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1 Introduction

A systematic characterization of the states of quantum gravity and their dynamics con-
tinues to be the beast that overshadows most problems of modern physics. The detection
of gravitational waves from colliding ultra compact objects provides important evidence
for the existence of astrophysical black holes and novel physical states of gravity whose
fundamental nature remains mysterious. This makes the question of quantum gravity
even more pressing with potential implications to the emerging field of gravitational-wave
spectroscopy.

Indeed, string theory has provided the best avenue for characterizing the states of
quantum gravity and for exploring their dynamics. This is best exemplified in the ac-
counting of the Bekenstein-Hawking entropy of black holes in many different theories of
supergravity from microstates composed of bound states of strings and branes [1]. In a
sense, this accounting exploits open-closed string duality in supersymmetric settings and
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it allows for the identification of the gravitational states with string and brane states at
weak coupling. It is an open question as to what are the appropriate degrees of freedom or
variables in the gravitational theory that characterize the physics of quantum gravity. Even
in the supersymmetric settings that include supergravity such a framework is lacking.1

Another important result of string theory is the fact that coherent states of strings
and branes can undergo a geometric transition and admit descriptions in supergravity as
solitonic solutions, where the gravitational degrees of freedom are characterized by non-
trivial topological structures supported by electromagnetic charges. We refer to them as
topological solitons. These solutions have been responsible for the many explicit realization
of the AdS/CFT duality and have provided important insights into quantum gravity in
supersymmetric settings. In particular, the solitonic solutions can be used to describe
coherent microstates of supersymmetric black holes in the fuzzball proposal [2, 3] and in
the microstate geometry program [4–15].

The question that motivates this paper is: can topological solitons exist in general theo-
ries of gravity without supersymmetry and do they teach us anything about the phase space
of gravity?2 These states can be considered as new phases of matter that are inherently ge-
ometric and can provide some access to quantum gravity. An important question will be to
understand the types of bound states that can be constructed from them, which may then
have real world avatars. Such new geometric phases of matter could be used to characterize
aspects of microstates for astrophysically relevant black holes such as Schwarzschild and
Kerr and, as excitingly, to construct new classes of ultra compact objects that range from
microscopic to macroscopic scales.

There have been significant hurdles to addressing the above question. Constructing
any solitons in general relativity is a very technical problem, as one must contend with the
full non-linear Einstein equations. In addition to this, there are various no-go theorems
on when smooth solitonic solutions can exist in theories of gravity [16–21]. Even if we
are able to overcome these issues and obtain classical solutions, there is a conceptual
question as to when can they be considered as coherent states of quantum gravity. This
requires us to demonstrate that the solutions, at least in the semi-classical regime, are
smooth meta-stable saddles of the gravitational path integral. Significant progress has
been made recently in addressing the technical problem in [22–26], where a framework
for obtaining large classes of solitonic solutions in gravity has been developed. For the
first time then, one can systematically study the stability conditions for smooth solitons
in gravity beyond supersymmetry. The main goal of this paper is to initiate a program to
tackle this conceptual problem.

In this paper, we study the thermodynamic/quantum-mechanical stability for a family
of smooth solitonic solutions described in [22, 23]. These models are solutions to five
dimensional Einstein-Maxwell theory in the Kaluza-Klein background, M4 × S1

y — four
dimensional Minkowski with a circle. The soliton is spherically symmetric and corresponds

1AdS/CFT does provide a description of the states in terms of CFT operators for gravity in Anti-de Sitter
space.

2These coherent states would cover a small corner of the phase space of quantum gravity. The generic
state is expected to be very quantumly.
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to an internal locus where the S1
y shrinks to zero size. The solution admits a magnetic

charge, and this is crucial for its potential stability as first discussed in [27]. The asymptotic
data that labels these solutions comprises of the magnetic charge and the radius of S1

y .
The mass of the soliton can be expressed in terms of these quantities as dictated by the
regularity conditions at the aforementioned internal locus.3 We present a brief summary
of these solutions in section 2.

The basic object of study for our problem is the thermodynamics of a five dimensional
Einstein-Maxwell theory in the canonical ensemble, which is introduced in section 3. The
ensemble is defined by putting the theory in a spherical cavity in R3 × S1

τ × S1
y , with fixed

boundary conditions for the charge and the radius of the thermal and the KK-circle. Eu-
clidean versions of the solutions of [22, 23] appear as saddle points of the gravitational
path integral. After carefully defining the ensemble, we explicitly compute the off-shell
gravitational action/free energy [28–31] which will be our main tool for probing the ther-
modynamics of the theory. The off-shell action can be used to find an effective potential,
which on extremization leads to the different thermodynamic phases of the system and
encodes information about their local stability.

In section 4, we study this effective potential and the associated thermodynamic phases
in a limit where the spherical cavity is infinitely large. We address the question of meta-
stability of the thermodynamic phases, as well as the Hawking-Page transitions of one
locally-stable phase into another. We summarize our findings in section 5, with a few
general remarks about related work in progress. The classical stability of the black string
in a five dimensional Einstein-Maxwell theory, with both magnetic and electric charge, is
discussed in appendix A. The details of the off-shell gravitational action for this theory is
discussed in appendix B.

2 Solutions with solitons

In this section we review the solutions of interest discussed in [22, 23]. We consider a five-
dimensional spacetime where one of the spacial direction, y, corresponds to a compact extra
dimension with 2πβ∞y periodicity. The framework corresponds to an Einstein-Maxwell
theory with an electric three-form flux, F (e), and a magnetic two-form flux, F (m), described
by the following action

I = − 1
16πG5

∫
M
d5x
√
g

(
R− 1

4F
(m)
ab F (m) ab − 1

12F
(e)
abcF

(e) abc
)
, (2.1)

where G5 is the five-dimensional Newton’s constant. The solutions are given by two pa-
rameters (rB, rS) defining the loci of coordinate degeneracies, such as

ds2
5 = −

(
1− rS

r

)
dt2 +

(
1− rB

r

)
dy2 + r2 dr2

(r − rS) (r − rB) + r2
(
dθ2 + sin2 θ dφ2

)
,

(2.2)

F (e) = Qe
r2 dr ∧ dt ∧ dy , F (m) = Qm sin θ dθ ∧ dφ .

3See [24, 25] for a more detailed description of on the mechanism that allows for topological solitions in
gravity.
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The electric flux, F (e), is sourced by a line charge Qe along the y circle and F (m) is sourced
by a magnetic monopole Qm. The ansatz for the flux are related by hodge duality and
therefore they appear in the Einstein equations in the same way. The Einstein equations
are solved if the total charge Q is related to the internal parameters as follows

Q2 ≡ Q2
m +Q2

e = 3 rSrB . (2.3)

The family of solutions above asymptote to R1,3×S1
y. By reducing on the circle, the

solutions are those of the Einstein-Maxwell-Dilaton theory with the ADM mass, M,

M = 2rS + rB
4G4

, G4 = G5
2πβ∞y

. (2.4)

The radii r = rS and r = rB are two special loci with a coordinate degeneracy. More
precisely, at r = rS the timelike Killing vector, ∂t, vanishes, while at r = rB the spacelike
Killing vector, ∂y, vanishes. Depending on which one comes first there are two classes of
objects in these solutions to study:

black string : rS ≥ rB , (2.5)
topological soliton : rB > rS . (2.6)

When the two mass parameters are equal, rB = rS, there is an extremal black string
solution.

It is important to note the black string and topological soliton4 are related by a double
Wick rotation or an analytic continuation of the parameters given as

(t, y) ←→ (it, iy) or rB > rS ←→ rB < rS. (2.7)

This transformation will be useful in various context in studying the two classes of solutions.

2.1 Black string

When rS ≥ rB, the locus where the timelike Killing vector ∂t vanishes is part of the
spacetime, thereby leading to a horizon. We will see that for rS > rB, the solutions are
non-extremal black strings and that rS = rB corresponds to extremal black strings.

If rS > rB, the first coordinate singularity is a horizon at r = rS. The topology of the
horizon can be made manifest by considering the local metric with the radial direction

ρ2 ≡ 4 (r − rS)
rS − rB

r2
S , (2.8)

and taking ρ→ 0. The five-dimensional metric (2.2) leads to

ds2
5 ∼ −

rS − rB
4r3

S
ρ2 dt2 + dρ2 + r2

S

(
dθ2 + sin2 θ dφ2

)
+ rS − rB

rS
dy2 . (2.9)

4In previous literature, the topological solitons were refered to as topological stars.
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The horizon has a S2×S1 topology and the radii of the S2 and S1 are rS and
√

rS−rB
rS

Ry

respectively. The Bekenstein-Hawking entropy and the inverse temperature β∞t = T−1 give

S = π

G4

√
r3

S (rS − rB) , β∞t = 2r
3
2
S√

rS − rB
. (2.10)

When rB approaches rS, we see that the entropy and the temperature goes to zero,
thereby leading to an extremal solution. More precisely, for rB = rS the solutions (2.2) give

ds2
5 =

(
1 + rS

ρ

)−1 (
−dt2 + dy2

)
+
(

1 + rS
ρ

)2 [
dρ2 + ρ2 dΩ2

2

]
, (2.11)

F (e) = Qe
rS
d

((
1 + rS

ρ

)−1
)
∧ dt ∧ dy , F (m) = Qm sin θ dθ ∧ dφ , Q2

m +Q2
e = 3r2

S ,

where we have now defined ρ = r − rS. We recognize a two-charge extremal black string.
At ρ = 0, both ∂y and ∂t Killing vectors degenerate defining an AdS3×S2 near-horizon
geometry.

