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1 Introduction

The Hodge numbers of a complex algebraic variety are fundamental invariants which in
general are difficult to compute. In the context of string theory, the Hodge numbers of
the compactified dimensions of string vacua determine the associated particle spectrum,
and as such, play a significant role in determining which vacua have the potential for the
realization of realistic particle physics. Since the discovery in the 1980s that Calabi-Yau
manifolds yield natural geometries for the compactified dimensions of string vacua, string
theorists have been particularly interested in computing the Hodge numbers of Calabi-Yau
3- and 4-folds, giving rise to a cross-fertilization between complex geometry and physics
whose cultivation has yielded various branches of ‘mirror symmetry’. And while much
is known about the Hodge numbers of low dimensional Calabi-Yaus (particularly when
embedded as a complete intersection in a toric variety), there are still many classes of
examples in which standard methods for computing Hodge numbers are not adequate to
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determine the whole Hodge diamond. In particular, elliptic Calabi-Yau 3- and 4-folds are
a case of special interest, as investigating the Hodge structure of such varieties remains an
active topic of current research [1–8].

In this letter, we consider elliptic Calabi-Yau varieties which arise in constructing F -
theory compactifications of string vacua [9–16], which is a promising candidate for realizing
the Standard Model within the framework of string theory [17–21]. A total of 18 families of
elliptic Calabi-Yaus are considered, consisting of fourteen 3-fold families with simple gauge
groups and four 4-fold families, two of which have non-trivial Mordell-Weil rank [22, 23].
For the 3-fold families we work over a base consisting of an arbitrary rational surface,
while for the 4-fold families we work over a base which is an arbitrary Fano toric 3-fold
(of which there are 18). Given such an elliptic Calabi-Yau X → B, the choice of a section
B ↪→ X yields a birational model WX → B referred to as a Weierstrass model of X, which
is obtained by contracting the irreducible components of the singular fibers of X → B

not meeting the image of the section B ↪→ X. The Weierstrass model WX is in general
singular, and is given by a global Weierstrass equation in the total space of a P2-bundle
P(E )→ B. We then consider a crepant resolution W̃X →WX , which is obtained by taking
the proper transform of WX with respect to a birational map P̃(E )→ P(E ) corresponding
to a sequence of blowups along smooth centers. What we show in this letter is that in all
cases under consideration, the upper Hodge diamond of W̃X coincides with the upper Hodge
diamond of the blown up projective bundle P̃(E ) in which W̃X is naturally embedded. This
result is unexpected, as we show in all cases that W̃X does not satisfy the hypotheses of
the Lefschetz hyperplane theorem (which would imply such a match between the upper
Hodge numbers of W̃X and P̃(E )). While there is in fact a generalization of the Lefschetz
hyperplane theorem to line bundles which are ‘lef’ by de Cataldo and Migliorini [24], in
section 2.5 we prove a general result showing that in such a context O(W̃X) cannot be lef.

In light of our results, we highly suspect that all (or at least a large class of) elliptic
Calabi-Yaus satisfy such a ‘Lefschetz-type phenomenon’, or simply ‘LTP’ for short. If the
LTP conjecture is in fact true, then it would provide a tractable avenue for computing the
full Hodge diamond of a general elliptic Calabi-Yau X → B. In particular, the birational
invariance of the Hodge numbers of Calabi-Yau varieties implies that if W̃X → WX is a
crepant resolution of the Weierstrass model of X, then the Hodge numbers of X coincide
with those of W̃X . As such, computing the Hodge numbers of X then reduces to comput-
ing the Hodge numbers of the crepant resolution W̃X , which is naturally embedded as a
hypersurface in a projective bundle. Crepant resolutions of Weierstrass models have been
studied in depth in recent years [3, 25–31], so if LTP in fact holds, then one can com-
bine such resolution procedures together with Hirzebruch-Riemann-Roch to obtain explicit
formulas for all non-trivial Hodge numbers of X.

As the LTP condition for an elliptic Calabi-Yau X → B is purely numerical, it is
natural to surmise that if W̃X → WX is a crepant resolution of the Weierstrass model
of X, then the inclusion W̃X ↪→ P̃(E ) induces an isomorphism of Hodge structures for
p+ q < dim(X). However, in section 7 we prove that this more general statement is false
(see proposition 7.2), as we show that fibrations with non-trivial Mordell-Weil groups which
admit sections with torsion will always provide counterexamples. As such, we suspect that
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LTP may be a consequence of the inclusion W̃ ↪→ P̃(E ) inducing an isomorphism of rational
Hodge structures (we formulate a precise conjecture in section 7). Furthermore, the Calabi-
Yau assumption on X seems to be crucial for dim(X) > 2, since in section 6 we construct
examples of non-Calabi-Yau elliptic fibrations over a base of arbitrary dimension which do
not satisfy the Lefschetz-type phenomenon.

Notation and conventions. Given a vector bundle E → B over a variety B, P(E ) →
B will always be taken to denote the associated projective bundle of lines in E , and
the tautological line bundle of P(E ) and its dual will be denoted by O(−1) and O(1)
respectively. Given a line bundle L → B, its m-th tensor power will be denoted Lm → B.
The canonical bundle of a smooth variety X will be denoted ωX → X.

2 Setting the stage for LTP

2.1 Some preliminaries

Let B be a smooth compact complex projective variety.

Definition 2.1. A proper, flat, surjective morphism π : X → B with connected fibers will
be referred to as an elliptic fibration if and only if the generic fiber of π is a smooth curve
of genus 1, and the morphism π admits a regular section B ↪→ X.

The singular fibers of an elliptic fibration π : X → B reside over a closed subscheme
∆X ↪→ B, referred to as the discriminant of π : X → B. By contracting the irreducible
components of the singular fibers of π : X → B which do not meet the section, we obtain
a birational morphism F : X →WX such that following diagram

X
F //

π
��

WX

ψ}}
B

commutes. The fibration ψ : WX → B is then referred to as the Weierstrass model of X.

Remark 2.2. Note that in the definition of elliptic fibration the total space is not assumed
to be smooth. The flatness condition ensures that an elliptic fibration has equidimensional
fibres, and observe that if the total space of the fibration is smooth then the converse also
holds (see, e.g., [32, criterion for flatness]).

Definition 2.3. Let π : X → B be an elliptic fibration. The fundamental line bundle of π
is the line bundle L → B given by L =

(
R1π∗OX

)−1.

Proposition 2.4 (cf. [33, theorem 2.1]). Let π : X → B be an elliptic fibration, let
L → B denote the fundamental line bundle of π, and let p : P(OB ⊕ L 2 ⊕ L 3) → B

be the structure map. Then the Weierstrass model WX of X is naturally embedded as a
hypersurface in the projective bundle P(OB ⊕L 2 ⊕L 3), given by the equation

WX : (y2z = x3 + fxz2 + gz3) ⊂ P(OB ⊕L 2 ⊕L 3), (2.1)

where f is a section of p∗L 4, g is a section of p∗L 6 and z is a section of O(1).
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The Weierstrass model of an elliptic fibration is a special case of a Weierstrass fibration,
whose definition we now recall.

Definition 2.5. An elliptic fibration ψ : W → B will be referred to as a Weierstrass
fibration if and only if W may be given by a global Weierstrass equation

W : (y2z = x3 + fxz2 + gz3) ⊂ P(OB ⊕L 2 ⊕L 3),

where L is the fundamental line bundle of ψ, f is a section of p∗L 4, g is a section of
p∗L 6, z is a section of O(1) and p : P(OB ⊕L 2 ⊕L 3) → B is the structure map. If W
is in fact an anti-canonical divisor in P(OB ⊕L 2 ⊕L 3), then W will be referred to as an
anti-canonical Weierstrass fibration.

Remark 2.6. We note that while all Weierstrass models are Weierstrass fibrations, there
exist Weierstrass fibrations which are not Weierstrass models of smooth elliptic fibrations.

Proposition 2.7. Let ψ : W → B be a Weierstrass fibration, and let L denote the
fundamental line bundle of ψ. Then the following statements hold.

