ kernel is not only the lower dimension, but, more
importantly, that it is invertible. Therefore, one can easily do the KLT-like double copy by
inverting the BCJ kernel, as we will show in subsection 5.1. However, this is not true for
kernel of the radiation, which is degenerate. As we will see in subsection 3.4, this has to do
with the Ward identity.

3 QCD on the worldline

In this section we are going to build up a worldline model which in first quantization is
able to propagate a massive Dirac fermion coupled to a non-Abelian gauge background,

– 9 –



J
H
E
P
0
4
(
2
0
2
3
)
0
0
8

which is exactly what we need to capture linear terms in spin in our classical applications,
as first showed on the amplitude side in [21]. As we will see, with the gauge fixing choice
done in [50], our action will reduce to the one in [45], thus showing the equivalence between
the two formulations and giving new insight on the relation between double copy and
supersymmetry on the worldline, when the latter is preserved. When switching off all the
interactions such a model is known as the N = 1 SUSY particle on the worldline and
was first formulated in [68], then coupled to gravity on the torus in [69] for computing
gravitational anomalies, and recently used to compute Feynman diagrams in QED in [70]
where a path integral on the line has been implemented to accomplish such a task.

3.1 Coupling to Yang-Mills

Let us start by building up a worldline model that describes the propagation of a spin-
half particle in a Yang-Mills background. We will then explain how to perform classical
calculations. The model can be formulated by introducing a set of real Grassmann variables
ψM = (ψµ, θ) alongside the usual bosonic variables xM = (xµ, x5), PM = (Pµ, P5), with
µ being a Lorentz index while the raising and lowering procedure is done by ηMN =
diag (ηµν ,−1). As we will see, the Grassmann variables will take care of the spinning
degrees of freedom of the particle propagated in first quantization by the worldline model,
while the auxiliary fifth component has been introduced so to be able to give a mass to
such a particle by the Kaluza-Klein dimensional reduction. We consider the following phase
space action

Sph = −
∫ 1

0
dτ
(
ẋMPM + i

2ψM ψ̇
M + ic̄αċ

α − eH − iχQ
)
, (3.1)

where we gauge the reparametrization invariance through the gauge field e, known as the
einbein, and its generator H representing the point particle Hamiltonian. Further, we also
gauge the worldline supersymmetry through the Grassmann-valued gauge field χ, known
as the gravitino, and the correspondent generator Q which is the SUSY charge, i.e., the
conserved charge under supersymmetry transformation of the worldline variables.

One could even gauge a U(1) worldline symmetry on the color sector, including a
Chern-Simmons like coupling term a(c̄ · c− s) in the above action, where a is a worldline
gauge field and s is an integer parameter. Particularly, as showed in [57, 58] and extended
in [60] for the case of the bi-adjoint scalar, this coupling is needed to project on a specific
field that has s indices of the fundamental representation of the color group. However, by
explicitly performing calculations, as also done in [48], we see that such a gauging is not
necessary for classical applications, meaning that propagating all of the color representations
in the WQFT consistently implements the classical limit for the color degrees of freedom.

The phase space action (3.1) allows us to read out Poisson brackets between canonical
coordinates, namely

{xµ, Pν} = δµν , {ψµ, ψν} = −iδµν , {θ, θ} = i, {cα, c̄β} = −iδαβ (3.2)

with all of the remaining Poisson brackets vanishing. The Kaluza-Klein reduction here
is simply implemented by fixing P5 = m and gauge away x5 since, even after coupling to
background fields, it will appear as a total derivative.
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In order to couple to a Yang-Mills background we define the SUSY charge as

Q = ψµ
(
Pµ − gAaµqa

)
−mθ, (3.3)

such that, by using the SUSY algebra we can fix the point particle Hamiltonian

{Q,Q} = −2iH = −2i
(1

2
(
π2 −m2

)
− g

2S
µνF aµνqa

)
, (3.4)

where πµ = Pµ − gAaµqa is the covariant momentum of the particle while, F aµν = 2∂[µA
a
ν] −

igfabcAbµA
c
ν is the Yang-Mills field strength. We have also defined the spin tensor as

Sµν = −iψµψν , (3.5)

which is the conserved current under the Lorentz symmetry on the fermionic sector of
the worldline i.e. ψ → eωµνJ

µν
ψ with ωµν and Jµν being respectively the Lorentz group

parameters and the generators in the fundamental representation. One can check that the
Possion bracket {Sµν , Sρσ} agrees with the Lorentz algebra.

Let us now turn to the quantization of the model, so to explicitly see which is the
particle propagated by the worldline in first quantization. In order to recover unitarity at
the quantum level, we need to check that the constraint algebra is first class, namely that

{Q,Q} = −2iH, {Q,H} = 0, (3.6)

which is straightforward in such a case and holds by construction. Then we move to the
quantization by promoting the Poisson brackets to graded commutators as {•, •} → −i[•, •}.
This allows us to get the quantum algebra

[x̂µ, P̂ν ] = iδµν , {ψ̂µ, ψ̂ν} = ηµν , {θ̂, θ̂} = −1, [ĉα, ĉ†β ] = δαβ . (3.7)

We represent P̂µ = −i∂µ and x̂µ acting as a multiplication on states, further, once rescaling
ψµ → 1√

2ψ
µ, θ → i√

2θ we can realize the Grassmann variables as ψ̂µ = γµ, θ̂ = iγ5,
generating then the Clifford algebra {γµ, γν} = 2ηµν alongside with {γµ, γ5} = 0. Instead,
the color variables can be naturally realized at the quantum level as ĉ† = c̄, ĉ = ∂/∂c̄, thus
being creation and annihilation operators for a set of oscillators. Then, one can use the
coherent state basis related to such operators, to expand a generic wave function propagated
by the worldline as

Φ(x, c̄) =
∞∑
n=0

1
n!Φα1α2···αn(x)c̄α1 c̄α2 · · · c̄αn . (3.8)

Recalling the color variables are charged under the SU(N) global symmetry, as said
previously, implies that the worldline particle is propagating totally symmetric tensor
products of the fundamental representation. To project out on a s-tensor product, we use
the gauged U(1) constraint5 at the quantum level(

c̄α
∂

∂c̄α
− s

)
Φ(x, c̄) = 0, (3.9)

5We use normal ordering to solve the ordering ambiguities arising when writing quantum constraints
from classical ones.
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uniquely selecting the component of the wave function with s indices in the fundamental
representation of the color group

Φs(x, c̄) = 1
s!Φα1α2···αs(x)c̄α1 c̄α2 · · · c̄αs . (3.10)

Then, we impose the equations of motion of the worldline gauge fields (e, χ) as operator
constraints on the above wave function. In particular, the equation of motion for the
gravitino delivers

δSph
δχ

= 0 → Q̂Φs(x) = 0 →
(
γ5 /D +m

)
Φs(x, c̄) = 0 (3.11)

with the gauge covariant derivative Dµ = ∂µ − igAaµqa acting in the s representation.
Particularly, choosing s = 1, allows us to project on a colored Dirac Fermion, as stressed
by the above equation of motion. The latter can be recast as the standard Dirac equation
from textbooks, by performing a change of basis in the spinor space, keeping invariant the
Clifford algebra, namely defining iγ̃µ = −γ5γµ.

This analysis reveals that the worldline supersymmetric N = 1 model, with the SUSY
charge deformation (3.3), allows to propagate a colored Dirac spinor in the fundamental
representation of SU(N). Thus, the path integral quantization allows to resum Feynman
diagrams with two external spin-half particles in a non-Abelian gauge background. Notice-
ably, recalling that the expansion of classical observables at linear order in the spin tensor
is reproduced by scattering amplitudes of Dirac fermions [21, 23, 71, 72], the above analysis
makes it clear why one must use the N = 1 SUSY model to compute classical observables
at linear order in spin.

After this digression we can come back to the action principle needed for our classical
applications. Now we can plug the Hamiltonian and the supercharge (3.4) inside the phase
space action (3.1). Then, eliminating the momentum, by using its equation of motion

δSph
δPµ

= 0 → Pµ = e−1
(
ẋµ + egAaµqa − iχψµ

)
(3.12)

and plugging it back in the phase space action (3.1), we can write down the worldline action
for a color-charged point particle in configuration space as follows

Spc =
∫ 1

0
dτ
(
− 1

2e
−1
(
ẋ2 + e2m2

)
− i

2ψ · ψ̇ + i

2θθ̇ − ic̄ · ċ

− gẋ ·Aaqa −
eg

2 S
µνF aµνqa + ie−1χẋ · ψ + imχθ

)
.

(3.13)

Then, following [50], imposing the constraints θ = 0, χ = 0 yields ẋ ·ψ = 0, which implies the
spin supplementary condition (SSC), ẋµSµν = 0. Furthermore, we gauge fix e = 1/m, then
we change the integration boundaries to (−∞,∞) as a consequence of the LSZ reduction
procedure on the external legs [49, 60]. Further, we rescale τ → mτ such that the worldline
action, ready to be used to perform classical calculations, reads as

Spc = −
∫ ∞
−∞

dτ
(1

2 ẋ
2 + i

2ψ · ψ̇ + ic̄ · ċ+ gẋ ·Aaqa + g

2S
µνF aµνqa

)
, (3.14)
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where we have dropped an unimportant constant mass term proportional to m2. We note
that due to the rescaling of the integration variable, ẋµ has the dimension of momentum, so
that in perturbative calculations of the WQFT, it is easier to make contact with integrands
arising from the classical limit of scattering amplitudes.

Before ending this subsection, let us give some comments on the supersymmetry on
the worldline and the double copy. The action (3.14) is in agreement with the one used by
Goldberger, Li and Prabhu in [45] to study the double copy of classical spinning particles
at linear order in spin. In such a case they showed that, in order to have a double copy
radiation satisfying the linearized Ward identities for gravity, one must fix the coupling of
the Pauli interaction SµνFµν to be minus one half (in such conventions). However, in our
consideration we get such a coupling, very surprisingly, completely by the SUSY algebra
on the worldline, thus implying that SUSY, at linear level in spin, allows for a consistent
double copy of spinning worldlines! This may also be tracked back to the fact that the
constraint algebra is of first class, thus the model can be consistently quantized, propagating
a Dirac spinor coupled to Yang-Mills, which leads to consistent double copy of amplitudes
in four dimensions at the quantum level as shown in [23, 24].