In this paper, we will study the Euclidean action of the system in the canonical en-
semble where the charges, the periodicities of the euclidean time and the y-circle are kept
fixed. It is therefore relevant to reverse the perspective and express the solutions in terms
of β∞t , β∞y and the total charge Q (2.3). For given (β∞t , β∞y ,Q), we found two black string
solutions (rS±, rB±) such as

rS± = β∞t
2
√

2

√√√√1±
√

1− 16Q2

3β∞t 2 , rB± = Q√
6

√√√√1∓
√

1− 16Q2

3β∞t 2 . (2.12)

The existence of a black string solution requires then

4Q ≤
√

3β∞t . (2.13)

Moreover, for fixed temperature and charge in this regime, we have two solutions such that
the “+” solution is bigger than the “−” one, that isM+ ≥M−, whereM± is their ADM
mass (2.4):

M± = β∞t
16
√

2G4

(
5±

√
1− 16Q2

3β∞t 2

)√√√√1∓
√

1− 16Q2

3β∞t 2 . (2.14)

2.2 Topological soliton

We now assume that rB > rS. Thus, the outermost coordinate singularity corresponds to
r = rB where the y-circle shrinks to zero size forming an end to spacetime. The second
coordinate singularity is not part of the spacetime. The solutions are smooth geometries
provided that the metric is regular at r = rB where the y-circle shrinks.5 The region near
r = rB is best described by the local radial direction

ρ2 ≡ 4 (r − rB)
rB − rS

, (2.15)

5The regularity outside the coordinate singularity, as the absence of closed timelike curves or the degen-
eracy of the φ-circle at θ = 0 and π, is fairly straightforward from the form of the metric and gauge fields.
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and taking the limit ρ→ 0. The five-dimensional metric (2.2) converges to

ds2
5 ∼ −

rB − rS
rB

dt2 + r2
B

[
dρ2 + rB − rS

4 r3
B

ρ2 dy2 + dθ2 + sin2 θ dφ2
]
. (2.16)

The (θ, φ)-subspace describes a round S2 of radius rB while the (ρ, y)-subspace corresponds
to an origin of R2. We will allow the local metric to have a conical defect and has the
topology of a smooth Zk quotient over R2×S2. This constrains the periodicity of the
y-circle to be

kβ∞y = 2r
3
2
B√

rB − rS
, k ∈ N. (2.17)

With this condition, the topology at the coordinate singularity corresponds to a bolt, a
S2 bubble sitting at an orbifolded R2. Even in the presence of an orbifold singularity for
k > 1, one can consider the spacetime as smooth. Indeed, within string theory, spacetimes
with conical singularities can be smoothed, and often describe localized objects.

The conical deficit just amplifies the effect of the periodicity of the y circle on the
parameters (rS, rB). One can for instance consider the rescaled periodicity

β̃∞y ≡ k β∞y , (2.18)

and all quantities will depend on β̃∞y only.
As for the black string, we aim to consider the time and y periodicities and the charges

as fixed quantities. For given (β∞y , β∞t ,Q) we have a tower of pairs of topological soliton
solutions labeled by their orbifold parameter k, (r(k)

S±, r
(k)
B±), such as

r
(k)
B± =

k β∞y

4
√

2π

√√√√√1±

√√√√1− 16Q2

3k2 β∞y
2 , r

(k)
S± = Q√

6

√√√√√1∓

√√√√1− 16Q2

3k2 β∞y
2 . (2.19)

There are no restrictions on the existence of a topological soliton geometry for given
(β∞y , β∞t ,Q), since there always exists a k where the above quantities start to be well-
defined. As for the black string, the “+” solutions can be considered as the bigger solutions
compared to the “−” ones, since the former has a larger radius and ADM mass (2.4), i.e.
M(k)

+ >M(k)
− , where the ADM massesM(k)

± are given as:

M(k)
± =

k β∞y

16
√

2G4

5±

√√√√1− 16Q2

3k2β∞y
2


√√√√√1∓

√√√√1− 16Q2

3k2β∞y
2 . (2.20)

2.3 Classical stability

Before we proceed, we comment on the classical stability of the solution. It is well known
that neutral black strings can suffer from a Gregory-Laflamme instability [32]. Moreover,
some magnetic black strings, that are different from the one discussed here, have also been
found to be classically unstable [33]. It is reasonable to ask when those instabilities exist
for the family of solutions considered in this paper.
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The stability of the black string solutions (2.5) without electric charge was studied
in [34]. It was argued that there are no Gregory-Laflamme (GL) instabilities when 1

2rS <

rB ≤ rS. We extend the computation to include an electric charge in appendix A and
show that the above condition for stability still holds. We can use this result to comment
on the classical stability of the topological soliton by exploiting the double Wick rotation
in (2.7).6

The GL instability of the black string can be established by obtaining the static linear
deformation mode that sits at the onset of the instability. In appendix A, the ansatz for this
mode has zero frequency and generic y-momentum: (ω = 0, k). Under the Wick rotation
of (2.7) we can track this static mode and find that it becomes a time-dependent solution of
the linear perturbation around the topological soliton. It exists for the topological soliton
when rB > 2rS with frequency and y-momentum given as (ik, 0). The static mode of
the black string has a cos(ky) dependence which maps to a cosh(kt) time-dependence for
the topological soliton. This signals classical instability for the topological soliton when
rB > 2rS. The double Wick rotation of the static black string mode includes the GL
threshold mode for the topological soliton with zero angular momentum along the y-circle,
i.e. the (ω = 0, k = 0) mode. It would be interesting to obtain the general threshold mode
for arbitrary momentum.

This discussion so far has considered instabilities for the black string that can be used
to identify some instability of the topological soliton. We have not said anything about
topological solitons in the range 0 < rS < rB < 2rS. Suppose there were GL instabilities
for the topological soliton in this range; the double Wick rotation would then map them to
time-dependent modes for the black string in the range 0 < rB < rS < 2rB. However, the
black string does not have any linear instabilities in this range. Thus, we do not expect any
GL instability for the topological soliton when 0 < rS < rB < 2rS. This could be further
checked by looking for the GL threshold modes in general.

3 Free energy and potential in the canonical ensemble

In this section, we carefully study the thermodynamics of a five-dimensional Einstein-
Maxwell theory in the canonical ensemble. To begin with, let us summarize some of the
relevant generalities on thermodynamic ensembles and phase transitions in the context of
semi-classical gravity. Readers familiar with this material can move directly to section 3.1.

The starting point is the theory of Euclidean Einstein gravity with a boundary, possibly
with other fields in the bulk, given by the classical action:

I[g,Φ] = Igravity[g] + Iextra[g,Φ], Igravity = IEH + IGH, (3.1)

where Igravity is the purely gravitational term consisting of the Einstein-Hilbert action and
the Gibbons-Hawking boundary term, while Iextra denotes the action of all the other fields in
the gravitational background. Note that Iextra may also include additional boundary terms,

6This correspondence between the classical instabilities of a bubble and a black string was also pointed
out in [27, 35].
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which might be necessary to ensure that the variation of action vanishes at the boundary for
the classical field configurations. A complete description of the theory requires specification
of boundary conditions and this is equivalent to specifying the particular thermodynamic
ensemble that one is working in. Given the theory and the ensemble, one can define the
quantum thermal partition function in the standard fashion:

Z =
∫

[dg][DΦ]e−I[g,Φ]+Igf , (3.2)

where Igf is an appropriate gauge fixing term. For the canonical ensemble, we fix the
size of the bulk (i.e. the position of the boundary), the radius of the thermal circle and
the sizes of other compact directions at the boundary, as well as the total charge (if any)
enclosed by the boundary. In the presence of electric fields, it is also possible to define a
grand-canonical ensemble, where one fixes an electric potential on the boundary instead
of the charge. For the canonical ensemble (and similarly in the grand-canonical), the
thermodynamic quantities can be extracted from the thermal partition function in the
standard way:

Z =
∫

[dg][DΦ]e−I[g,Φ]+Igf =: e−βF , F = E − T S, (3.3)

where F is the free energy. We will treat this system in the semi-classical or saddle-point
approximation. In this regime, the physical quantities of interest can be computed by
small quantum fluctuations about the classical saddle-points, i.e. solutions of the classical
equations of motion consistent with the boundary conditions. In close analogy to the semi-
classical problem in Quantum Mechanics, the stability of a saddle-point can be inferred
by studying eigenmodes of the associated Lichnerowicz operator. Presence of negative
eigenmodes of the Lichnerowicz operator implies that the saddle-point in question is not
a minimum of the semi-classical theory, which is often phrased as the saddle point being
locally unstable. Locally unstable saddle-points are also referred to as gravitational instan-
tons, and we will say more about them momentarily. Absence of any negative eigenmode,
therefore implies that the saddle point is locally stable and is a minimum of the theory, at
least in the semi-classical regime.