1. O(W ) = p∗L 6 ⊗ O(3).

2. W is an anti-canonical Weierstrass fibration if and only if L = ω−1
B .

Proof. Let E = OB ⊕ L 2 ⊕ L 3 and p : P(E ) → B be the structure map. Since g is a
section of p∗L 6 and z is a section of O(1), it follows that gz3 is a section of p∗L 6 ⊗O(3).
And since W is the zero-scheme of the section y2z − (x3 + fxz2 + gz3), it follows that
O(W ) = p∗L 6 ⊗ O(3), which proves item 1.

To prove item 2, we consider two exact sequences over P(E ), namely, the exact sequence
defining the relative cotangent bundle

0→ p∗Ω1
B → Ω1

P(E ) → ΩP(E )|B → 0

and the relative Euler sequence (see [34, section B.5.8])

0→ ΩP(E )|B → OP(E )(−1)⊗ p∗E ∨ → OP(E ) → 0.

We then have
ωP(E ) = det Ω1

P(E )
= p∗ωB ⊗ det ΩP(E )|B

= p∗ωB ⊗ det
(
OP(E )(−1)⊗ p∗E ∨

)
= p∗ωB ⊗ OP(E )(−3)⊗ det p∗E ∨

= OP(E )(−3)⊗ p∗ (ωB ⊗ det E ∨)
= OP(E )(−3)⊗ p∗

(
ωB ⊗L −5) .

(2.2)

It then follows from item 1 and the injectivity of p∗ that O(W ) = ω−1
P(E ) if and only

if L = ω−1
B .
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Definition 2.8. Let X be a smooth, projective, complex algebraic variety, and suppose p
and q are non-negative integers such that p+q ≤ dim(X). Then the Hodge number hp,q(X)
is the non-negative integer given by

hp,q(X) = dim (Hq(X,Ωp)) .

Definition 2.9. A resolution of singularities f : X̃ → X will be referred to as crepant if
and only if f is a birational map such that K

X̃
= f∗KX .

Definition 2.10. Let X be a smooth, projective, complex algebraic variety. Then X is
said to be Calabi-Yau if and only if the following conditions hold:

1. ωX = OX .

2. h0,0(X) = hdim(X),0(X) = 1.

3. hp,0(X) = 0 for 0 < p < dim(X).

Definition 2.11. An elliptic fibration π : X → B will be referred to as an elliptic Calabi-
Yau if and only if X is Calabi-Yau.

Proposition 2.12. Let π : X → B be an elliptic Calabi-Yau, and let L denote the
fundamental line bundle of π. Then the following statements hold.

1. L is the anti-canonical bundle of B, i.e., L = ω−1
B .

2. The associated Weierstrass model ψ : WX → B is an anti-canonical Weierstrass
fibration.

3. The morphism to the Weierstrass model f : X →WX is a crepant resolution.

Proof. Since X is Calabi-Yau ωX = OX , thus L −1 = R1π∗OX = R1π∗ωX . By the projec-
tion formula and [35, proposition 7.6] we then have

R1π∗ωX = R1π∗
(
ωX|B ⊗ π∗ωB

)
= R1π∗ωX|B ⊗ ωB
= OB ⊗ ωB
= ωB,

from which item 1 follows. Item 2 then follows from item 1 together with item 2 of
proposition 2.7. To prove item 3, we first note that the dualizing sheaf ωWX

of WX is such
that ωWX

= ψ∗(ωB ⊗L ) (see, e.g., [33, p. 409]), thus

ωWX
= ψ∗(ωB ⊗L ) = ψ∗(ωB ⊗ ω−1

B ) = ψ∗(OB) = OWX
,

where the second equality follows from item 1. We then have

f∗ωWX
= f∗OWX

= OX = ωX ,

thus f is crepant.
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Remark 2.13. In light of item 3 of proposition 2.12, the Hodge numbers of an elliptic
Calabi-Yau coincide with the stringy Hodge numbers of its Weierstrass model (as defined
by Batyrev [36]).

Proposition 2.14. Let π : X → B be an elliptic Calabi-Yau, and suppose W̃X → WX is
a crepant resolution of the Weierstrass model of X. Then W̃X is Calabi-Yau.

Proof. By item 2 of proposition 2.12 WX is an anti-canonical Weierstrass fibration, hence
by adjunction it follows that the dualizing sheaf ωWX

is trivial, thus ω
W̃X

= O
W̃X

(since
the resolution W̃X →WX is crepant). Moreover, since the Hodge numbers hp,0 are known
to be birational invariants, and X is birational to W̃X , it follows that hp,0(W̃X) = hp,0(X)
for p = 0, . . . , dim(X), thus W̃X is Calabi-Yau.

In 1995 Kontsevich created the theory motivic integration for the purpose of proving
the following result [37].

Theorem 2.15. If X → Y is a birational map between Calabi-Yau varieties, then the
Hodge numbers of X and Y coincide.

Corollary 2.16. Let π : X → B be an elliptic Calabi-Yau, and suppose W̃X → WX is a
crepant resolution of the Weierstrass model of X. Then the Hodge numbers of X and W̃X

coincide.

Proof. The statement follows immediately from proposition 2.14 and theorem 2.15.

Definition 2.17 (LTP for elliptic Calabi-Yaus). Let π : X → B be an elliptic Calabi-
Yau, and let E = OB⊕ω−2

B ⊕ω
−3
B . Then X is said to satisfy a Lefschetz-type phenomenon,

or LTP for short, if and only if the following conditions hold.

1. There exists a birational map P̃(E ) LTP−−−→ P(E ) such that the proper transform of the
Weierstrass model of X yields a crepant resolution W̃X → WX . In such a case, the
map P̃(E ) LTP−−−→ P(E ) will be referred to as the LTP map.

2. The associated map W̃X→B endows W̃X with the structure of an elliptic Calabi-Yau.

3. hp,q(W̃X) = hp,q(P̃(E )) for p+ q < dim(X).

Remark 2.18. By proposition 2.14 W̃X is necessarily Calabi-Yau, so condition 2 in the
definition of LTP is imposed to ensure the map W̃X → B endows W̃X with the structure
of an elliptic fibration. In particular, condition 2 ensures W̃X → B is flat, thus all fibers
of W̃X → B are equidimensional.

2.2 Hodge numbers of the base

In this section we prove that if B is the base of an elliptic Calaibi-Yau, then hp,0(B) = 0 for
p > 0. In the case of elliptic Calabi-Yau 3-folds it is known (see [38, Main Theorem]) that
B is a rational surface, and there are also results by Grassi in [39, section 2 and section 3].
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Lemma 2.19. Let π : X → B be a fibration between smooth compact complex algebraic
varieties (i.e., a surjective morphism with connected fibers). Then h0,k(B) ≤ h0,k(X) for
k = 0, . . . , dimX.

Proof. It follows from the Leray spectral sequence that

Hk(X,OX) =
k⊕
i=0

H i(B,Rk−iπ∗OX).

Considering the index i = k, the lemma follows from the fact that π∗OX = OB.

Corollary 2.20. Let π : X → B be an elliptic Calabi-Yau. Then hp,0(B) = 0 for p > 0.

Proof. Since X is Calabi-Yau we have hp,0(X) = 0 for p = 1, . . . , dim(X) − 1 = dim(B).
The statement then immediately follows from lemma 2.19.

Remark 2.21. As Fano varieties satisfy the condition hp,0(B) = 0 for p > 0, they serve
as natural bases for elliptic Calabi-Yaus.

2.3 Hodge numbers of a blown up projective bundle

As we are primarily concerned with comparing the Hodge numbers of a crepant resolution
W̃X →WX of a Weierstrass model of an elliptic Calabi-Yau X → B with that of the blown
up projective bundle P̃(E ) in which W̃X is naturally embedded, we now prove some results
which will enable us to compute the Hodge numbers of P̃(E ).

Definition 2.22. Let Z be a smooth, projective, complex algebraic variety. The Hodge-
Deligne polynomial of Z is the polynomial EZ(u, v) ∈ Z[u, v] given by

EZ(u, v) =
∑
p,q

(−1)p+qhp,q(Z)upvq.

Remark 2.23. While the Hodge-Deligne polynomial is actually defined more generally
for arbitrary (i.e., possibly singular) complex projective varieties in terms of mixed Hodge
structures [40], we restrict to the smooth case as this is what is needed for our purposes.

