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Abstract: Topological orders are a prominent paradigm for describing quantum many-
body systems without symmetry-breaking orders. We present a topological quantum field
theoretical (TQFT) study on topological orders in five-dimensional spacetime (5D) in which
topological excitations include not only point-like particles, but also two types of spatially
extended objects: closed string-like loops and two-dimensional closed membranes. Espe-
cially, membranes have been rarely explored in the literature of topological orders. By
introducing higher-form gauge fields, we construct exotic TQFT actions that include mix-
ture of two distinct types of BF topological terms and many twisted topological terms.
The gauge transformations are properly defined and utilized to compute level quantiza-
tion and classification of TQFTs. Among all TQFTs, some are not in Dijkgraaf-Witten
cohomological classification. To characterize topological orders, we concretely construct all
braiding processes among topological excitations, which leads to very exotic links formed
by closed spacetime trajectories of particles, loops, and membranes. For each braiding pro-
cess, we construct gauge-invariant Wilson operators and calculate the associated braiding
statistical phases. As a result, we obtain expressions of link invariants all of which have
manifest geometric interpretation. Following Wen’s definition, the boundary theory of a
topological order exhibits gravitational anomaly. We expect that the characterization and
classification of 5D topological orders in this paper encode information of 4D gravitational
anomaly. Further consideration, e.g., putting TQFTs on 5D manifolds with boundaries, is
left to future work.
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1 Introduction

As the most notable examples of beyond-symmetry-breaking orders, topological orders
have attracted a lot of attentions for decades [1–4]. One of most prominent features of the
research in topological orders is joint efforts from inter-disciplinary fields. Triggered by the
condensed matter side, e.g., the fractional quantum Hall effect, topological orders have also
shed light on frontiers of high-energy physics, mathematical physics, and quantum infor-
mation science [5–9]. In condensed matter physics, topological orders are gapped phases
of matter and lack of any local order parameters that characterize symmetry-breaking
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patterns, which calls for a new revolution on the traditional solid-state physics and sta-
tistical physics of phases and phase transitions. The low-energy effective field theories
of topologically ordered phases of matter are usually topological quantum field theories
(TQFTs) [10, 11]. The 2D boundary of 3D topological orders is governed by conformal
field theory (CFT) [12] and gravitational anomaly in a more general sense [13, 14].1 The
algebraic theory of topological orders in 3D belongs to a subclass of tensor category [15],
which play a very fundamental role similar to group theory in symmetry-breaking orders.
As a generalization of fermionic and bosonic statistics, anyonic statistics in 3D turns out to
be described by the mathematics of braid group, which was previously discovered through
the path-integral of indistinguishable particles [16]. The field of topological orders has
also borrowed many exciting ideas from quantum information science, which leads to rapid
developments we have been witnesses to, such as the long-range entanglement nature of
topological orders and stabilizer codes as exactly solvable lattice models that admit topo-
logical orders [17–20].

Topological excitations are a central concept of topological orders. Above the topologi-
cally ordered ground states, topological excitations look very odd and behave like fraction-
alized degrees of freedom. For example, anyons, a kind of exotic particles in 3D world, carry
fractionalized electron charge and fractionalized statistics, which can be regarded as a con-
sequence of electron fractionalization in the fractional quantum Hall systems. In addition
to point-like excitations, spatially extended excitations, e.g., string-like loop excitations and
two-dimensional closed membrane excitations have been constructed in topological orders
of 4D and higher dimensions. Their exotic entanglement, symmetry enrichment, braiding
statistics, TQFTs, and higher-category theory have been studied intensively [21–46]. Re-
cently, the so-called “fracton physics” of spatially extended excitations is also discussed,
where both mobility and deformability of spatially extended excitations are restricted either
partially or completely [47–49].

Braiding statistics among topological excitations is served as a topological order pa-
rameter to classify and characterize topological orders [2]. In 3D, braiding statistics among
anyons is known to form S and T matrices. In 4D, particles cannot be anyonic but the pres-
ence of loop excitations makes braiding statistics even more bizarre. First, we can consider
a discrete gauge group G =

∏
i ZNi . All particles carry and thus are labeled by periodic

gauge charges. Likewise, all loops carry and thus are labeled by periodic gauge fluxes.
Then, braiding statistics can be particle-loop braiding [50–55], multi-loop braiding [25],
and particle-loop-loop braiding (i.e., Borromean-Rings braiding) [23]. Recently, ref. [46]
exhausted all possible combinations of braiding processes in order to obtain a complete list
of topological orders in 4D. The basic guiding principle there is to find TQFTs that have
well-defined gauge transformations. All TQFTs for describing these braiding processes
have structures of a multi-component BF term [56] in the presence of some twists. The
BF term in 4D has a form of BdA where B and A are respectively 2- and 1-form gauge
fields. Twists consist of AAdA, AAAA [42], and AAB [23].

1Important convention: in this paper, when we mention 2D, 3D, etc., we refer to the dimension of
spacetime. If the 3-dimensional space, instead of spacetime, is considered, we would emphasize it as 3D
space, etc.
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Although topological orders in 4D and 3D are already interesting and directly relevant
to experimentally realizable systems of condensed matter physics, in this paper, we move
forward to investigate topological orders and TQFTs in 5D, which turns out to exhibit
highly unexplored features of both physics and mathematics. Firstly, one of the most
attractive features in 5D topological orders is the existence of membrane excitations, which
are geometrically two-dimensional compact manifolds and form three-dimensional world-
volumes. Membrane excitations can participate in nontrivial braiding processes that are
expected to go beyond braidings in 3D and 4D. Secondly, understanding 5D topological
orders is also useful for understanding gravitational anomalies in 4D according to Wen’s
definition [13, 14]. In general, the boundary of a topologically ordered state on an open
manifold has gravitational anomaly, which strictly forbids the consistent existence of the
boundary theory alone by removing the bulk topological ordered state. This fact is true
and robust even though all global symmetries are broken. Therefore, we are allowed to
investigate gravitational anomalies in 4D by means of topological orders in 5D. Thirdly,
when gauge group is still G =

∏n
i=1 ZNi , TQFTs in 5D may contain two types of BF

terms, i.e., CdA and B̃dB, where C is 3-form, B and B̃ are two different 2-form, A is
1-form. Therefore, for each ZNi subgroup, there are two choices for assignment of gauge
charges and corresponding BF terms. In such a mixed BF theory, if we further add twisted
terms (i.e., twists), e.g., AAAAA, AAAdA, AdAdA, AAC, AAAB, ABB, BAdA, AAdB,
the resulting gauge theories are expected to be very complex and host exotic topological
orders. Given BF terms, the additional twists are not always compatible with each other,
as some of combinations of twists unavoidably violate gauge invariance of either usual type
or large type. This phenomenon is similar to but much more intricate than that in 4D
studied in ref. [46] due to the presence of two types of BF terms.

In this paper, for understanding low energy physics of 5D topological orders, we con-
struct gauge-invariant TQFT actions and define gauge transformations for all gauge fields.
More specifically, TQFT actions consist of two distinct types of BF terms with twisted
topological terms, dubbed BF theories. By means of gauge transformations, we obtain the
quantization and periods of the coefficients of all topological terms, which leads to TQFT
classification. Some of TQFTs are beyond Dijkgraaf-Witten cohomological classification
H5 (G,R/Z). Furthermore, we construct gauge-invariant observables (generalized Wilson
operators) of TQFT actions. In 5D topological orders, a braiding process results in a
nontrivial link formed by the closed world-lines of particles, world-sheets of loops, and/or
world-volumes of membranes. It is natural to expect a linking number or link invariant
in 5D to characterize such a braiding process. For our 5D BF theories, we relate the
expectation value of a Wilson operator to counting intersections of sub-manifolds in 5D. It
should be noted that the link invariants are obtained from our physical theory via the prin-
ciple of gauge invariance. In this sense, our physical theory provides an alternative route
to understand link theory of higher-dimensional compact manifolds. The latter manifolds
are physically realized as closed spacetime trajectories of topological excitations in our 5D
condensed matter systems.

This paper is organized as follows. In section 2, we define topological excitations in
the hydrodynamical approach, and then introduce two types of BF terms. We also add
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twisted terms to BF terms and study the resulting TQFT. Typically, we calculate the
expectation values of Wilson operators and reveal their geometric interpretation. Next, in
section 3, we exhaust all possible TQFTs that are gauge invariant such that all braiding
processes encoded in a given TQFT are mutually compatible. Classification of these TQFTs
is discussed for different gauge groups, collected in table 1 (ZN1 , ZN1×ZN2 , and

∏3
i=1 ZNi).

For G =
∏n
i=1 ZNi with n ≥ 4, details are presented in section 3.4. Section 4 is devoted to

a conclusion and outlook. Some technical details are collected in appendices.

2 Topological excitations and braiding statistics in 5-dimensional topo-
logical orders

Besides the robust ground state degeneracy, topological excitations and their braiding
statistics also serve as part of the definition of topological orders. In section 2.1, we
intuitively explain what topological excitations in 5D look like and how to understand
the braiding processes among them after reviewing the cases in 3D and 4D. Then, in
section 2.2, we introduce two types of BF terms that describe braiding processes of two
topological excitations. Last, as shown in section 2.3 and 2.4, by adding a twisted term to
BF terms, we construct TQFT actions that describe braiding processes involving multiple
topological excitations. Especially, for each braiding process, we find a gauge-invariant
observable (generalized Wilson operator) whose vacuum expectation value is expressed by
the intersection of some sub-manifolds in 5D. We find that such gauge-invariant observables
are closely related with linking numbers of spatially extended topological excitations in 5D
topological orders.

2.1 Topological excitations and their braiding processes in 3D, 4D, and 5D
spacetime

It is beneficial for us to review topological excitations and their braiding processes in 3D
and 4D before we move into the 5-dimensional spacetime. Anyon in the fractional quantum
Hall effect (FQHE), a typical 3D topological order, may be the most well-known example
of topological excitations in 3D. The self-statistics of anyons is captured by the phase dif-
ference after exchanging two anyons in the 2D space. If viewed in 3D, the world-lines of two
anyons form a braid during the exchange. Geometrically, anyons are particle excitations,
the only possible excitation in 3D topological orders.2 In 4D topological orders, topological
excitation spectrum is composed by particle excitations and loop excitations [21, 22]. Braid-
ing processes in 4D topological orders can be divided into three classes [46]: particle-loop
braiding [11, 50, 56–59], multi-loop (three or four) braiding [25, 42], and particle-loop-loop
braiding [23]. In particle-loop braiding, a particle excitation moves around a loop excita-
tion such that its spatial trajectory and the loop excitation form a Hopf link. This Hopf
link can also be identified from the intersection of the world-line of the particle and the

2In 3D topological orders, loop excitations are regarded equivalent to particle excitations. More con-
cretely, because a loop excitation is impenetrable in 2D space, it actually behaves like a particle excitation.
Therefore, we do not consider loop excitations in 3D topological orders.
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world-sheet of the loop.3 In multi-loop braiding, three or four loops are linked in a special
manner and their intersecting world-sheets indicate the topological invariant characteriz-
ing such braiding. In particle-loop-loop braiding, one particle moves around two unlinked
loops such that its spatial trajectory and these two loops form Borromean rings [23, 60],
or in general a Brunnian link.

In 5D, besides particles and loops, there is a kind of exotic topological excitations,
dubbed as membranes, which look like closed 2-dimensional surfaces.4 The membrane ex-
citations in 3D space have not been considered because they are impenetrable. However, in
4D space, the interior of a membrane excitation becomes accessible due to the extra dimen-
sion. Therefore, nontrivial braiding processes involving particles, loops and membranes are
possible in 5D.

In a braiding process of 5D topological order, excitations move in 5D spacetime in
a particular manner, resulting in their 1D world-line, 2D world-sheet, and/or 3D world-
volume intersecting in a corresponding fashion. The 5D TQFT can tell us about how
these manifolds intersect in 5D though which is not easy to imagine for us living in 3D.
To visualize braiding processes in 5D topological order, we need to present them in lower
dimensions. For this purpose, we can perform the following procedures. First, noticed
that only the relative motion of excitations matters in a braiding process, we can assume
one of the excitations to be static in 4D space, then we project the world-lines/world-
sheets/world-volumes from 5D spacetime to 4D space. For the static excitation, it is just
fixed in 4D space; for other excitations doing relative motion, their spatial trajectories are
left in 4D space after projection. An intuitive example is the anyon braiding in 3D, shown
in figure 1, in which the world-lines of anyons can be projected to spatial trajectories in
2D plane. Yet, the static excitation and spatial trajectories in 4D space are still strange to
observer in 3D space. Our strategy is to furthermore project these spatial trajectories to
slices of 4D space, i.e., 3D space. As an example, figure 2 shows the projection of spatial
trajectory of particle-loop braiding from 3D space to 2D plane. This example shows how
an observer in 2D space can understand braiding process in 4D spacetime. In summary,
by projecting the general world-lines in 5D spacetime to spatial trajectories in 4D space,
then viewing them in 3D slices, we can observe the braiding processes in 5D topological
order. This method will be explained by several pictures when discussing braiding and 5D
TQFT in the following main text.

2.2 Two types of BF terms

As the effective theory of topological order, TQFT describes braiding processes by re-
vealing how the world-lines (in general meaning) of excitations intersect in spacetime. A
braiding process is nontrivial only if the world-lines of excitations form a link that is ho-
motopic invariant. By constructing gauge-invariant observables, we know how to count the
intersections of world-lines to obtain a result that is invariant under homotopic mapping

3For simplicity, when we mention particle, loop, or membrane, we refer to topological excitations in
topological orders.

4We only consider membrane excitation that has a shape of a 2-sphere in this paper. Membrane excita-
tions with other shapes, e.g., 2-torus, may have more fascinating properties.
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Figure 1. Braiding of two particles (e.g., anyons) in 3D spacetime, world-lines of particles and
their projection in 2D space. (a) At t = 0, two pairs of particles (solid circles) and antiparticle
(empty circles) are created. Two particles (a and b) move in 3D spacetime such that their world-
lines (solid lines) cross each other. At t = 1, two particles meets their own antiparticles (ā and b̄).
The a-ā and b-b̄ pairs are annihilated. Since the world-line of an antiparticle (dash line) can be
understood as that of a particle with a reverse direction, the particle-antiparticle pair’s world-lines
can be viewed as a single closed one of the particle. For a braiding process of two particles in
3D, the two closed world-lines are linked. (b) One of the two particles (e.g., a) can be assumed
static in the xy-plane. By slightly modifying the world-line of b and keeping the two closed world-
lines linked, the braiding process contributes the same phase shift. (c) The world-lines of a and b
illustrated in (b) are projected to the xy-plane. After that, b’s world-line is appeared as a closed
spatial trajectory encircling the static particle a. In FQHE, an anyon moving around another one
is exactly the braiding of them.

of world-lines. In this and following sections, we use TQFT actions and gauge-invariant
observables to study braiding processes in 5D topological order.