A thermodynamic phase, in the semi-classical regime, is defined as a saddle-point of
the theory. A thermodynamic phase is locally stable if the saddle-point is locally stable
in the sense described above. The thermodynamic ensembles are well-defined for these
phases, where quantities like specific heat are positive. Given a collection of locally stable
thermodynamic phases, a globally stable phase is the one which has the minimum free
energy. For a set of locally stable saddle-points, one can therefore encounter one of the two
following scenarios:

• A locally stable phase can undergo a Hawking-Page transition [36] to the globally
stable phase. This transition is mediated by a gravitational instanton, defined above,
where the gravitational instanton interpolates between the locally stable phase and
the nucleated phase. The nucleated phase is obtained by an appropriate analytic con-
tinuation of the graviatational instanton to a Lorentzian space-time. The nucleated
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phase is thermodynamically unstable, by definition, and can evolve semi-classically to
reach the globally stable phase. The decay rate of the locally stable phase, computed
in the semi-classical regime, is given by:

Γ = Γ0 e
−(Igrav. inst.−Iloc. stab.), (3.4)

where Igrav. inst. is the classical action of the gravitational instanton, Iloc. stab. is the
classical action of the locally stable phase, and Γ0 is a dimensionful pre-factor that
depends on the boundary quantities. More precisely, Γ0 is a polynomial function
in terms of the Newton constant, temperature, charge and periodicity of the extra
dimension.7

• There can be multiple phases with the same free energy, which implies that such
thermodynamic phases can coexist. One can have a more standard first-order phase
transition between two such phases.

An efficient tool for studying the locally stable phases of a theory in semi-classical
gravity is the reduced action technique, developed in a set of papers [28–31]. Given a type
of classical saddle point, the construction of the reduced action proceeds as follows. We
consider a family of metrics with the following properties:

• The family has the same group of isometries as the classical saddle point in question.
Therefore, a static and spherically symmetric saddle point will imply that the family
of metrics is given by an ansatz which obeys staticity and spherical symmetry.

• Any representative of the family obeys compatible regularity conditions. For example,
given a black string type saddle point, this would imply that each representative
metric obeys a regularity condition at the horizon.

• The metrics obey the boundary conditions for the given ensemble.

Given such a family of metrics, one can solve the Hamiltonian and momentum con-
straints8 in the Einstein’s equations, and use them to rewrite the action. The resultant
action, obtained after eliminating the constraints, is called the off-shell reduced action.
Generally, it will be a function of several variables that label the family of metrics satisfy-
ing the constraints, boundary conditions and regularity conditions. The free energy of the
theory in the semi-classical regime is given by:

F = β−1 I, (3.5)

where I is the reduced action. The extrema of the action (or equivalently, the free energy)
with respect to these variables give the precise saddle points of the theory. The local
stability of the extrema can then be studied in the standard fashion using this reduced
action. The locally stable extrema are identified with the thermodynamic phases, while
the locally unstable ones are identified with gravitational instantons.

7The pre-factor is obtained from the computation of one-loop determinants around each instanton that
mediates the transition. See [38] for the four-dimensional Schwarzschild solution.

8For details, see any standard textbook like [37].
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In the rest of the section, we will carefully derive the off-shell reduced action for a
five-dimensional Einstein-Maxwell theory in the canonical ensemble, and determine the
conditions of local stability for the different saddle points. For the sake of simplifying the
presentation, we will study the five-dimensional Euclidean Einstein-Maxwell theory of the
Lorentzian action (2.1) with only the magnetic field turned on. Having an electric field
does not change the physics as we discuss in appendix B.

3.1 The canonical ensemble and the saddle points

Consider the Einstein-Maxwell theory with a fixed magnetic charge on a manifoldM with
boundary Σ, in the canonical ensemble. We choose Σ to have the topology of S1×S1×S2,
where the first S1 is the thermal circle and the second S1 is the KK circle.

In this set-up, the canonical ensemble is defined by putting the system inside a spherical
cavity (i.e. a two-sphere) of radius Rb and fixing the radius βt of the thermal circle as well
as the radius βy of the KK circle at the boundary of the cavity. In addition, we fix the
magnetic charge Qm enclosed in the cavity, i.e.

Qm = 1
4π

∫
S2

Σ

F (m), (3.6)

The classical action of the system is given as:

I[g, F (m)] =− 1
16πG5

∫
M

d5x
√
g

(
R− 1

4F
(m)
ab F (m) ab

)
− 1

8πG5

∫
Σ
d4x
√
h (K −K0)

− 1
8πG5

∫
Σ
d4x
√
h

1
2 na F

(m) abA
(m)
b , (3.7)

where the last term is the standard boundary term for the Maxwell field in the canonical
ensemble, with na being the normal unit vector to the boundary Σ.

Following the general philosophy outlined above, the first step is to list the saddle points
of the theory, i.e. Solutions of Einstein’s equations consistent with the boundary conditions.
We will be concerned with the two following types of saddle points for this theory, which
are the euclideanized versions of the black string and the topological soliton (2.2) metrics
respectively.

• Euclidean black string: this is obtained by Wick rotating t → iτ in (2.2) with
rS > rB:

ds2
5 =

(
1− rS

r

)
dτ2 +

(
1− rB

r

)
dy2 + r2 dr2

(r − rS)(r − rB) + r2dΩ2
2, r ≥ rS > rB,

F = Qm sin θ dθ ∧ dφ, Q2
m = 3rBrS, (3.8)

where τ is the coordinate along the thermal circle and y is the coordinate along the
KK circle. For a cavity of infinite volume, regularity of the metric at the coordinate
singularity r = rS fixes the asymptotic radius β∞t in terms of the parameters (rB, rS)
as in (2.10), while the corresponding radius for the KK circle β∞y is arbitrary. For a
finite spherical cavity, the parameters βt, βy, and Qm at the boundary Σ are given as:

βt = β∞t

√
1− rS

Rb
, βy = β∞y

√
1− rB

Rb
, Qm =

√
3rBrS, (3.9)
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where r = Rb is the radial position of the boundary, β∞t is given in (2.10) and β∞y
is arbitrary. The number of physical solutions of the black string is given by the
number of real positive solutions of the equation (3.9), with rB substituted in terms
of Qm and rS, i.e.

βt = 2r3/2
S√

rS − Q2
m

3rS

√
1− rS

Rb
. (3.10)

Note that when the boundary is set to infinity Rb = ∞, we retrieve the two
solutions given by (2.12). For finite Rb, this is a quintic equation in terms of rS,
while in the large Rb limit it reduces to a quadratic equation.

• Euclidean topological soliton: this is obtained by Wick rotating t → iτ in (2.2)
for rB > rS:

ds2
5 =

(
1− rS

r

)
dτ2 +

(
1− rB

r

)
dy2 + r2 dr2

(r − rS)(r − rB) + r2dΩ2
2, r ≥ rB > rS,

F = Qm sin θ dθ ∧ dφ, Q2
m = 3rBrS. (3.11)

For a cavity of infinite volume, regularity of the metric at r = rB fixes the asymptotic
radius β∞y in terms of the parameters (rB, rS) as in (2.17), while the corresponding
radius for the thermal circle β∞t is arbitrary. For a finite cavity, the parameters βt
and βy are given as:

β = β∞t

√
1− rS

Rb
, βy = β∞y

√
1− rB

Rb
, Qm =

√
3rBrS, (3.12)

where β∞t is arbitrary and β∞y is given in (2.17). The number of physical solutions
of the topological soliton is given by the number of real positive solutions of the
equation (3.12), with rS substituted in terms of Qm and rB, i.e.

βy = 2r3/2
B

k
√
rB − Q2

m
3rB

√
1− rB

Rb
. (3.13)

Note that this is a quintic equation in terms of rB, while in the large Rb limit it
reduces to a quadratic equation.

3.2 Off-shell reduced action for the Euclidean theory

In this section, we will compute the off-shell reduced action for the five-dimensional Eu-
clidean Einstein-Maxwell theory in (3.7) subject to the appropriate boundary conditions of
the canonical ensemble. In the next subsection, we will discuss how to extract the reduced
action of the black string and the topological soliton from this answer.

Consider the following family of static five-dimensional metrics, with the topology
S1 × S1 × R+ × S2 in the theory (3.7):

ds2 = U2(r)dx2
1 + V 2(r)dx2

2 + 1
W 2(r)V 2(r)dr

2 + r2dΩ2
2, (3.14)
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where the two circle directions are labelled by xi. In addition, we assume that the function
U(r) has a zero at a certain r = r1, while the function V (r) has a zero at a different
r = r2. We assume r ≥ r1 > r2, so that the x2-circle does not shrink in the manifold
M = {r1 ≤ r ≤ Rb}. The xi-circle has a period 2πβi at the boundary r = Rb. Note that
we are not identifying any of the circle directions as the thermal circle or the KK circle at
this point.

It is convenient to write the metric and the constraints in terms of a new radial coor-
dinate ρ, such that ρ(r = r1) = 0 and ρ(r = Rb) = 1. The metric ansatz then takes the
following form:

ds2 = U2(ρ)dx2
1 + V 2(ρ)dx2

2 + 1
W 2(ρ)V 2(ρ)dρ

2 + r2(ρ)dΩ2
2. (3.15)

One can now impose the boundary conditions corresponding to canonical ensemble
and the regularity condition on the metric as follows:

1. The boundary conditions of the canonical ensemble imply that:

β1 = 1
2π

∫ 2π

0
U(1)dx1 = U(1),

β2 = 1
2π

∫ 2π

0
V (1)dx2 = V (1). (3.16)

2. Regularity of the metric at the ρ = 0 with a potential conical defect of order k ∈ N:

[W (ρ)V (ρ)U ′(ρ)]ρ=0 = k−1, (3.17)

where the prime denotes derivative with respect to ρ.
3. The topology of the ρ = 0 hypersurface associated with the metric (3.15) is S1×S1×
S2. Writing the metric as

ds2 = U2(ρ)dx2
1 + V 2(ρ)dx2

2 + 1
(W (ρ)r′(ρ))2 V 2(ρ)dr

2 + r2(ρ)dΩ2
2, (3.18)

and using the Gauss-Bonnet formula, the topology imposes a non-trivial constraint
on the function Ŵ (ρ), i.e. it implies that the function Ŵ (ρ) = (W (ρ) r′(ρ))2 vanishes
at ρ = 0.