Example 2.24. The Hodge-Deligne polynomial of projective space is given by

EPn(u, v) = 1 + uv + (uv)2 + · · ·+ (uv)n. (2.3)

We record some well-known properties of Hodge-Deligne polynomials via the following
proposition (see, e.g., [41])

Proposition 2.25. The Hodge-Deligne polynomial satisfies the following properties:

1. If X ⊂ Z is a closed subvariety with open complement U ⊂ Z, then

EZ(u, v) = EX(u, v) + EU (u, v). (2.4)
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2. If Z → B is a Zariski locally trivial fibration with fiber F then

EZ(u, v) = EB(u, v) · EF (u, v). (2.5)

3. If BlW Z → Z denotes the blow up of Z along a smooth subvariety W of codimension
m+ 1, then

EBlW Z(u, v) = EZ(u, v) + (uv + · · ·+ (uv)m)EW (u, v). (2.6)

The following lemmas will be used repeatedly in later sections.

Lemma 2.26. Let B be a smooth projective variety of dimension n, and let P(E )→ B be
a P2-bundle over B. Then the following statements hold.

1. EP(E )(u, v) = (1 + uv + (uv)2)EB(u, v);
2. hp,0(P(E )) = hp,0(B) for 0 ≤ p ≤ n;
3. hn+1,0(P(E )) = hn+2,0(P(E )) = 0.

Proof. The lemma follows directly from proposition 2.25.

Lemma 2.27. Let Z be a smooth projective variety of dimension n, and W ⊆ Z a smooth
subvariety of codimension m ≥ 2. Then for 0 ≤ p ≤ n we have

hp,0(BlW Z) = hp,0(Z).

Proof. The lemma follows directly from proposition 2.25.

Lemma 2.28. Let π : X → B be an elliptic Calabi-Yau, let E = OB ⊕ ω−2
B ⊕ ω

−3
B , and

suppose there exists a birational map P̃(E )→ P(E ) corresponding to a sequence of blowups
of P(E ) along smooth centers such that the proper transform W̃X of WX yields a crepant
resolution W̃X →WX . Then

hp,0(X) = hp,0(W̃X) = hp,0(P̃(E )) = 0 for 1 ≤ p ≤ dim(X)− 1.

Proof. The varieties X and W̃X are both Calabi-Yau, so the equality hp,0(X) = hp,0(W̃X)
holds by theorem 2.15. It follows from lemma 2.19 that hp,0(B) = 0 for 1 ≤ p ≤ dim(X)−1.
By lemma 2.26 this implies that hp,0(E ) = 0 for all p, hence that hp,0(P̃(E )) = 0 for all p
as blowing up a smooth subvariety does not alter hp,0 (lemma 2.27).

Remark 2.29. In later sections, we will verify LTP in a number of 3- and 4-fold examples.
As such, we note that from the definition of a Calabi-Yau variety and lemma 2.28, it follows
that the relevant Hodge numbers for LTP are h1,1 in both the 3- and 4-fold cases, and also
h1,2 in the 4-fold cases.

Lemma 2.30. Let P (E )→ B be a projective bundle, and suppose P̃(E )→ P(E ) is a bira-
tional map corresponding to a sequence of n blowups of P (E ) along smooth centers. Then

h1,1(P̃(E )) = h1,1(B) + 1 + n, (2.7)

and
h1,2(P̃(E )) = h1,2(B) + h1,0(X0) + · · ·+ h1,0(Xn−1), (2.8)

where Xi−1 is the center of the i-th blow up.

Proof. The expressions in (2.7) and (2.8) follow directly from (2.5) and (2.6).
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2.4 A Shioda-Tate-Wazir formula for elliptic Calabi-Yaus

In this section we use the Shioda-Tate-Wazir formula for elliptic fibrations to prove a
formula for the Hodge number h1,1 of a general elliptic Calabi-Yau. Given a variety X, we
use the notation ρ(X) to denote the Picard number of X.

Definition 2.31. Let π : X → B be an elliptic fibration with X smooth. The Mordell-
Weil group of π, denoted MW(π), is the group which can be equivalently defined either
as the group of C(B)-rational points of the generic fibre of π or as the group of rational
sections of π, namely rational maps s : B 99K X such that π ◦ s = id on the domain of s.

Definition 2.32 (Fibral divisor, [42, definition 3.3]). Let D be an effective divisor in
the total space of an elliptic fibration π : X → B. Then D is said to be a fibral divisor if
and only if π(D) is a divisor in B.

Theorem 2.33 (Shioda-Tate-Wazir formula, cf. [42, corollary 3.2]). Let π : X → B

be a smooth elliptic fibration which is not birational to a product fibration. Then

ρ(X) = ρ(B) + 1 + Γ + rank MW(π), (2.9)

where Γ is the number of irreducible and reduced fibral divisors of π not intersecting the
zero-section of the fibration.

Proposition 2.34. If π : X → B is an elliptic Calabi-Yau, then X is not birational over
B to a product fibration.

Proof. Assume that there exists a birational map f : X 99K B ×E such that the following
diagram commutes

X
f //

π   

B × E

p
{{

B

,

where p is the projection on the first factor and E is an elliptic curve. The geometric genus
h0(B × E,ωB×E) of B × E is then zero, since

h0(B × E,ωB×E) = hn,0(B × E) = hn−1,0(B) · h1,0(E) = hn−1,0(B) = 0,

where n denotes the dimension of X, and the last equality follows from corollary 2.20. On
the other hand, the geometric genus is a birational invariant, thus h0(B × E,ωB×E) =
h0(X,ωX) = 1, an obvious contradiction. As such, X cannot be birational to a product
fibration.

For elliptic Calabi-Yaus, the Shioda-Tate-Wazir formula may be reformulated as follows.

Proposition 2.35 (Shioda-Tate-Wazir formula for elliptic Calabi-Yaus). Let π :
X → B be an elliptic Calabi-Yau with X of dimension n > 2. Then

h1,1(X) = h1,1(B) + 1 + Γ + rank MW(π), (2.10)

where Γ is the number of irreducible and reduced fibral divisors of π not intersecting the
defining section of the fibration.
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Proof. It follows from the Calabi-Yau assumption on X together with corollary 2.20 that

h0,1(X) = h0,2(X) = 0 and h0,1(B) = h0,2(B) = 0.

From the long exact sequence of the exponential sequence of X and B we then have

Pic(X) = NS(X) = H2(X,Z) and Pic(B) = NS(B) = H2(B,Z),

from which it follows that ρ(X) = rankH2(X,Z) = h1,1(X) and similarly for B. The
result then follows from the Shioda-Tate-Wazir formula, as π : X → B is not birational to
a product fibration by proposition 2.34.

Remark 2.36. Formula (2.10) actually holds more generally, namely, under the assump-
tions h1,0(X) = h2,0(X) = 0 and that X is not birational to a product fibration.

Remark 2.37. The result in proposition 2.35 is false for n = 2, even if the Calabi-Yau
condition still holds. In fact it is well known that a K3 surface X has h1,1(X) = 20, while
0 ≤ ρ(X) ≤ 20 and all cases can occur (for elliptically fibered K3 surfaces, all the cases with
2 ≤ ρ(X) ≤ 20 occur). The main difference between the case of surfaces and the higher-
dimensional fibrations is that K3 surfaces are the only Calabi-Yau varieties with h2,0 6= 0.

Proposition 2.38. Let π : X → B be an elliptic Calabi-Yau, let p : P̃(E ) → P(E ) be
a birational map which is obtained by a sequence of n blowups along smooth centers, and
suppose the proper transform W̃X ofWX with respect to the map p is an elliptic Calabi-Yau.
Then h1,1(W̃X) = h1,1(P̃(E )) if and only if

n = Γ + rank (MW(π)) , (2.11)

where Γ is the number of irreducible and reduced fibral divisors of π not intersecting the
defining section of the fibration W̃X → B. In particular, if X is a 3-fold and equation (2.11)
holds, then X satisfies LTP, and p : P̃(E )→ P(E ) is the associated LTP map.