The study of BF term has a long history [56]. Discovered from quantum gravity and
high energy physics, now BF theories have been introduced into frontiers of condensed
matter physics. In an n-dimensional spacetime manifold M , the BF term is the wedge
product of a p-form B and an (n− p)-form F = dA where A is an (n− p− 1)-form:
B ∧ dA . BF term in 3D and 4D reads ÃdA and BdA respectively, where Ã and A are
1-form, B is 2-form. Theories with BF terms have been applied to many different physical
systems [26, 31, 32, 43, 50, 59, 61, 62]. It is easy to verify that ÃdA (BdA) is the only BF
term in 3D (4D). However, in 5D, by taking p = 2 or p = 3, there are two types of BF
terms, i.e., CdA and B̃dB which are respectively called type-I and type-II in this paper.
Here, C is a 3-form, B̃ and B are two different 2-form’s. These two types of BF terms in
5D are the cornerstone of this paper. With the action S ∼

∫
M BdA , one can calculate the

linking number of a p and (n− p− 1)-dimensional sub-manifolds [42, 56]. In this section,
we study the action with type-I and type-II BF term in details, revealing the connection
between braiding processes in 5D topological orders and BF terms.

We first look at the action with type-I BF term:

S =
∫
N1
2π C

1dA1, (2.1)

which is invariant up to boundary term under gauge transformations

A1 → A1 + dχ1, C1 → C1 + dT 1, (2.2)
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Figure 2. A particle-loop braiding in 3D space and its projection on 2D planes. (a) Particle-loop
braiding is one important braiding process in 4D topological order. In this braiding process, if we
assume the loop m to be static, what we see is that the particle e encircles the loop such that its
spatial trajectory and loop m form a Hopf link. (b) For an observer living on the xy-plane with
z = 0, the particle-loop braiding in 3D appears as a particle e encircling a flux that penetrates
this plane. (c) The same particle-loop braiding in 3D space as that in (a). The particle’s positions
at different moments are labeled. (d)-(e) Snapshots of particle-loop braiding observed in xz-plane
with y = 0 at different moments. In this plane, the loop excitation appears as its complete form
while the spatial trajectory of the particle is not continuous any longer. An observer living on this
plane can only see the particle at t = 0, 2, 4. At t = 1 or t = 3, this particle is located at xz-planes
with different y-coordinates. To this planar observer’s knowledge, a particle cannot cross a loop
excitation to reach its interior area. What illustrated in (d)-(h) happens due to an extra dimension
(the particle is able to move in y-direction) that cannot be seen by this observer. On the other
hand, an observer in 2D plane can detect a 3rd dimension by such an “anomalous” phenomenon.
This inspire us that we can learn about braiding process in 4D space (5D spacetime) by observing
it in different 3D spaces with a fixed 4th coordinate.

where 0-form χ1 and 2-form T 1 are U (1) gauge parameters with
∮
dχ1 ∈ 2πZ and

∮
dT 1 ∈

2πZ. We consider the following gauge invariant observable (Wilson operator)

W (ω1, γ1) = exp
(

im1

∫
ω1
C1
)

exp
(

ie1

∫
γ1
A1
)

= exp
[
im1

∫
C1 ∧ δ⊥ (ω1) + ie1

∫
A1 ∧ δ⊥ (γ1)

]
, (2.3)

where ω1 is a closed 3D volume and γ1 is a closed 1D curve; charges m1, e1 ∈ Z.5 The
expectation value is given by 〈W (ω1, γ1)〉 = 1

Z
∫

DADCW (ω1, γ1) exp (iS) where the
5Subscripts (1, 2, · · · , or general i, j) are used to distinguish manifolds that labeled by the same Greek

letter. In this paper, γi labels different 1D closed curves; σi and σ̃i label different 2D closed surfaces; ωi
stands for different 3D closed volumes. Σi, Ωi, and Ξi are the Seifert (hyper)surfaces: ∂Σi = γi, ∂Ωi = σi,
and ∂Ξi = ωi. µi|X , νi|X , and λi|X respectively stand for general 1D open curve, 2D open surface, and 3D
open volume on manifold X.
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partition function is defined as Z =
∫

DCDA exp (iS). By integrating out C1 we get
dA1 = −2πm1

N1
δ⊥ (ω1) which can be solved by A1 = −2πm1

N1
δ⊥ (Ξ1) with ∂Ξ1 = ω1, i.e.,

Ξ1 is a Seifert hypersurface bounded by ω1. δ⊥ (ω1) is the 2-form valued delta function
distribution supported on ω1 and δ⊥ (Ξ1) is similarly defined. Plugging the solution back
to 〈W (ω1, γ1)〉, we get

〈W (ω1, γ1)〉 = exp
[
− i2πe1m1

N1

∫
δ⊥ (Ξ1) ∧ δ⊥ (γ1)

]
= exp

[
− i2πe1m1

N1
# (Ξ1 ∩ γ1)

]
, (2.4)

i.e., 〈W (ω1, γ1)〉 is determined by counting the intersection of Ξ1 and γ1. In 3D, the linking
number of two closed curves γi and γj is defined by the intersection number # (Σi ∩ γj)
where Σi is a Seifert surface of γi. Analogous to this, # (Ξ1 ∩ γ1) defines the linking num-
ber of γ1 and ω1 (whose Seifert hypersurface is Ξ1) in 5D. In section 2.1, we mention that
5D TQFT describes braiding process via intersection pattern of world-lines of excitations
in 5D. The action (2.1) and 〈W (ω1, γ1)〉 describe the braiding process of a particle and
a membrane once we interpret γ1 (ω1) as the closed world-line (world-volume) of parti-
cle (membrane). Figure 3 illustrates this particle-membrane braiding by projecting it in
different 3D space.

Next we focus on the action that consists of a type-II BF term:

S =
∫
N1
2π B̃

1dB1 (2.5)

which is invariant up to boundary terms under

B1 → B1 + dV 1, B̃1 → B̃1 + dṼ 1. (2.6)

Here, 1-form V 1 and 1-form Ṽ 1 are U (1) gauge parameters with
∮
dV 1 ∈ 2πZ and

∮
dṼ 1 ∈

2πZ. We point out that B̃1 and B1 are two independent 2-form gauge field variables. The
corresponding gauge-invariant observable is

W (σ̃1, σ1) = exp
(

im1

∫
σ̃1
B̃1
)

exp
(

ie1

∫
σ1
B1
)
, (2.7)

where σ̃1 and σ1 are two closed 2D surfaces; charges m1, e1 ∈ Z. Similar to the calculation
of 〈W (ω1, γ1)〉 above, we get the solution B1 = −2πm1

N1
δ⊥
(
Ω̃1
)
with ∂Ω̃1 = σ̃1, i.e., Ω̃1 is

a Seifert hypersurface bounded by σ̃1. Plugging this solution back, we obtain

〈W (σ̃1, σ1)〉 = exp
[
− i2πe1m1

N1

∫
δ⊥
(
Ω̃1
)
∧ δ⊥ (σ1)

]
= exp

[
− i2πe1m1

N1
#
(
Ω̃1 ∩ σ1

)]
, (2.8)

which indicates that 〈W (σ̃1, σ1)〉 is determined by counting the intersection of Ω̃1 and σ1.
Similarly, σ̃1 and σ1 can be viewed as closed world-sheets of two loop excitations whose
linking number is given by #

(
Ω̃1 ∩ σ1

)
. Therefore, the type-II BF term B̃1dB1 describes

to the braiding process of two loops and the braiding statistical phase can be extracted from
〈W (σ̃1, σ1)〉. Figure 4 provides a diagrammatic representation of this loop-loop braiding
by projecting the world-sheets to spatial trajectories of loops from 5D to 4D space.
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Figure 3. Observing the particle-membrane braiding described by CdA term in 3D space. (a) A
membrane (red) with the shape of a 2-sphere in xyz-space with w = 0 and a particle (blue) are
illustrated. This membrane is assumed to be static in space. (b) If observed in xyw-space with
z = 0, this membrane appears as a “loop”. (c) In xyw-space with z = 0, the particle-membrane
braiding in 4D space looks like a particle-loop braiding. Starting at t = 0, the particle moves
in the xyw-space with z = 0 and returns to its initial position at t = 4. The particle’s spatial
trajectory forms a closed 1D curve that is linked with the “loop” (projection of membrane in this
3D space). The w-coordinate of particle, wp, varies in the following way: at t = 0, wp = 0; for
0 < t < 2, wp > 0; at t = 2, wp = 0 again; for 2 < t < 4, wp < 0; finally, the particle returns
to its initial position thus wp = 0 at t = 4. (d)–(h) Snapshots of particle-membrane braiding at
different moments in xyz-space with w = 0. At t = 0, the particle is located outside the membrane.
At t = 2, the particle appears inside the membrane. At t = 4, this particle returns to its starting
position; in xyz-space with 0, it appears outside the membrane again. For other moments, the
particle is located in xyz-space with w 6= 0. In 4D space, Ξ1 in eq. (2.4) is projected to a 3D Seifert
hypersurface and γ1 in that appears as a closed 1D spatial trajectory. In xyw-space with w = 0
shown in (c), the aforementioned 3D Seifert hypersurface appears as a 2D one whose boundary is
exactly the “loop”. The spatial trajectory and the 2D Seifert surface intersect at one point at t = 2
implying that |# (Ξ1 ∩ γ1)| = 1 with a sign determined by orientation. In xyz-space with w = 0
shown in (d)-(h), the spatial trajectory is the union of particle’s positions at different moments
which intersects with the 3D Seifert hypersurface at t = 2. This also indicates |# (Ξ1 ∩ γ1)| = 1.

2.3 Braidings in type-I BF theory with a twist

So far we have investigated TQFT actions that consist of single BF term. The coefficient
N1
2π of the BF term encodes the ZN1 gauge group. If a

∏n
i=1 ZNi topological order is con-

sidered, i.e., the gauge group is G =
∏n
i=1 ZNi , there are twisted terms allowed in TQFT

actions besides BF terms. As examples, we present some TQFT actions that consist of
BF terms and one twisted term in 4D

∏n
i=1 ZNi topological orders [23, 32, 42, 44, 63, 64].

With twisted term AAdA or AAAA, TQFT actions S =
∫ ∑

i
Ni
2πB

idAi + qAiAjdAk

and S =
∫ ∑

i
Ni
2πB

idAi + qAiAjAkAl describe multi-loop braidings (three-loop and four-
loop, respectively; q is the proper coefficient). With twisted term AAB, the action
S =

∫ ∑
i
Ni
2πB

idAi + qAiAjBk describes the particle-loop-loop braiding. It is natural
to expect that TQFT actions of BF terms and twisted terms in 5D are related to braiding
processes of topological excitations. We divide the TQFT actions into 3 classes according
to the type of their BF terms, namely type-I BF theory, type-II BF theory, and mixed
BF theory. In the remaining part of this section, we consider BF theory with only one
twisted term. Consistent combination of all twisted terms will be explored in section 3.
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Figure 4. Diagrammatic representation of loop-loop braiding described by B̃dB term. (a) Loop-
loop braiding process viewed in xyz-space with different w- and t-coordinates. Loop α (blue) lives
on xy-plane with zα = 0 and wα = −1 at t = 0. Loop β (red) lives on yz-plane with xβ = 0 and
wβ = 0. Loop β is assumed to be static in space. When t = 0, loop α can only be observed in
xyz-space with w = −1 and so does loop β in xyz-space with w = 0; as for xyz-space with w = 1,
neither of two loops could be observed. Starting at t = 0, loop α moves in w-direction such that
at t = 1 wα = 0 and loop α and β are linked in xyz-space with w = 0. Next, loop α continues
to move such that wα = 1 at t = 2. At t = 2, loop α and β are not linked obviously. Then loop
α returns to its initial position in such a way that it would be linked with loop β again. During
this process, these two loops never intersect with each other since no points of them share a same
4D spatial coordinate. (b) Part of the spatial trajectory of loop α (indicated by blue dash lines)
observed in xyw-space with z = 0. In this 3D space, loop β appears as two points (red solid circles).
In 4D space, Ω̃1 in eq. (2.8) is projected to a 2D Seifert surface and σ1 becomes a 2D closed spatial
trajectory. A further projection to xyw-space with z = 0 makes this 2D Seifert surface appear as a
1D one (the green segment) whose boundary is two points (red solid circles, exactly the projection
of loop β in this 3D space). This 1D Seifert surface intersect with loop α’s spatial trajectory at
one point, which implies

∣∣∣#(Ω̃1 ∩ σ1

)∣∣∣ = 1 with a sign determined by orientation. (c) Viewed
in wyz-space with x = 0, loop α appears as two points (blue solid circles) and part of its spatial
trajectory is shown as the blue dash lines. This spatial trajectory intersect with loop β’s 2D Seifert
surface at one point, indicating that

∣∣∣#(Ω̃1 ∩ σ1

)∣∣∣ = 1 as well.

We start with type-I BF terms with a twisted term formed by A and C, i.e., AAC,
AdAdA, AAAdA, and AAAAA.