3.2 Feynman rules

Let us now move to the derivation of the vertices arising from the above action. First,
thanks to the rescaling performed in the previous section, we can expand the position space
variables in a straight-line background as xµ(τ) = bµ + pµτ + zµ(τ) so to write Feynman
rules in terms of the momentum pµ of the worldline. Then, for the spin and color wave
function we use the background expansions

ψµ(τ) = ζµ + Ψµ(τ), ca(τ) = ua + λa(τ) (3.15)

with the expansion for c̄a(τ) obtained by complex conjugation. Particularly these expansions
allows us to identify the classical values of the spin tensor and the color charge of the
worldline particle, namely Sµν = −iζµζν and Ca = ūα(T a)αβ uβ respectively. In order to
derive the Feynman rules, we expand all of the quantum fluctuations in energy space

zµ(τ) =
∫
ω
eiωτzµ(−ω), Ψµ(τ) =

∫
ω
eiωτΨµ(−ω), λa(τ) =

∫
ω
eiωτλa(−ω), (3.16)

where the expansion for λ̄ is obtained by simply taking the complex conjugate of λ. This way,
we can write down the worldline propagators6 related to each of the quantum fluctuations
alongside with the gluon propagator

zµ zν
ω

= −iηµν
ω2

q

Aaµ Abν = − i

q2 ηµνδ
ab

ω
Ψµ Ψν = i

ηµν
ω

ω
λα λ̄β = i

ω
δα
β .

(3.17)

6Since we are only interested in writing down classical integrands, we avoid picking a particular iε
prescription on our worldline and bulk propagators, more details on this can be found in [53].
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Then, we move to interactions by writing the Yang-Mills field in momentum space, further
expanding for the quantum fluctuations in energy space

Aaµ(x(τ)) =
∫
q
eiq·x(τ)Aaµ(−q) =

∞∑
n=0

in

n!

∫
q
eiq·(b+pτ) (q · z(τ))nAaµ(−q)

=
∞∑
n=0

in

n!

∫
q,ω1···ωn

eiq·bei(q·p+
∑n

k=1 ωk)τ
(

n∏
i=1

q · z(−ωi)
)
Aaµ(−q)

(3.18)

such that, plugging the above expansion in the interactions from (3.14) allows us to write
down the worldline Feynman rules.

Here we start by listing the lowest order rules,

Aaµ(q)

q = −igCaeiq·bδ̂(q · p) (pµ + i(q · S)µ)

zα(ω)

Aaµ(q)

q

ω

= gCaeiq·bδ̂(q · p+ ω) (pµqα + ωηµα + i(q · S)µqα)

(3.19)

where (q · S)µ = qνSνµ. One can notice that, up to on-shell terms, the first vertex above
corresponds to the classical piece in the three point amplitude for two spin half fermions
emitting a gluon, as expected by the previous quantization procedure. Next we move to the
vertices propagating fluctuations coming from the Grassmann and color variables respectively

Ψν(ω)

Aaµ(q)

q = −2igCaeiq·bδ̂(q · p+ ω)ζρq[ρην]µ

λα(ω)

Aaµ(q)

q = −igeiq·bδ̂(q · p+ ω) (pµ + i(q · S)µ) ūβ(T a)βα

λ̄α(ω)

Aaµ(q)

q = −igeiq·bδ̂(q · p− ω) (pµ + i(q · S)µ) (T a)αβuβ

(3.20)

In calculation of Feynman diagrams, we follow the arrow of (Ψ, λ) propagators to combine
the vertices. we also get a vertex with the emission of two gluons from the worldline, namely

Abµ(q1) Acν(q2)
= −g2 f bcdCdei(q1+q2)·bδ̂((q1 + q2) · p)Sµν , (3.21)

as a direct consequence of SUSY on the worldline.
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3.3 Yang-Mills eikonal phase

As introduced in subsection 2.1, the WQFT partition function captures the information
needed to compute classical observables. Specifically, in the N = 1 model, it gives predictions
up to linear terms in spin, corresponding to the scatterings of spin- 1

2 charged particles.
For a model with n worldlines described by the action (3.14), the partition function reads
as follow

ZYM =
∫
DAeiSYM

∫ n∏
k=1
DXk e

iS[Xk;A], (3.22)

where SYM is the Yang-Mills action in the Feynman gauge, and we collect all of the
worldline variables in X = (x, ψ, c, c̄). The eikonal phase is related to the partition function
in the same way as (2.5). With the background expansion of the worldline variables and
the Feynman rules provided in the previous subsection, the eikonal can be calculated
perturbatively. It corresponds to the classical limit of the scattering amplitude with massive
external particles, thus is suitable for the double copy.

Leading order eikonal: at leading order (LO), only one diagram contributes to the
eikonal. Using the vertex in (3.19), we obtain

iχYM
1 =

1

2

q2 = ig2C1 · C2

∫ dµ1,2(0)
q2

2

(
γ − iq2 · S1 · p2

+ iq2 · S2 · p1 − q2 · S1 · S2 · q2
)
, (3.23)

where we have defined γ = p1 · p2, and used the notation a · Si · Sj · b = aµ(Si)µν(Sj)νρbρ for
arbitrary vectors aµ, bµ. We can recover the scalar WQFT result by simply setting the spin
to zero, and it agrees with the result in [48]. In the spirit of the double copy, we identify
the color factor, the double copy kernel and the numerator in the form (2.17) as

C = C1 · C2, K = 1
q2

2
, (3.24)

N = γ − i
(
q2 · S1 · p2 − q2 · S2 · p1

)
− q2 · S1 · S2 · q2. (3.25)

Next-to-leading order eikonal: for next-to-leading order (NLO) eikonal of two world-
lines, some of the color factors will be vanishing due to the anti-symmetry of structure
constant, whereas the corresponding numerators are needed in the double copy. To circum-
vent this problem, we will consider three bodies at NLO. One can easily retrieve the binary
system by identifying two of the three worldlines.

The diagrams with three worldlines are collected in figure 1. It is then straightforward
to compute the contributions to the eikonal phase with the Feynman rules given in 3.2.
The full result can be formally expressed as

χYM
2 = −g4

∫
dµ1,2,3(0)

(
fabcCa1C

b
2C

c
3A(0) +

(
C1 ·C2C1 ·C3A(1) + cyclic

) )
, (3.26)
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1
z z

2

3

q2 q3

(a)

1
Ψ Ψ

2

3

q2 q3

(b)

1
λ λ̄

2

3

q2 q3

(c)

1

2 3
q2 q3

(d)

1

2 3

q1

q2

q3

(e)

Figure 1. The diagrams for the NLO eikonal with three worldlines. For diagrams involving the
propagators of Ψ 1b and λ 1c, we also need to include the crossed diagrams that can be obtained by
simply reversing the arrows on the worldline. We only display diagrams with worldline propagator
and contact interaction of particle 1.

where A(i) are gauge-invariant “partial eikonals” akin to color-ordered amplitudes at the
quantum level. Explicitly, they can be written as

A(0) =
( 2
q2

1q
2
2q

2
3
n(0) + 1

q2
2q

2
3ω1

n(123) + 1
q2

1q
2
3ω2

n(231) + 1
q2

1q
2
2ω3

n(312)
)

(3.27)

A(1) =
( 1
q2

2q
2
3ω1

n(0) + q2 ·q3
q2

2q
2
3ω

2
1
n(123)

)
(3.28)

where ωi is defined in the same way as the spinless case (2.22), and the numerators read

n(123) = 1
2p1 · p2 p1 · p3 + i

(
p1 · p3 (q2 · S2 · p1 − q2 · S1 · p2) + 1

2q3 · p1 p2 · S1 · p3
)

+ q2 ·S2 ·p1
(
q3 ·S1 ·p3 − 1

2q3 ·S3 ·p1
)
− p1 ·p3 q2 ·S1 ·S2 ·q2 − q3 ·p1 q2 ·S2 ·S1 ·p3

+ i
(1

2q3 · p1 q2 · S2 · S1 · S3 · q3 − q2 · S1 · S2 · q2 q3 · S3 · p1
)

+ (2↔ 3) (3.29)

n(0) = p1 · p2 q2 · p3 − i (p2 · p3 q3 · S1 · q1 + q1 · p3 q1 · S1 · p2 + q3 · p2 q1 · S1 · p3)
+ q2 · p3 q1 · S1 · S2 · q2 + q2 · S1 · q3 q2 · S2 · p3 + q2 · S2 · q3 q1 · S1 · p3

− iq1 · S3 · q2 q1 · S1 · S2 · q2 + cyclic, (3.30)

and n(231) and n(312) are obtained by relabeling (1, 2, 3) in (3.29). We stress that the N = 1
model captures only linear terms in spin, so the numerators are truncated up to linear order
in each of the spin tensor.

In (3.26) we have arranged the numerators to satisfy color-kinematic duality, in the
sense that the eikonal can be decomposed into form (2.17a). At NLO, the BCJ double copy
kernel and the corresponding array of color factors are the same as the spinless case given
in (2.27) and (2.28), respectively, whereas the array of numerators read

Nj =
(
n(123) n(231) n(312) n(0)

)
. (3.31)
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1 z z

2
k

q2

(a)

1 Ψ Ψ

2
k

q2

(b)

1 λ λ̄

2
k

q2

(c)
1

2
k

q2

(d)

1

2

q1

q2
k

(e)

Figure 2. Topologies contributing to the leading Yang-Mills radiation for spinning worldlines.
For 2c, we also need to include the crossed diagrams that can be obtained by simply reversing the
arrows on the worldline. For 2a–2d, we also need to include diagrams with 1 and 2 exchanged.

As stated in subsection 2.2, such a decomposition is always possible since the double copy
kernel (2.27) is invertible. Moreover, we note that the kinematic numerators are uniquely
fix by the “partial eikonals” A(i),

A(i) = KijNj ⇒ Nj = (K−1)jiA(i). (3.32)

This is in agreement with its quantum counterpart — the 6-point amplitude for 3 distin-
guishable quark-antiquark pairs in QCD [67].