Proof. By equation (2.7) we have

h1,1(P̃(E )) = h1,1(B) + 1 + n,

while the Shioda-Tate-Wazir formula (2.10) yields

h1,1(W̃X) = h1,1(B) + 1 + Γ + rank(MW(π)),

thus h1,1(W̃X) = h1,1(P̃(E )) if and only if n = Γ + rank (MW(π)), as desired.

2.5 The Lefschetz property after de Cataldo and Migliorini

In [24], de Cataldo and Migliorini introduced the concept of lef divisors. In particular, they
proved that if D is a lef divisor in a smooth complex projective variety M , then for D and
M the conclusions of the Lefschetz Hyperplane theorem hold (see [24, proposition 2.1.5]).
In this section, we recall the definition of lefness, and then show that in the case we are
examining — namely, where D is a crepant resolution of an anti-canonical Weierstrass
fibration and M is the associated blown up projective bundle — this property does not
hold, at least when the base of the fibration is Fano.
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Definition 2.39 (Lef divisor, cf. [24, definition 2.1.3]). We say that a divisor D in a
varietyM is lef if and only if a positive multiple of D is generated by its global sections, and
the corresponding morphism onto the image is semi-small, i.e., the map ϕ = ϕ|D| : M →M ′

has the property that there is no irreducible subvariety T ⊆M such that

2 dim T − dimϕ(T ) > dimM.

Proposition 2.40. Let B be a smooth Fano variety, and let Z = P(OB ⊕ ω−2
B ⊕ ω

−3
B ).

Then ω−nZ is not base-point-free for n ≥ 1. In particular, ω−1
Z is not lef.

Proof. Let p : Z → B denote the structure map. By equation (2.2), ω−1
Z = p∗ω−6

B ⊗OZ(3),
hence

ω−nZ = p∗ω−6n
B ⊗ OB(3n).

Let (x : y : z) denote the natural coordinates on the fibers of Z. Then y is a section of
p∗ω−3

B ⊗OZ(1) and hence the coefficient of y3n in an equation for a divisor D ∈ |ω−nZ | must
be a section of p∗ω3n

B . However,

H0(Z, p∗ω3n
B ) = H0(B,ω3n

B ) = 0

as ω3n
B is anti-ample (recall that B is Fano). As such, if s denotes a global section of

ω−nZ , then the monomial y3n does not appear in an expression for s, and so the point
(0 : 1 : 0) ∈ ZP annihilates s for every P ∈ B. This shows that the codimension 2
subvariety of Z defined by x = z = 0 is contained in the base locus of |ω−nZ | for every
positive n. As a consequence, ω−nB is not globally generated, hence ω−1

Z cannot be lef.

Proposition 2.41. Let B be a Fano variety, suppose X → B is an elliptic Calabi-Yau
which satisfies LTP, and let W̃X → W be the associated crepant resolution of the Weier-
strass model of X and suppose the LTP map is obtained by a sequence of blowups along
smooth centres. Then O(W̃X) is not lef.

Proof. Let E = OB ⊕ ω−2
B ⊕ ω

−3
B , and suppose the LTP map P̃(E ) LTP−−−→ P(E ) which yields

the crepant resolution W̃X → W is obtained by a sequence of blowups of P(E ) along
smooth centers. To prove the proposition, we will show that the proper transform of the
natural section x = z = 0 of WX → B is in the base locus of the linear system |nW̃X | for
every n ≥ 1. This will be achieved by induction on the number k of blowups composing
P̃(E ) LTP−−−→ P(E ), the case k = 0 being proposition 2.40.

For the inductive step, let Z = P(E ), and denote

Z̃
b−→ Ẑ → Z,

where b is the k-th and last blow up, and let Ŵ be the proper transform ofW in Ẑ. Assume
that b is the blow up the smooth subvariety C of Ẑ, defined by the ideal IC , and denote
by E the exceptional divisor. Since W̃X → WX is crepant, we have that b(E) must be
contained in the singular locus of Ŵ . We then have

b∗OẐ(nŴ ) = O
Z̃

(nW̃X)⊗ O
Z̃

(tE),
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for some t ∈ Z. As a consequence

H0(Z̃,O
Z̃

(nW̃X)) = H0(Ẑ,OẐ(nŴ )⊗I t
C),

i.e., sections of O
Z̃

(nW̃ ) can be identified with sections of OẐ(nŴ ) which vanish along C
at least of order t. By the inductive hypothesis the proper transform of the natural section
of W is a component of the base locus of OẐ(nŴ ), which is disjoint from the center C of
the blow up. As such, the proper transform of the section x = z = 0 of WX → B is still in
the base locus of O

Z̃
(nW̃X), thus W̃X cannot be lef.

3 LTP for crepant resolutions of Weierstrass 3-folds

Let B be an arbitrary rational surface. We now consider 14 families of elliptic 3-folds
X → B with simple gauge groups and verify that they satisfy LTP. Every elliptic Calabi-
Yau X → B we consider in this section is of the form X = W̃ , where W̃ →W is a crepant
resolution of a singular Weierstrass fibration W → B. In each case, it turns out that
W → B is in fact the Weierstrass model of W̃ → B, so that W = W

W̃
.

3.1 The Weierstrass fibrations under consideration

Given an anti-canonical Weierstrass fibration

W : (y2z = x3 + Fxz2 +Gz3) ⊂ P(OB ⊕ ω−2
B ⊕ ω

−3
B ),

one may make a linear change of coordinates to put the fibration in Tate form, which is
given by

W : (y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3) ⊂ P(OB ⊕ ω−2
B ⊕ ω

−3
B ). (3.1)

In the Tate form each ai is a regular section of ω−iB , and they are related to F and G by
the equations

F = −1
48 (b2

2 − 24b4), G = −1
864(36b2b4 − b3

2 − 216b6),

where
b2 = a2

1 + 4a2, b4 = a1a3 + 2a4, and b6 = a2
3 + 4a6.

One may then employ Tate’s algorithm [43, 44] to prescribe that the coefficients ai vanish
to certain orders along a divisor S ⊂ B in such a way that a particular singular fiber fW
will appear over S upon a resolution of singularities W̃ →W . The dual graph of fW is then
an affine Dynkin diagram associated with a Lie algebra g. The gauge group GW associated
with W is then given by

GW = exp(g∨)
MWtor(ψ) × U(1)rkMW(ψ),

where ψ : W → B is the associated projection to B, and MW(ψ) denotes the Mordell-Weil
group of rational sections of ψ. We note that it is possible for two distinct Weierstrass
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W GW
y2z = x3 + a4,1sxz

2 + a6,2s
2z3 SU(2)

y2z + a3,1syz
2 = x3 + a4,2s

2xz2 + a6,3s
3z3 SU(3)

y2z + a1xyz = x3 + a2,1sx
2z + a4,2s

2xz2 + a6,4s
4z3 SU(4)

y2z + a1xyz + a3,2s
2yz2 = x3 + a2,1sx

2z + a4,3s
3xz2 + a6,5s

5z3 SU(5)
y2z = x3 + a2x

2z + a4,3s
3xz2 + a6,5s

5z3 USp(4)
y2z = x3 + a2x

2z + sxz2 SO(3)
y2z = x3 + a2x

2z + s2xz2 SO(5)
y2z + a1xyz = x3 + sx2z + s2xz2 SO(6)

y2z = x3 + a2,1sx
2z + a4,2s

2xz2 + a6,4s
4z3 Spin(7)

y2z = x3 + a4,2s
2xz2 + a6,3s

3z3 G2

y2z = x3 + a4,3s
3xz2 + a6,4s

4z3 F4

y2z + a3,2s
2yz2 = x3 + a4,3s

3xz2 + a6,5s
5z3 E6

y2z = x3 + a4,3s
3xz2 + a6,5s

5z3 E7

y2z = x3 + a4,4s
4xz2 + a6,5s

5z3 E8

Table 1. Equations for the anti-canonical Weierstrass fibrations under consideration.

fibrations W → B and W ′ → B with distinct fW and fW ′ to give rise to the same gauge
group, so that it is not necessarily the case that GW 6= GW ′ .