AAC twisted topological term. By considering three CidAi terms, we can introduce
the twisted term AiAjCk. The corresponding TQFT action is

S = SBF + SAAC =
∫ 3∑

i=1

Ni

2πC
idAi + qA1A2C3, (2.9)
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where q is a quantized and periodic coefficient, q = pN1N2N3
(2π)2N123

, p ∈ ZN123 , N123 is the
greatest common divisor of N1, N2 and N3. The property of coefficient q results from
two requirements on the TQFT action: large gauge invariance and flux identification. In
appendix A we derive the quantization and periodicity of AAC and other twisted terms.
It should be pointed out that the indices i, j, and k in AiAjCk have to be mutually
different. For example, the A1A2C2 term is prohibited, because either A2 or C2 has to
be the Lagrange multiplier, which means that they cannot simultaneously appear in the
twisted term. A more rigorous explanation is that the an action with A1A2C2 term would
no more be gauge-invariant, which is similar to the 4D case S ∼

∫ ∑2
i=1B

idAi + A1A2B2

studied in the section IV A of ref. [46].
This action (2.9) is invariant under gauge transformations:

A1 → A1 + dχ1, C1 → C1 + dT 1 − 2πq
N1

(
χ2C3 −A2T 3 + χ2dT 3

)
,

A2 → A2 + dχ2, C2 → C2 + dT 2 + 2πq
N2

(
χ1C3 −A1T 3 + χ1dT 3

)
,

C3 → C3 + dT 3, A3 → A3 + dχ3 − 2πq
N3

[(
χ1A2 + 1

2χ
1dχ2

)
−
(
χ2A1 + 1

2χ
2dχ1

)]
,

(2.10)

where χi and T i are 0-form and 2-form gauge parameters, respectively. The gauge-invariant
observable is

W = exp
{

i
∫
ω1
e1

[
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2

)]
+ i
∫
ω2
e2

[
C2 + 1

2
2πq
N2

(
d−1C3A1 − d−1A1C3

)]
+ i

∫
γ3
e3

[
A3 + 1

2
2πq
N3

(
d−1A1A2 − d−1A2A1

)]}
(2.11)

with e1, e2, and e3 being integers. The derivation of gauge transformation (2.10) and
verification of gauge-invariance of (2.11) is detailed in appendix B. The operation d−1 is
defined as d−1C3|ωi ≡

∫
λ3|ωi

C3 where λ3|ωi is an open 3D volume on ωi with i = 1, 2. As
a 2-form, d−1C3 is well-defined on ωi if and only if C3 is exact on ωi, i.e.,

∫
ωi
C3 = 0.

The action of d−1 on Ai is defined as d−1Ai|ωj ≡
∫
µi|ωj

Ai and d−1Ai|γ3 ≡
∫
µi|γ3

Ai, where
µi is an open curve on ωj or γ3. As a 0-form, d−1Ai is well-defined on ωj or γ3 if and
only if the integral of Ai over any 1-dimensional closed sub-manifolds of ωj or γ3 is zero.
Since A1, A2, and C3 are required to be exact on specific manifolds, it is straightforward
that dA1, dA2, and dC3 are zero on corresponding manifolds. This in fact guarantees the
gauge invariance of (2.11). From a geometric perspective, the exactness condition implies
restrictions that some sub-manifolds are not linked. In other words, the gauge invariance of
observable is associated with the geometric interpretation of braiding process. The gauge
fields and their fluxes are defined on specific sub-manifolds. For example, consider a gauge
field A whose flux dA is defined on a closed 1-manifold γ1: dA = δ⊥ (γ1). Say, A is exact
on another closed 1-manifold γ2, this means that

∫
Σ dA =

∫
γ2

A = 0 with ∂Σ = γ2. Since∫
Σ dA =

∫
δ⊥ (Σ)∧ δ⊥ (γ1) = # (Σ ∩ γ1), the linking number of γ1 and γ2 is 0 due to A is
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exact on γ2. On the other hand, the gauge invariance of W ensures that 〈W〉 is invariant
under homotopic mapping of world-lines of excitations. However, sometimes 〈W〉 does not
clearly show how world-lines are linked . The exactness condition, required to meet gauge
invariance, will give some hints since they reveal which sub-manifolds are not linked.

The expectation value is given by 〈W〉 = 1
Z
∫

DADCW exp (iS). Integrating out C1,
C2, and A3 implies A1,2 = −2πe1,2

N1,2
δ⊥ (Ξ1,2) and C3 = −2πe3

N3
δ⊥ (Σ3) with ∂Ξ1,2 = ω1,2 and

∂Σ3 = γ3. Here, ω stands for 3D closed volume, γ stands for 1D closed curve, etc, as
explained in footnote 5. Putting these solutions back in 〈W〉, we have∫

qA1A2C3 =− (2π)3 qe1e2e3
N1N2N3

∫
δ⊥ (Ξ1) ∧ δ⊥ (Ξ2) δ⊥ (Σ3) ,

=− pN1N2N3

(2π)2N123

(2π)3 e1e2e3
N1N2N3

# (Ξ1 ∩ Ξ2 ∩ Σ3)

=− 2πpe1e2e3
N123

# (Ξ1 ∩ Ξ2 ∩ Σ3) ; (2.12)

∫
ω1
e1

[
q

2
(
d−1A2C3 − d−1C3A2

)]
= πpe1e2e3

N123

[∫
δ⊥ (ω1) ∧ δ⊥ (Σ3) ∧ d−1δ⊥ (Ξ2) |ω1

−
∫
δ⊥ (ω1) ∧ δ⊥ (Ξ2) ∧ d−1δ⊥ (Σ3) |ω1

]
. (2.13)

By definition, d−1δ⊥ (Ξ2) |ω1 =
∫
µ2|ω1

δ⊥ (Ξ2) =
∫
δ⊥ (µ2|ω1) ∧ δ⊥ (Ξ2), etc. Thus

∫
ω1
e1

[
q

2
(
d−1A2C3 − d−1C3A2

)]
= πpe1e2e3

N123

[∫
δ⊥ (ω1) ∧ δ⊥ (Σ3) ∧

∫
δ⊥ (µ2|ω1) ∧ δ⊥ (Ξ2)

−
∫
δ⊥ (ω1) ∧ δ⊥ (Ξ2) ∧

∫
δ⊥ (λ3|ω1) ∧ δ⊥ (Σ3)

]
= πpe1e2e3

N123
[# (ω1 ∩ Σ3 ∩ µ2|ω1 ∩ Ξ2)

− # (ω1 ∩ Ξ2 ∩ λ3|ω1 ∩ Σ3)] . (2.14)

In a similar manner, we can calculate the remaining parts of 〈W〉 and end up with

〈W〉 = exp
{
− i2πpe1e2e3

N123
# (Ξ1 ∩ Ξ2 ∩ Σ3)

+ iπpe1e2e3
N123

[# (ω1 ∩ Σ3 ∩ µ2|ω1 ∩ Ξ2)−# (ω1 ∩ Ξ2 ∩ λ3|ω1 ∩ Σ3)]

+ iπpe1e2e3
N123

[# (ω2 ∩ Ξ1 ∩ λ3|ω2 ∩ Σ3)−# (ω2 ∩ Σ3 ∩ µ1|ω2 ∩ Ξ1)]

+ iπpe1e2e3
N123

[# (γ3 ∩ Ξ2 ∩ µ1|γ3 ∩ Ξ1)−# (γ3 ∩ Ξ1 ∩ µ2|γ3 ∩ Ξ2)]
}
. (2.15)

Geometrically, 〈W〉 is determined by counting the intersections of several sub-manifolds
in 5D. According to their dimension, we can interpret their relations with excitations.
The 1D γi can be understood as the closed world-line of particle. The 3D ωi can be
regarded as the closed world-volume of membrane. Σi and Ξi are Seifert (hyper)surfaces:
∂Σi = γi and ∂Ξi = ωi. We can see that all these sub-manifolds are related to one
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Figure 5. Particle-membrane-membrane braiding described by AAC term. (a) Two membranes
and one particle viewed in xyz-space with w = 0. These two membranes are assumed to be static
in space. (b) These two membrane excitations appears as two loops in xyw-space with z = 0. (c) If
viewed in xyw-space with z = 0, the spatial trajectory of particle and two loops (projections of two
membranes) form Borromean rings. In Borromean rings, any two of the two loops and particle’s
trajectory are not linked. This means that the particle’s spatial trajectory is not linked with any
of two membranes and neither the two membranes, which matches the exactness conditions that
imply specific sub-manifolds are not linked. This particle-membrane-membrane braiding can be
considered as the 5D analog of particle-loop-loop braiding described by AAB term in 4D [23].

particle and two membranes. In this sense, we believe that the AAC term along with
its gauge-invariant observable (2.11) describe the braiding process of one particle and two
membranes. Exploited with the exactness conditions, figure 5 illustrates this particle-
membrane-membrane braiding in 3D space.

In addition, the expectation value (2.15) is expressed as the sum of several terms:
〈W〉 = exp

(
− i2πpe1e2e3

N123
L
)
with

L =# (Ξ1 ∩ Ξ2 ∩ Σ3)

− 1
2 [# (ω1 ∩ Σ3 ∩ µ2|ω1 ∩ Ξ2)−# (ω1 ∩ Ξ2 ∩ λ3|ω1 ∩ Σ3)]

− 1
2 [# (ω2 ∩ Ξ1 ∩ λ3|ω2 ∩ Σ3)−# (ω2 ∩ Σ3 ∩ µ1|ω2 ∩ Ξ1)]

− 1
2 [# (γ3 ∩ Ξ2 ∩ µ1|γ3 ∩ Ξ1)−# (γ3 ∩ Ξ1 ∩ µ2|γ3 ∩ Ξ2)] . (2.16)

# (Ξ1 ∩ Ξ2 ∩ Σ3) counts the signed intersections of Ξ1, Ξ2 and Σ3 and other terms have
similar geometric meanings. Each term in L (2.16) is not homotopic invariant because it
depends on the choices of Seifert (hyper)surfaces. However, L as the sum of these terms,
is homotopic invariant due to the gauge invariance of 〈W〉. We see that a mathematical
invariant is obtained via physical gauge-invariant field theory. The formula of L is similar
to the equation (9) of ref. [23] which computes the Milnor’s triple linking number from a
4D TQFT. In fact, the Milnor’s triple linking number of 3 closed curves is also expressed
as the sum of several homotopic-variant terms [65, 66]. Analogously, eq. (2.16) can be
regarded as the “triple linking number” of closed world-lines (in general meaning) of two
membranes and one particle in 5D. In the following main text, we will see more observables
whose expectation values are expressed in a similar manner. It is interesting to reveal the
mathematical structure behind them.
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AdAdA twisted topological term. Next, we consider the AdAdA term, i.e., the Chern-
Simons term in 5D.6 For a gauge group G =

∏n
i=1 ZNi , the type-I BF theory with AdAdA

term has the form of

S = SBF + SAdAdA =
∫ n∑

i=1

Ni

2πC
idAi + qAidAjdAk (2.17)

with gauge transformations Ai → Ai + dχi and Ci → Ci + dT i. The indices of AidAjdAk,
same or different, take values from {1, 2, · · · , n}. The simplest type-I BF theory with
AdAdA term is

S =
∫
N1
2π C

1dA1 + qA1dA1dA1 (2.18)

with q = p

(2π)2 , p ∈ ZN1 . This action (2.18) describes a ZN1 5D topological order. The
gauge-invariant observable for (2.18) is

W = exp
(

ie1

∫
ω1
C1
)

= exp
[
ie1

∫
C1 ∧ δ⊥ (ω1)

]
(2.19)

with the expectation value

〈W〉 = exp
[
− i2πpe1e1e1

N1N1N1
# (Ξ1 ∩ ω1 ∩ ω1)

]
. (2.20)

If the gauge group is G = ZN1 × ZN2 , the AdAdA twisted term can also be A1dA2dA1

or A2dA1dA2. They are the only two linearly independent terms because d
(
A1A2dA1) =

dA1A2dA1 − A1dA2dA1 and d
(
A1A2dA2) = dA1A2dA2 − A1dA2dA2. The corresponding

type-I BF theory and gauge-invariant observable is

S =
∫ 2∑

i=1

Ni

2πC
idAi + qA1dA2dA1, (2.21)

W = exp
(

i
2∑
i=1

ei

∫
ωi

Ci
)

= exp
[
i

2∑
i=1

ei

∫
Ci ∧ δ⊥ (ωi)

]
, (2.22)

〈W〉 = exp
[
− i2πpe1e2e1

N1N2N1
# (Ξ1 ∩ ω2 ∩ ω1)

]
; (2.23)

or

S′ =
∫ 2∑

i=1

Ni

2πC
idAi + q′A2dA1dA2, (2.24)

W ′ = exp
(

i
2∑
i=1

ei

∫
ωi

Ci
)

= exp
[
i

2∑
i=1

ei

∫
Ci ∧ δ⊥ (ωi)

]
, (2.25)

〈
W ′
〉

= exp
[
− i2πpe2e1e2

N2N1N2
# (Ξ2 ∩ ω1 ∩ ω2)

]
. (2.26)

The coefficients of twisted terms are q = p

(2π)2 , p ∈ ZN12 and q′ = p′

(2π)2 , p′ ∈ ZN12 ; ZN12

is the greatest common divisor of N1 and N2. The general case is that G =
∏3
i=1 ZNi

6When BF term is not included, the theory is studied in ref. [67].
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in which the twisted term is A1dA2dA3. In fact, A1dA2dA3, A2dA3dA1, and A3dA1dA2

are identical up to a boundary term because d
(
A1A2dA3) = A2dA3dA1 − A1dA2dA3 and

d
(
A1dA2A3) = A3dA1dA2 −A1dA2dA3. The type-I BF theory with A1dA2dA3 is

S =
∫ 3∑

i=1

Ni

2πC
idAi + qA1dA2dA3 (2.27)

with q = p

(2π)2 , p ∈ ZN123 . For this type-I BF theory (2.27), the gauge-invariant observ-
able is

W = exp
(

i
3∑
i=1

ei

∫
ωi

Ci
)

= exp
[
i

3∑
i=1

ei

∫
Ci ∧ δ⊥ (ωi)

]
, (2.28)

and its expectation value is

〈W〉 = exp
[
− i2πpe1e2e3

N1N2N3
# (Ξ1 ∩ ω2 ∩ ω3)

]
. (2.29)

We conclude that the AidAjdAk twisted term describes the braiding process of three mem-
branes, in which membranes move in 5D leaving their intersecting world-volumes described
by # (Ξi ∩ ωj ∩ ωk). For the action S ∼

∫ ∑
BdA + AidAjdAk, the expectation value of

gauge-invariant observable takes the form of 〈W〉 ∼ exp [# (Ξi ∩ ωj ∩ ωk)]. All these three
sub-manifolds are related with membranes: ωj and ωk can be regarded as the closed world-
volumes of membrane i and j; Ξi is the Seifert hypersurface of ωi, the closed world-volume
of membrane i. (Ξi ∩ ωj ∩ ωk) can be seen as the intersection of three membranes’ world-
volumes. Therefore, we believe that the AdAdA term describes the braiding of three
membrane whose phase shift is related to # (Ξi ∩ ωj ∩ ωk).