The Hamiltonian and momentum constraints for the metric (3.15) requires some clar-
ification. From the perspective of the Euclidean action, there are two nonequivalent ways
of imposing the Hamiltonian constraint. One may choose to foliate the five-dimensional
manifold along the shrinking circle direction (i.e. along x1) or along the circle direction
which does not shrink (i.e. along x2). In the first case, the Hamiltonian constraint is given
by the x1x1-component of the Einstein equations, while in the second case, it is given by
the x2x2-component. We will adopt the former choice as it yields a much simpler form of
the reduced action, compared to the answer one gets from the second choice. However,
both choices give the same reduced action in the limit where the spherical cavity is large,
i.e. Rb →∞.
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With the above choice, we note that the momentum constraints are trivially satisfied
by the metric, since the off-diagonal x1µ components of the Einstein’s equations vanish
for the above metric ansatz. The Hamiltonian constraint — corresponding to the x1x1
component — gives:

Gττ ≡ Rττ −
1
2R = −1

8 F
(m)
µν F (m) µν . (3.19)

Let us now evaluate the classical action. The individual terms in the Lagrangian can be
evaluated for the metric ansatz (3.15) as follows. First, consider the scalar curvature term:

√
g

(
R− 1

4 F
2
)

= 2√g Rττ = −2 sin θ
(
r2W U ′ V 2

)′
, (3.20)

where in the first equality we have used the Hamiltonian constraint. The extrinsic curvature
terms are given as:

√
hK = sin θW V (U V r2)′,

√
hK0 = sin θ U V r2 (2/Rb). (3.21)

Plugging in the above results, and using the regularity condition (3.17), the classical action
can be written in the simple form:

I = 2π2

G5

[
U(1)V (1)

(
2Rb −W (1) (r2V )′(1)

)
− r2

1 V (0)
k

]
. (3.22)

The equation can be simplified to the form:

I = 2π2

G5
β2

[
β1
(
2Rb −W (1) (r2V )′(1)

)
− r2

1V (0)
k V (1)

]
, (3.23)

where we have used the definitions of β1 and β2 in (3.16). Note that we have kept the
functions {U,W, V } completely generic (up to boundary conditions) until this point.

The final step is to solve the Hamiltonian constraint and evaluate the functions W
and V . Since we have a single constraint, we have to narrow down our ansatz further. A
reasonable choice is to fix the function V (ρ) which is associated with the non-vanishing
circle direction:9

V 2(ρ) =
(

1− r2
r(ρ)

)
. (3.24)

With this choice, the Hamiltonian constraint (3.19) assumes the form:

(4r − 3r2) Ŵ ′ + 4r′Ŵ − 4r′ + Q2
m

r2 r
′ = 0. (3.25)

The above equation can be solved as:

Ŵ (ρ) = Q2
m + 4r2 + Cr

r(4r − 3r2) , (3.26)

9This condition corresponds to a choice of a slice in the phase space around the classical saddle point
that we focus on. The resultant off-shell action will only encode variations along this restricted slice. The
assumption here is that this choice captures all the unstable modes (if any) around the classical saddle
point. One can test this assumption by choosing an orthogonal slice i.e. fixing W instead of V , computing
the off-shell action and checking that there are no additional unstable modes. In fact, the two off-shell
actions precisely agree in the limit of a large spherical cavity.
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where C is an integration constant. The boundary condition Ŵ (0) = 0 fixes the constant
C, and the solution becomes:

Ŵ (ρ) =
(

1− r1
r(ρ)

) 4r1r(ρ)−Q2
m

4r(ρ)− 3r2
. (3.27)

Plugging in V and W , we have the following classical action:

I = 2π2

G5
β2
[
β1A(r1, r2, Qm, Rb)−B(r1, r2)

]
, (3.28)

A(r1, r2, Qm, Rb) = 2Rb −
1
2

√
(Rb − r1) (4Rb − 3r2) (4r1Rb −Q2

m)
r1(Rb − r2) , (3.29)

B(r1, r2) = r2
1
k

√
Rb(r1 − r2)
r1(Rb − r2) . (3.30)

The reduced action is then a function of two variables, (r1, r2), with the parameters
β1, β2, Rb, and Qm being held fixed.

3.3 The extrema and local stability

The locally-stable Euclidean saddle points are the local minima of the off-shell reduced
action. First, the variables (r1, r2) at the extrema of the action are given in terms of the
boundary data as follows:

∂r1I = ∂r2I = 0 ⇒ Q2
m = 3r1r2 , β1 = 2r3/2

1
k
√
r1 − r2

√
1− r1

Rb
. (3.31)

The conditions of the extrema match the ones obtained for the two topological soliton and
black string saddle points highlighted in the previous section. However, we remind the
reader that at this point there are no distinctions between the x1 and x2 circles, and the
extrema obtained from the conditions above do not correspond to these solutions yet.

The stability of the saddle points requires that the Hessian of the potential at the
extrema is positive definite, where the Hessian is defined by ∂ra∂rbI. For a 2× 2 Hessian,
this is guaranteed if one element of the diagonal and the determinant is positive. Therefore,
the conditions for local stability at saddle points are given by

∂2
r2I
∣∣
extrema = π2β2

2G5

√
Rbr

3
1

(r1 − r2)3(Rb − r2)3
(4Rb − 3r1)(Rb − r2)

(4Rb − 3r2) > 0 ,

∂2
r1I ∂

2
r2I − (∂r1∂r2I)2∣∣

extrema =
(

2π2β2
G5

)2 2Rb(Rb − r1)r1
(4Rb − 3r2)(Rb − r2)2(r1 − r2)2

× (Rb(4r2 − 2r1) + r1(3r1 − 5r2)) > 0,
(3.32)

where (r1, r2) are functions of (Qm, β1) given by (3.31). It is clear that in the regime we
are in, Rb > r1 > r2 > 0, ∂2

r2I
∣∣
extrema> 0 is trivially satisfied. The condition for having a

locally stable saddle point is therefore given by

Rb(4r2 − 2r1) + r1(3r1 − 5r2) > 0 , =⇒ 3r2
1 − 5r1r2 − 2r1Rb + 4Rbr2 > 0. (3.33)
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Eliminating the variable r2 in terms of the magnetic charge, the above equation can be
written as

9r3
1 − 6r2

1Rb − 5r1Q
2
m + 4RbQ2

m > 0. (3.34)

In the limit of a large box, i.e. Rb � r1 > r2, the above equation simplifies to

2Q2
m − 3r2

1 > 0, (3.35)

and the constraint on r1 can be written in the two following equivalent ways:√
1
3 Qm < r1 <

√
2
3 Qm ⇐⇒ r2 < r1 < 2r2. (3.36)

Therefore, we have to study all the solutions obtained from (3.31) for different regimes
of (Qm, β1) and discuss which ones satisfy (3.36). Before doing so, we first derive the
reduced action/free energy for the black string and the topological soliton by using the
generic expression (3.28) and analytically continuing the Euclidean metric (3.14) to an
Lorentzian space-time in an appropriate fashion.

3.4 Free energy for the black string and topological soliton

In this section, we derive the free energy for the black string and the effective potential for
the topological soliton from the reduced action (3.28). This is done by taking two different
analytic continuations of the five-dimensional Euclidean metric in (3.14).

Black string. We consider the analytic continuation of the metric (3.14) where x1 → it,
and x2 → y, and the absence of conical defect at r = r1, k = 1. In this case, the metric
in the Lorentzian space-time is a black string (2.2) with (2.5), and therefore one should
identify the x1-direction as the thermal circle and the x2-direction as the KK circle. We
then have the following identification:

β1 = βt, β2 = βy, k = 1,
r1 = rS, r2 = rB, with rS > rB. (3.37)

With this identification, the off-shell action (3.28) is:

IBS = 2π2

G5
βy

βt
2Rb−

1
2

√
(Rb− rS) (4Rb− 3rB) (4rSRb−Q2

m)
rS(Rb− rB)

− r2
S

√
Rb(rS− rB)
rS(Rb− rB)

 .
(3.38)

In this case, the stability condition (3.36) translates to:

rB < rS < 2rB. (3.39)

Note that the above condition for quantum mechanical stability is precisely the same
as the condition for classical stability, as mentioned in section 2 and derived in detail in
appendix A.
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Topological soliton. Consider the analytic continuation of the metric (3.14) where x1 →
y, and x2 → it. In this case, the metric in the Lorentzian space-time is the topological
soliton (2.2) with (2.6), and therefore one should identify the x2-direction as the thermal
circle and the x1-direction as the KK circle. We then have the following identification:

β1 = βy, β2 = βt,

r1 = rB, r2 = rS, with rB > rS. (3.40)

With this identification, the off-shell action is:

ITS = 2π2

G5
βt

βy
2Rb−

1
2

√
(Rb− rB) (4Rb− 3rS) (4rBRb−Q2

m)
rB(Rb− rS)

− r2
B
k

√
Rb(rB− rS)
rB(Rb− rS)

 .
(3.41)

In this case, the stability condition (3.36) translates to:

rS < rB < 2rS. (3.42)

This implies that in the regime rB > 2rS, the topological soliton has a quantum me-
chanical instability, in addition to the classical instability which was discussed in section 2.3.