3.4 Leading Yang-Mills radiation

Let us now use the Feynman rules to evaluate the leading order (O(g3)) Yang-Mills radiation
emitted in the process of the scattering of two colored and spinning particles. Similarly
to what has been done for the gravitational radiation in (2.12), we define the Yang-Mills
radiation as

Raµ (σ) = 〈ik2Aaµ(k)〉WQFT
∣∣
k2=0 = Z−1

YM

∫
DAeiSYM

∫  2∏
j=1
DXj e

iS[Xj ;A]

 ik2Aaµ(k)

(3.33)
where the external gluon has to be considered on-shell while σ = (k, b1,2, p1,2,S1,2) packages
all of the scattering data, including the external momentum of the radiated gluon. The
diagrams contributing at the leading order to the radiation are shown in figure 2. Using the
Feynman rules defined in the last subsection 3.2, we can get the radiation straightforwardly

Raµ (σ) = ig3
∫

dµ1,2(k)
(
C̃a1

(
−k · q2
q2

2ω
2
1
nµ0 + 1

q2
2ω1

nµ1

)
+ C̃a2

(
−k · q1
q2

1ω
2
2
n̄µ0 + 1

q2
1ω2

nµ1

)

+ C̃a3

( 1
q2

2ω1
nµ0 + 1

q2
1ω2

n̄µ0 + 2
q2

1q
2
2
nµ1

))
,

(3.34)
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where in this case, we have ω1 = p1 · q2, and ω2 = −p2 · k, which are consistent with (2.22)
upon identifying k → −q3. For convenience, we also define the color factors as

C̃a1 = C1 · C2C
a
1 , C̃a2 = C1 · C2C

a
2 , C̃a3 = fabcCb1C

c
2, (3.35)

and the numerators as

nµ0 = γ pµ1 + iγ (k · S1)µ − ipµ1 (q2 · S1 · p2 − q2 · S2 · p1)− ip1 · q2(p2 · S1)µ

− q2 · S2 · p1(k · S1)µ − q2 · S1 · S2 · q2 p
µ
1 + p1 · q2(q2 · S2 · S1)µ

nµ1 = γqµ2 − p1 · q2 p
µ
2 + p2 · q1 p

µ
1 + q1 · S1 · S2 · q2 q

µ
2 +

[
ip1 · S2 · q2 q

µ
1

− iq1 · S2 · q2 p
µ
1 + ip1 · q2(q2 · S2)µ + q1 · S2 · q2(q1 · S1)µ − (1↔ 2)

]
(3.36)

with n̄0 = n0|1↔2. We can see that the leading-order radiation can be obtained from the
NLO eikonal (3.26) by cutting off worldline 3 and putting the external gluon on shell.
Specifically, we send q3 → −k,S3 → 0, strip off Ca3 and pµ3 , multiply the result by −ik2/g,
and finally set the outgoing momentum kµ on-shell. We stress that in (3.34), we have
already arranged the numerators to satisfy color-kinematics duality, in the sense that the
Yang-Mills radiation can be written in a similar form as (2.17a),

Raµ (σ) = ig3
∫

dµ1,2(k)
∑
i,j

C̃ai KijN
µ
j , (3.37)

where the array of numerators is

N µ = (nµ0 n̄µ0 nµ1 ) (3.38)

and the double copy kernel for the LO radiation reads

Kij =


− k·q2
q2

2ω
2
1

0 1
q2

2ω1

0 − k·q1
q2

1ω
2
2

1
q2

1ω2
1

q2
2ω1

1
q2

1ω2
2

q2
1q

2
2

 , (3.39)

which is obtained by considering the same diagrams as in figure 2 but in a theory of
scalar worldlines interacting through the bi-adjoint scalar field [48, 60]. Noticeably, gauge
invariance implies the Ward idnetity Kij(kµN µ

j ) = 0, such that the double copy kernel has
zero determinant, i.e., it is not an invertible matrix in the usual algebraic sense.7

4 Dilaton-gravity on the worldline

Here we work out the coupling of the N = 2 SUSY particle to the dilaton and graviton.
The free model was first proposed by [68], then, it was consistently coupled to gravity by
Bastianelli, Benincasa, and Giombi in [55, 56]. We start by describing the quantization of
the worldline particle and, then, by suitably deforming the SUSY charges of the free theory,

7Instead the kernel can be inverted in the sense of pseudo-inverse matrices [73], so to allow for a KLT-like
double copy.
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we are able to couple the dilaton to such a worldline particle, preserving supersymmetry.
Using the generators of the first class algebra as constraints on the wavefunctions propagated
by the worldline, we show that our deformation, in D = 4, reproduces the results in [23],
where the dilaton is sourced to a vector field only in the mass term. Then, we move to the
construction of the WQFT action, which allows us to write Feynman rules for the theory.

4.1 SUSY in the sky with dilaton

We start by describing the free theory, building on the results from the N = 1 model. Let
us consider two independent free SUSY charges from two copies of the N = 1 model. We
label the SUSY charges as

QL = ψµLPµ −mθL, QR = ψµRPµ −mθR (4.1)

with their related real fermionic variables carrying the same label. What we see is that,
upon defining complex Grassmann variables

ψµ = 1√
2

(ψµL − iψ
µ
R), θµ = 1√

2
(θµL − iθ

µ
R) (4.2)

we are able to identify a new SUSY charge Q = 1√
2(QL − iQR) = ψµPµ −mθ alongside

with its complex conjugate. We can gauge the charges so to write the free N = 2 phase
space action as

Sph = −
∫ 1

0
dτ
(
ẋµPµ + iψ̄µψ̇

µ − iθ̄θ̇ − e

2P
2 − iχ̄Q− iχQ̄+ a(J − s)

)
, (4.3)

where χ, χ̄ are Grassmann-valued Lagrange multipliers gauging the supersymmetry. We
also gauge a U(1) symmetry of the complex Grassmann variable through the gauge field
a(τ) and the current J = ψ̄µψ

µ − θ̄θ, with s being the Chern-Simons integer parameter.
This way we have a R-symmetry on the worldline, under which the Grassmann variables
and the U(1) gauge field transform as follows

δψµ = −iαψµ, δψν = iαψ̄ν , δa = α̇ (4.4)

with α being a gauge parameter. The Poisson brackets between worldline variables are
defined as

{xµ, Pν} = δµν , {ψµ, ψ̄ν} = −iδµν , {θ, θ̄} = i. (4.5)

Let us for a moment focus on the quantization of such a free particle. Firstly one has that
the algebra is of first class, namely

{Q, Q̄} = −2iH, {Q, J} = iQ, {Q̄, J} = −iQ̄ (4.6)

with all of the remaining brackets vanishing. This allows to use the equations of motion
for the gauge fields as constraints at the quantum level. From the above Poisson brackets,
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we can implement ψ ∼ ψ̂, ψ̄ ∼ ∂/∂ψ, θ ∼ θ̂, θ̄ ∼ −∂/∂θ and use a coherent state basis to
expand a generic wavefunction of the Hilbert space as

Φ(x, ψ, θ) = F (x) + Fµψ
µ + 1

2Fµν(x)ψµψν + . . .
1
D!Fµ1···µD(x)ψµ1 . . . ψµD

+ imθ

(
W (x) +Wµ(x)ψµ + . . .

1
D!Wµ1···µD(x)ψµ1 . . . ψµD

)
.

(4.7)

Thus, we clearly see that the worldline model is propagating totally antisymmetric tensor
fields that, once worked out the first class algebra at the quantum level will be identified as
p-forms. However, in this way, the model is propagating all of the p-forms. To project on a
specific sub-space we need to use the equation of motion of a(τ) as a quantum constraint
on the wave function

δSph
δa

= 0 →
(
Ĵ − s

)
Φ(x, ψ, θ) =

(
ψµ

∂

∂ψµ
+ θ

∂

∂θ
− s

)
Φ(x, ψ, θ) = 0 (4.8)

such that picking an arbitrary value of s, allows to project on a s-form and the related
(s−1)−form gauge field, namely

Φs(x, φ, θ) = 1
s!Fµ1···µs(x)ψµ1 · · ·ψµs + imθ

(s− 1)!Wµ1···µs−1(x)ψµ1 · · ·ψµs−1 . (4.9)

Then, acting with the Hamiltonian H = i/2{Q, Q̄} = p2/2 on the selected wave function
gives the mass-shell condition on each component of the wave function, while the SUSY
charges Q̂, ˆ̄Q|Φs〉 = 0 constraints give Bianchi identity on the field strength, transversality
condition on the (s−1)−form, alongside with the Proca equation of motions for the s-form.
Particularly, in D = 4 one can see that the model is propagating a massive vector boson
and a scalar field (after dualization of the massive forms), exactly as observed in [24] from
a field theory viewpoint, when studying the double copy of QCD. On the classical side, this
is in agreement with that the classical double copy of QCD amplitudes leads to quadratic
effects in the black hole spin [21, 71] which, on the worldline, can only be accounted by a
model having at least two pairs of real Grassmann variables.

Let us now move to the coupling with the dilaton-gravity background. From a field
theory viewpoint we expect such a worldline model to describe p-forms in a curved space
coupled to the dilaton. Inspired by the results in [63], where the N = 4 worldline SUSY
model has been used to propagate the supergravity spectrum after quantization, we deform
the SUSY charges as

Q = e−κφeµaψ
a
(
Pµ − iΣµcdψ̄

cψd
)
−mθ

Q̄ = e−κφeµa ψ̄
a
(
Pµ − iΣµcdψ̄

cψd
)
−mθ̄.

(4.10)

Since now we are in a curve space, it is necessary to differentiate the local flat tangent
space, denoted by the Latin indices a, b, c, . . . , from the usual covariant curve space de-
noted by the Greek indices µ, ν, ρ, . . . . They are related via the vielbein eaµ defined as
ηabe

a
µe
b
ν = gµν . For example, we have ψµ = eµaψ

a. Due to the presence of the dilaton, we use
Σµab = ωµab−2κ∂[aφ eb]µ as a modification of the spin connection ωµab = eaν(∂µeνb+Γνµρeρb).
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Let us now go through this deformation. The Poisson bracket {Q,Q} identically vanishes
when requiring our manifold to be torsionless and upon invoking Bianchi identity on the
Riemann tensor. Indeed, the deformation is designed such that this Poisson bracket would
deliver the torsion and the Riemann tensor in what is known as the Einstein frame. The
same happens for the bracket {Q̄, Q̄}. More details on this can be seen in appendix A.
This means that our coupling preserves supersymmetry, thus allowing for a consistent
quantization of the model.