AAAdA twisted topological term. Then we consider the AAAdA twisted term. Since
A is 1-form, the three A’s in AAAdA have to be different, thus G =

∏n
i=1 ZNi with n ≥ 3

is required. If G =
∏3
i=1 ZNi , the twisted term can be A1A2A3dA1, A1A2A3dA2, or

A1A2A3dA3. Take A1A2A3dA1 as an example, the type-I BF theory with A1A2A3dA1 is

S = SBF + SAAAdA =
∫ 3∑

i=1

Ni

2πC
idAi + qA1A2A3dA1 (2.30)

with q = pN1N2N3
(2π)3N123

, p ∈ ZN123 . The corresponding gauge transformations are

A1 → A1 + dχ1, C1 → C1 + dT 1 − 2πq
N1

(
A1dχ2A3 +A1A2dχ3 +A1dχ2dχ3

)
,

A2 → A2 + dχ2, C2 → C2 + dT 2 + 2πq
N2

(
dχ1A3A1 + dχ1dχ3A1

)
,

A3 → A3 + dχ3, C3 → C3 + dT 3 + 2πq
N3

(
−dχ1A2A1 − dχ1dχ2A1

)
. (2.31)

If G =
∏4
i=1 ZNi , possible AAAdA terms are A1A2A3dA4, A2A3A4dA1, A3A4A1dA2,

and A4A1A2dA3. Since d
(
A1A2A3A4) = dA1A2A3A4 − A1dA2A3A4 + A1A2dA3A4 −

A1A2A3dA4, only three of them are linearly independent. We consider A1A2A3dA4 as
an example and the corresponding type-I BF theory is

S = SBF + SAAAdA =
∫ 4∑

i=1

Ni

2πC
idAi + qA1A2A3dA4 (2.32)
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with q = pN1N2N3
(2π)3N123

, p ∈ ZN1234 , N1234 is the greatest common divisor of N1, N2, N3, and
N4. The gauge transformations are

Ai → Ai + dχi, Ci → Ci + dT i + 2πq
Ni

∑
j,k

εijk4
(
AjχkdA4 − 1

2χ
jdχkdA4

)
. (2.33)

The gauge-invariant observable is

W = exp
{

i
4∑
i=1

∫
ωi

ei

[
Ci + 1

2
2πq
Ni

∑
j,k

εijk4
(
d−1Aj

)
AkdA4

]}
(2.34)

and its expectation value is

〈W〉 = exp
{

i2πpe1e2e3e4
N4N123

# (Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ ω4)

+ iπpe1e2e3e4
N4N123

4∑
i=1

∑
j,k

εijk4# (ωi ∩ Ξk ∩ ω4 ∩ µj |ωi ∩ Ξj)
}
. (2.35)

Similar to the case of AdAdA twisted term, ωi and Ξi can be interpreted as membrane’s
closed world-volume and its Seifert hypersurface. Eq. (2.35) calculates the intersection
of world-volumes of four membranes to give the phase shift. It makes sense to consider
AAAdA term describing the braiding of four membranes.

AAAAA twisted topological term. The last possible twisted term in type-I BF theory
is AAAAA. The corresponding action is

S = SBF + SAAAAA =
∫ 5∑

i=1

Ni

2πC
idAi + qA1A2A3A4A5, (2.36)

where q = pN1N2N3N4N5
(2π)4N12345

, p ∈ ZN12345 , ZN12345 is the greatest common divisor of N1, N2,
N3, N4, and N5. The gauge transformations are

Ai → Ai + dχi,

Ci → Ci + dT i − 2πq
Ni

∑
k<l<m

εijklmχjAkAlAm − 2πq
Ni

∑
j<k,l<m

εijklmχjdχkAlAm

− 2πq
Ni

∑
j<k<l

5∑
m=1

εijklmχjdχkdχlAm − 2πq
Ni

∑
j<k<l<m

εijklmχjdχkdχldχm. (2.37)

The gauge-invariant observable is

W = exp
[
i

5∑
i=1

∫
ωi

ei

(
Ci + 1

4
2πq
Ni

∑
k<l<m

5∑
j=1

εijklmd−1AjAkAlAm
)]

(2.38)

and its expectation value is

〈W〉 = exp
{

i2πp
∏5
i=1 ei

N12345
# (Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ Ξ4 ∩ Ξ5)

+
5∑
i=1

i2πp
∏5
i=1 ei

4N12345

∑
k<l<m

5∑
j=1

εijklm# (ωi ∩ Ξk ∩ Ξl ∩ Ξm ∩ µj |ωi ∩ Ξj)
}
. (2.39)
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As cases discussed above, ωi and Ξi can be treated as membrane’s closed world-volume and
its Seifert hypersurface. Consider a braiding of five membranes, eq. (2.39) exactly gives
the phase shift by counting the intersection of five membranes’ world-volumes.

2.4 Braidings in mixed BF theory with a twist

In a type-II BF theory whose only BF term is B̃dB, there is no twisted term since 2-form
B̃ and B cannot make up a 5-form twisted term. Therefore the only possible type-II BF
theory is S =

∫ ∑n
i=1

Ni
2π B̃

idBi with gauge group G =
∏n
i=1 ZNi . We will come back to this

action in section 3.
Besides type-I or type-II BF theory, we study mixed BF theory with a twist which

consists of two types of BF terms and one twisted term. Possible twisted terms in mixed
BF theory include BBA, BAdA, AAdB, and AAAB.

BAdA twisted topological term. One example of mixed BF theory with BAdA term is

S = SBF + SBAdA =
∫
N1
2π C

1dA1 + N2
2π B̃

2dB2 + qB2A1dA1, (2.40)

where q = pN2N1
(2π)2N12

, p ∈ ZN12 . This mixed BF action is invariant up to boundary terms
under

A1 → A1 + dχ1, C1 → C1 + dT 1 − 2πq
N1

dV 2A1,

B2 → B2 + dV 2, B̃2 → B̃2 + dṼ 2 − 2πq
N2

dχ1A1. (2.41)

The gauge-invariant observable is

W = exp
{

i
[
e1

(∫
ω1
C1 + 2πq

N1

∫
Ξ1
B2dA1

)
+ e2

(∫
σ2
B̃2 − 2πq

N2

∫
Ω2
A1dA1

)]}
, (2.42)

where ∂Ω2 = σ2 and ∂Ξ1 = ω1. The expectation value is

〈W〉 = exp
[
− i2πpe2e1e1

N1N12
# (Ω2 ∩ Ξ1 ∩ ω1)

]
. (2.43)

Other possible BAdA terms include B3A1dA2, B3A2dA1, etc. Notice that d
(
B3A1A2) =

dB3A1A2 + B3dA1A2 − B3A1dA2, only two of them are linearly independent. Thus the
AAdB twisted term can always be expressed by two proper BAdA twisted terms, up to a
boundary term. For now, we consider an example of mixed BF theory with B3A1dA2:

S =
∫ 2∑

i=1

Ni

2πC
idAi + N3

2π B̃
3dB3 + qB3A1dA2 (2.44)

which is gauge-invariant under

A1 → A1 + dχ1, C1 → C1 + dT 1 − 2πq
N1

dV 3A2,

A2 → A2 + dχ2, C2 → C2 + dT 2,

B3 → B3 + dV 3, B̃3 → B̃3 + dṼ 3 − 2πq
N3

dχ1A2. (2.45)
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The coefficient q is quantized and periodic: q = pN3N1
(2π)2N13

, p ∈ ZN123 . For this action, the
gauge-invariant observable is

W = exp
{

i
[
e1

(∫
ω1
C1+ 2πq

N1

∫
Ξ1
B3dA2

)
+ e2

∫
ω2
C2+ e3

(∫
σ3
B3 − 2πq

N3

∫
Ω3
A1dA2

)]}
.

(2.46)
with its expectation value being

〈W〉 = exp
[
− i2πpe1e2e3

N2N13
# (Ω3 ∩ Ξ1 ∩ ω2)

]
, (2.47)

where ω1,2 are closed 3D volumes, σ3 is closed 2D surface; Ξ1 and Ω3 are Seifert hyper-
surfaces: ∂Ξ1 = ω1 and ∂Ω3 = σ3. If we consider the A1A2dB3 or A2B3dA1 term, the
corresponding TQFT action, gauge transformation, and observable along with its expec-
tation value, would be slightly different but share a similar pattern.

We notice that the BAdA term shares a similar form of the AAdA term in 4D TQFT
which describes the 3-loop braiding in 4D topological order. Since BAdA and AAdA

term both have an AdA part, the Chern-Simons term in 3D, their corresponding braiding
processes may share some similarities.

We first briefly review the 3-loop braiding in 4D spacetime described by the AAdA
twisted term. Figure 6 illustrates a typical 3-loop braiding which can be described by the
TQFT action

S =
∫ 3∑

i=1

Ni

2πB
idAi + pN1N2

(2π)2N12
A1A2dA3 (2.48)

with p ∈ ZN123 . The gauge-invariant observable and its expectation value are [42]

W = exp

i

 3∑
i=1

ei

∫
σi

Bi +
∑
j

pεij

2πNj

∫
Ωi
AjdA3

 , (2.49)

〈W〉 = exp
[2πipe1e2e3

N123
# (Ω1 ∩ Ω2 ∩ σ3)

]
. (2.50)

In eq. (2.50), σi is the closed 2D world-sheet of loop i and Ωi is the 3D Seifert hypersurface
with ∂Ωi = σi. Derived from a 4D field theory, Ω1∩Ω2∩σ3, intersection of world-sheet and
Seifert hypersurfaces, is a geometric object in 4D which is not so intuitive for an observer
living in 3D. However, we can project it from 4D spacetime to 3D space so that we can have
a better understanding. More concretely, being projected on 3D space, the closed world-
sheet of loop appears as the closed spatial trajectory of loop, and the Seifert hypersurfaces
are observed as 2D Seifert surfaces. Figure 6 illustrates how to calculate # (Ω1 ∩ Ω2 ∩ σ3)
from a 3-loop braiding.

Now we move back to the BAdA twisted term and the braiding of one loop and two
membranes it describes. For a B3A1dA2 twisted term, the phase shift from the braiding
process is related to # (Ω3 ∩ Ξ1 ∩ ω3), see eq. (2.47), where Ω3 is a 3D Seifert hypersurface,
Ξ3 is a 4D Seifert hypersurface, and ω3 is a closed 3D world-volume. Similarly, we can
project Ω3 ∩ Ξ1 ∩ ω3 from 5D spacetime to 4-dimensional space: (1) Ω3 is projected to
be a 2D Seifert surface that can be viewed as the Seifert surface of a static loop; (2) Ξ1
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(a) (b)

1

2 3

L
P

Figure 6. 3-loop braiding described by AAdA term in 3D space. (a) The configuration of 3-
loop braiding described by A1A2dA3 term. For this 3-loop braiding, its phase shift is related to
# (Ω1 ∩ Ω2 ∩ σ3) as indicated in eq. (2.50). This linking number can be calculated via projecting
Ω1, Ω2, and σ3 from 4D spacetime to 3D space. After projection, Ω1 appears as the Seifert
surface (red shaded area) of the static base loop (loop 1); Ω2 appears as the Seifert surface (green
shaded area) of loop 2; σ3 becomes the closed spatial trajectory of loop 3. We can see that the
projection of (Ω1 ∩ Ω2) to 3D space is the segment L (black dash line). (Ω1 ∩ Ω2) is the world-sheet
generated by L. Now we consider the spatial trajectory of loop 3: shrinking itself, passing through
loop 2, expanding itself, finally back to its initial position, loop 3 swaps a closed two-dimensional
surface. This surface intersects with segment L at a point P (blue solid circle). In other words, the
intersection points, (Ω1 ∩ Ω2 ∩ σ3), share the same spatial coordinates as that of point P . Since
the spatial trajectory of loop 3 only intersects with L once, (Ω1 ∩ Ω2) and σ3 intersect only at one
specific moment, i.e., (Ω1 ∩ Ω2 ∩ σ3)’s temporal coordinate has only one value. At last, we can
conclude that there is only 1 intersection point of Ω1, Ω2, and σ3, i.e., |# (Ω1 ∩ Ω2 ∩ σ3)| = 1 with
a sign determined by orientation. (b) The 3-loop braiding can be viewed as an anyon braiding on
the Seifert surface of the base loop.

appears as a 3D Seifert hypersurface that bounds a static membrane; (3) world-volume ω3
is projected to be a closed spatial trajectory of a moving membrane. In 4D space, we see
this braiding process as follows. The initial configuration is that a loop is linked with two
membranes. If viewed in 3D space, see figure 7, a loop is linked with another two loops
(two membranes are saw as two loops in 3D space). Then one membrane moves, passing
through another membrane, such that in 3D space a 3-loop braiding is observed as shown
in figure 7.

The 3-loop braiding described by AAdA term can be understood as a braiding of two
anyons on the Seifert surface of the base loop, see figure 6. The latter is captured by the
AdA term, i.e., Chern-Simons term in 3D. Since BAdA and AAdA terms share a same
AdA part, we argue that the braiding process described by BAdA can be reduced to a
braiding of two anyons on a Seifert surface of the loop excitation, as shown in figure 7.