The two off-shell actions are therefore formally related as IBS ↔ ITS, when the pa-
rameters βt ↔ k βy and rB ↔ rS. Therefore, the thermodynamic phases and their stability
condition for the bubbles will work out in a way similar to the black string, with k βy
playing the role of βt.

4 Thermodynamic phases in the infinite box limit

In this section, we will study the thermodynamics of the five-dimensional Einstein-Maxwell
theory in the canonical ensemble, where the size of the box is infinitely large, i.e. Rb →∞.
The infinite box limit is convenient as it drastically simplifies the analysis and still contains
most of the physics. We will first discuss the thermodynamic phases for the black string
and the topological solitons and their local stability. We will then address the question
of global stability and discuss the Hawking-Page transitions between the different locally
stable phases.

In the infinite box limit, the reduced actions describing the black string phase and the
topological soliton phases are now given by

I∞BS =
2π2 β∞y
G5

[
β∞t

4r2
S +Q2

m − rSrB
4rS

− r
3
2
S
√
rS − rB

]
,

I∞TS = 2π2 β∞t
G5

β∞y 4r2
B +Q2

m − rSrB
4rB

− r
3
2
B
k

√
rB − rS

 ,
(4.1)

where we have introduced “∞” index to highlight that we are in infinite box limit.
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4.1 Stability of the black string phases

The extrema of the black string reduced action can be read off from (3.31) given the
identification (3.37). These extrema manifestly coincide with the classical solutions already
studied in section 2.1, and can be classified as follows for different regimes of (Qm, β∞t ):

• For 4Qm >
√

3β∞t , there is no extremum, as shown in figure 1(a). This implies that
no black string solution exists in this regime of parameters (Qm, β∞t ).

• For 4Qm <
√

3β∞t , we have two extrema, given by (rS +, rB +) and (rS−, rB−) respec-
tively, as shown in figure 1(c).

rS± = β∞t
2
√

2

√√√√1±
√

1− 16Q2
m

3β∞t 2 , rB± = Qm√
6

√√√√1∓
√

1− 16Q2
m

3β∞t 2 . (4.2)

These correspond to two black string solutions of different sizes, where the larger
one is denoted as “+” and the smaller one is denoted as “−”. From figure 1(c),
it is clear that only the small black string corresponds to a local minimum. One
can check that the stability condition (3.39) is always satisfied for the smaller black
string parametrized by (rS−, rB−), and violated for the larger black string (rS +, rB +).
However, because the potential goes to −∞ as rS gets large, the smaller black string
is only a local minimum of the effective potential and therefore corresponds to a meta-
stable phase. The larger black string acts as a gravitational potential mediating this
process.

• For 4Qm =
√

3β∞t , rS± = 2rB± = β∞t
2
√

2 and the Hessian degenerates at the ex-
tremum (3.32). Therefore, this extremum is neither a maximum nor a minimum, and
does not qualify as a thermodynamic phase.

Note that the result is consistent with the known results for the neutral limit Qm = 0,
which correspond to pure five-dimensional Einstein gravity in a canonical ensemble [38].
In this case, the small black string reduces to the hot KK space-time as rS− = rB− = 0,
and the large black string reduces to the S1 fibration over an Euclidean Schwarzschild
black hole. As is well known, the latter acts as a gravitational instanton in the theory and
mediates the nucleation of black strings from the hot KK space-time, thereby rendering it
unstable [38].

In figure 2, we summarize the phase space of locally-stable magnetic black string in
the (β∞t , β∞y ) plane in units of Qm.

The reduced actions at the two extrema for 4Qm <
√

3β∞t are given as:

I∞BS
∣∣
±extremum =

π2β∞y β
∞
t

2

2
√

2G5

2∓
√

1− 16Q2
m

3β∞t 2


√√√√1±

√
1− 16Q2

m

3β∞t 2 . (4.3)
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(a) 4Qm >
√

3β∞
t (b) 4Qm =

√
3β∞

t

(c) 4Qm <
√

3β∞
t

Figure 1. Plots of I∞
BS in terms of (rS, rB) for three regimes of (Qm, β

∞
t ): when there are no

extrema (a), one extremum (b) and two extrema (c).

Figure 2. Phase space of locally-stable magnetic black string.

The behavior of the reduced action at large β∞t is given as:

I∞BS
∣∣
+extremum

β∞t
Qm
�1

−−−−→
π2β∞y β

∞
t

2

2G5
+O

((
Qm
β∞t

)0
)
, (4.4)

I∞BS
∣∣
−extremum

β∞t
Qm
�1

−−−−→
√

3π2β∞y β
∞
t Qm

G5
+O

((
Qm
β∞t

))
. (4.5)
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From the above expansions, one observes that the free energy of the smaller black
string is constant at large β∞t (for a fixed Qm), while for the larger black string it grows
linearly.

As mentioned earlier, the larger black string mediates a decay of the meta-stable
smaller black string. The nucleated black string is thermodynamically unstable and can
either Hawking-evaporate to get back to the smaller black string, or can grow in size.10

The rate of nucleation is given as:

Γ = Γ0 e
−
(
I∞BS

∣∣
+extremum

−I∞BS

∣∣
−extremum

)
, (4.6)

where I∞BS
∣∣
±extremum are given in (4.3). The function (I∞BS

∣∣
+extremum−I

∞
BS
∣∣
−extremum) is a

positive definite monotonic increasing function of β∞t (and β∞t
Qm

).
At large β∞t

Qm
, one expects the smaller string to become more and more stable. In this

case, the nucleation rate is exponentially suppressed such as

Γ = Γ0 e
−
π2β∞y β∞t Qm

2G5

(
β∞t
Qm
−2
√

3
)
≈ Γ0 e

−
π2β∞y β∞t

2

2G5 . (4.7)

The temperature dependence of the exponent in this case, is exactly the same as that for a
four-dimensional Schwarzschild black hole, found by Gross-Perry-Yaffe [38]. Indeed, taking
large β∞t

Qm
is equivalent to considering the neutral limit where the black string becomes a

trivial S1 fibration over a Schwarzschild black hole.
As the parameter β∞t

Qm
approaches the minimal value 4√

3 , the smaller string is expected
to become increasingly unstable. This can be seen from the fact that in the limit β∞t

Qm
→ 4√

3 ,
the nucleation rate is no longer exponentially suppressed and is given by Γ0. Therefore,
the meta-stable black string suffers from a quantum-mechanical instability with a high
probability of nucleating an unstable black string. At the same time, the smaller string
approaches the classical instability threshold, 2rB & rS, as detailed in section 2.3. It is
expected to suffer increasingly from long-lived classical perturbations that should start
looking like Gregory-Laflamme modes.

4.2 Stability of the topological soliton phases

The thermodynamic phases of the topological solitons and their local stability can be ana-
lyzed in a fashion similar to the black string. As discussed in section 2.1, there exists a tower
of pairs of extrema labeled by the positive integer k for any boundary data (Qm, β∞y , β∞t ),
where the parameters (r(k)

B±, r
(k)
S±) are given by:

r
(k)
B± =

k β∞y

2
√

2

√√√√√1±

√√√√1− 16Q2
m

3k2 β∞y
2 , r

(k)
S± = Qm√

6

√√√√√1∓

√√√√1− 16Q2
m

3k2 β∞y
2 . (4.8)

The tower starts at k ≥ kmin =
⌊

4Qm√
3β∞y

⌋
+ 1 where bxc is the integer part of x.

10It is not clear from our semi-classical analysis what the end-point of this growing black string should be.
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Figure 3. Phase space of locally-stable topological solitons.

For a given k, the behavior of the potential is similar to figure 1 if we relabel the axes,
rS ↔ rB, and take β∞t ↔ kβ∞y . The reduced actions in (4.1) transform as:

I∞BS ↔ I∞TS, for (β∞t , rS)↔ (kβ∞y , rB). (4.9)

Therefore, in the regime 4Qm >
√

3kβ∞y , there exists no topological soliton solution
for the given label k. In the regime 4Qm <

√
3kβ∞y , the smaller topological soliton,

parametrized by (r(k)
S−, r

(k)
B−), is the locally-stable phase while the larger one, parametrized

by (r(k)
S +, r

(k)
B +), corresponds to a gravitational instanton. Finally, for 4Qm =

√
3kβ∞y , the

two extrema merge to give a saddle point.
In figure 3, we summarize the phase space of locally-stable topological soliton in the

(β∞t , β∞y ) plane in units of Qm. Note that the phase space of topological solitons is quali-
tatively different from that of the black string, given in figure 2. In the latter case, there
is a lower bound of the parameter β∞t

Qm
for a black string phase to exist. In the former case,

there always exists a tower of topological soliton solutions for any value of the parameter
β∞y
Qm

. The tower starts at kmin = 1 if β∞y
Qm

> 4√
3 , and at kmin > 1 if β∞y

Qm
≤ 4√

3 , as shown in
figure 3.

In the limit of vanishing magnetic charge, the smaller topological soliton degenerates to
the hot KK space-time while the larger one becomes a static bubble with a conical defects.
The latter is a gravitational instanton that mediates the decay of the KK spacetime. One
can think of it as the gravitational instanton analogous to Witten’s bubble-of-nothing [39],
for the case of a hot KK space.