Let us inspect the quantum theory implemented by the worldline particle using the
SUSY charges as constraints on the wave function (4.7). Choosing the Chern-Simons
parameter s = 2 so to propagate a massive vector boson and its related field strength

Φ2(x, ψ, θ) = 1
2Fµν(x)ψµψν + imθWµ(x)ψµ (4.11)

and acting on such a state with the SUSY charges (4.10) one gets

Q̂†|Φ2〉 = 0→

∇µFµν = m2eκφWν

∇µWµ = 0
Q̂|Φ2〉 = 0→

∇[µFνρ] = 0
eκφFµν = 2∇[µWν]

(4.12)

in agreement with the equations of motion from the D = 4 limit of the theory 1
2 ⊗

1
2 in [23],

where the dilaton is only sourced to the mass term for the vector boson. Working out the
SUSY algebra from the SUSY charges in (4.10), whose details can be found in appendix A,
one is able to write down the following WQFT action for a massive point particle coupled
to dilaton-gravity

Spm =
∫ ∞
−∞

dτ
(
−1

2e
2κφgµν ẋ

µẋν − iψ̄aψ̇a + 1
2Σµ

abẋµSab + 1
8e
−2κφRabcdSabScd

)
(4.13)

where in this N = 2 case the spin tensor is defined as Sab = −2iψ̄[aψb], and the deformed
Riemann tensor in the flat space is

Rabcd = eµae
ν
b

(
eρce

σ
dRµνρσ − 4κ∇[µ∇[cφed]ν] + 2κ2

(
2∂[cφ∂[µφeν]d] − ∂2φe[c[µeν]d]

))
. (4.14)

Let us conclude this section by giving a comment on the above results. First, one
can notice that the action (4.13) is really a Weyl rescaling gµν → e2κφgµν of the action
of a N = 2 particle coupled to pure gravity used in [50]. This is a direct consequence of
that even the deformation of the SUSY charges (4.10) is a Weyl rescaling of the one used
in [50, 56] to couple the model to gravity. This nice property implies that the dilaton can be
completely disentangled from the worldline by reversing the Weyl transformation, yielding
an action in the string frame. As we will see in the next subsection, the Feynman rules will
be much simpler and less Feynman diagrams will be needed to compute the eikonal and the
radiation.

4.2 WQFT expansion and Feynman rules

As explained before, in order to simplify as much as possible the perturbative expansion,
we move back to the string frame by performing the Weyl rescaling

gµν = e−2κφg̃µν , (4.15)
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which allows to rewrite the worldline action (4.13) as

Spm =
∫ ∞
−∞

dτ
(
−1

2 g̃µν ẋ
µẋν − iψ̄aψ̇a + 1

2 ẋ
µω̃µ

abSab + 1
8R̃abcdS

abScd
)
, (4.16)

where objects in the string frame are tilded. The spin connection and the Riemann tensor
are given in terms of the tilded quantities,

ω̃µ
ab = ẽaν(∂µẽνb + Γνµρẽρb) (4.17)

R̃abcd = 2ẽµc ẽνd
(
∂[µω̃ν]ab + ω̃[µa

f ω̃ν]fb
)
. (4.18)

In the bulk, we expect to probe the dilaton-gravity sector of the N = 0 supergravity,
known to arise from the double copy of pure Yang-Mills, and the action reads

Sdg = − 2
κ2

∫
dDx

√
−g̃(x)e−2φ

(
R̃+ 4g̃µν∂µφ∂νφ

)
. (4.19)

We find it convenient to expand the metric as

g̃µν = eκhµν = ηµν + κhµν + κ2

2 hµρh
ρ
ν + . . . , (4.20)

where for perturbative quantities such as hµν the Greek indices are now raised and lowered
by the flat metric ηµν . In this expansion, to decouple the kinetic terms of φ and hµν , we
perform a field redefinition φ→ φ̃+ 1

4hµ
µ, and add to the bulk action the following gauge

fixing term

Sgf =
∫

dDx
(
∂νh

µν + 2∂µφ̃
) (
∂νhµ

ν + 2∂µφ̃
)
. (4.21)

In the end, the gauge-fixed dilaton-gravity action simply reads

Sdg =
∫

dDx
(1

2∂ρhµν∂
ρhµν − 4∂µφ̃∂µφ̃

− κ
(1

2h
µν∂µh

ρσ∂νhρσ − hµν∂νhρσ∂σhµρ
))

+O(κ2), (4.22)

where we have neglected interaction terms involving the dilaton φ̃. Thus, we can write
down the WQFT partition function for n worldlines as follows

Zdg =
∫
D[hµν , φ̃] eiSdg[h,φ̃]

∫ n∏
k=1
DXk e

iSpm[Xk;h] (4.23)

with the worldline variables Xk = (xk, ψk, ψ̄k) and the path integral measure defined as
DXk = DxkDψkDψ̄k, where we implicitly included the Lee-Yang ghost term as introduced
in (2.2). Let us move now to the Feynman rules needed for our calculations. In this way,
the Feynman graviton propagator turns out to be

q

hµν hρσ = i

2q2 (ηµρηνσ + ηµσηνρ) . (4.24)
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From the second line in (4.22), we can extract the three-point graviton vertex, which turns
out to be extremely simple and can be written as

hµν(q1)

hρσ(q2) hαβ(q3)

= iκ

2 q
α
1 q

β
2 η

ρµησν − iκqβ1 q
ν
2η

µσηρα + S3(1, 2, 3),

where S3(1, 2, 3) is the set of all of the permutations of the list (1, 2, 3) labeling the Lorentz
indices and momenta of the external gravitons. We have also implicitly symmetrize in
(µ, ν), (ρ, σ), (α, β), separately. Moving on to the worldline action, we see that, in the string
frame, the leading PM expansion of the action generates the same Feynman rules given
in [50], as a consequence of (4.20). The sub-leading expansion reads as

Spm =
∫
dDx

(
− ẋ

2

2 +κ
(
−1

2hµν ẋ
µẋν+ 1

2S
νρẋµ∂ρhµν−

1
4S

µνSρσ∂σ∂νhµρ
)

+κ2
(
−1

4hµ
ρhνρẋ

µẋν− 1
8h

νρSν
σẋµ∂µhρσ+ 1

4h
νρSν

σẋµ∂ρhµσ+ 1
4hµ

νSρσẋµ∂σhνρ

− 1
8S

µνSρσ∂ρhµ
λ∂σhνλ−

1
8S

µνSρσ∂νhµ
λ∂σhρλ−

1
4h

µνSµ
ρSσλ∂λ∂νhρσ

+ 1
4S

µνSρσ∂σhνλ∂
λhµρ−

1
16S

µνSρσ∂λhνσ∂
λhµρ

))
+O(κ3), (4.25)

which allows to write down the vertex with the emission of two gravitons from the worldline

hµν(q1) hρσ(q2)

= − 1
16 iκ

2
(
4pµpρηνσ − 4iqν2pρSµσ + 4ipµ(q2 · S)σηνρ (4.26)

+ 2i(p · q2)Sµσηνρ + 4qν2Sµρ((q1+q2)·S)σ − (q1 ·q2)SµρSνσ

− 2Sµρ(q1 · S · q2)ηνσ − 2(q1 · S)µ(q2 · S)ρηνσ
)

+ (1↔ 2).

Again, we need to symmetrize the indices (µ, ν) and (ρ, σ), separately. Thus, what we see is
that our field redefinition combined with the gauge fixing term (4.21) allows to disentangle
the dilaton from the graviton kinetic term, to drastically simplify the three graviton vertex,
and to decouple the dilaton from the worldline action, such that, for our purposes, we
should only focus on the interaction concerning the graviton.

5 Double copy of spinning worldlines

In this section we show how to double copy classical spinning particles, preserving SUSY and
R-symmetry on the worldline. The double copy procedure for multiplying the numerators
is the same as the spinless case (2.17). However, the spin degree of freedom needs to be
dealt with carefully. The spins carried by the two copies, referred to as “left” and “right”,
will be labeled as L and R, respectively. The sum of these two spins will yield the spin
in the double copy theory. Moreover, in order to preserve the SUSY and R-symmetry,
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we will symmetrize the labels L and R for each individual particles in the double copy
procedure. We found that the double copy of the N = 1 worldline in YM background
leads to the N = 2 particle coupled to DG. In addition, we also investigate the case where
symmetrization of L and R labels is not accounted, in which the B-field will present in the
double copy spectrum, breaking SUSY and R-symmetry on the worldline.

5.1 Double copy of the eikonal phase

Let us start by considering the simplest case of the leading order eikonal for the scattering
of two spinning worldlines in a gauge background. Firstly, let us clarify how to identify
the spin tensor after the double copy. Given that we expect to probe quadrupole, the
underlying WQFT should be constructed with complex Grassmann variables, related to the
real ones from the N = 1 model, by (4.2). This is already selecting the N = 2 model as a
free theory. In particular, using (4.2) and (3.15) this also fixes the background expansion of
the complex Grassmann variables of the N = 2 model as

ψµ(τ) = 1√
2

(ψµL(τ)− iψµR(τ))

= 1√
2

(ζµL − iζ
µ
R) + 1√

2
(Ψµ

L(τ)− iΨµ
R(τ)) = ζµ + Ψµ(τ),

(5.1)

further implying that the Grassmann variables from the two copies should be treated
differently, so that we have two real Grassmann variables at the gravity side. For convenience,
we label them as L and R. We thus propose the following relation between the spin tensor
in the gravity and the YM side,

Sab = SabL + SabR , (5.2)

with SabL,R = −iζaL,RζbL,R, so that when written in terms of the complex Grassmann variables
in (5.1), the spin tensor is Sab = −2iζ [aζ̄b]. This is also consistent with the fact that the
Lorentz generator for spin-s particles is basically the sum of s vector representations in the
spinor-helicity formalism [71].

Let us now move to studying the double copy of the leading eikonal phase. At LO, it
has been calculated in (3.23). We take two copies of the numerators, and label the spins by
L and R, interpreted as labeling the left and a right copy of the N = 1 theory. For example,
if both particles are labeled with L, the numerator reads

NL1L2 = γ − i
(
q2 · S1,L · p2 − q2 · S2,L · p1

)
− q2 · S1,L · S2,L · q2 . (5.3)

In such a case, following (2.17), the naive double copy procedure yields

χDC
1 ∼ NL1L2 NR1R2

q2
2

. (5.4)

The question now is how to select a worldline theory generating such numerator and
whether it enjoys supersymmetry or R-symmetry, the former being crucial to fix all of
the interactions on the wordline, while the latter, allowing to propagate a specific particle
among the worldline spectrum. Let us now discuss the consequences of R-symmetry at
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the level of classical integrands from the WQFT. After gauge fixing the U(1) gauge field
a(τ) on the worldline, the theory enjoys the global version of the symmetry (4.4) on the
background parameters ζ, ζ̄, which can be used to check global U(1) invariance of the double
copy integrand. This amounts to check that the integrand can be expressed entirely in
terms of global R-invariant objects i.e. in terms of the spin tensor Sab.