Now let S ⊂ B be a smooth divisor in the rational surface B. The equations of the
Weierstrass fibrations we consider are all in Tate form as given by (3.1). We consider 14
distinct families of singular Weierstrass fibrations, whose explicit equations are given in
table 1 along with the associated gauge groups. In each case, x is a section of O(1)⊗ ω−2

B ,
y is a section of O(1)⊗ω−3

B , z is a section of O(1), ai is a section of ω−iB and ai,k is a section
of ω−iB ⊗O(−kS), so that W corresponds to the zero-locus of a section of O(3)⊗ω−6

B . The
total space of each fibration W → B is an anti-canonical divisor in P(OB ⊕ ω−2

B ⊕ ω
−3
B )

and singular along x = y = s = 0, where s is the section of O(S) whose zero-locus is the
smooth divisor S. We take the map b 7→ (0 : 1 : 0) to be the distinguished section of each
fibration.

For each anti-canonical Weierstrass fibration W listed in table 1, a crepant resolution
W̃ → W was constructed in [3] by blowing up the projective bundle P(OB ⊕ ω−2

B ⊕ ω
−3
B )

along smooth complete intersections and then taking the proper transform W̃ of W along
the blowups. In each case, the initial blowup is along the singular locus x = y = s = 0,
thus all divisors introduced in the resolution process do not meet the distinguished section.
It then follows that in each example we have W = WX , where X = W̃ is the crepant
resolution of W . For example in the SU(3), G2 and USp(4) cases, the crepant resolution
is obtained by two blowups. The first blowup Z1 → Z0 = P(OB ⊕ ω−2

B ⊕ ω
−3
B ) is along its

singular locus {x = y = s = 0} ⊂ Z0 with exceptional divisor E1, and the second blow up
is along {y = e1 = 0} ⊂ Z1, where e1 = 0 is an equation for E1 and y denotes the pullback
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Resolution GY
(x, y, s) SU(2)

((x, y, s), (y, e1)) SU(3)
((x, y, s), (y, e1), (x, e2)) SU(4)

((x, y, s), (x, y, e1), (y, e1), (y, e2)) SU(5)
((x, y, s), (y, e1)) USp(4)

(x, y, s) SO(3)
((x, y, s), (x, y, e1)) SO(5)

((x, y, s), (y, e1), (x, e2)) SO(6)
((x, y, s), (y, e1), (x, e2)) Spin(7)

((x, y, s), (y, e1)) G2

((x, y, s), (y, e1), (x, e2), (e2, e3)) F4

((x, y, s), (y, e1), (x, e2), (e2, e3), (y, e3), (y, e4)) E6

((x, y, s), (y, e1), (x, e2), (y, e3), (e2, e3), (e2, e4), (e4, e5)) E7

((x, y, s), (y, e1), (x, e2), (y, e3), (e2, e3), (e4, e5), (e2, e4, e6), (e4, e7)) E8

Table 2. Resolution procedure for each Weierstrass model.

of the section y under Z1 → Z0. We then summarize the resolution procedure with the
notation (as introduced in [3])

((x, y, s), (y, e1)),

where the first entry (x, y, s) denotes the ideal along which the first blow up takes place, and
the second entry (y, e1) denotes the ideal along which the second blow up takes place. Such
notation will then be used to summarize each resolution we consider, and all such resolution
procedures are listed in table 2. We note that if Zi → Zi−1 denotes the i-th blow up with
exceptional divisor Ei, then ei denotes a section of O(Ei) (we also elide the difference in
notation between a section of a line bundle on Zi−1 and its pullback via Zi → Zi−1).

3.2 Verification of LTP

Lemma 3.1. Let W̃ → W be any of the crepant resolutions as given in table 2, and let
π : W̃ → B be the structure map. Then rank (MW(π)) = 0, and W → B is the Weierstrass
model of π : W̃ → B.

Proof. The fact that rank (MW(π)) = 0 is standard (see, e.g., [3, 5]). And since each
blowup in every resolution procedure given in table 2 introduces a fibral divisor which does
not meet the distinguished section of W̃ → B (which we recall is given by b 7→ (0 : 1 : 0)
for all b ∈ B), it follows that the crepant resolution π : W̃ → W contracts all divisors
not meeting the section of W̃ → B, thus W → B is the Weierstrass model of W̃ → B, as
desired.
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Theorem 3.2. Let W̃ → W be any of the crepant resolutions as given in table 2, and let
π : W̃ → B be the structure map. Then π : W̃ → B satisfies LTP.

Proof. Since W̃ is a 3-fold and W → B is the Weierstrass model of π : W̃ → B by
lemma 3.1, it follows from proposition 2.38 that π : W̃ → B satisfies LTP if

n = Γ + rank (MW(π)) ,

where n is the number of blowups in the resolution procedure which yields W̃ →W as given
in table 2, and Γ is the number of irreducible and reduced fibral divisors of W̃ → B not
meeting the distinguished section. And since W → B does not contain any fibral divisors
not meeting its distinguished section, and rank (MW(π)) = 0 by lemma 3.1, W̃ → B

satisfies LTP if each blowup in the resolution procedure W̃ →W introduces a fibral divisor
not meeting the distinguished section of π : W̃ → B, which we now show.

Indeed, in each resolution procedure given in table 2, the first blowup is along (x, y, s),
which does not meet the distinguished section, which we recall is given by b 7→ (0 : 1 : 0)
for all b ∈ B. As such, the exceptional divisor E1 of the first blowup is a fibral divisor
which does not meet the distinguished section. The exceptional divisors of the subsequent
blowups are also fibral divisors which do not meet the distinguished section, as they all
correspond to blowups along some subvariety of the previous exceptional divisor, as can be
seen from table 2. It then follows that in each resolution procedure given in table 2, every
blowup introduces a fibral divisor not meeting the distinguished section of π : W̃ → B,
thus W̃ satisfies LTP.

4 LTP for the E6, E7 and E8 families

In this section, we consider 3 families of elliptic Calabi-Yaus which are commonly referred
to as the E8, E7 and E6 families1 (see, e.g., [11, 45–48]). We then show that when the base
of such fibrations is of dimension 2 or 3, the associated elliptic Calabi-Yau 3- and 4-folds
satisfy LTP (in the 4-fold case we require that the base is a toric Fano 3-fold), i.e., we
construct LTP maps P̃(E ) LTP−−−→ P(E ) and show that the upper Hodge diamonds of such
resolutions coincide the with upper Hodge diamonds of the (blown up) projective bundles
in which they are naturally embedded. We note that while the E6, E7 and E8 families are
often defined in such a way that they are not necessarily Calabi-Yau, for our purposes we
will restrict to the Calabi-Yau case.

4.1 The fibrations under consideration

Let B be a smooth compact complex projective variety. For dim(B) = 2 we assume B is
a rational surface and for dim(B) > 2 we assume B is a Fano variety.

1We note that the E8, E7 and E6 families defined here do not coincide with the singular anti-canonical
Weierstrass fibrations introduced in section 3 whose associated gauge groups are E8, E7 or E6 as listed in
table 1.
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Definition 4.1 (E8 fibrations). Let E = ω−2
B ⊕ω

−3
B ⊕OB. An elliptic fibrationW → B is

said be an E8 fibration (or a smooth Weierstrass fibration), if and only if W a hypersurface
in P(E ) given by the equation

W : (y2z = x3 + fxz2 + gz3) ⊂ P(E ). (4.1)

The distinguished section is the constant section s(b) = (0 : 1 : 0) ∈Wb.

In the above equation, x, y and z denote regular sections of O(1) ⊗ ω−2
B , O(1) ⊗ ω−3

B

and O(1) respectively, while f and g are sections of ω−4
B and ω−6

B respectively. To ensure
thatW is smooth, we make the assumption that the hypersurfaces in B given by f = 0 and
g = 0 are both smooth and intersect transversally, or in other words, that {f = 0}∪{g = 0}
is a normal crossing divisor with smooth irreducible components.

Fibrations of type E7 were originally defined as a hypersurface in a weighted projective
bundle P1,1,2(E ) over B. Here we recall the equivalent definition given in [46, section 1] as
a hypersurface in a non-weighted P2-bundle over B.