BBA twisted topological term. An example of mixed BF theory with BBA term is

S = SBF + SBBA =
∫
N1
2π B̃

1dB1 + N2
2π B̃

2dB2 + N3
2π C

3dA3 + qB1B2A3 (2.51)

where q is a quantized and periodic coefficient: q = pN1N2N3
(2π)2N123

, p ∈ ZN123 . The gauge
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Figure 7. Loop-membrane-membrane braiding described by BAdA term viewed in 3D space. (a)
Viewed in ywz-space with x = 0, the two membranes (1 and 2) appears as two loops that are linked
with the loop excitation (loop 3, blue) respectively. Loop 3 and membrane 1 are assumed to be
static in space. This loop-membrane-membrane braiding looks like a 3-loop braiding in ywz-space
with x = 0 while this 3-loop braiding can be further viewed as a braiding of two anyons on the
Seifert surface of loop 3. The Ω3 in eq. (2.47) is projected to the 2D Seifert surface of loop 3. Ξ1 is
projected to the 3D Seifert surface of static membrane 1. Since in this ywz-space with x = 0, static
membrane 1 appears as a static loop, Ξ1’s projection shows as the this loop’s 2D Seifert surface.
ω2 is projected to the closed spatial trajectory of membrane 2 (loop 2 in this 3D space). We can
see that these manifolds intersect at point P (green solid circle, also refer to figure. 6). This means
that |# (Ω3 ∩ Ξ1 ∩ ω2)| = 1 with a sign determined by orientation. (b)-(f) Two membranes viewed
in yzx-space with w = 1 and w = 2 respectively at different moments. The position of membrane 2
at different t’s are also labeled in (a). In these 3D spaces, loop 3 appears as two points (blue solid
circles). In yzx-space with w = 1, Ω3 appears as the 1D Seifert surface of two points (loop 3); Ξ1
appears the 3D Seifert surface of static membrane 3; ω2 is the spatial trajectory of membrane 2
that is the union of membrane 2’s locations at t = 1 and t = 3 thus being discrete. The zoomed-in
picture in (c) shows that these manifolds resulted from projection intersect at the point P (green
solid circle), corresponding to that illustrated in (a). This also means that |# (Ω3 ∩ Ξ1 ∩ ω2)| = 1
with a sign determined by orientation.

transformations are

B1 → B1 + dV 1, B̃1 → B̃1 + dṼ 1 + 2πq
N1

(
V 2A3 +B2χ3 + V 2dχ3

)
,

B2 → B2 + dV 2, B̃2 → B̃2 + dṼ 2 + 2πq
N2

(
V 1A3 +B1χ3 + V 1dχ3

)
,

A3 → A3 + dχ3, C3 → C3 + dT 3 + 2πq
N3

(
−V 1B2 −B1V 2 − 1

2V
1dV 2 − 1

2dV
1V 2

)
,

(2.52)
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where V i and Ṽ i are different 1-form gauge parameters. The gauge-invariant observable is

W = exp
{

i
∫
σ1
e1

[
B̃1 − 1

2
2πq
N1

(
d−1B2A3 + d−1A3B2

)]
+ i
∫
σ2
e2

[
B̃2 − 1

2
2πq
N2

(
d−1B1A3 + d−1A3B1

)]
+ i

∫
ω3
e3

[
C3 − 1

2
2πq
N3

(
d−1B1B2 + d−1B2B1

)]}
(2.53)

and its expectation value is

〈W〉 = exp
{
− i2πpe1e2e3

N123
# (Ω1 ∩ Ω2 ∩ Ξ3)

+ iπpe1e2e3
N123

[# (σ1 ∩ Ξ3 ∩ ν2|σ1 ∩ Ω2) + # (σ1 ∩ Ω2 ∩ µ3|σ1 ∩ Ξ3)]

+ iπpe1e2e3
N123

[# (σ2 ∩ Ξ3 ∩ ν1|σ2 ∩ Ω1) + # (σ2 ∩ Ω1 ∩ µ3|σ2 ∩ Ξ3)]

+ iπpe1e2e3
N123

[# (ω3 ∩ Ω1 ∩ ν1|ω3 ∩ Ω1) + # (ω3 ∩ Ω2 ∩ ν2|ω3 ∩ Ω2)]
}
. (2.54)

For a braiding process of two loops and one membrane, the phase shift should be ob-
tained via counting the intersections of loops’ world-sheets and membrane’s world-volume.
Eq. (2.54) just produces this phase shift once we see σi (ωi) as closed world-sheet (world-
volume) of loop (membrane) and notice that ∂Ωi = σi and ∂Ξi = ωi. In this sense, we can
say that the BBA term corresponds to the braiding of two loops and one membrane.

AAAB twisted topological term. Finally we consider the AAAB twisted term. An
example of mixed BF theory with AAAB is

S = SBF + SAAAB =
∫ 3∑

i=1

Ni

2πC
idAi + N4

2π B̃
4dB4 + qA1A2A3B4, (2.55)

with q = pN1N2N3N4
(2π)3N1234

, p ∈ ZN1234 . The gauge transformations are

Ci → Ci + dT i

+ 2πq
Ni

∑
j,k

εijk
(
−χjAkB4 − 1

2A
jAkV 4 − 1

2χ
jdχkB4 − χjAkdV 4 + 1

2dχ
jχkdV 4

)
,

B̃4 → B̃4 + dṼ 4

+ 2πq
N4

∑
i,j,k

ε4ijk
(
−1

2χ
iAjAk + 1

2A
iχjdχk − 1

6χ
idχjdχk

)
. (2.56)

The gauge-invariant observable is

W = exp
{

i
3∑
i=1

∫
ωi

ei

[
Ci − 1

3
2πq
Ni

∑
j,k

εijk
(
B4Ajd−1Ak − 1

2A
jAkd−1B4

)]

+ i
∫
σ4
e4

(
B̃4 − 1

6
2πq
N4

∑
i,j,k

εijkAiAjd−1Ak
)}

. (2.57)
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Its expectation value is

〈W〉= exp
{

i2πp
∏4
i=1 ei

N1234
# (Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ Ω4)

− i2πp
∏4
i=1 ei

3N1234

∑
i,j,k

εijk
[
# (ωi∩ Ω4∩ Ξj∩ µk|ωi∩ Ξk)−

1
2# (ωi ∩ Ξj∩ Ξk∩ ν4|ωi∩ Ω4)

]

− i2πp
∏4
i=1 ei

6N1234

∑
i,j,k

εijk# (σ4 ∩ Ξi ∩ Ξj ∩ µk|ωi ∩ Ξk)
}
. (2.58)

In eq. (2.58), σi stands for 2D closed world-sheet of loop, ωi stands for 3D closed world-
volume of membrane; ∂Ξi = ωi, ∂Ωi = σi. If we consider a braiding of three membranes
and one loop, eq. (2.58) just counts the intersections of these excitations’ world-sheets and
world-volume in a gauge-invariant way and gives the phase shift. Thus we believe that
this AAAB term along with its gauge-invariant observable describes the braiding of three
membranes and one loop.

Before closing this section, we point out that the BC term is also a possible 5-form
twisted term but it is not taken into consideration in the present paper. The BC term
in 5D BF theory looks like the BB term in 4D. Both of which are quadratic terms just
like BF terms. So, inclusion of BC term may complicate the analysis. In 4D, BB term
can drastically change the gauge group, which means that the coefficients of BF terms
cannot uniquely determine the gauge group G [63, 64]. We regard that BC term may
have similar effect. In addition, BB term in 4D can change the self-statistics (bosonic
or fermionic) of particles [26, 45, 63, 64, 68, 69]. BC term may also play important role
in transmuting self-statistics of particles. Since we are only interested in 5D topological
orders with all bosons in this paper, we do not take BC term into account. But it will be
definitely exciting to incorporate BC term in the future and study canonical quantization
and equation of mention in the presence of source terms [64].

3 TQFTs in 5 dimensions: within and beyond Dijkgraaf-Witten coho-
mological classification

In section 2, we have studied type-I and mixed BF theories with single twisted term as
well as the corresponding braiding processes in 5D topological orders. It is natural to ask
what if more twisted terms are considered in these BF theories. Similar to the case in
4D [46], the compatibility of twisted terms in 5D should also be considered. Using the
technique developed in ref. [46], we can exhaust 5D TQFT actions with all allowed twisted
terms once the gauge group is given. Then, we study the classification of TQFT actions,
which is the main purpose of this section. The complexity of classification of 5D TQFT
actions mostly comes from the fact that there exist two types of BF terms in 5D. For a
given gauge group G =

∏n
i=1 ZNi , since each ZNi cyclic gauge subgroup can be encoded

in one of two types of BF terms, different distributions of ZNi to type-I and type-II BF
terms lead to different twisted terms. Once the BF terms are determined, all possible
twisted terms can be figured out. An action with all allowed twisted terms which are
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detailed in section 2.3 and section 2.4, can be written and its classification can be obtained
by counting the coefficients of twisted terms. In the remaining part of this section, we
will discuss classification of some BF theories with multiple twisted terms for G = ZN1

(section 3.1), G =
∏2
i=1 ZNi (section 3.2), G =

∏3
i=1 ZNi (section 3.3), and G =

∏n
i=1 ZNi

with n ≥ 4 (section 3.4). We find that only a part of type-I BF theories with twisted
terms are consistent with Dijkgraaf-Witten cohomological classification. The other part of
type-I BF theories and all mixed BF theories are totally beyond the group cohomology
classification.

Some notations used in this section need to be explained here before we move forward.
We use a set {Ni}ni=1 = {N1, · · · , Nn} to label the gauge group G =

∏n
i=1 ZNi . Then,

a subset α ⊂ {Ni}ni=1 is introduced to denote which ZNi gauge subgroup is encoded in
type-I BF term. For example, consider {Ni}5i=1 and let α = {N1, N2, N3}, in this case
the BF terms are

∑3
i=1

Ni
2πC

idAi +
∑5
i=4

Ni
2π B̃

idBi; if we let α′ = {N2, N4, N5}, the BF
terms are

∑
i=2,4,5

Ni
2πC

idAi+
∑
i=1,3

Ni
2π B̃

idBi instead. Naturally, α and α′ lead to different
twisted terms, hence different TQFT actions and classifications. However, α and α′ have
the same cardinality, the two different TQFT actions and classifications can be connected
by rearranging the indices, as can be seen in the examples below. Therefore, for simplicity,
we only present results for one configuration of α when the cardinality of the set α is fixed.

3.1 G = ZN1

If α = ∅, the action is
S =

∫
N1
2π B̃

1dB1. (3.1)

Obviously, the coefficient Ni is fixed, resulting in only one TQFT. The classification is
denoted as “Z1”.

When G = ZN1 , the only nontrivial choice of α is α = {N1}. The action is

S =
∫
N1
2π C

1dA1 +
〈
A1dA1dA1

〉
, (3.2)

whose classification is ZN1 .7 We point out that the action (3.2) is classified by the 5th

cohomology group H5 (ZN1 ,R/Z). Classification of actions when G = ZN1 is summarized
in table 1. We conclude that there are in total 1+N1 different BF theories when G = ZN1 .

3.2 G = ZN1 × ZN2

If α = ∅, the action is

S =
∫ 2∑

i=1

Ni

2π B̃
idBi (3.3)

whose classification is Z1. In fact, when α = ∅, the action can only be the type-II BF
theory without twisted terms, whose classification is automatically equal to Z1. For α 6= ∅,
the TQFT actions are mixed BF theories or type-I BF theories with twisted terms.

7We use
〈
twisted term 1, twisted term 2, · · ·

〉
to simply denote a summation of twisted terms that

appear in actions. In this notation, all coefficients of twisted terms, which are properly quantized as
mentioned in section 2.3 and 2.4, are omitted for the notational convenience.
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G α Classification

ZN1

∅ Z1

{N1} ZN1 ?

2∏
i=1

ZNi

∅ Z1

{N1} ZN1 × (ZN12)2

{N2} ZN2 × (ZN12)2

{N1, N2} ZN1 × ZN2 × (ZN12)2 ?

3∏
i=1

ZNi

∅ Z1

{N1} ZN1 × (ZN12)2 × (ZN13)2 × ZN123

{N2} ZN2 × (ZN12)2 × (ZN23)2 × ZN123

{N3} ZN3 × (ZN13)2 × (ZN23)2 × ZN123

{N1, N2} ZN1 × ZN2 × (ZN12)2 × (ZN13)2 × (ZN23)2 × (ZN123)2

{N1, N3} ZN1 × ZN3 × (ZN13)2 × (ZN12)2 × (ZN23)2 × (ZN123)2

{N2, N3} ZN2 × ZN3 × (ZN23)2 × (ZN12)2 × (ZN13)2 × (ZN123)2

{N1, N2, N3}

no AAC:
∏3
i=1 ZNi ×

∏
1≤i<j≤3

(
ZNij

)2
× (ZN123)4 ?

with A1A2C3: (ZN123 \ {0})× ZN1 × ZN2 × (ZN12)2

with A2A3C1: (ZN123 \ {0})× ZN2 × ZN3 × (ZN23)2

with A3A1C2: (ZN123 \ {0})× ZN1 × ZN3 × (ZN13)2

Table 1. Classification of BF theories with twisted terms for different gauge groups G, which
are detailed in sections 3.1, 3.2, and 3.3. α is a set, which denotes ZNi gauge subgroups that are
encoded in the type-I BF term, e.g., α = {N1, N2} means N1

2πC
1dA1 + N2

2πC
2dA2. Only a part

of 5D BF theories, denoted by a ? symbol, are consistent with Dijkgraaf-Witten cohomological
classification, i.e., H5 (G,R/Z). The remaining are beyond the group cohomology classification.
When G =

∏3
i=1 ZNi and α = {N1, N2, N3}, depending on different choices of AAC term, the

actions and their classification are different, as discussed in section 3.3. The reason is that AAC
term may be incompatible with other twisted terms, hence cannot be included in the action.

If α = {N1}, the action is

S =
∫
N1
2π C

1dA1 + N2
2π B̃

2dB2 +
〈
A1dA1dA1, B2B2A1, B2A1dA1

〉
, (3.4)

whose classification is ZN1 × (ZN12)2. For the case of α = {N2}, one just needs to switch
the indices 1 and 2 to obtain the corresponding classification: ZN2 × (ZN12)2, as shown in
table 1.

If α = {N1, N2}, the action is

S =
∫ 2∑

i=1

Ni

2πC
idAi +

〈
A1dA1dA1, A2dA2dA2, A1dA2dA1, A2dA1dA2

〉
, (3.5)
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which is classified by the 5th cohomology group of ZN1 × ZN2 : H5 (ZN1 × ZN2 ,R/Z) =
ZN1 × ZN2 × (ZN12)2.

The number of different BF theories for G = ZN1 × ZN2 can be obtained as follows.
For α = ∅, there is one BF theory. For α = {N1} , there are

∣∣∣ZN1 × (ZN12)2
∣∣∣ = N1 (N12)2

different BF theories. For α = {N2} and α = {N1, N2}, this number is N2 (N12)2 and
N1N2 (N12)2, respectively. Therefore, the total number of different BF theories for G =
ZN1 × ZN2 is 1 +N1 (N12)2 +N2 (N12)2 +N1N2 (N12)2.

3.3 G = ZN1 × ZN2 × ZN3

Follow the same line of thinking, we can obtain the classification of BF theories for G =∏3
i=1 ZNi , which is collected in table 1.

If α = ∅, the action is type-II BF theory without twisted terms, whose classification
is simply Z1.

If α = {N1}, the action is

S =
∫
N1
2π C

1dA1 +
∑
i=2,3

Ni

2π B̃
idBi +

〈
A1dA1dA1,

∑
i=2,3

BiBiA1 +BiA1dA1, B2B3A1
〉
,

(3.6)
whose classification is ZN1 × (ZN12)2 × (ZN13)2 × ZN123 . For the case of α = {N2} or
α = {N3}, the results are similar, as shown in table 1.