The reduced action at the different extrema for a given k are:

I∞TS
∣∣
k±extremum =

kπ2β∞t β
∞
y

2

2
√

2G5

2∓

√√√√1− 16Q2
m

3k2β∞y
2


√√√√√1±

√√√√1− 16Q2
m

3k2β∞y
2 . (4.10)

(4.11)
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In the regime 4Qm <
√

3kβ∞y , the reduced actions at large β∞y are given as:

I∞TS
∣∣
k+extremum

kβ∞y
Qm
→∞

−−−−−−→
kπ2β∞t β

∞
y

2

2G5
+O

( Qm
kβ∞y

)0
 , (4.12)

I∞TS
∣∣
k−extremum

kβ∞y
Qm
→∞

−−−−−−→
√

3π2β∞y β
∞
t Qm

G5
+O

((
Qm
kβ∞y

))
. (4.13)

Analogous to what we found for the black string, the larger topological soliton can
mediate a decay of the smaller topological soliton. The nucleated topological soliton is
unstable and can either contract to get back to the smaller soliton, or can grow in size.11

The rate of nucleation is given as:

Γ = Γ0 e
−
(
I∞TS

∣∣
+extremum

−I∞TS

∣∣
−extremum

)
, (4.14)

where I∞TS
∣∣
±extremum are given in (4.10). The function (I∞TS

∣∣
+extremum−I

∞
TS
∣∣
−extremum

)
is a

positive definite monotonic increasing function kβ∞y (and kβ∞y
Qm

).
At large kβ∞y

Qm
, one expects the smaller soliton to become more and more stable. In this

case, the nucleation rate is exponentially suppressed and given by

Γ = Γ0 e
−
π2β∞t β∞y Qm

2G5

(
kβ∞y
Qm
−2
√

3
)
≈ Γ0 e

−
kπ2β∞t β∞y

2

2G5 . (4.15)

As the parameter kβ
∞
y

Qm
approaches the minimal value 4√

3 , the smaller soliton is expected
to become increasingly unstable. This can be seen from the fact that in the limit kβ∞y

Qm
→ 4√

3 ,
the nucleation rate is no longer exponentially suppressed and is given by Γ0. Therefore, the
meta-stable soliton suffers from a quantum-mechanical instability with a high probability
of nucleating the unstable soliton. At the same time, the smaller soliton approaches the
classical instability threshold, 2rS & rB, as detailed in section 2.3. It is expected to suffer
increasingly from long-lived classical perturbations that should start looking like Gregory-
Laflamme modes.

4.3 Hawking-Page phase transitions

As explained in the beginning of section 3, a locally-stable phase can undergo a Hawking-
Page transition to another locally-stable phase, if the latter has a smaller free energy.
Generically, for a given set of boundary data, we have a tower of locally-stable topological
soliton phases on the one hand, and a single locally-stable black string phase on the other.
Therefore, we have two possible transitions in the system: a topological soliton/topological
soliton transition and a topological soliton/black string transition, which we will now an-
alyze to obtain the globally-stable phase diagram in the

(
β∞y
Qm

,
β∞t
Qm

)
-plane.

11It is not clear from our semi-classical analysis what the end-point of this growing topological soliton
should be.
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• Topological soliton ↔ topological soliton:
we consider two locally-stable topological solitons, with orbifold parameter k1 and
k2 respectively, for fixed boundary data (Qm, β∞t , β∞y ). Their free energy, obtained
from (4.10), is

FTS a =
kaπ

2β∞y
2

2
√

2G5

2 +

√√√√1− 16Q2
m

3k2
aβ
∞
y

2


√√√√√1−

√√√√1− 16Q2
m

3k2
aβ
∞
y

2 , a = 1, 2. (4.16)

One observes that FTS 1 > FTS 2, if and only if k1 > k2. This implies that the
topological soliton with the smallest possible conical defect, k = kmin =

⌊
4Qm√
3β∞y

⌋
+1, is

the globally-stable topological soliton phase. Therefore, any locally-stable topological
soliton with k > kmin will undergo a Hawking-Page transition to the k = kmin soliton.

• Topological soliton ↔ black string:
we consider now the topological soliton with conical defect k = kmin and a locally-
stable black string, for the fixed boundary data (Qm, β∞t , β∞y ). The free energy of the
topological soliton is given by (4.16) with k = kmin, while that for the black string is

FBS =
π2β∞y β

∞
t

2
√

2G5

2 +
√

1− 16Q2
m

3β∞t 2


√√√√1−

√
1− 16Q2

m

3β∞t 2 . (4.17)

The two functions FTS and FBS are of the following form:

β∞y
−1FTS = f(u,Qm), β∞y

−1FBS = f(v,Qm), (4.18)

f(x,Qm) = π2x

2
√

2G5

2 +

√
1− 16Q2

m

3x2


√√√√1−

√
1− 16Q2

m

3x2 , (4.19)

u = kminβ
∞
y , v = β∞t . (4.20)

Noting that f(x,Qm) is a positive definite monotonic increasing function, we con-
clude that

FBS Q FTS , if and only if β∞t Q kminβ
∞
y . (4.21)

Therefore, we conclude that the topological soliton with the smallest conical defect
is the globally-stable phase in the low-temperature regime of boundary data, i.e.

β∞t > kminβ
∞
y >

4√
3
Qm, (4.22)

and the locally-stable black string will undergo a Hawking-Page transition to the
topological soliton. On the other hand, the black string is the globally-stable phase
in the high-temperature regime of boundary data, i.e.

kminβ
∞
y > β∞t >

4√
3
Qm, (4.23)

and the topological soliton will undergo a Hawking-Page transition to the black string
in this regime.
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Figure 4. The globally-stable phases between the black string and topological solitons.

In figure 4, we have summarized the global phase structure involving the locally-stable
black string and topological soliton phases in the

(
β∞y
Qm

,
β∞t
Qm

)
-plane. In the case where

β∞t = kminβ
∞
y , the two locally-stable phases have the same free energy, i.e. FBS = FTS.

Therefore, both phases can coexist and one can have a transition from one phase to the
other, similar to a standard first order transition.

Stability and the extremal limit. An interesting question to consider is the origin
of these locally-stable phases for both the topological soliton and the black string. This
physics can be understood by considering the extremal black string and its relation to them.
Although the extremal system does not obey the boundary condition for the canonical
ensemble, we can still consider the extremal limit for the off-shell free energy, i.e. rB = rS
at fixed β∞y . Whether we take the limit from the black string or from the topological
soliton side, we obtain

FEBS =
2π2β∞y
G5

3r2
E +Q2

m

4rE
, rS = rB = rE. (4.24)

This free energy is consistent with directly reducing the Euclidian action for the system
while imposing the extremality condition. Notice the free energy is positive and bounded
from below unlike those of the black string and topological soliton. It has a single extremum
which is a global minimum and corresponds to a globally stable phase. It satisfies:

Q2
m = 3r2

E, FEBS|extremum =
2π2β∞y
G5

√
3|Qm|

2 . (4.25)

Notice that the extremization does not fix β∞y . This is consistent with the fact we are free
to fix the periodicity of the compact circle in this case. However, we have to understand
this solution as existing at zero temperature.

Since the extremal solution is globally stable, one can understand the stability of black
string as a consequence of deformation away from the extremal point by turning on tem-
perature. Since the bubble solution is related to the black string by analytic continuation,
we can similarly see the extremal solution as being responsible for the meta-stable phase of
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the topological soliton. In figure 1 the extremal solution can be associated to the boundary
of the surface plot that is positive and increasing.

5 Conclusion and outlook

In this paper, we have initiated a careful study of the thermodynamic/quantum-mechanical
stability of black strings and topological solitons in a five-dimensional Einstein-Maxwell
theory, with conserved magnetic and/or electric charges. We discuss, in particular, the
locally-stable thermodynamic phases of the system, and address the question of meta-
stability of the thermodynamic phases within the semi-classical regime. In addition, we
address the question of global stability, and discuss the Hawking-Page transitions from one
locally-stable phase to another.

For the purposes of this paper, we work entirely in the canonical ensemble, where we
put the five-dimensional theory in an Euclidean spherical cavity in R3 × S1

τ × S1
y , with

τ and y labeling the thermal circle and KK circle respectively. The associated boundary
conditions involve fixing the charge and the radius of the circles at the boundary. The
gravitational path integral with these boundary conditions has two distinct types of real
saddle points — black strings and topological solitons with conical defects. Using the
standard tool-box of semi-classical gravity, we then investigate the thermodynamic phases
for each type.

The principal tool for our analysis is the off-shell reduced action for the five-dimensional
Einstein-Maxwell theory in the canonical ensemble, and the associated free energy. We
derive this reduced action in section 3.2, and the answer, given in (3.28), is one of the
main results of our paper. The reduced action for a black string and a topological soliton
can be read off from (3.28) by appropriate analytic continuations of the five-dimensional
Euclidean metric, and are given in (3.38) and (3.41) respectively.

In each case, the off-shell action, which is a function of two variables, encodes a wealth
of physics. Firstly, the extrema of this reduced action in each case give the precise ther-
modynamic phases of the system. Secondly, the local stability analysis of the extrema
indicates whether a given thermodynamic phase is quantum-mechanically meta-stable. A
locally-unstable extremum is identified with a gravitational instanton, which can mediate
the decay of a locally-stable thermodynamic phase. The off-shell action can therefore be
thought of as an effective potential for the system in the semi-classical regime.