Then, this is signaling that (5.4), cannot be generated by a R-invariant theory! To
keep U(1) invariance, we perform the replacement above, then symmetrizing over the left
and right indices, such that, the double copied eikonal turns out to be

χDC
1 = −κ

2

4

∫
dµ1,2(0)NL ⊗NR

q2
2

(5.5)

where ⊗ defines symmetrization over L1, R1 and L2, R2 separately. This yields to the double
copied numerator

NL ⊗NR = γ2 − iγ q2 · S1 · p2 + iγ q2 · S2 · p1

− 1
2 (q2 · S1 · p2) 2 − 1

2 (q2 · S2 · p1) 2 − 1
2 i q2 · S1 · S2 · q2 q2 · S2 · p1

+ 1
2 i q2 · S1 · S2 · q2 q2 · S1 · p2 + 1

2 q2 · S1 · p2 q2 · S2 · p1

− 1
2γ q2 · S1 · S2 · q2 + 1

4 (q2 · S1 · S2 · q2) 2

(5.6)

which is manifestly background R-invariant, given that it can be recast in terms of the
N = 2 spin tensor. We stress that a crucial role in obtaining the above numerator from the
double copy of the N = 1 model, is played by the real Grassmann variables ψµL,R. Indeed,
some of the terms one gets vanish once using that ψ2

L,R = 0 and anti-symmetry of the string
ψµL,Rψ

ν
L,R. For instance, a factor quadratic in S1 will be simplified as

(q2 · S1,L)µ (q2 · S1,R)ν + (q2 · S1,R)µ (q2 · S1,L)ν (5.7)
= (q2 · S1,L)µ (q2 · S1,L)ν + (q2 · S1,L)µ (q2 · S1,R)ν

+ (q2 · S1,R)µ (q2 · S1,L)ν + (q2 · S1,R)µ (q2 · S1,R)ν

= (q2 · S1)µ (q2 · S1)ν ,

where we have used the fact that (q2 · S1,L)µ (q2 · S1,L)ν ∼ q2αq2βζ
α
Lζ

β
Lζ

µ
Lζ

ν
L = 0 due to the

anti-symmetry of the Grassmann variables. The same holds for the right copy of such
term. By inspection, it can be seen that the double copied numerator (5.6) is in agreement
with the one extracted from the leading eikonal evaluated using the Feynman rules in
subsection 4.2, thus automatically checking SUSY invariance of the double copied eikonal
phase. We note that the Grassmann nature of the spin tensor is critical in matching the
double copy eikonal to the direct calculation from dilaton gravity.

Let us now proceed to the NLO. At this order, again, the double copy multiplication
rule is the same as the spinless case, with the numerators given in (3.31). Written with
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1
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q2 q3

(a)

1
Ψ Ψ̄

2

3

q2 q3

(b)

1

2 3
q2 q3

(c)

1

2 3

q1

q2

q3

(d)

Figure 3. The diagrams needed for the DG eikonal at NLO with three worldlines. For diagrams
involving the propagators of Ψ 3b, we also need to include the crossed diagrams that can be obtained
by simply reversing the arrows on the worldline. We only display diagrams with worldline propagator
and contact interaction of particle 1.

the ⊗ symmetrization prescription, the double copy eikonal (2.17b) can be expressed as

χDC
2 = −κ

4

16

∫
dµ1,2,3(0)

∑
i,j

KijNi,L ⊗Nj,L

= −κ
4

16

∫
dµ1,2,3(0)

[( 2
q2

2q
2
3ω1

n
(123)
L ⊗ n(0)

R + q2 ·q3
q2

2q
2
3ω

2
1
n

(123)
L ⊗ n(123)

R + cyclic
)

+ 2
q2

1q
2
2q

2
3
n

(0)
L ⊗ n

(0)
R

]
. (5.8)

One can check that, with the symmetrization of Li and Ri labels, this agrees with the direct
computation of the Feynman diagrams (see figure 3) from DG using the Feynman rules
in subsection 4.2. The final double copy numerators of the NLO eikonal (as well as the
radiation) are too lengthy to fit into this article, instead they are provided in a file in the
supplementary material attached to this paper.

As stated in subsection 2.2, the double copy kernel for the NLO eikonal is invertible,
so alternatively we can easily perform the double copy in a KLT-like fashion. Specifically,
according to the relation between the “partial eikonals” and the kinematic numerators (3.32),
the eikonal phase at the gravity side of the double copy theory can be re-expressed as

χDC
2 = −κ

4

16

∫
dµ1,2,3(0)

∑
i,j

(K−1)ijA(i)
L ⊗A

(j)
R , (5.9)

where again, the ⊗ denotes the symmetrization of the L and R labels for each individual
worldline. We have checked that this yields exactly the same result as the BCJ double copy.
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1 z z

2
k

q2

(a)

1 Ψ Ψ̄

2
k

q2

(b)
1

2
k

q2
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2

q1

q2
k
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Figure 4. Topologies contributing to the leading-order gravitational radiation for spinning worldlines.
For diagrams 4b, we also need to include the crossed diagrams that can be obtained by simply
reversing the arrows on the worldline. For 4a–4c, we also need to include diagrams with 1 and
2 exchanged.

5.2 Double copy of the radiation

Let us now move to the double copy of the leading radiation. We have seen that the radiation
can be recasted in a manifest color-kinematic fashion, from the analysis in section 3.4. Then,
the double copy procedure would require us to replace the color factors C̃ai → N

µ
iR, the

latter being the numerator computed from the right copy of the N = 1 model. However,
as pointed out previously, this procedure does not preserve R-symmetry. Then, as for
the eikonal phase, we perform the above replacement, then using the ⊗ symmetrization
prescription on the labels of the two independent copies of the N = 1 particle. This yields
the double copied radiation

Rµν(σ) = i
κ3

8

∫
dµ1,2(k)

∑
i,j

Kij N µ
iL ⊗N

µ
jR

= i
κ3

8

∫
dµ1,2(k)

(
− k · q2
q2

2ω
2
1
nµ0L ⊗ n

ν
0R + 2

q2
2ω1

n
(µ
1L ⊗ n

ν)
0R −

k · q1
q2

1ω
2
2
n̄µ0L ⊗ n̄

ν
0R

+ 2
q2

1ω2
n

(µ
1L ⊗ n̄

ν)
0R + 2

q2
1q

2
2
nµ1L ⊗ n

ν
1R

)
(5.10)

with the shorthand notation L = L1, L2, R = R1, R2. As for the eikonal, so to rewrite the
above result in terms of the spin tensor (5.2) one needs to use anti-symmetry of the real
Grassmann variables belonging to the left and right copy. One can check that the above
radiation correctly reproduces the result obtained by evaluating the diagrams in figure 4 on
the gravitational side.

5.3 B-field in the double copy spectrum

In the above derivation of the double copy of radiation and eikonal, we mostly relied on the
R-symmetry as a guideline. We found that, in this case, the ⊗ prescription preserves even
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SUSY in the double copied integrands. Here we wonder if this is not the case when the
R-symmetry is not preserved during the double copy. To investigate this, let us study the
consequences of the double copy replacement (5.4) which does not preserve R-symmetry in
the integrands. In such a case, given that we cannot use the R-symmetry as a guideline,
we study the double copy features of the three point worldline vertex from the first line
in (3.19). The replacement (5.4) can be implemented at this level by sending the color
factor to a right copy of the vertex, carrying a polarization ε̄(q). Then, we can introduce
the NS-NS spectrum by using the expansion

εµ(q)ε̄ν(q) = εhµν(q) + εBµν(q) + ε · ε̄
(
−ηµν +

2q(µrν)
r · q

)
(5.11)

with rµ being a arbitrary null vector. Separately contracting the double copied vertex with
the above expansion and using (5.2) with the SSC, we reproduce the graviton and dilaton
vertices which can be checked against (4.13), with, in addition, the contribution from the
B field, whose three point vertex can be reconstructed as

Bµν

q = iκ

2 e
iq·bδ̂(q · p)

(
ip[µq · (SL − SR)ν] + (q · SL)[µ(q · SR)ν]

)
(5.12)

which manifestly breaks R-invariance, given the mixing of the left and right copies of the
spin tensor. By studying the structure of such vertex we can reproduce this interaction
by deforming the SUSY charges (4.10) as Q→ Q− 1

4κe
κφeµaψ

aHµcdT
cd, with the twisted

Lorentz generator T ab = −iψaLψbL + iψaRψ
b
R = SabL − SabR as coming from each copies of the

N = 1 model. As it can be checked by working out the SUSY algebra, this deformation
breaks supersymmetry, then showing in our case that, if R-symmetry is not preserved
neither SUSY is on the double copied theory. In addition, given the constraint algebra is
not of first class {Q,Q} 6= 0 we cannot quantize the model as previously, and, particularly,
this does not allow to write down a path integral to access classical calculations. However,
using (4.13) as a base theory, one can write down an effective WQFT action, capturing
such effects, namely

S =
∫ ∞
−∞

dτ
(
−1

2e
2κφgµν ẋ

µẋν − iψ̄aψ̇a + 1
2Σµ

abẋµSab + 1
8e
−2κφRabcdSabScd

−1
4κẋ

µHµabT
ab − 1

8κ∇µHνabS
µνT ab

)
.

(5.13)

This theory agrees up to terms linear in spin with the action proposed by Goldberger and Li
in [74] to study the double copy of spinning worldlines by solving the classical equation of
motions. We check that (5.13) reproduces the leading binary radiation from [74], confirming
their string interpretation of the above action by extending these results up to quadratic
order in spin.
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6 Conclusions

The double copy is a fascinating and powerful tool which allows to study gravitational
theories from knowledge of gauge theories. At the level of predictions, it allows to boost
calculations in a gravitational theory since the perturbative expansion in a gauge theory is
much more under control. Although it was originally formulated in quantum field theory, in
the recent years, more and more evidences showed that the double copy can be generalized
to the classical level. In this work, we study WQFT formalism of spinning particles coupled
to YM field and to dilaton-gravity, with the spin degrees of freedom characterized by
Grassmann valuables. The former is constructed to feature the N = 1 supersymmetry
on the worldline, and the latter features the N = 2 supersymmetry and the R-symmetry.
We generalized the double copy relation proposed in [48] to spinning particles, where the
relation between the spin tensors at the YM and gravity side is given as (5.2). Taking
advantages of the anti-symmetry of Grassmann valuables, we recover the eikonal up to O(κ4)
and the radiation at O(κ3) of the N = 2 dilaton-gravity theory from the N = 1 YM theory.