If α = {N1, N2}, the action is

S =
∫ 2∑

i=1

Ni

2πC
idAi + N3

2π B̃
3dB3 +

〈∑
i=1,2

AidAidAi, A1dA2dA1, A2dA1dA2,

∑
i=1,2

(
B3B3Ai +B3AidAi

)
, A1A2dB3, B3A2dA1

〉
, (3.7)

whose classification is ZN1 × ZN2 ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)2. For other choices of α,

the corresponding classifications are listed in table 1.
If α = {N1, N2, N3}, we get a type-I BF theory with twists. Possible twisted terms

include AAC, AdAdA, and AAAdA. Due to the possible incompatibility between AAC

and AdAdA or AAAdA terms [46], we need to treat these twisted terms carefully to obtain
correct classifications. First we do not consider AAC terms in this type-I BF theory. The
action is

S =
∫ 3∑

i=1

Ni

2πC
idAi +

〈 3∑
i=1

AidAidAi,
∑

1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
,

A1dA2dA3,
3∑
i=1

A1A2A3dAi
〉
, (3.8)

being classified by the 5th cohomology group of
∏3
i=1 ZNi :

H5
( 3∏
i=1

ZNi ,R/Z
)

=
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 . (3.9)
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Then we consider an AAC term in the action. Without loss of generality, we add the
A1A2C3 term in twisted terms. We point out that A2A3C1 and A3A1C2 are also possible
AAC terms, yet neither of them is compatible with A1A2C3 [46]. If A2A3C1 or A3A1C2,
instead of A1A2C3, is included in twisted terms, the discussion and result are similar,
as shown in table 1. Since AdAdA and AAAdA with A3 or dA3 are incompatible with
A1A2C3 [46], the action is

S =
∫ 3∑

i=1

Ni

2πC
idAi + pN1N2N3

(2π)2N123
A1A2C3 +

〈∑
i=1,2

AidAidAi, A1dA2dA1, A2dA1dA2
〉

(3.10)
with p ∈ ZN123 \ {0}. The reason for this incompatibility is that either A3 or C3 has
to be the Lagrange multiplier, meaning that they cannot appear in twisted terms in the
same time. More concretely, if the action consists of A1A2C3 and other twisted terms
with A3 or dA3, it would unavoidably break the gauge-invariance, just like the illegitimate
A1A2C2 term discussed in “AAC twisted topological term” in section 2.3. The classification
of action (3.10) is

(ZN123 \ {0})× ZN1 × ZN2 × (ZN12)2 , (3.11)

where ZN123 \ {0} is the set obtained by removing the identity element {0} from the
cyclic group ZN123 , corresponding to the existence of pN1N2N3

(2π)2N123
A1A2C3, i.e., p 6= 0. There-

fore (3.11) is not a group any more but it is still a set:

(ZN123 \ {0})× ZN1 × ZN2 × (ZN12)2

= {(x1, x2, x3, x4, x5) | x1 ∈ ZN123 \ {0} , x2 ∈ ZN1 , x3 ∈ ZN2 , x4 ∈ ZN12 , x5 ∈ ZN12} .
(3.12)

Each element is given by a group of 5 numbers, i.e., (x1, x2, x3, x4, x5), denoting a choice of
periodic coefficients of twisted terms in action (3.10): x1 for A1A2C3, x2 for A1dA1dA1, . . . ,
and x5 for A2dA1dA2. There are in total (N123 − 1)N1N2 (N12)2 elements in (3.11), which
means (N123 − 1)N1N2 (N12)2 different actions when G =

∏3
i=1 ZNi , α = {N1, N2, N3},

and the A1A2C3 term is considered. Compare to the classification of action (3.8), we see
that the existence of A1A2C3 term indeed excludes some twisted terms.

From the example above we see that even if α is fixed, the classification and number of
different BF theories may still depend on the choice of AAC terms. Generally speaking,
though the BF terms, i.e., α, are determined, there are still different combinations of
compatible twisted terms [46] which lead to different BF theories and classification. This
feature is more obvious and important when the G contains more cyclic subgroups, e.g.,
cases discussed in section 3.4. The complete classification of BF theories for G =

∏3
i=1 ZNi

is given in table 1. In order to find out the total number of BF theories, one just need to
sum up the corresponding cardinality of each classification in table 1.

3.4 G =
∏4
i=1 ZNi and generalization to G =

∏n
i=1 ZNi with n ≥ 5

In this section, we investigate BF theories and their classifications when the gauge group
is G =

∏4
i=1 ZNi . In this case, there are much more twisted terms and complicated com-

patibility issues, which makes a long list of BF theories as well as their classification. For
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sake of simplicity, we aim to provide some typical examples of BF theories and classifi-
cations for G =

∏4
i=1 ZNi which indicate regularities for generalization to all BF theories

and classifications.
If α = ∅, the BF theories can only be

S =
∫ 4∑

i=1

Ni

2π B̃
idBi (3.13)

with the classification of Z1.
If α = {N1}, the action is

S =
∫
N1
2π C

1dA1 +
4∑
i=2

Ni

2π B̃
idBi

+
〈
A1dA1dA1,

4∑
i=2

(
BiBiA1 +BiA1dA1

)
,

4∑
2≤i<j≤4

BiBjA1
〉
, (3.14)

whose classification is ZN1 ×
∏4
i=2 (ZN1i)

2 × ZN123 × ZN124 × ZN134 .
If α = {N1, N2}, the action is

S=
∫ 2∑

i=1

Ni

2πC
idAi +

4∑
i=3

Ni

2π B̃
idBi +

〈 2∑
i=1

AidAidAi, A1dA2dA1, A2dA1dA2, B3B4A1,

B3B4A2,
∑
i=3,4

(
BiBiA1 +BiA1dA1 +BiBiA2 +BiA2dA2 +A1A2dBi +BiA2dA1

)〉
,

(3.15)

whose classification is
ZN1 × ZN2 × (ZN12)2 × ZN134 × ZN234 ×

∏4
i=3

[
(ZN1i)

2 × (ZN2i)
2 × (ZN12i)

2
]
.

If α = {N1, N2, N3}, BF terms are
∑3
i=1

Ni
2πC

idAi + N4
2π B̃

4dB4. Possible twisted terms
include AAC, AdAdA, AAAdA, BBA, BAdA, and AAdB. Once again, we need to take
care of the incompatibility of AAC and other twisted terms, as discussed in section 3.3.
There are two situations: the action includes AAC term or not.

1. If there is no AAC term in twisted terms, the action is

S=
∫ 3∑

i=1

Ni

2πC
idAi + N4

2π B̃
4dB4 +

〈 3∑
i=1

AidAidAi,
∑

1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
,

A1dA2dA3,
3∑
i=1

A1A2A3dAi,
3∑
i=1

(
B4B4Ai +B4AidAi

)
,

∑
1≤i<j≤3

(
AiAjdB4 +B4AjdAi

)
, A1A2A3B4

〉
, (3.16)

whose classification is
∏3
i=1 ZNi ×

∏
1≤i<j≤3

(
ZNij

)2
× (ZN123)4 ×

∏3
i=1 (ZNi4)2 ×∏3

1≤i<j≤3

(
ZNij4

)2
× ZN1234 .
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2. If one AAC term is added to the action, without loss of generality, let it be A1A2C3,
the action is

S =
∫ 3∑

i=1

Ni

2πC
idAi + N4

2π B̃
4dB4 + pN1N2N3

(2π)2N123
A1A2C3 +

〈∑
i=1,2

AidAidAi,

A1dA2dA1, A2dA1dA2,
∑
i=1,2

(
B4B4Ai +B4AidAi

)
, A1A2dB4, B4A2dA1

〉
(3.17)

with p ∈ ZN123 \ {0}. As mentioned in section 3.3, when there are only 3 elements
in α, different AAC terms are incompatible with each other. Therefore, only one
AAC term can be added to the action when |α| = 3, e.g., α = {N1, N2, N3}. The
classification of action (3.17) is

(ZN123 \ {0})×
2∏
i=1

ZNi × (ZN12)2 × (ZN14)2 × (ZN24)2 × (ZN124)2 . (3.18)

Compared to action (3.10), the difference between their classifications is due to extra
twisted terms resulted from B̃4dB4 and type-I BF terms. Appendix C presents the
corresponding action and classification if other AAC term is considered.

If α = {N1, N2, N3, N4}, the action is a type-I BF theory with twisted terms. Similarly,
we need to study two situations in which the action consists of AAC terms or not. First,
we consider the action without any AAC terms,

S=
∫ 4∑
i=1

Ni

2πC
idA1+

〈 4∑
i=1

AidAidAi,
∑

1≤i<j≤4

(
AidAjdAi +AjdAidAj

)
,

∑
1≤i<j<k≤4

AidAjdAk,

∑
1≤i<j<k≤4

( ∑
l=i,j,k

AiAjAkdAl
)
, A1A2A3dA4, A3A2A4dA1, A1A3A4dA2

〉
, (3.19)

whose classification is
4∏
i=1

ZNi ×
∏

1≤i<j≤4

(
ZNij

)2
×

∏
1≤i<j<k≤4

(
ZNijk

)4
× (ZN1234)3 = H5

( 4∏
i=1

ZNi ,R/Z
)
, (3.20)

same as the result obtained from Dijkgraaf-Witten model. Then we study the case in
which AAC terms are added to the action. Since there are 4 type-I BF terms, some AAC
terms may be compatible, unlike the above case of α = {N1, N2, N3}. We first discuss the
action and its classification when only one AAC term is considered. Then, following the
compatibility principle [46], we add more allowed AAC terms to the action and figure out
the corresponding classification.

1. Consider the action with only one AAC term, without loss of generality, A1A2C4,

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN1N2N4

(2π)2N124
A1A2C4 +

〈 3∑
i=1

AidAidAi,

∑
1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
, A1dA2dA3,

3∑
i=1

A1A2A3dAi
〉
, (3.21)
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where p ∈ ZN124\{0}. Its classification is (ZN124\{0})×
∏3
i=1 ZNi×

∏
1≤i<j≤3

(
ZNij

)2
×

(ZN123)4. There are other AAC terms compatible with A1A2C4, e.g., A1A3C4 and
A2A3C4 can also be added to action (3.21).

2. If A1A2C4 and A1A3C4 are included in twisted terms, the action is

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN1N2N4

(2π)2N124
A1A2C4 + p′N1N3N4

(2π)2N134
A1A3C4 +

〈 3∑
i=1

AidAidAi,

∑
1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
, A1dA2dA3,

3∑
i=1

A1A2A3dAi
〉

(3.22)

with p ∈ ZN124 \ {0} and p′ ∈ ZN134 \ {0}. Its classification is (ZN124 \ {0}) ×
(ZN134 \ {0})×

∏3
i=1 ZNi ×

∏
1≤i<j≤3

(
ZNij

)2
× (ZN123)4.

3. If twisted terms include A1A2C4, A1A3C4, and A2A3C4, the classification of corre-
sponding action is

∏
1≤i<j≤3

(
ZNij4 \ {0}

)
×
∏3
i=1 ZNi×

∏
1≤i<j≤3

(
ZNij

)2
× (ZN123)4.

4. On the other hand, A1A2C3 is also compatible with A1A2C4, but not compatible
with A1A3C4 or A2A3C4. The action with A1A2C4 and A1A2C3 is

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN1N2N4

(2π)2N124
A1A2C4 + p′N1N2N3

(2π)2N123
A1A2C3

+
〈 2∑
i=1

AidAidAi, A1dA2dA1, A2dA1dA2
〉

(3.23)

with p ∈ ZN124 \ {0} and p′ ∈ ZN123 \ {0}. The corresponding classification is
(ZN124 \ {0})× (ZN123 \ {0})×

∏2
i=1 ZNi × (ZN12)2.

At last, we point out that if other AAC term, e.g., A2A3C4, and its compatible AAC
terms are considered in the action, the action and classification can be obtained by a
similar manner. In appendix C, we list actions and their classifications for all possible
combinations of AAC terms.

In section 3.1, 3.2, 3.3, and 3.4, we have studied the classification of BF theories for
gauge group consisting of up 4 cyclic groups. Such discussion can be generalized to the
cases of G =

∏n
i=1 ZNi with n ≥ 5. Some typical BF theories and their classifications

are given in appendix D, which is helpful for considering general cases of G =
∏5
i=1 ZNi .

In short, one needs to first determine BF terms. Then, all possible twisted terms can
be found out according to BF terms. Next, one should check the compatibility between
twisted terms, which can be done with the guidance provided in ref. [46]. Finally, an
action with all allowed twisted terms can be written and its classification can be obtained
by counting the coefficients of twisted terms.

– 29 –



J
H
E
P
0
4
(
2
0
2
2
)
1
3
8

We point out that when G =
∏5
i=1 ZNi , α = {N1, N2, N3, N4, N5}, and no AAC terms

are taken in account, the action is

S =
∫ 5∑

i=1

Ni

2πC
idAi +

〈 5∑
i=1

AidAidAi,
∑

1≤i<j≤5

(
AidAjdAi +AjdAidAj

)
,

∑
1≤i<j<k≤5

AidAjdAk +
∑
l=i,j,k

AiAjAkdAl

 ,
∑

1≤i<j<k<l≤5

(
AiAjAkdAl +AkAjAldAi +AiAkAldAj

)
, A1A2A3A4A5

〉
, (3.24)

which is classified by

H5
( 5∏
i=1

ZNi ,R/Z
)

=
5∏
i=1

ZNi ×
∏

1≤i<j≤5

(
ZNij

)2
×

∏
1≤i<j<k≤5

(
ZNijk

)4

×
∏

1≤i<j<k<l≤5

(
ZNijkl

)3
× ZN12345 . (3.25)

Once AAC terms are considered or for other choices of α, the action’s classification is
totally beyond that obtained from group cohomology, which is an important feature of
TQFT in 5D.

4 Conclusions and outlook

In summary, we study 5D topological orders from the field-theoretical aspect. In 5D
topological orders, topological excitations include particles, loops, and membranes, whose
braiding processes are complicated and not been fully understood yet. With the help of
TQFT, we write down topological terms, including BF terms and twisted terms, in 5D.
More concretely, there are two types of BF terms in 5D, unlike the case in 3D or 4D.
Such two types of BF terms are studied in details. By combining BF terms and twisted
terms, we write down TQFT actions that are invariant under gauge transformations. For
each TQFT action, we construct the gauge-invariant Wilson operator whose expectation
value can be expressed as intersection patterns of geometric objects in 5D, as detailed in
section 2.2, 2.3, and 2.4. These results are obtained from field theory in a gauge-invariant
fashion, and correspond to link invariants of links formed by closed spacetime trajectories of
topological excitations in 5D. In addition, the observable phase of braiding process is given
by the Wilson operator. In section 3, we study classifications of TQFT action consisting
of BF terms and twisted terms. Depending on the type of BF term, these TQFT actions
are dubbed type-I or mixed BF theories. We find that, only some of type-I BF theories
is classified by group cohomology, i.e., consistent with Dijkgraaf-Witten model. For other
type-I BF theories and all mixed BF theories, their classifications are beyond Dijkgraaf-
Witten cohomological classification. Table 1 summarizes classification of BF theories for
G = ZN1 , G = ZN1 × ZN2 , and G =

∏3
i=1 ZNi . Some interesting questions still remain

open, which are left for future study:
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1. Gauge transformations for TQFT actions with twisted terms usually contain shift
terms. How to understand these shift terms from mathematical perspective (e.g.,
fibre bundle)? We hope future work could give more insight to this problem.