In section 4, we perform the aforementioned analysis for the black string and the
topological soliton. In the derivation of the reduced action, the size of the spherical cavity
plays the role of an IR regulator. For simplifying our presentation in section 4, we set this
regulator to infinity, which drastically simplifies the reduced action. From the analysis of
the reduced action, we observe that there exists a single locally-stable black string phase,
provided the ensemble temperature is lower than a critical temperature which is determined
by the charge. This black string, however, is meta-stable and can decay by the nucleation
of a gravitational instanton, which turns out to be a larger black string. We compute the
nucleation rate as a function of the boundary data, given in (4.7), and note that the rate
is severely suppressed at low temperatures, with the rest of the boundary data held fixed.
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For the topological solitons, we observe that there exists at most a single locally-
stable phase for a given value of the orbifold parameter k. For any given boundary data,
there exists a tower of such locally-stable phases, where the tower starts at a certain kmin
determined completely by the boundary data. Similar to the case of the black string, a
locally-stable topological soliton, associated with the orbifold parameter k ≥ kmin, turns
out to be meta-stable, and can decay by the nucleation of a larger topological soliton with
the same k. The nucleation rate, given in (4.15), is severely suppressed in the limit where
the size of the KK-circle is large, with other boundary data held fixed. In addition, there
is a suppression factor of k, which implies that the topological soliton phase with higher k
is more stable against this decay.

Given a set of locally-stable phases, one can address the question of global stability and
possible Hawking-Page transitions. We find two distinct classes of transitions — transitions
between topological solitons with different orbifold parameters, and transitions between a
topological soliton and a black string phase. For the first class of transitions, we find
that a locally-stable topological soliton phase with k > kmin can undergo a Hawking-Page
transition to the globally-stable phase with k = kmin. For the second class of transitions,
the black string is the globally-stable phase in the high temperature regime, while the
topological soliton phase with k = kmin is globally-stable in the low temperature regime.
There can also exist a regime of boundary data where both the topological soliton and
the black string may coexist. The global phase structure of the system is summarized in
figure 4.

For phenomenological reasons, it would be interesting to derive the complete expression
for the decay rate of the meta-stable phases by computing the pre-factor Γ0 in (3.4).
The pre-factor is obtained from the computation of one-loop determinants around each
instanton that mediates the decay. Moreover, to evaluate all possible channels of decay,
one should also compute the rates that correspond to the Hawking-Page transitions between
the black string and topological soliton phases.

There are a couple of special limits of the off-shell free energy that deserve some
attention. Firstly, one can ask if the off-shell free energy that we compute reproduces the
correct result in the extremal limit, although the limit might seem problematic given that
it changes the topology of the boundary in the canonical ensemble. We directly confirm
that our off-shell free energy does indeed give the correct answer for an extremal black
string, and the free energy has a single global minimum, as expected. This minimum
corresponds to the globally-stable extremal black string phase. In addition, one observes
that the meta-stable minimum in the non-extremal regime can be smoothly deformed to
the globally-stable minimum in the extremal limit. Another interesting limit is the case
of the vanishing magnetic charge Qm. Here, the meta-stable minimum can be smoothly
deformed to the locally-stable hot KK space-time. We therefore observe that the meta-
stable phase smoothly connects the hot KK space-time on the one hand and the extremal
black string on the other, in the limit of zero charge and zero temperature respectively.

So far, we have only analyzed the thermodynamic phases that arise in the canonical
ensemble in the limit of an infinite spherical cavity. We would like to conclude by men-
tioning some of the salient features of the analysis in a finite cavity. To begin with, the
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effective potential for the finite box must match the potential in the infinite box for the
regime where the size of the black string or the topological soliton is small compared to
the size of the box. In the regime closer to the boundary, the IR regulator adds a “wall”
to the effective potential for the infinite box depicted in figure 1, so that the potential
is now bounded from below. This wall introduces a new minimum in the potential that
corresponds to a locally-stable black string or topological soliton, which is almost as large
as the size of the box. This is reminiscent of the four-dimensional Schwarzschild black hole
in a finite spherical cavity in the canonical ensemble, which was discussed in [28, 29]. Since
the potential is bounded from below, the locally-stable minima are not meta-stable any
more but globally-stable, in contrast to the case of the infinite box. This suggests that the
charged geometries discussed in this paper, when embedded in AdS backgrounds, can be
entirely stable.

The finite cavity system leads to a much larger set of locally-stable phases, compared
to the infinite cavity case, for both the black string and the topological soliton. This leads
to a richer network of possible Hawking-Page transitions among the black string phases,
the topological soliton phases as well as ones between a black string and topological soliton.
We expect to explore the physics of this system in a future work.

Finally, we emphasize that the formalism developed in this paper can be extended to
study the quantum-mechanical stability for a large class of topological solitons, recently
discussed in [22–26]. In particular, this requires constructing an off-shell reduced action in
an axisymmetric set up, as opposed to the spherically symmetric situation that we have
encountered in this work. We expect to report on this problem in an upcoming paper.
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A Classical stability of the black string

In this section, we investigate the classical stability of the black string (given by the met-
ric (2.2) with rS > rB) by considering the following gravitational and gauge perturbations

gµν → gµν + hµν , F (x) → F (x) + δF (x) . (A.1)

The existence or absence of Gregory-Laflamme instabilities can be obtained by considering
the threshold critical modes that correspond to the time-independent spherically-symmetric
perturbations. Following the general prescription of [40], the spherically symmetric and
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static perturbations of the black string can be parametrized by the following metric ansatz:

ds2
5 = −

(
1− rS

r

)
e2a(r,y) dt2 +

(
1− rB

r

)
e2b(r,y) (dy − α(r, y) dr)2 + e2c(r,y) r2 dr2

(r − rS)(r − rB)

+ r2 e2d(r,y) (dθ2 + sin2 θ dφ2),

≡ − ft(r) e2a(r,y) dt2 + fy(r) e2b(r,y) (dy − α(r, y) dr)2 + e2c(r,y) dr2

ft(r) fy(r)
(A.2)

+ r2 e2d(r,y) (dθ2 + sin2 θ dφ2).

The gauge field strength F (m) = Qm sin θ dθ ∧ dφ is still a solution in the above perturbed
background, i.e. d ? F (m) = dF (m) = 0. Therefore, one can show in the manner of [33],
that one necessarily has δF (m) = 0 from the fact that d?δF (m) = dδF (m) = 0. As for F (e),
F (e) = Qe

r2 dr∧dt∧dy does not solve the Maxwell equations. However, ea+b+c−2d Qe
r2 dr∧dt∧dy

does. Therefore, if we redefine the perturbation scheme of F (e) such that

F (e) → ea+b+c−2dF (e) + δ̄F (e),

one can show that δ̄F (e) must be taken to zero to solve Maxwell and Bianchi equations as
for the magnetic field perturbations. Under the perturbation, the gauge fields are therefore
fixed to be

F (m) = Qm sin θ dθ ∧ dφ , F (e) = ea+b+c−2dQe
r2 dr ∧ dt ∧ dy . (A.3)

Following [40], we shall impose the optimal gauge:

a(r, y) = b(r, y) = 0, (A.4)

with c(r, y), d(r, y), α(r, y) unrestricted. Einstein’s equations for the gauge-fixed system are

Rµν = 1
2

(
Tµν −

1
3 gµν Tα

α
)
, (A.5)

Tµν = F (m)
µαF

(m)
ν
α − 1

4 gµνF
(m)

αβF
(m)αβ + 1

2

[
F (e)

µαβF
(e)
ν
αβ − 1

6 gµνF
(e)
αβγF

(e)αβγ
]
.

The Einstein’s equations lead to 5 independent equations (the θθ component and the φφ
components are not independent) which involve c, d, α and their derivatives with respect
to r and y. The independent equations to the first order in the perturbations can be
written as:

−rB rS ft(r)
r4 (c− 2d)− rS ft(r) fy(r)

2r2 (∂rc− 2∂rd− ∂yα) = 0,

(A.6)

rB rS fy(r)
r4 (c− 2d) + rB ft(r) fy(r)

2r2 (∂rc− 2∂rd)−
(
∂2
y c+ 2∂2

y d
)

−ft(r) f2
y (r) ∂r∂yα−

fy(r)
2r3 (4r2− 2rrS− rrB− rBrS)∂yα = 0,

(A.7)
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rB rS
ft(r) fy(r) r4 (c− 2d) + 4r2− 3rrS− 3rrB + 2rSrB

2r3 fy(r) ft(r)
(∂rc− 2∂rd)− 2∂2

rd

+4rSrB− rrS− 3rrB
2r3 fy(r) ft(r)

∂yα− ∂r∂yα−
1

f2
y (r) ft(r)

∂2
yc = 0,

(A.8)
3rB− 2r
r2fy(r)

∂yd+ −3rS + 4r
2r2ft(r)

∂yc− 2∂y∂rd = 0,

(A.9)
2rB rS
r2 d+ 2 (d− c) (−ft(r)− fy(r) + ft(r)fy(r)) + rft(r)fy(r)∂rc

(A.10)

+
(
−4r2 + 3rrS + 3rrB− 2rSrB

r

)
∂rd− r2ft(r)fy(r)∂2

rd− rft(r)fy(r)∂yα−
r2

fy(r)
∂2
yd = 0.