Our work sheds light on dealing with classical spin degrees of freedom. Using the
R-symmetry as a guideline on the worldline allows us to write the double copy numerators
arising from a WQFT featuring both supersymmetry and R-symmetry. Crucially, this makes
the constraint algebra of first class, then enabling us to quantize the worldline model, so to
get information about the quantum field theory on the double copied side, thus deriving
quantum information from classical inputs. Indeed, starting from the N = 1 SUSY model
on the worldline, which propagates Dirac fermions, we identify its classical double copy with
the N = 2 model coupled to DG background. In addition, given that SUSY is preserved,
we quantize the model, finding that in four dimensions, the double copy theory describes a
massive vector boson coupled to DG, in such a way that the dilaton is only sourced by the
mass term of the vector. This is in agreement with the results in [23, 24].

We stress that a crucial role in the double copy is played by the left and right labels used
to distinguish between the two copies of the N = 1 model. In particular, the symmetrization
of the left and right labels allows to keep global U(1) invariance, leading to a theory enjoying
R-symmetry at the classical and quantum level, and ruling out the B field from the double
copy spectrum. Further, this is very similar to symmetrizing over the little group indices
used when dealing with the double copy of amplitudes written in terms of the massive
spinor helicity variables [25, 26, 75]. At the level of the double copy spectrum they do
essentially the same job. This similarity is worth being investigated further in future, given
that it could lead to a better understanding on how to propagate massive higher spin fields
on the worldline, providing a relation between WQFT and spinor helicity formalism, which,
in our opinion, seems to be one of the best candidates to deal with higher spin amplitudes.

Another interesting point to be further developed concerns whether the double copy
we proposed could help to detect higher spin vertices on the WQFT, given the standard
quantum mechanical rules to add spin. On a different side, with the N = 1 WQFT model
in hand, it would worth investigating further the relation between KMOC and WQFT in
the case of spinning observables, applying then such result to the calculation of off-shell
currents related to hard thermal loops in QCD, extending then the results of [76].
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A SUSY algebra and DG background

Here we work out the coupling of the N = 2 SUSY model to the dilaton and gravity,
obtained by deforming the free SUSY charges as

Q = e−κφeµaψ
a
(
Pµ − iΣµcdψ̄

cψd
)
−mθ = e−κφψaπa −mθ

Q̄ = e−κφeµa ψ̄
a
(
Pµ − iΣµcdψ̄

cψd
)
−mθ̄ = e−κφψ̄aπa −mθ̄

(A.1)

where φ is the dilaton field and Σµcd = ωµcd − 2κ∂[cφed]µ. In the above lines we defined the
generalized momentum

πa = eµaπµ = eµa

(
Pµ − iΣµcdψ̄

cψd
)
, (A.2)

where the spin connection Σµcd introduced in the deformation, exactly corresponds to the
spin connection written in the Einstein frame, the latter reached through the Weyl rescaling

ẽµa = e−κφeµa g̃µν = e2κφgµν (A.3)

with tilded objects defined in the string frame. Next, so to consistently quantize the model
and write down a path integral, we need to ensure that the constraint algebra is of first
class, particularly that {Q,Q} = {Q̄, Q̄} = 0. To this aim we first list here the free theory
Poisson brackets

{xµ, Pν} = δµν {ψa, ψ̄b} = −iδab {θ, θ̄} = i, (A.4)

then, we can evaluate the bracket {Q,Q}, yielding

{Q,Q} = 2e−κφψa
(
{πa, e−κφ}ψb + e−κφ{πa, ψb}

)
eνbπν + e−2κφψaψb{πa, πb}

= 2e−2κφ
(
ψa{πa, e−κφ}ψbeνb + e−κφψa{πa, ψb}eνb − ψaψbe

µ
[a∂µe

ν
b]

)
πν

+ e−2κφeµae
ν
bψ

aψb{πµ, πν}

= 2e−2κφ
(
κ∂aφψ

aψbeνb − ψaψdeνbω[ad]
b − κ∂aφψaψbeνb − ψaψbe

µ
[a∂µe

ν
b]

)
πν

+ e−2κφeµae
ν
bψ

aψb{πµ, πν}

= −2e−2κφ
(
ω[ab]

deνd + eµ[a∂µe
ν
b]

)
ψaψbπν + e−2κφeµae

ν
bψ

aψb{πµ, πν} .

(A.5)

What we see is that, a direct consequence of our SUSY charge deformation is that, the
modification of the spin connection term in (A.1) allows us to generate the torsion tensor
in the Einstein frame

T ν[ab] = e−2κφ
(
ω[ab]

deνd + eµ[a∂µe
ν
b]

)
(A.6)
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which we set to zero assuming our connection is symmetric. This way, once evaluating the
last term in (A.5), we can recast the bracket as

{Q,Q} = iψµψνψ̄cψde−2κφRµνcd (A.7)

with Rµνcd =
(
Rµνcd − 4κ∇[µ∇[cφed]ν] + 2κ2(2∂[cφ∂[µφeν]d]−∂2φe[c[µeν]d]

))
(A.8)

where, from the last line, we can read out the Riemann tensor in the Einstein frame. Thus,
invoking Bianchi identity and assuming no torsion imply that the above bracket must vanish.
A similar calculation holds for {Q̄, Q̄}. Now one can evaluate the point particle Hamiltonian
by using that {Q, Q̄} = −2iH. The calculation delivers the following Hamiltonian

H = 1
2e
−2κφ

(
gµνπµπν −m2e2κφ −Rabcdψ̄aψbψ̄cψd

)
(A.9)

where the deformed Riemann tensor Rabcd is given in (4.14). Once switching off the dilaton
field, H reduces to the Hamiltonian in the pure gravity case [50]. Now we can write down
the worldline action in configuration space. We consider the phase space action gauging the
reparametrization invariance, supersymmetry, and R-symmetry

Sph = −
∫ 1

0
dτ
(
ẋµPµ + iψ̄aψ̇

a − iθ̄θ̇ − eH − iχ̄Q− iχQ̄+ a(J − s)
)
. (A.10)

Then, we eliminate the momentum using the equation of motion

δSph
δPµ

= 0→ Pµ = e−1 e2κφ
(
gµν ẋ

ν − iχe−κφψ̄µ − iχ̄e−κφψµ −
e

2e
−2κφΣµabS

ab
)

(A.11)

once defining the spin tensor as Sab = −2iψ̄aψb. Plugging it back in the Hamiltonian and
the SUSY charges one is able to write down a configuration space action, ready to be gauge
fixed

S =
∫ 1

0
dτ

(
− 1

2e
−1e2κφ

(
gµν ẋ

µẋν − e2m2
)
− iψ̄aψ̇a + iθ̄θ̇ + 1

2 ẋ
µΣµabS

ab

+ e

8e
−2κφRabcdSabScd + ie−1eκφgµν ẋ

µ(χ̄ψν + χψ̄ν)

+ im(χθ̄ + χ̄θ)− χ̄χe−1ψ̄aψ
a − a(J − s)

) (A.12)

which should be gauge fixed according to the topology one would like to evaluate the path
integral. For our classical application, we set θ = θ̄ = 0, while using the equations of
motion for the gravitinos (χ, χ̄) and setting them to zero implement the spin supplementary
condition. In addition, the constraint arising from the gauge field a(τ) allows to recover the
normalization of the spin tensor SµνSµν = 2s2 through the condition ψ̄ · ψ = s.

Analogous to the YM case, we fix the einbein by choosing e = 1/m, then change the
integration boundaries to (−∞,∞) by the LSZ reduction procedure. Upon rescaling the
integration variable τ → mτ , we obtain the following N = 2 worldline action coupled to
dilaton-gravity

S =
∫ ∞
−∞

dτ

(
−1

2e
2κφgµν ẋ

µẋν − iψ̄aψ̇a − iẋµΣµ
abψ̄aψb + 1

8e
−2κφRabcdSabScd

)
. (A.13)

– 31 –



J
H
E
P
0
4
(
2
0
2
3
)
0
0
8

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[2] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy
of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[3] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and
Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

[4] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge
University Press (2007) [INSPIRE].

[5] J.J.M. Carrasco, Gauge and Gravity Amplitude Relations, in the proceedings of Theoretical
Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision
Frontier: Amplitudes for Colliders, Boulder U.S.A., June 2–27 2014, p. 477–557
[DOI:10.1142/9789814678766_0011] [arXiv:1506.00974] [INSPIRE].

[6] Z. Bern et al., The Duality Between Color and Kinematics and its Applications,
arXiv:1909.01358 [CERN-TH-2019-135] [INSPIRE].

[7] G. Travaglini et al., The SAGEX review on scattering amplitudes, J. Phys. A 55 (2022) 443001
[arXiv:2203.13011] [INSPIRE].

[8] T. Adamo et al., Snowmass White Paper: the Double Copy and its Applications, in the
proceedings of 2022 Snowmass Summer Study, Seattle U.S.A., July 17–26 2022
[arXiv:2204.06547] [INSPIRE].

[9] R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector, JHEP 07
(2011) 007 [arXiv:1105.2565] [INSPIRE].

[10] A. Anastasiou et al., Gravity as Gauge Theory Squared: A Ghost Story, Phys. Rev. Lett. 121
(2018) 211601 [arXiv:1807.02486] [INSPIRE].

[11] R. Bonezzi, F. Diaz-Jaramillo and O. Hohm, The gauge structure of double field theory follows
from Yang-Mills theory, Phys. Rev. D 106 (2022) 026004 [arXiv:2203.07397] [INSPIRE].

[12] A. Brandhuber, G. Chen, G. Travaglini and C. Wen, Classical gravitational scattering from a
gauge-invariant double copy, JHEP 10 (2021) 118 [arXiv:2108.04216] [INSPIRE].

[13] A. Brandhuber et al., Kinematic Hopf Algebra for Bern-Carrasco-Johansson Numerators in
Heavy-Mass Effective Field Theory and Yang-Mills Theory, Phys. Rev. Lett. 128 (2022) 121601
[arXiv:2111.15649] [INSPIRE].

[14] A. Brandhuber et al., Amplitudes, Hopf algebras and the colour-kinematics duality, JHEP 12
(2022) 101 [arXiv:2208.05886] [INSPIRE].

[15] Z. Bern et al., Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at
Third Post-Minkowskian Order, Phys. Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424]
[INSPIRE].