2. It should be noticed that the classification of topological orders is not identical to
that of TQFTs. For example, consider a 3 + 1D all-boson topological order (all
particle excitations are bosons) with gauge group G = Z2 × Z2, we can write down
a TQFT action for it: S ∼

∫ ∑2
i=1

Ni
2πB

idAi + q1A
1A2dA1 + q2A

1A2dA2. This gauge
theory is classified by H4 (G,R/Z) = Z2 × Z2. However, this topological order is
actually classified by H4

Aut (G) = H4 (G,R/Z) /Aut = Z2, where “Aut” stands for
the automorphism of G. This can be understood by the redundancy of relabelling
the two Z2 fluxes. For all TQFTs within cohomology classification [21], we expect
that group automorphism can be used to find the classification of topological orders.
For other TQFTs, more careful considerations are needed for the classification of
corresponding topological orders. Physically, in order to find out classification of 5D
topological orders, one should consider the inequivalent data sets formed by physical
observables. In the future, it would be important to thoroughly study observables in
5D topological orders and find out the complete classification.

3. The world we live in is a 4D spacetime. Nevertheless, the 4D anomalous theory
cannot exist alone unless it appears as the boundary theory of a 5D topologically
ordered state, which is the phenomenon of gravitational anomaly [13, 14, 37]. Since
5D

∏n
i ZNi gauge theories are investigated in this paper, it would be interesting to

study the relation between 5D theories and 4D anomalous theories. For the purpose,
we need to consider TQFTs on a manifold with boundary.

4. In this paper, linking number in 5D is obtained via a field-theoretical approach,
whose topological invariance is guaranteed by gauge invariance of Wilson operator.
Our work may shed light on the study of links and knots in higher dimensions, which
still call for joint efforts from physicists and mathematicians.

5. By adding global symmetry in 5D topological orders, we can study symmetry fraction-
alization on membranes, based on the field-theoretical framework in ref. [36] where
symmetry fractionalization on loops is characterized and classified. Putting the the-
ory on a manifold with boundary may lead to anomalous symmetry fractionalization
patterns, which may answer the question asked at the end of ref. [37].

6. By noting that K-matrix Chern-Simons theory (i.e., KIJ

4π
∫
AIdAJ with an sym-

metric integer matrix K) can be used to describe all Abelian topological orders
in 3D spacetime, It is interesting to consider K-matrix BdB theory with the ac-
tion S = KIJ

4π B
IdBJ where K is an antisymmetric integer matrix. The above

BF term BdB̃ considered in this paper is just the off-diagonal term in this the-
ory. Then, the boundary theory and canonical quantization of this action can be
studied systematically.
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A Quantization and periodicity of twisted terms

In this appendix, we will derive the quantized and periodic coefficients for specific twisted
terms as examples. The basic guiding principle is that the TQFT action should satisfy large
gauge invariance and flux identification [39]. These derivations can be easily generalized
to other twisted terms.

A.1 Twisted terms from type-I BF terms

Example: AAC term studied in section 2.3.
Consider G = ZN1 × ZN2 × ZN3 . The TQFT action is

S = SBF + SAAC =
∫ 3∑

i=1

Ni

2πC
idAi + qA1A2C3. (A.1)

After integrating out the Lagrange multipliers C1,C2 and A3, the action S reduces to
SAAC =

∫
qA1A2C3, where the fields A1, A2 and C3 are set to be closed with

∮
A1 ∈ 2π

N1
ZN1 ,∮

A2 ∈ 2π
N2

ZN2 and
∮
C3 ∈ 2π

N3
ZN3 . Consider putting this action on the spacetime manifold

M = S1×S1×S3. Under the gauge transformations A1,2 → A1,2+dχ1,2 and C3 → C3+dT 3,
SAAC changes as

SAAC → S′AAC =
∫
M
q
(
A1 + dχ1

) (
A2 + dχ2

) (
C3 + dT 3

)
=SAAC +

∫
M
q
(
A1dχ2C3 + dχ1A2C3 +A1A2dT 3

)
+
∫
M
q
(
A1dχ1dT 3 + dχ1A2dT 3

)
+
∫
M
qdχ1dχ2dT 3

≡SAAC + ∆S(1)
AAC + ∆S(2)

AAC + ∆S(3)
AAC . (A.2)

The large gauge invariance requires that ∆SAAC = ∆S(1)
AAC + ∆S(2)

AAC + ∆S(3)
AAC should be

0 mod 2π. Suppose that ∮
S1
A1 = 2πn1

N1
,

∮
S1
dχ1 = 2πm1, (A.3)∮

S1
A2 = 2πn2

N2
,

∮
S1
dχ2 = 2πm2, (A.4)∮

S3
C3 = 2πn3

N3
,

∮
S3
dT 3 = 2πm3, (A.5)
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where ni and mi (i = 1, 2, 3) are integers. Then

∫
M
A1dχ2C3 =

∮
S1
A1
∮
S1
dχ2

∮
S3
C3 = (2π)3 n1m2n3

N1N3
, (A.6)∫

M
dχ1A2C3 =

∮
S1
dχ1

∮
S1
A2
∮
S3
C3 = (2π)3m1n2n3

N2N3
, (A.7)∫

M
A1A2dT 3 =

∮
S1
A1
∮
S1
A2
∮
S3
dT 3 = (2π)3 n1n2m3

N1N2
, (A.8)∫

M
A1dχ1dT 3 =

∮
S1
A1
∮
S1
dχ1

∮
S3
dT 3 = (2π)3 n1m2m3

N1
, (A.9)∫

M
dχ1A2dT 3 =

∮
S1
dχ1

∮
S2
A2
∮
S3
dT 3 = (2π)3m1n2m3

N2
, (A.10)∫

M
dχ1dχ2dT 3 =

∮
S1
dχ1

∮
S1
dχ2

∮
S3
dT 3 = (2π)3m1m2m3. (A.11)

The large gauge invariance of SAAC is guaranteed by the following constraints

∆S(1)
AAC = (2π)3 ·

(
qn1m2n3
N1N3

+ qm1n2n3
N2N3

+ qn1n2m3
N1N2

)
= 0 mod 2π, (A.12)

∆S(2)
AAC = (2π)3 ·

(
qn1m2m3

N1
+ qm1n2m3

N2

)
= 0 mod 2π, (A.13)

∆S(3)
AAC = (2π)3 · qm1m2m3 = 0 mod 2π. (A.14)

For arbitrary value of integers ni and mi, the above constraints are satisfied by quantizing
the coefficient q:

q = pN1N2N3

(2π)2N123
, p ∈ Z, (A.15)

where N123 is the greatest common divisor of N1, N2 and N3.
So far, we have determined the quantization of q. Next, we find out the periodicity of

q by flux identification. When the ZNi flux is inserted as ni multiple units of 2π
Ni

, we have

∫
qA1A2C3 = q

∮
S1
A1
∮
S1
A2
∮
S3
C3 = pN1N2N3

(2π)2N123

2πn1
N1

2πn2
N2

2πn3
N3

= 2πpn1n2n3
N123

.

(A.16)
For arbitrary value of n1n2n3, exp

(
i
∫
qA1A2C3) is invariant when 2πp

N123
shifts by 2π, i.e.,

p→ p+N123, which implies that p should be identified with p+N123.
Combined with p ∈ Z, we conclude that the quantization and periodic condition on

the coefficient q is:

q = pN1N2N3

(2π)2N123
, p ∈ ZN123 . (A.17)

In the above example, we have shown how to get quantization of the coefficient of the AAC
twisted term based on large gauge invariance and flux identification. The similar derivation
can be applied on other twisted terms.

Example: AdAdA term
(
AidAidAi, AidAidAj , AidAjdAk

)
studied in section 2.3.
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Consider G = ZN1 . The TQFT action is

S = SBF + SAdAdA =
∫
N1
2π C

1dA1 + qA1dA1dA1 (A.18)

and the gauge transformation is

A1 → A1 + dχ1,

C1 → C1 + dT 1. (A.19)

After integrating out the Lagrange multipliers C1, the action S reduces to SAdAdA =∫
qA1dA1dA1, where the field A1 is set to be closed with

∮
A1 ∈ 2π

N1
ZN1 . After the gauge

transformations,
SAdAdA → SAdAdA +

∫
qdχ1dA1dA1. (A.20)

The large gauge invariance requires that

∆SAdAdA =
∫
qdχ1dA1dA1 = 0 mod 2π. (A.21)

Consider putting this TQFT on the spacetime manifold S1 × S2 × S2 and assuming∮
S1
dχ1 = 2πm1,

∮
S2
dA1 = 2πna1, (A.22)

we have

∆SAdAdA =
∫
qdχ1dA1dA1 = q

∮
S1
dχ1

∮
S2
dA1

∮
S2
dA1 = (2π)3 qm1na1na1 = 0 mod 2π,

(A.23)
which indicates

q = p

(2π)2 , p ∈ Z. (A.24)

Now we consider the periodicity of q. Consider the ZN1 flux is inserted as n1 multiple units
of 2π

N1
, we have∫

qA1dA1dA1 = p

(2π)2

∮
S1
A1
∮
S2
dA1

∮
S2
dA1 = 2πpn1nana

N1
. (A.25)

For arbitrary values of n1 and na, the partition function should be invariant under a shift
by 2π, which means exp

(
i
∫
qA1dA1dA1) ' exp

(
i
∫
qA1dA1dA1 + 2πi

)
, thus we have

2πpn1nana
N1

' 2πpn1nana
N1

+ 2π ⇒ p ' p+N1. (A.26)

In conclusion, the coefficient q of A1dA1dA1 twisted term is

q = p

(2π)2 , p ∈ ZN1 . (A.27)

Consider G = ZN1×ZN2 . Possible twisted terms are A1dA2dA1, A1dA1dA2 A1dA2dA2,
A2dA1dA2, A2dA2dA1 and A2dA1dA1. Notice that

A1dA2dA1 = A1dA1dA2, (A.28)
A2dA1dA2 = A2dA2dA1, (A.29)
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and

d
(
A1A2dA1

)
= dA1A2dA1 −A1dA2dA1, (A.30)

d
(
A1A2dA2

)
= dA1A2dA2 −A1dA2dA2. (A.31)

The linearly independent twisted terms are A1dA2dA1 and A2dA1dA2. Take A1dA2dA1 as
an example:

SA1dA2dA1 =
∫ 2∑

i=1

Ni

2πC
idAi + qA1dA2dA1. (A.32)

Similarly, integrating out Lagrange multipliers C1 and C2 implies constraints that A1 and
A2 are closed with

∮
A1 ∈ 2π

N1
ZN1 and

∮
A2 ∈ 2π

N2
ZN2 .

The large gauge invariance,

∆SA1dA2dA1 =
∫
qdχ1dA2dA1 = q (2π)3m1na2na1 = 0 mod 2π, (A.33)

requires that
q = p

(2π)2 , p ∈ Z. (A.34)

According to flux identification,
∫
qA1dA2dA1 = 2πpn1na2na1

N1
indicates that

2πp
N1
' 2πp

N1
+ 2π ⇒ p ' p+N1 ⇒ p ∈ ZN1 . (A.35)

Notice that
d
(
A1A2dA1

)
= dA1A2dA1 −A1dA2dA1, (A.36)

we can view A1dA2dA1 and A2dA1dA1 as the same topological term up to a boundary
term. Thus

exp
(

i
∫
qA1dA2dA1

)
= exp

[
i
∫
qdA1A2dA1 − i

∫
qd
(
A1A2dA1

)]
= exp

( i2πpna1n2na1
N2

)
, (A.37)

which tells us that
p ' p+N2 ⇒ p ∈ ZN2 . (A.38)

Together with p ∈ ZN1 , the coefficient q of A1dA2dA1 twisted term is

q = p

(2π)2 , p ∈ ZN12 . (A.39)

Consider G = ZN1 × ZN2 × ZN3 . The AdAdA term can be A1dA2dA3, A2dA3dA1,
or A3dA1dA2. But we will see that these 3 twisted terms are not linearly independent.
Consider the TQFT action

S =
∫ 3∑

i=1

Ni

2πC
idAi + qA1dA2dA3 (A.40)
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with the gauge transformations

Ai → Ai + dχi,

Ci → Ci + dT i. (A.41)

Integrating out Ci reduces the action S to
∫
qA1dA2dA3 where the fields Ai are enforced

to be closed with
∮
Ai ∈ 2π

Ni
ZNi .

The quantization of coefficient q can be derived in the same manner:

q = p

(2π)2 , p ∈ ZN1 . (A.42)

On the other hand, notice that

d
(
A1A2dA3

)
= A2dA3dA1 −A1dA2dA3, (A.43)

d
(
A1dA2A3

)
= A3dA1dA2 −A1dA2dA3; (A.44)

up to boundary terms we have

exp
(

i
∫
qA1dA2dA3

)
= exp

[
i
∫
qA2dA3dA1 − i

∫
qd
(
A1A2dA3

)]
= exp

(2πipn2na3na1
N2

)
(A.45)

and

exp
(

i
∫
qA1dA2dA3

)
= exp

[
i
∫
qA3dA1dA2 − i

∫
qd
(
A1dA2A3

)]
= exp

(2πipn3na1na2
N3

)
. (A.46)

The flux identification of eq. (A.45) and eq. (A.46) respectively leads to

p ' p+N2, (A.47)
p ' p+N3. (A.48)

Together with p ' p+N1, we can see that the period of p is N123, i.e.,

p ' p+N123. (A.49)

Therefore, the coefficient q of topological term A1dA2dA3 is

q = p

(2π)2 , p ∈ ZN123 . (A.50)

Example: AAAdA term
(
AiAjAkdAi, AiAjAkdAl

)
studied in section 2.3.