Definition 4.2 (E7 fibrations). Let E = OB ⊕ ω−1
B ⊕ ω

−2
B . An elliptic fibration X → B

is said to be an E7 fibration if and only if X is a hypersurface in P(E ) given by

X : (y2z − 2x2y + c2x
2z + c3xz

2 + c4z
3 = 0) ⊂ P(E ). (4.2)

The distinguished section is the constant section s(b) = (0 : 1 : 0) ∈ Xb.

In the above equation, x, y and z are regular sections of O(1)⊗ ω−1
B , O(1)⊗ ω−2

B and
O(1) respectively, and ci is a regular section of ω−iB . To ensure X is smooth we assume⋃4
i=2{ci = 0} is a normal crossing divisor with smooth irreducible components.

Definition 4.3 (E6 fibrations). Let E = OB ⊕ ω−1
B ⊕ ω

−1
B . An elliptic fibration Y → B

is said to be an E6 fibration if and only if Y is a hypersurface in P(E ) given by

Y : (x3 + y3 = b1xyz + b2xz
2 + e2yz

2 + b3z
3) ⊂ P(E ). (4.3)

The distinguished section is the constant section s(b) = (0 : 1 : 0) ∈ Yb.

In the above equation, x, y and z are regular sections of O(1)⊗ ω−1
B , O(1)⊗ ω−1

B and
O(1) respectively, bi is a regular section of ω−iB and e2 is a section of ω−2

B . To ensure Y
is smooth we assume

⋃3
i=1{bi = 0} ∪ {e2 = 0} is a normal crossing divisor with smooth

irreducible components.

Proposition 4.4. E8, E7 and E6 fibrations are all elliptic Calabi-Yaus.

Proof. The proposition follows immediately from the adjunction formula together with a
straightforward calculation of the arithmetic genus. For details, see e.g. [45] or [11].
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4.2 LTP in the E8 case

Let W → B be an E8 fibration. Recall that fibrations of type E8 are in fact smooth
Weierstrass fibrations, all of which admit the section σ0 : B → W given by σ0(b) = (0 :
1 : 0) ∈ Wb, which we take to be the distinguished section of the fibration. Note that
since W → B is its own Weierstrass model, an LTP map for an E8 fibration is simply the
identity.

Theorem 4.5. Let W → B be a generic 3- or 4-fold E8 fibration as given by (4.1). In the
4-fold case, assume further that B is a Fano toric 3-fold. Then W satisfies LTP.

Proof. It follows from remark 2.29 that the relevant Hodge numbers for verifying LTP are
h1,1 and, in the 4-fold case, also h1,2. Since the Mordell-Weil rank of a generic smooth
Weierstrass fibration is 0 and the singular fibers of W → B are irreducible, for dim(B) > 1
it follows from proposition 2.35 that

h1,1(W ) = h1,1(B) + 1.

Moreover, from lemma 2.26(1) we have

h1,1(P(E )) = h1,1(B) + 1,

thus h1,1(W ) = h1,1(P(E )) for W of arbitrary dimension. In particular, W satisfies LTP
when W is a 3-fold, i.e., when B is a rational surface.

For the 4-fold case, we also need to consider h1,2. By assumption, B is a toric Fano
3-fold (there are 18 of them), and in such a case, one may use toric methods to compute
h1,2(W ). This was done in [11, section 5, table 1], and the result is that h1,2(W ) = 0 in all
cases. Since hp,q(B) = 0 if p 6= q by [49, theorem 9.3.2 or theorem 9.4.9], it follows from
item (1) of lemma 2.26 that h1,2(P(E )) = 0. Hence W satisfies LTP.

4.3 LTP in the E7 case

Let X → B be an E7 fibration, which has two natural sections: σ0 : B ↪→ X and σ1 : B ↪→
X given by

σ0(b) = (0 : 1 : 0) ∈ π−1(b) and σ1(b) = (1 : 0 : 0) ∈ π−1(b).

We take σ0 to be the distinguished section of the fibration, while σ1 is a generator of
MW(X), which is generically of rank 1.

Lemma 4.6. Let X → B be a generic E7 fibration. Then h1,1(X) = h1,1(B) + 2.

Proof. Over a generic point of the discriminant an E7 fibration the singular fiber is a
nodal cubic, which enhances to a cuspidal cubic or splits in two rational curves in higher
codimension in the discriminant. As a consequence there is no irreducible and reduced
fibral divisor which does not meet the section. Moreover, since the Mordell-Weil rank of
an E7 fibration is generically 1, it follows from the Shioda-Tate-Wazir formula for elliptic
Calabi-Yaus (2.10) that

h1,1(X) = h1,1(B) + 2,

as desired.
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For the verification of LTP, we now construct the LTP map P̃(E ) LTP−−−→ P(E ) which
yields a crepant resolution of the Weierstrass model of X, which is given by

WX :
(
t2u = s3 −

(1
3c

2
2 − 4c4

)
su2 +

(
c2

3 −
2
27c

3
2 −

8
3c2c4

)
u3
)
⊂ P(E ).

In the Weierstrass model, the section σ0 corresponds to the section s0(b) = (0 : 1 : 0) while
σ1 corresponds to s1(b) = (2c2 : −3c3 : 3). To construct a crepant resolution W̃X → WX ,
we blow up P(E ) along s1(B), which is given by the equations

s1(B) : (t+ c3u = 3s− 2c2u = 0) ⊂ P(E ).

Taking the proper transform of WX then yields a resolution W̃X →WX . This resolution is
crepant since s1(B) is a divisor in WX passing through the singular points of WX , so the
blow up only modifies the variety by introducing a P1 over each singular point.

Lemma 4.7. Let P̃(E ) denote the blow up of P(E ) along σ1(B). Then

hp,q(P̃(E )) = hp,q(B) + 2hp−1,q−1(B) + hp−2,q−2(B).

Proof. By formula (2.6) we have

EP̃(E )(u, v) = EP(E )(u, v) + uvEB(u, v),

and since EP(E )(u, v) = (1 + uv + (uv)2)EB(u, v), we then have

EP̃(E )(u, v) = (1 + 2uv + (uv)2)EB(u, v),

from which the lemma follows.

Theorem 4.8. Let X → B be a generic 3- or 4-fold E7 fibration. In the 4-fold case,
assume further that B is a Fano toric 3-fold. Then X satisfies LTP.

Proof. Let P̃(E ) LTP−−−→ P(E ) be the LTP map correpsonding to the crepant resolution of
WX constructed above. By lemma 4.7,

h1,1(P̃(E )) = h1,1(B) + 2h0,0(B) = h1,1(B) + 2,

and
h1,2(P̃(E )) = h1,2(B) + 2h0,1(B).

By lemma 4.6 it then immediately follows that h1,1(P̃(E )) = h1,1(X) in both the 3- and
4- fold cases. Thus X satisfies LTP in the 3-fold case, as h1,1 is the only relevant Hodge
number (cf. remark 2.29). For the 4-fold case, the fact that h1,2(B) = h0,1(B) = 0 for all
Fano toric 3-folds (see [49, theorem 9.3.2 or theorem 9.4.9]) implies h1,2(P̃(E )) = 0. Since
h1,2(X) = 0 by [11, section 5, table 1], X satisfies LTP in the 4-fold case as well.
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4.4 LTP in the E6 case

Let Y → B be an E6 fibration, which has three natural sections σi : B → Y (which are
also sections of WY ) given by

σi(b) = (−ζi3 : 1 : 0) ∈ π−1(b), i = 0, 1, 2,

where ζ3 = e
2
3π
√
−1. We take σ0 to be the distinguished section.

Lemma 4.9. Let Y → B be a generic E6 fibration. Then h1,1(Y ) = h1,1(B) + 3.

Proof. The reducible fibers of E6 fibrations appear over loci of codimension greater than one
in B, thus singular fibers of E6 fibrations do not contribute to h1,1. Since the Mordell-Weil
rank of E6 fibrations is 2, the Shioda-Tate-Wazir formula for elliptic Calabi-Yaus (2.10)
yields

h1,1(Y ) = h1,1(B) + 3. (4.4)

as desired.