– 32 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/literature/786640
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/literature/850908
https://doi.org/10.1016/0550-3213(86)90362-7
https://inspirehep.net/literature/217982
https://inspirehep.net/literature/487240
https://doi.org/10.1142/9789814678766_0011
https://arxiv.org/abs/1506.00974
https://inspirehep.net/literature/1374212
https://arxiv.org/abs/1909.01358
https://inspirehep.net/literature/1752575
https://doi.org/10.1088/1751-8121/ac8380
https://arxiv.org/abs/2203.13011
https://inspirehep.net/literature/2058006
https://arxiv.org/abs/2204.06547
https://inspirehep.net/literature/2066524
https://doi.org/10.1007/JHEP07(2011)007
https://doi.org/10.1007/JHEP07(2011)007
https://arxiv.org/abs/1105.2565
https://inspirehep.net/literature/899638
https://doi.org/10.1103/PhysRevLett.121.211601
https://doi.org/10.1103/PhysRevLett.121.211601
https://arxiv.org/abs/1807.02486
https://inspirehep.net/literature/1681266
https://doi.org/10.1103/PhysRevD.106.026004
https://arxiv.org/abs/2203.07397
https://inspirehep.net/literature/2052912
https://doi.org/10.1007/JHEP10(2021)118
https://arxiv.org/abs/2108.04216
https://inspirehep.net/literature/1901897
https://doi.org/10.1103/PhysRevLett.128.121601
https://arxiv.org/abs/2111.15649
https://inspirehep.net/literature/1980777
https://doi.org/10.1007/JHEP12(2022)101
https://doi.org/10.1007/JHEP12(2022)101
https://arxiv.org/abs/2208.05886
https://inspirehep.net/literature/2135076
https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://inspirehep.net/literature/1713583


J
H
E
P
0
4
(
2
0
2
3
)
0
0
8

[16] Z. Bern et al., Black Hole Binary Dynamics from the Double Copy and Effective Theory,
JHEP 10 (2019) 206 [arXiv:1908.01493] [INSPIRE].

[17] Z. Bern et al., Spinning black hole binary dynamics, scattering amplitudes, and effective field
theory, Phys. Rev. D 104 (2021) 065014 [arXiv:2005.03071] [INSPIRE].

[18] A. Buonanno et al., Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,
in the proceedings of 2022 Snowmass Summer Study, Seattle U.S.A., July 17–26 2022
[arXiv:2204.05194] [INSPIRE].

[19] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a
Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

[20] LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832]
[INSPIRE].

[21] B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning particles and
black holes, JHEP 12 (2019) 156 [arXiv:1906.09260] [INSPIRE].

[22] D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables, and Classical
Scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].

[23] Y.F. Bautista and A. Guevara, On the double copy for spinning matter, JHEP 11 (2021) 184
[arXiv:1908.11349] [INSPIRE].

[24] H. Johansson and A. Ochirov, Double copy for massive quantum particles with spin, JHEP 09
(2019) 040 [arXiv:1906.12292] [INSPIRE].

[25] N. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, Scattering amplitudes for all masses and
spins, JHEP 11 (2021) 070 [arXiv:1709.04891] [INSPIRE].

[26] A. Ochirov, Helicity amplitudes for QCD with massive quarks, JHEP 04 (2018) 089
[arXiv:1802.06730] [INSPIRE].

[27] R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014)
056 [arXiv:1410.0239] [INSPIRE].

[28] A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl Double
Copy, Class. Quant. Grav. 36 (2019) 065003 [arXiv:1810.08183] [INSPIRE].

[29] E. Chacón, A. Luna and C.D. White, Double copy of the multipole expansion, Phys. Rev. D
106 (2022) 086020 [arXiv:2108.07702] [INSPIRE].

[30] M. Carrillo González et al., Mini-twistors and the Cotton Double Copy, arXiv:2212.04783
[INSPIRE].

[31] E. Chacón, S. Nagy and C.D. White, The Weyl double copy from twistor space, JHEP 05
(2021) 2239 [arXiv:2103.16441] [INSPIRE].

[32] C.D. White, Twistorial Foundation for the Classical Double Copy, Phys. Rev. Lett. 126 (2021)
061602 [arXiv:2012.02479] [INSPIRE].

[33] R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical solutions and their
double copy in split signature, JHEP 05 (2021) 268 [arXiv:2012.11190] [INSPIRE].

[34] H. Godazgar et al., Weyl Double Copy for Gravitational Waves, Phys. Rev. Lett. 126 (2021)
101103 [arXiv:2010.02925] [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP10(2019)206
https://arxiv.org/abs/1908.01493
https://inspirehep.net/literature/1747944
https://doi.org/10.1103/PhysRevD.104.065014
https://arxiv.org/abs/2005.03071
https://inspirehep.net/literature/1794736
https://arxiv.org/abs/2204.05194
https://inspirehep.net/literature/2065377
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://inspirehep.net/literature/1421100
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://inspirehep.net/literature/1630824
https://doi.org/10.1007/JHEP12(2019)156
https://arxiv.org/abs/1906.09260
https://inspirehep.net/literature/1740902
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://inspirehep.net/literature/1705424
https://doi.org/10.1007/JHEP11(2021)184
https://arxiv.org/abs/1908.11349
https://inspirehep.net/literature/1751750
https://doi.org/10.1007/JHEP09(2019)040
https://doi.org/10.1007/JHEP09(2019)040
https://arxiv.org/abs/1906.12292
https://inspirehep.net/literature/1741998
https://doi.org/10.1007/JHEP11(2021)070
https://arxiv.org/abs/1709.04891
https://inspirehep.net/literature/1623581
https://doi.org/10.1007/JHEP04(2018)089
https://arxiv.org/abs/1802.06730
https://inspirehep.net/literature/1656060
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
https://arxiv.org/abs/1410.0239
https://inspirehep.net/literature/1319632
https://doi.org/10.1088/1361-6382/ab03e6
https://arxiv.org/abs/1810.08183
https://inspirehep.net/literature/1699252
https://doi.org/10.1103/PhysRevD.106.086020
https://doi.org/10.1103/PhysRevD.106.086020
https://arxiv.org/abs/2108.07702
https://inspirehep.net/literature/1906430
https://arxiv.org/abs/2212.04783
https://inspirehep.net/literature/2612671
https://doi.org/10.1007/JHEP05(2021)239
https://doi.org/10.1007/JHEP05(2021)239
https://arxiv.org/abs/2103.16441
https://inspirehep.net/literature/1854531
https://doi.org/10.1103/PhysRevLett.126.061602
https://doi.org/10.1103/PhysRevLett.126.061602
https://arxiv.org/abs/2012.02479
https://inspirehep.net/literature/1835082
https://doi.org/10.1007/JHEP05(2021)268
https://arxiv.org/abs/2012.11190
https://inspirehep.net/literature/1837655
https://doi.org/10.1103/PhysRevLett.126.101103
https://doi.org/10.1103/PhysRevLett.126.101103
https://arxiv.org/abs/2010.02925
https://inspirehep.net/literature/1821769


J
H
E
P
0
4
(
2
0
2
3
)
0
0
8

[35] K. Kim et al., The Classical Double Copy of a Point Charge, JHEP 02 (2020) 046
[arXiv:1912.02177] [INSPIRE].

[36] A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069
[arXiv:1611.07508] [INSPIRE].

[37] A. Luna et al., The double copy: Bremsstrahlung and accelerating black holes, JHEP 06 (2016)
023 [arXiv:1603.05737] [INSPIRE].

[38] A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for Taub-NUT
spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].

[39] R. Gonzo and C. Shi, Geodesics from classical double copy, Phys. Rev. D 104 (2021) 105012
[arXiv:2109.01072] [INSPIRE].

[40] J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical
double copy of Yang-Mills theory, Phys. Rev. D 99 (2019) 024021 [arXiv:1807.09859]
[INSPIRE].

[41] J. Plefka, C. Shi, J. Steinhoff and T. Wang, Breakdown of the classical double copy for the
effective action of dilaton-gravity at NNLO, Phys. Rev. D 100 (2019) 086006
[arXiv:1906.05875] [INSPIRE].

[42] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges,
Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].

[43] C.-H. Shen, Gravitational Radiation from Color-Kinematics Duality, JHEP 11 (2018) 162
[arXiv:1806.07388] [INSPIRE].

[44] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev. D
97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].

[45] W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation, and the classical
double copy, Phys. Rev. D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].

[46] J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy, Phys.
Rev. D 97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].

[47] S.K. Wong, Field and particle equations for the classical Yang-Mills field and particles with
isotopic spin, Nuovo Cim. A 65 (1970) 689 [INSPIRE].

[48] C. Shi and J. Plefka, Classical double copy of worldline quantum field theory, Phys. Rev. D
105 (2022) 026007 [arXiv:2109.10345] [INSPIRE].

[49] G. Mogull, J. Plefka and J. Steinhoff, Classical black hole scattering from a worldline quantum
field theory, JHEP 02 (2021) 048 [arXiv:2010.02865] [INSPIRE].

[50] G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, SUSY in the sky with gravitons, JHEP
01 (2022) 027 [arXiv:2109.04465] [INSPIRE].

[51] G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Gravitational Bremsstrahlung and
Hidden Supersymmetry of Spinning Bodies, Phys. Rev. Lett. 128 (2022) 011101
[arXiv:2106.10256] [INSPIRE].

[52] G.U. Jakobsen, G. Mogull, J. Plefka and J. Steinhoff, Classical Gravitational Bremsstrahlung
from a Worldline Quantum Field Theory, Phys. Rev. Lett. 126 (2021) 201103
[arXiv:2101.12688] [INSPIRE].