The Einstein equations can be simplified in the following fashion. From the tt and the
rr components, we get

∂r
(
c− 2d

)
= ∂yα−

2rB
r2 fy(r)

(c− 2d), (A.11)

∂y∂rα(r, y) = rBrS(c− 2d)
ft(r) fy(r) r4 + 4r2 − 3rrS − 3rrB + 2rSrB

2r3 ft(r) fy(r)
∂r
(
c− 2d

)
− 2∂2

r d+ 4rSrB − rrS − 3rrB
2r3 ft(r) fy(r)

∂yα−
1

ft(r) f2
y (r)∂

2
yc.

The equations can be used to eliminate the radial derivatives of c and α from the rest of
the equations. The reduced set of three equations (obtained by using the above constraints
in the yy, yr, and θθ equations) are as follows:

∂2
y d+

f2
y (r) (4r − 3rS)

2r2 ∂yα−
fy(r) (4r − 3rS) rB

2r4 (c− 2d) = ft(r) f2
y (r) ∂2

r d,

3rB − 2r
r2fy(r)

∂yd+ −3rS + 4r
2r2ft(r)

∂yc− 2∂y∂rd = 0, (A.12)

−(2r − rS − rB) ∂rd+ 2(c− d)− 2rB
r

(c− 2d) = r2ft(r)fy(r)∂2
rd+ r2

fy(t)
∂2
yd.

Note that, in the reduced set of 3 equations, we have radial derivatives of the function
d(r, y) but not of c(r, y) and α(r, y). Expanding d, c, α as Fourier series along the periodic
direction y, one can therefore use two of the three equations as algebraic equations to
eliminate c and α, leaving behind a single ordinary differential equation for d (a given
Fourier mode of d) as a function of r.

More precisely, one can substitute in the above equations:

c(r, y) = c(r) cos ky, d(r, y) = d(r) cos ky, (A.13)
α(r, y) = −α(r) k sin ky, (A.14)
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where k is the GL critical wavenumber to be determined. With this substitution, the
non-trivial equation in r is given as:

−A(r) d′′(r) +B(r) d′(r) + V (r) d = 0 , (A.15)

where the functions A(r) and B(r) are given as:

A(r) = ft(r) f2
y (r), B(r) = fy(r)

r2

(
−(2r − rS − rB) + 8r2 ft(r) fy(r)

4r − 3rS

)
, (A.16)

and the potential V (r) is given as:

V (r) = k2 + 2(2rB − rS) (r − rB)
(4r − 3rS) r3 . (A.17)

Note that on rescaling r → r/rS and defining q = rB/rS, this potential reproduces equa-
tion (15) of [40].

The other two equations express c and α in terms of d, i.e.

c(r) = 2r2ft(r)
4r− 3rS

(
2d′(r)− 3rB− 2r

r2fy(r) d(r)
)
, (A.18)

−
f2

y (r) (4r− 3rS)
2r2 k2 α(r) =

(
2fy(r)ft(r)

r2 +B(r)
)
d′(r)

+
(
−rB ft(r) (3rB− 2r)

r4 − fy(r) (4r− 3rS)rB

r4 +V (r) + 2k2
)
d(r).

Given (A.17), one can check that for a background corresponding to a black string (i.e.
r > rS > rB > 0), the potential is strictly positive for all r if and only if

q = rB
rS

>
1
2 . (A.19)

Therefore, there is no solution d(r) that is vanishing asymptotically and at the horizon
that is different from 0. However, when q < 1

2 , the second term in the potential is negative
and one can play with k in order to have a positive potential at the horizon and at the
asymptotics with a negative region in between. For such configuration, regular static
solutions exist and highlight the presence of critical Gregory-Laflamme instabilities. Thus,
the black string solutions are classically stable in the regime rB

rS
> 1

2 .

In [27], it has been argued that since a black string with rB
rS

< 1
2 is unstable, the

topological soliton with rS
rB

< 1
2 is also unstable by Wick rotation symmetry. We can

demonstrate this fact more clearly from the above computation for the black string. The
unstable mode d(r), given in (A.14), depends on the KK-circle coordinate by a factor
cos ky. Under the double analytic continuation: t → iy and y → it with the parameters
rS ↔ rB, this mode is mapped to a time-dependent growing mode for the topological
soliton proportional to cosh kt. This indicates that the topological soliton has a classical
instability in the regime rS

rB
< 1

2 .
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B Thermodynamics of five-dimensional Einstein-Maxwell theory with an
electric field

We consider the Einstein-Maxwell theory given by (2.1) with a fixed magnetic and electric
charges on a manifold M with boundary Σ, in the canonical ensemble. We choose Σ to
have the topology of S1 × S1 × S2, where the first S1 is the thermal circle and the second
S1 is the KK circle.

The canonical ensemble is defined by putting the system inside a spherical cavity of
radius Rb and fixing the radius βt of the thermal circle as well as the radius βy of the KK
circle at the boundary of the cavity. In addition, we fix the magnetic and electric charges,
Qm and Qe, enclosed in the cavity:

Qm = 1
4π

∫
S2

Σ

F (m) , Qe = −i
4π

∫
S2

Σ

?5F
(e) . (B.1)

The classical action of the system is given as:

I = − 1
16πG5

∫
M
d5x
√
g

(
R− 1

4F
(m)
ab F (m) ab − 1

12F
(e)
abcF

(e) abc
)

+ Iboundary,

Iboundary = − 1
8πG5

∫
∂M

d4x
√
h

(
K −K0 + 1

2naF
(m) abA

(m)
b + 1

4naF
(e) abcA

(e)
bc

)
,

(B.2)

where the last terms are the standard boundary terms for the Maxwell fields in the canonical
ensemble, with na being the normal unit vector to the boundary Σ.

Following the general philosophy outlined in section 3, the first step is to list the saddle
points of the theory, i.e. Solutions of Einstein’s equations consistent with the boundary
conditions. The two types of saddle points for this theory are identical to the magnetic
case and correspond to an Euclidean black string and topological soliton given by (3.8)
and (3.11) with an additional electric field,

F (e) = iQe
r2 dτ ∧ dr ∧ dy . (B.3)

The regularity conditions for both solutions are identical to the magnetic case detailed in
section 3.1 by replacing all Q2

m by the total charge Q2 ≡ Q2
m +Q2

e.

B.1 Off-shell reduced action for the Euclidean theory

The analysis of the free energy in the presence of an electric charge is then identical to
the exercise in section 3.2, once we replace the magnetic charge by the effective charge
Q2 ≡ Q2

m +Q2
e. Let us check this explicitly. We consider the following ansatz:

ds2 = U2(ρ)dx2
1 + V 2(ρ)dx2

2 + 1
W 2(ρ)V 2(ρ)dρ

2 + r2(ρ) dΩ2
2, (B.4)

F (e) = dAt(ρ) ∧ dt ∧ dy, F (m) = dAφ(θ) ∧ dφ, (B.5)

where the two circle directions are labelled by xi. The boundary is at r = Rb given by
ρ = 1. In addition, we assume that the function U has a zero at a certain r = r1, given by

– 30 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
8

ρ = 0, while the function V (r) has a zero at a different r = r2. We assume r1 > r2, so that
the x2-circle does not shrink in the manifoldM = {0 ≤ ρ ≤ 1}. The xi-circle has a period
2πβi at the boundary r = Rb. Note that we are not identifying any of the circle directions
as the thermal circle or the KK circle at this point.

1. The boundary condition implies that:

β1 = 1
2π

∫ 2π

0
U(1)dx1 = U(1), β2 = 1

2π

∫ 2π

0
V (1)dx2 = V (1),

Qm = 1
4π

∫
S2

Σ

F (m)∣∣
ρ=1 , Qe = −i

4π

∫
S2

Σ

?5F
(e)∣∣

ρ=1 .

2. Regularity of the metric at the origin implies that:

[W (ρ)V (ρ)U ′(ρ)]ρ=0 = k−1.

3. We impose the Hamiltonian constraint and the Maxwell equation for the electric
gauge field (the magnetic one will not relevant for the derivation):

Gττ = 1
8

(1
3
∣∣∣F (e)

∣∣∣2 − ∣∣∣F (m)
∣∣∣2) ,

∂ρ

(
r2WA′t
U

)
= 0 ⇔ r2WA′t

U
= cst.

(B.6)

By using the condition on the charge we find cst = −iQe.

We now evaluate the different parts of the action (B.2), using the constraint above,

−
√
g

16πG5

(
R− 1

4
∣∣∣F (m)

∣∣∣2− 1
12
∣∣∣F (e)

∣∣∣2) = sin θ
16πG5

[
2∂ρ

(
r2WV 2U ′

)
− iQeA′t

]
,

−
√
h

8πG5
(K −K0)

∣∣
ρ=1 = V (1) sin θ

8πG5

[
2RbU(1)−W (1) ∂ρ

(
r2UV

) ∣∣∣
ρ=1

]
,

−
√
h

16πG5

(
naF

(m) abA
(m)
b + 1

2naF
(e) abcA

(e)
bc

) ∣∣∣∣
ρ=1

= sin θ
16πG5

iQeAt(1).

(B.7)
Gathering all the terms, and integrating over the angular coordinates and the radial

coordinate, the reduced action is

I = 2π2

G5

[
U(1)V (1)

(
2Rb −W (1) (rV )′(1)

)
− r2

1
k
V (1)

]
, (B.8)

and we manifestly retrieve the same action (3.22).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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