For the verification of LTP, we now construct the LTP map P̃(E ) LTP−−−→ P(E ) which
yields a crepant resolution of the Weierstrass model of Y , which is given by

WY :
(
t2u = s3 − Fsu2 +Gu3

)
⊂ P(E ),

where

F = 1
48b

4
1 −

9
2b1b3 + 3b2e2, G = 1

864b
6
1 + 5

8b
3
1b3 −

3
4b

2
1b2e2 + b3

2 −
27
4 b

2
3 + e3

2.

Apart the obvious constant section s0 : B → WY defined by s0(b) = (0 : 1 : 0) which
corresponds to σ0, we have two other sections s1 and s2 of WY corresponding to σ1 and σ2
respectively. Let

α1 = 1
4b

3
1 + ζ3b2 + ζ2

3e2,

α2 = 1
4b

3
1 + ζ2

3b2 + ζ3e2,

β1 = 1
18ζ3(1− ζ3)b3

1 −
1
2(1− ζ2

3 )b1b2 + 1
2(1− ζ3)b1e2 + 3

2ζ3(1− ζ3)b3,

β2 = − 1
18ζ3(1− ζ3)b3

1 −
1
2(1− ζ3)b1b2 + 1

2(1− ζ2
3 )b1e2 −

3
2ζ3(1− ζ3)b3,

then s1 = (α1 : β1 : −1) and s2 = (α2 : β2 : −1).
To investigate the nature of the singularities of WY , we first analyze the singular fiber

structure of E6 fibrations following closely [45, section 2.2]. Over the generic point of the
discriminant locus the singular fiber of the fibration is a nodal cubic curve, and they do
not contribute to the singularities in the Weierstrass model. These curves can degenerate
either to cuspidal curves or to fibers of type I2 given by the union of a conic and a line.
The equations for the locus over which we find fibers of type I2 are

∆ρ
Q :

 e2 = ρb2

b3 = 1
27b1(9ρ2b2 − b2

1)
ρ3 ∈ {1, ζ3, ζ

2
3},
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ρ = 1 ρ = ζ3 ρ = ζ2
3

σ0 line conic conic
σ1 conic line conic
σ2 conic conic line

Table 3. How the sections σi meet the I2 fibres in E6 fibrations.

ρ = 1 ρ = ζ3 ρ = ζ2
3

Σ1 X X No
Σ2 X No X

Table 4. Which component of Singρ is contained in Σi?

over which the fibers of the fibration are given by

I2 :
(
x+ ρy + 1

3ρ
2b1z

)(
x2 − ρxy − 1

3ρ
2b1xz + ρ2y2 − 1

3b1yz +
(1

9ρb
2
1 − b2

)
z2
)

= 0,

which is (generically) the union of a line and a conic. We then have that generically over
∆ρ
Q, the sections σi meet the fiber in either the line or the conic according to table 3.

The map to the Weierstrass model contracts the component of these fibers which does
not intersect σ0(B), and the corresponding points are then singular points of the Weierstrass
model. It is then possible to see that the singular locus of the Weierstrass model has three
irreducible components (one for each choice of ρ), with equations

Singρ :



e2 = ρb2

b3 = 1
27b1(9ρ2b2 − b2

1)
t = 0
s+ b2

1(b2
1 − 4ρ2b2) = 0

ρ3 ∈ {1, ζ3, ζ
2
3}.

The singular locus of WY is then of codimension 4 in P(E ), and the irreducible components
Singρ are contained in the sections Σ1 = s1(B) and Σ2 = s2(B) according to table 4.

We can then resolve the singularities of WY as follows. First, we choose a section
between Σ1 and Σ2, say Σ1, and blow up the ambient space along it. Then we consider
the proper transform of the Weierstrass fibration and we observe that we have no more
singular points over ∆1

Q and ∆ζ3
Q . The remaining singular points then lie over ∆ζ2

3
Q , and are

contained in the proper transform of Σ2. This proper transform is no longer isomorphic to
the base B, rather it is the blow up of B with center in b2−e2 = b3

1−9b1b2 +27b3 = 0. After
blowing up the ambient space along this subvariety, the proper transform of the fibration
is smooth. This resolution of the Weierstrass model is crepant: the first blow up is along a
divisor in WY passing through the singular points of WY , so the blow up does not change
the variety in codimension 1 and does not introduce new divisors, and similarly for the
second blow up.
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In summary, we start with the ambient space Z0 = P(E ), and blow up a codimension 2
subvariety isomorphic to B. Then in the new ambient space Z1, we blow up a codimension 2
subvariety isomorphic to the blow up B̃ → B along a codimension 2 subvariety C, resulting
in the ambient space Z2, which we denote by P̃(E ). Taking the proper transform of WY

then yields a crepant resolution W̃Y →WY , which is embedded as a hypersurface in P̃(E ).

Lemma 4.10. Let P̃(E ) be as above. Then

hp,q(P̃(E )) = hp,q(B) + 3hp−1,q−1(B) + hp−2,q−2(B) + hp−2,q−2(C).

Proof. This is an application of (2.5) and (2.6).

Theorem 4.11. Let Y → B be a generic 3- or 4-fold E6 fibration. In the 4-fold case,
assume further that B is a Fano toric 3-fold. Then Y satisfies LTP.

Proof. Let P̃(E ) LTP−−−→ P(E ) be the LTP map corresponding to the crepant resolution of
WY described above. By lemma 4.9 and lemma 4.10 we have

h1,1(P̃(E )) = h1,1(B) + 3 = h1,1(Y ).

Thus Y satisfies LTP in the 3-fold case (recall that by remark 2.29 the only relevant Hodge
number for LTP in the 3-fold case is h1,1). For the 4-fold case, lemma 4.10 yields

h1,2(P̃(E )) = h1,2(B) + 3h0,1(B),

and since by lemma 2.19 we have h1,0(B) = 0, in the 4-fold case E6 fibrations satisfy LTP
if and only if h1,2(P̃(E )) = h1,2(B), where we recall B is a toric Fano 3-fold. Toric methods
(see [49, theorem 9.3.2 or theorem 9.4.9]) may then be used to show that h1,2(B) = 0. Since
h1,2(W̃Y ) = 0 by [11, section 5, table 1], Y satisfies LTP in the 4-fold case as well.

5 LTP for the Borcea-Voison 4-fold

While the E8, E7 and E6 families are all defined over a base B of arbitrary dimension, the
next elliptic fibration we consider is an explicit 4-fold construction, introduced in [2].

Definition 5.1 (The Borcea-Voison 4-fold). Let S1 and S2 be two K3 surfaces, and
suppose

1. S1 admits an elliptic fibration π : S1 → P1;

2. S2 is a double covering of a del Pezzo surface.

Both surfaces admit a natural involution: the surface S1 has the hyperelliptic involution
ι1, while S2 has the covering involution ι2. The elliptic Calabi-Yau 4-fold Z → P2 × P1

corresponding to the crepant resolution of the singular quotient (S1 × S2)/(ι1 × ι2) will be
referred to as the Borcea-Voisin 4-fold.
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Let Z → P2 × P1 be the Borcea-Voisin 4-fold as given by definition 5.1. We consider
the case where the elliptic fibration on S1 has only nodes or cusps as singular fibers (say
n singular fibres of type II and 24 − 2n of type I1), while S2 is the double cover of P2

branched along a smooth sextic. For the verification of LTP we first need the following

Lemma 5.2. Let Z be the Borcea-Voisin 4-fold constructed from an elliptic K3 surface
with n singular fibers of type II and 24− 2n of type I1 and a double cover of P2 branched
along a smooth sextic. Then h1,1(X) = 5 and h1,2(X) = 30.

Proof. To prove the lemma one needs first to study the fixed locus of the two natural
involutions on S1 and S2, and then to follow the quotient and blow up needed to produce
X from S1 × S2. We refer to [2, proposition 4.2] for all the details, as the proof of the
lemma follows from the proof of [2, proposition 4.2] with the obvious adjustments.