[53] G.U. Jakobsen, G. Mogull, J. Plefka and B. Sauer, All things retarded: radiation-reaction in
worldline quantum field theory, JHEP 10 (2022) 128 [arXiv:2207.00569] [INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP02(2020)046
https://arxiv.org/abs/1912.02177
https://inspirehep.net/literature/1768443
https://doi.org/10.1007/JHEP04(2017)069
https://arxiv.org/abs/1611.07508
https://inspirehep.net/literature/1499705
https://doi.org/10.1007/JHEP06(2016)023
https://doi.org/10.1007/JHEP06(2016)023
https://arxiv.org/abs/1603.05737
https://inspirehep.net/literature/1430076
https://doi.org/10.1016/j.physletb.2015.09.021
https://arxiv.org/abs/1507.01869
https://inspirehep.net/literature/1381759
https://doi.org/10.1103/PhysRevD.104.105012
https://arxiv.org/abs/2109.01072
https://inspirehep.net/literature/1915713
https://doi.org/10.1103/PhysRevD.99.024021
https://arxiv.org/abs/1807.09859
https://inspirehep.net/literature/1683955
https://doi.org/10.1103/PhysRevD.100.086006
https://arxiv.org/abs/1906.05875
https://inspirehep.net/literature/1739972
https://doi.org/10.1103/PhysRevD.95.125010
https://arxiv.org/abs/1611.03493
https://inspirehep.net/literature/1497494
https://doi.org/10.1007/JHEP11(2018)162
https://arxiv.org/abs/1806.07388
https://inspirehep.net/literature/1678649
https://doi.org/10.1103/PhysRevD.97.085019
https://doi.org/10.1103/PhysRevD.97.085019
https://arxiv.org/abs/1711.09493
https://inspirehep.net/literature/1638978
https://doi.org/10.1103/PhysRevD.97.105018
https://arxiv.org/abs/1712.09250
https://inspirehep.net/literature/1644892
https://doi.org/10.1103/PhysRevD.97.105019
https://doi.org/10.1103/PhysRevD.97.105019
https://arxiv.org/abs/1803.02405
https://inspirehep.net/literature/1658913
https://doi.org/10.1007/BF02892134
https://inspirehep.net/literature/61191
https://doi.org/10.1103/PhysRevD.105.026007
https://doi.org/10.1103/PhysRevD.105.026007
https://arxiv.org/abs/2109.10345
https://inspirehep.net/literature/1925220
https://doi.org/10.1007/JHEP02(2021)048
https://arxiv.org/abs/2010.02865
https://inspirehep.net/literature/1821624
https://doi.org/10.1007/JHEP01(2022)027
https://doi.org/10.1007/JHEP01(2022)027
https://arxiv.org/abs/2109.04465
https://inspirehep.net/literature/1919192
https://doi.org/10.1103/PhysRevLett.128.011101
https://arxiv.org/abs/2106.10256
https://inspirehep.net/literature/1869302
https://doi.org/10.1103/PhysRevLett.126.201103
https://arxiv.org/abs/2101.12688
https://inspirehep.net/literature/1844011
https://doi.org/10.1007/JHEP10(2022)128
https://arxiv.org/abs/2207.00569
https://inspirehep.net/literature/2104757


J
H
E
P
0
4
(
2
0
2
3
)
0
0
8

[54] G.U. Jakobsen and G. Mogull, Conservative and Radiative Dynamics of Spinning Bodies at
Third Post-Minkowskian Order Using Worldline Quantum Field Theory, Phys. Rev. Lett. 128
(2022) 141102 [arXiv:2201.07778] [INSPIRE].

[55] F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric
tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].

[56] F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric
tensor fields. II, JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].

[57] N. Ahmadiniaz, F. Bastianelli and O. Corradini, Dressed scalar propagator in a non-Abelian
background from the worldline formalism, Phys. Rev. D 93 (2016) 025035 [Addendum ibid. 93
(2016) 049904] [arXiv:1508.05144] [INSPIRE].

[58] F. Bastianelli et al., A worldline approach to colored particles, J. Phys. Conf. Ser. 1208 (2019)
012004 [arXiv:1504.03617] [INSPIRE].

[59] F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, One-loop quantum gravity from the
N = 4 spinning particle, JHEP 11 (2019) 124 [arXiv:1909.05750] [INSPIRE].

[60] F. Bastianelli, F. Comberiati and L. de la Cruz, Worldline description of a bi-adjoint scalar
and the zeroth copy, JHEP 12 (2021) 023 [arXiv:2107.10130] [INSPIRE].

[61] P. Dai, Y.-T. Huang and W. Siegel, Worldgraph Approach to Yang-Mills Amplitudes from
N = 2 Spinning Particle, JHEP 10 (2008) 027 [arXiv:0807.0391] [INSPIRE].

[62] R. Bonezzi, A. Meyer and I. Sachs, Einstein gravity from the N = 4 spinning particle, JHEP
10 (2018) 025 [arXiv:1807.07989] [INSPIRE].

[63] R. Bonezzi, A. Meyer and I. Sachs, A Worldline Theory for Supergravity, JHEP 06 (2020) 103
[arXiv:2004.06129] [INSPIRE].

[64] F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl.
Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].

[65] D. Amati, M. Ciafaloni and G. Veneziano, Higher Order Gravitational Deflection and Soft
Bremsstrahlung in Planckian Energy Superstring Collisions, Nucl. Phys. B 347 (1990) 550
[INSPIRE].

[66] J. Plefka, C. Shi and T. Wang, Double copy of massive scalar QCD, Phys. Rev. D 101 (2020)
066004 [arXiv:1911.06785] [INSPIRE].

[67] H. Johansson and A. Ochirov, Color-Kinematics Duality for QCD Amplitudes, JHEP 01
(2016) 170 [arXiv:1507.00332] [INSPIRE].

[68] L. Brink et al., Local Supersymmetry for Spinning Particles, Phys. Lett. B 64 (1976) 435
[Erratum ibid. 68 (1977) 488] [INSPIRE].

[69] L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269
[INSPIRE].

[70] N. Ahmadiniaz et al., Worldline master formulas for the dressed electron propagator. Part 2.
On-shell amplitudes, JHEP 01 (2022) 050 [arXiv:2107.00199] [INSPIRE].

[71] A. Guevara, A. Ochirov and J. Vines, Black-hole scattering with general spin directions from
minimal-coupling amplitudes, Phys. Rev. D 100 (2019) 104024 [arXiv:1906.10071] [INSPIRE].

[72] A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and
Electromagnetic Scattering, JHEP 04 (2019) 033 [arXiv:1706.02314] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevLett.128.141102
https://doi.org/10.1103/PhysRevLett.128.141102
https://arxiv.org/abs/2201.07778
https://inspirehep.net/literature/2013031
https://doi.org/10.1088/1126-6708/2005/04/010
https://arxiv.org/abs/hep-th/0503155
https://inspirehep.net/literature/678782
https://doi.org/10.1088/1126-6708/2005/10/114
https://arxiv.org/abs/hep-th/0510010
https://inspirehep.net/literature/693934
https://doi.org/10.1103/PhysRevD.93.025035
https://arxiv.org/abs/1508.05144
https://inspirehep.net/literature/1388891
https://doi.org/10.1088/1742-6596/1208/1/012004
https://doi.org/10.1088/1742-6596/1208/1/012004
https://arxiv.org/abs/1504.03617
https://inspirehep.net/literature/1359470
https://doi.org/10.1007/JHEP11(2019)124
https://arxiv.org/abs/1909.05750
https://inspirehep.net/literature/1753755
https://doi.org/10.1007/JHEP12(2021)023
https://arxiv.org/abs/2107.10130
https://inspirehep.net/literature/1889527
https://doi.org/10.1088/1126-6708/2008/10/027
https://arxiv.org/abs/0807.0391
https://inspirehep.net/literature/789779
https://doi.org/10.1007/JHEP10(2018)025
https://doi.org/10.1007/JHEP10(2018)025
https://arxiv.org/abs/1807.07989
https://inspirehep.net/literature/1683460
https://doi.org/10.1007/JHEP06(2020)103
https://arxiv.org/abs/2004.06129
https://inspirehep.net/literature/1791159
https://doi.org/10.1016/0550-3213(93)90285-W
https://doi.org/10.1016/0550-3213(93)90285-W
https://arxiv.org/abs/hep-th/9208059
https://inspirehep.net/literature/336530
https://doi.org/10.1016/0550-3213(90)90375-N
https://inspirehep.net/literature/295580
https://doi.org/10.1103/PhysRevD.101.066004
https://doi.org/10.1103/PhysRevD.101.066004
https://arxiv.org/abs/1911.06785
https://inspirehep.net/literature/1765553
https://doi.org/10.1007/JHEP01(2016)170
https://doi.org/10.1007/JHEP01(2016)170
https://arxiv.org/abs/1507.00332
https://inspirehep.net/literature/1380614
https://doi.org/10.1016/0370-2693(76)90115-5
https://inspirehep.net/literature/109550
https://doi.org/10.1016/0550-3213(84)90066-X
https://inspirehep.net/literature/192309
https://doi.org/10.1007/JHEP01(2022)050
https://arxiv.org/abs/2107.00199
https://inspirehep.net/literature/1874554
https://doi.org/10.1103/PhysRevD.100.104024
https://arxiv.org/abs/1906.10071
https://inspirehep.net/literature/1741038
https://doi.org/10.1007/JHEP04(2019)033
https://arxiv.org/abs/1706.02314
https://inspirehep.net/literature/1603626


J
H
E
P
0
4
(
2
0
2
3
)
0
0
8

[73] R.H. Boels and R.S. Isermann, On powercounting in perturbative quantum gravity theories
through color-kinematic duality, JHEP 06 (2013) 017 [arXiv:1212.3473] [INSPIRE].

[74] W.D. Goldberger and J. Li, Strings, extended objects, and the classical double copy, JHEP 02
(2020) 092 [arXiv:1912.01650] [INSPIRE].

[75] A. Lazopoulos, A. Ochirov and C. Shi, All-multiplicity amplitudes with four massive quarks
and identical-helicity gluons, JHEP 03 (2022) 009 [arXiv:2111.06847] [INSPIRE].

[76] F. Comberiati and L. de la Cruz, Classical off-shell currents, JHEP 03 (2023) 068
[arXiv:2212.09259] [INSPIRE].

– 36 –

https://doi.org/10.1007/JHEP06(2013)017
https://arxiv.org/abs/1212.3473
https://inspirehep.net/literature/1207439
https://doi.org/10.1007/JHEP02(2020)092
https://doi.org/10.1007/JHEP02(2020)092
https://arxiv.org/abs/1912.01650
https://inspirehep.net/literature/1768419
https://doi.org/10.1007/JHEP03(2022)009
https://arxiv.org/abs/2111.06847
https://inspirehep.net/literature/1967447
https://doi.org/10.1007/JHEP03(2023)068
https://arxiv.org/abs/2212.09259
https://inspirehep.net/literature/2616056

	Introduction
	Review of the worldline quantum field theory
	Basic of worldline quantum field theory
	WQFT double copy

	QCD on the worldline
	Coupling to Yang-Mills
	Feynman rules
	Yang-Mills eikonal phase
	Leading Yang-Mills radiation

	Dilaton-gravity on the worldline
	SUSY in the sky with dilaton
	WQFT expansion and Feynman rules

	Double copy of spinning worldlines
	Double copy of the eikonal phase
	Double copy of the radiation
	B-field in the double copy spectrum

	Conclusions
	SUSY algebra and DG background