Let E = OP2×P1 ⊕ ω−2
P2×P1 ⊕ ω−3

P2×P1 . For the verification of LTP, we now construct an
LTP map P̃(E ) LTP−−−→ P(E ) which yields a crepant resolution W̃Z →WZ of the Weierstrass
modelWZ of the Borcea-Voisin 4-fold Z → P2×P1. The Weierstrass model of Z is given by

WZ : (y2z = x3 + (Af2)xz2 + (Bf3)z3) ⊂ P(E ),

where f = 0 is the sextic curve C ⊂ P2 which is the branch locus of S2 → P2, and A and
B are such that the Weierstrass model of S1 → P1 is given by s2t = u3 + Aut2 + Bt3.
For the sake of constructing a crepant resolution of WZ we make the assumption that
2∂B/B 6= 3∂A/A.

The Weierstrass model WZ is singular along the smooth surface S ⊂ P(E ) given by
x = y = f = 0, and we now construct an explicit crepant resolution W̃Z → WZ . For this,
we first blow up P(E ) along S, and we let (X1 : X2 : F ) denote the coordinates in the
exceptional divisor of the blow up. In the chart X2 = 1, we have x = X1y and f = Fy, so
that the exceptional divisor is given by y = 0, and the proper transform of WZ is given by

1 = y(X3
1 +AF 2X1 +BF 3),

thus the exceptional divisor and the proper transform are disjoint. In the chart X1 = 1, we
have y = X2x and f = Fx, thus the exceptional divisor is given by x = 0 and the proper
transform of WZ is given by

X2
2 = x(1 +AF 2 +BF 3).

The proper transform of WZ is then singular along x = X2 = 1 +AF 2 +BF 3 = 0. In the
chart F = 1, we have x = X1f and y = X2f , so that the exceptional divisor is given by
f = 0 and the proper transform of WZ is given by

X2
2 = f(X3

1 +AX1 +B),

which is singular along the surface

T : (f = X2 = X3
1 +AX1 +B = 0) ⊂ Z1,
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where Z1 denotes the blowup of P(E ) along S. Observe that this description of the singular
locus patches with the one in the previous chart. Since in the previous chart there is no
singular point contained in F = 0, we see that the whole singular locus is described in
this chart. The previous assumption that 2∂B/B 6= 3∂A/A assures that T is in fact
smooth. Moreover, the blow up of Z1 along T yields a crepant resolution of W̃Z → WZ

by taking the proper transform of WZ through the two blow ups. It is possible to see
by direct computations that this resolution is crepant. By lemma 5.2, the Borcea-Voison
4-fold Z → P2 × P1 then satisfies LTP if and only if h1,1(P̃(E )) = 5 and h1,2(P̃(E )) = 30,
where P̃(E ) denotes the blow up of Z1 along T .

Theorem 5.3. The Borcea-Voison 4-fold Z → P2 × P1 satisfies LTP.

Proof. Let P̃(E ) LTP−−−→ P(E ) be the LTP map corresponding to the crepant resolution of
WZ constructed above. By formulas (2.7) and (2.8) we have

h1,1(P̃(E )) = h1,1(P2 × P1) + 3 = 5,

and
h1,2(P̃(E )) = h1,2(P2 × P1) + h1,0(S) + h1,0(T ) = h1,0(S) + h1,0(T ),

where the last equality follows from the fact that h1,2(P2 × P1) = 0. We then have
a match at the level of h1,1, thus the Borcea-Voisin 4-fold satisfies LTP if and only if
h1,0(S) + h1,0(T ) = 30.

Now the surface S is isomorphic to C×P1 (where we recall C is a smooth sextic curve
of in P2), and since C is of genus h1,0(C) = 10, it then follows from equation (2.5) that
h1,0(S) = 10. As for the surface T , we note that this surface is isomorphic to the product
of C with the 3 : 1 cover of P1 with n ramification points with multiplicity 3 and 24− 2n
ramification points with multiplicity 2, which by the Riemann-Hurwitz formula is a curve
of genus 10. It then follows that h1,0(T ) = 10 + 10 = 20, which yields

h1,2(P̃(E )) = 10 + 20 = 30,

thus Z satisfies LTP.

6 LTP and the Calabi-Yau condition

In this section we show that if we drop the Calabi-Yau condition on the total space of the
elliptic fibration, then the Lefschetz-type phenomenon can fail to hold.

Let W → P1 be a smooth elliptic K3 surface given by a Weierstrass equation

W : (T 2U = S3 + αSU2 + βU3) ⊂ P(OP1 ⊕ OP1(4)⊕ OP1(6)), (6.1)

where α ∈ H0(P1,OP1(8)), β ∈ H0(P1,OP1(12)) are generic, and let π : X → P1 × Pn be
the elliptic fibration whose total space X is the cartesian product W × Pn for n > 0. It
then follows that π : X → P1 × Pn is a smooth Weierstrass fibration, whose equation is
given by

X : (y2z = x3 + αxz2 + βz3) ⊂ Z,
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where Z = P(OP1×Pn⊕L 2⊕L 3) and L = OP1×Pn(2, 0). From the adjunction formula one
may deduce that ωX is non-trivial, so that X is not Calabi-Yau. As X is a product and Z
is a P2-bundle, we can easily compute the Hodge diamonds of X and Z. In particular, at
the level of h1,1 we have

h1,1(X) = 21, and h1,1(Z) = 3,

thus X does not satisfy LTP.

Remark 6.1. Observe that even though the total space X of the fibration π is a product,
X is not birational over P1×Pn to an elliptic fibration of the form P1×Pn×E → P1×Pn

(E is an elliptic curve). To see that this is true, assume that we have a diagram

W × Pn f //

&&

P1 × Pn × E

ww
P1 × Pn.

The indeterminacy loci of f and of f−1 are of codimension at least 2, hence their image
in P1 × Pn is contained in a divisor. So for a generic point P ∈ Pn the restriction of f to
P1 × {P} will exhibit W as birational to a product, which is not the case.

7 LTP conjectures

We now formulate two conjectures, which we will refer to as the ‘LTP-weak conjecture’ and
the ‘LTP-strong conjecture’. A positive answer to the latter would imply a positive answer
to the former.

Conjecture 7.1 (LTP-weak conjecture). An elliptic Calabi-Yau satisfies LTP.

If Conjecture 7.1 is in fact true, it is then natural to surmise that LTP for an elliptic
Calabi-Yau X → B is a consequence of the inclusion map i : W̃X ↪→ P̃(E ) associated
with an LTP map P̃(E ) LTP−−−→ P(E ) for X inducing an isomorphism i∗ : Hk(P̃(E ),Z) →
Hk(W̃X ,Z) for k < dimX. However, this more general statement may fail to hold, as we
now show.

Proposition 7.2. Let X → B be an elliptic Calabi-Yau which satisfies LTP, and let
i : W̃X ↪→ P̃(E ) be the inclusion map associated with an LTP map P̃(E ) LTP−−−→ P(E ) for
X. If the Mordell-Weil group of X → B admits torsion, then the map i∗ : H2(P̃(E ),Z)→
H2(W̃ ,Z) induced by the inclusion map i is not an isomorphism.

Proof. Since the Mordell-Weil group of X → B admits torsion, there exists a rational
section τ of X → B of finite order. From the surjective group homomorphism NS(W̃X)→
MW(W̃X) which associates a class D with its restriction to the generic fiber of X → B,
we deduce that there exists in NS(W̃X) a class of finite order, namely τ(B). As W̃X is an
elliptic Calabi-Yau, we have NS(W̃X) = H2(W̃X ,Z), so that H2(W̃X ,Z) admits torsion.
But H2(P̃(E ),Z) is torsion-free, thus it can not be isomorphic to H2(W̃X ,Z).
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In light of proposition 7.2, perhaps LTP is a consequence of LTP maps inducing an
isomorphism of rational Hodge structures (in the appropriate dimensions). In particular,
we make the following conjecture, which refer to as the ‘LTP-strong conjecture’.

Conjecture 7.3 (LTP-strong conjecture). Let X → B be an elliptic Calabi-Yau. Then
the following statements hold.

1. An LTP map P̃(E ) LTP−−−→ P(E ) for X exists.

2. Given an LTP map P̃(E ) LTP−−−→ P(E ), the map i∗ : Hk(P̃(E ),Q) → Hk(W̃X ,Q)
induced by the inclusion i : W̃X ↪→ P̃(E ) associated with the LTP map is an isomor-
phism for k < dimX.
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