Consider G=
∏4
i=1 ZNi . Possible twisted terms: A2A3A4dA1, A3A4A1dA2, A4A1A2dA3

and A1A2A3dA4. We should notice that these 4 twisted terms are not linearly indepen-
dent.8 Take A1A2A3dA4 as an example, the TQFT action is

S = SBF + SAAAdA =
∫ 4∑

i=1

Ni

2πC
idAi + qA1A2A3dA4 (A.51)

8d
(
A1A2A3A4) = dA1A2A3A4 −A1dA2A3A4 +A1A2dA3A4 −A1A2A3dA4.
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and the gauge transformations are

Ai → Ai + dχi,

C1 → C1 + dT 1 + 2πq
N1

(
A2χ3dA4 −A3χ2dA4 − 1

2χ
2dχ3dA4 + 1

2χ
3dχ2dA4

)
,

C2 → C2 + dT 2 + 2πq
N2

(
−A1χ3dA4 +A3χ1dA4 + 1

2χ
1dχ3dA4 − 1

2χ
3dχ1dA4

)
,

C3 → C3 + dT 3 + 2πq
N3

(
A1χ2dA4 −A2χ1dA4 − 1

2χ
1dχ2dA4 + 1

2χ
2dχ1dA4

)
,

C4 → C4 + dT 4. (A.52)

Once we integrate out the Lagrange multipliers Ci, we obtain constraints on Ai: dAi = 0
and

∮
Ai ∈ 2π

Ni
ZNi . Now we determine the coefficient q. First we find out the quantization

of q. Under the gauge transformations Ai → Ai + dχi (i = 1, 2, 3, 4),

SAAAdA → SAAAdA + ∆S(1)
AAAdA + ∆S(2)

AAAdA + ∆S(3)
AAAdA, (A.53)

where

∆S(1)
AAAdA =

∫
q
(
dχ1A2A3dA4 +A1dχ2A3dA4 +A1A2dχ3dA4

)
, (A.54)

∆S(2)
AAAdA =

∫
q
(
dχ1dχ2A3dA4 + dχ1A2dχ3dA4 +A1A2dχ3dA4

)
, (A.55)

∆S(3)
AAAdA =

∫
qdχ1dχ2dχ3dA4. (A.56)

The large gauge invariance requires that ∆SAAAdA = 0 mod 2π, i.e.,

∆S(1)
AAAdA =(2π)4 qm1n2n3na4

N2N3
+ (2π)4 qn1m2n3na4

N1N3
+ (2π)4 qn1n2m3na4

N1N2
= 0 mod 2π,

(A.57)

∆S(2)
AAAdA =(2π)4 qm1m2n3na4

N3
+ (2π)4 qm1n2m3na4

N2
+ (2π)4 qn1m2m3na4

N1
= 0 mod 2π,

(A.58)

∆S(3)
AAAdA = (2π)4 qm1m2m3na4. (A.59)

These constraints lead to
q = pN1N2N3

(2π)3N123
, p ∈ Z. (A.60)

Next we find out the period of q. We have∫
qA1A2A3dA4 = pN1N2N3

(2π)3N123
· 2πn1
N1

· 2πn2
N2

· 2πn3
N3

· 2πna4 = 2πpn1n2n3na4
N123

. (A.61)

The flux identification tells us that no matter what values ni and na4 are, the partition
function is invariant under a shift by 2π, which means

exp
(

i
∫
qA1A2A3dA4

)
= exp

[ i2πpn1n2n3na4
N123

]
' exp

[ i2π (p+ 1)n1n2n3na4
N123

]
. (A.62)
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leading to
p ' p+N123. (A.63)

However, there is another constraint on the period of p. Notice that

d
(
A1A2A3A4

)
= dA1A2A3A4 −A1dA2A3A4 +A1A2dA3A4 −A1A2A3dA4, (A.64)

up boundary terms we have

exp
[
i
∫
q
(
A2A3A4dA1 −A3A4A1dA2 +A4A1A2dA3

)
− i
∫
qd
(
A1A2A3A4

)]
= exp

[ i2πpN1n2n3n4na1
N4N123

− i2πpN2n3n4n1na2
N4N123

+ i2πpN3n4n1n2na3
N4N123

]
= exp

[ i2πpn4
N4

·
(
N1n2n3na1 −N2n3n1na2 +N3n1n2na3

N123

)]
' exp

[ i2π (p+ 1)n4
N4

·
(
N1n2n3na1 −N2n3n1na2 +N3n1n2na3

N123

)]
, (A.65)

which means that
p ' p+N4. (A.66)

Together with p ' p + N123, the period of p is given by gcd (N123, N4) = N1234. In
conclusion, the coefficient q of A1A2A3dA4 is

q = pN1N2N3

(2π)3N123
, p ∈ ZN1234 . (A.67)

Example: AAAAA term studied in section 2.3.
This twisted term is possible when there are at least 5 ZNi gauge subgroups, e.g.,∏5

i=1 ZNi , A1A2A3A4A5. The action is

S = SBF + SAAAAA =
∫ 5∑

i=1

Ni

2πC
idAi + qA1A2A3A4A5. (A.68)

The large gauge invariance and flux identification conditions indicate the quantization and
periodicity of q in a similar manner:

q = pN1N2N3N4N5

(2π)4N12345
, p ∈ ZN12345 . (A.69)

A.2 Twisted terms from mixture of type-I and type-II BF terms

Examples: BAdA term and AAdB term studied in section 2.4.
Consider G = ZN1 × ZN2 × ZN3 . Notice that d

(
B3A1A2) = dB3A1A2 + B3dA1A2 −

B3A1dA2, thus only two of them are linearly independent. Take the B3A1dA2 term as an
example, the TQFT action is

S =
∫ 2∑

i=1

Ni

2πC
idAi + N3

2π B̃
3dB3 + qB3A1dA2 (A.70)
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which is gauge-invariant under

A1 → A1 + dχ1, C1 → C1 + dT 1 − 2πq
N1

dV 3A2

A2 → A2 + dχ2, C2 → C2 + dT 2

B3 → B3 + dV 3, B̃3 → B̃3 + dṼ 3 − 2πq
N3

dχ1A2. (A.71)

After integrating out C1, C2 and B̃3, the action reduces to
∫
qB3A1dA2 where the fields

are set to be closed with
∮
A1 ∈ 2π

N1
ZN1 ,

∮
A2 ∈ 2π

N2
ZN2 and

∮
B3 ∈ 2π

N3
ZN3 . In a similar

manner, it can be derived that the coefficient q of B3A1dA2 is

q = pN3N1

(2π)2N13
, p ∈ ZN13 . (A.72)

However, there is another constraint on the coefficient q. Noticed that

d
(
B3A1A2

)
= dB3A1A2 +B3dA1A2 −B3A1dA2, (A.73)

we have

exp
(

i
∫
qB3A1dA2

)
= exp

[
i
∫
qA1A2dB2 + i

∫
qB3A2dA1 − i

∫
qd
(
B3A1A2

)]
= exp

[2πipN3N1n1n2
N13 ·N1N2

+ 2πipN3N1n3n2
N13 ·N3N2

]
= exp

[2πipn2
N2

n1N3 + n3N1
N13

]
. (A.74)

Since n1N3+n3N1
N13

is an integer, n2 · n1N3+n3N1
N13

is also an integer. In order to keep Z invariant
for arbitrary n1, n2 and n3, 2πp

N2
is required to be identical to 2πp

N2
+ 2π, i.e.,

2πp
N2
' 2πp

N2
+ 2π ⇒ p ' p+N2. (A.75)

Together with p ∈ ZN13 , we can conclude that the actual period of p is

gcd (N13, N2) = N123. (A.76)

Thus the quantization and period of the coefficient q of B3A1dA2 are actually given by

q = pN3N1

(2π)2N13
, p ∈ ZN123 (A.77)

If we consider the B3A2dA1 term and a TQFT action

S1 =
∫ 2∑

i=1

Ni

2πC
idAi + N3

2π B̃
3dB3 + q1B

3A2dA1, (A.78)
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the gauge transformations are

A1 → A1 + dχ1,

A2 → A2 + dχ2,

B3 → B3 + dV 3,

B̃3 → B̃3 + dṼ 3 − 2πq1
N3

dχ2A1,

C1 → C1 + dT 1,

C2 → C2 + dT 2 − 2πq1
N2

dV 3A1; (A.79)

the coefficient q1 is determined in a similar manner:

q1 = p1N3N2

(2π)2N23
, p1 ∈ ZN123 . (A.80)

If we consider the A1A2dB3 term and a TQFT action

S2 =
∫ 2∑

i=1

Ni

2πC
idAi + N3

2π B̃
3dB3 + q2A

1A2dB3, (A.81)

the gauge transformations are

A1 → A1 + dχ1,

A2 → A2 + dχ2,

B3 → B3 + dV 3,

B̃3 → B̃3 + dṼ 3,

C1 → C1 + dT 1 + 2πq2
N1

dχ2B3,

C2 → C2 + dT 2 − 2πq2
N2

dχ1B3; (A.82)

the coefficient q2 is

q2 = p2N1N2

(2π)2N12
, p2 ∈ ZN123 . (A.83)

B Gauge-invariance of S = SBF + SAAC and its Wilson operator

In this appendix, we derive the gauge transformations for the action (2.9), studied in
section 2.3,

S = SBF + SAAC =
∫ 3∑

i=1

Ni

2πC
idAi + qA1A2C3 (B.1)
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with q = pN1N2N3
(2π)2N123

and p ∈ ZN123 . The basic idea can be applied on other actions studied
in this paper. Then we verify that the corresponding Wilson operator

W = exp
{

i
∫
ω1
e1

[
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2

)]
+ i
∫
ω2
e2

[
C2 + 1

2
2πq
N2

(
d−1C3A1 − d−1A1C3

)]
+ i

∫
γ3
e3

[
A3 + 1

2
2πq
N3

(
d−1A1A2 − d−1A2A1

)]}
(B.2)

is indeed gauge-invariant under the gauge transformations.
In this action S = SBF + SAAC +

∫ ∑3
i=1

Ni
2πC

idAi + qA1A2C3, C1, C2 and A3 serve
as Lagrange multipliers which respectively enforce the ZN1 , ZN2 and ZN3 cyclic group
structures. These cyclic group structures imply that the gauge transformations of A1, A2

and C3 are

A1 → A1 + dχ1, (B.3)
A2 → A2 + dχ2, (B.4)
C3 → C3 + dT 3, (B.5)

where χi and T i are 0-form and 2-form gauge parameters. In order to compensate the
variation of SAAC after gauge transformation, the Lagrange multipliers C1, C2 and A3

transform with extra shift terms:

C1 → C1 + dT 1 +X1, (B.6)
C2 → C2 + dT 2 +X2, (B.7)
A3 → A3 + dχ3 + Y 3. (B.8)

Our goal is to determine these shift terms X1, X2 and Y 3. After gauge transformation,
the action changes as

∫ 3∑
i=1

Ni

2πC
idAi + qA1A2C3

→
∫ 2∑

i=1

Ni

2π
(
Ci + dT i +Xi

)
dAi + N3

2π
(
A3 + dχ3 + Y 3

)
dC3

+ q
(
A1 + dχ1

) (
A2 + dχ2

) (
C3 + dT 3

)
=
∫ 3∑

i=1

Ni

2πC
idAi + qA1A2C3 + N1

2π dT
1dA1 + N2

2π dT
2dA2 + N3

2π dχ
3dC3

+ N1
2π X

1dA1 + N2
2π X

2dA2 + N3
2π Y

3dC3

+ q
(
dχ1A2C3 +A1dχ2C3 + dχ1dχ2C3A1A2dT 3 + dχ1A2dT 3 +A1dχ2dT 3

)
+ qdχ1dχ2dT 3. (B.9)
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Because we only concern the definition of gauge transformations here, we can drop the
boundary terms and obtain

∆S =
∫
N1
2π X

1dA1 + N2
2π X

2dA2 + N3
2π Y

3dC3

+ q
(
dχ1A2C3 +A1dχ2C3 + dχ1dχ2C3

)
+ q

(
A1A2dT 3 + dχ1A2dT 3 +A1dχ2dT 3

)
. (B.10)

Gauge-invariance requires ∆S =
∫

(total derivatives) thus ∆S can be neglected. Noticed
that

dχ1A2C3 = d
(
χ1A2C3

)
− χ1C3dA2 + χ1A2dC3, (B.11)

A1dχ2C3 =− d
(
A1χ2C3

)
+ χ2C3dA1 −A1χ2dC3, (B.12)

dχ1dχ2C3 = 1
2d
(
χ1dχ2C3

)
− 1

2d
(
dχ1χ2C3

)
+ 1

2χ
1dχ2dC3 − 1

2χ
2dχ1dC3, (B.13)

A1A2dT 3 = d
(
A1A2T 3

)
−A2T 3dA1 +A1T 3dA2, (B.14)

dχ1A2dT 3 = d
(
χ1A2dT 3

)
− χ1dT 3dA2, (B.15)

A1dχ2dT 3 =− d
(
A1χ2dT 3

)
+ χ2dT 3dA1, (B.16)

we see that for

X1 =− 2πq
N1

(
χ2C3 −A2T 3 + χ2dT 3

)
, (B.17)

X2 = 2πq
N2

(
χ1C3 −A1T 3 + χ1dT 3

)
, (B.18)

Y 3 =− 2πq
N3

[(
χ1A2 + 1

2χ
1dχ2

)
−
(
χ2A1 + 1

2χ
2dχ1

)]
, (B.19)

∆S can be written as

∆S =
∫
q

[
d
(
χ1A2C3

)
− d

(
A1χ2C3

)
+ 1

2d
(
χ1dχ2C3

)
− 1

2d
(
dχ1χ2C3

)]
+ q

[
d
(
A1A2T 3

)
+ d

(
χ1A2dT 3

)
− d

(
A1χ2dT 3

)]
=
∫

(total derivatives) , (B.20)

which ensure the action (B.1) is invariant after gauge transformation.Therefore, we con-
clude that the gauge transformations for S =

∫ ∑3
i=1

Ni
2πC

idAi + qA1A2C3 are

A1 → A1 + dχ1, C1 → C1 + dT 1 − 2πq
N1

(
χ2C3 −A2T 3 + χ2dT 3

)
,

A2 → A2 + dχ2, C2 → C2 + dT 2 + 2πq
N2

(
χ1C3 −A1T 3 + χ1dT 3

)
, (B.21)

C3 → C3 + dT 3, A3 → A3 + dχ3 − 2πq
N3

[(
χ1A2 + 1

2χ
1dχ2

)
−
(
χ2A1 + 1

2χ
2dχ1

)]
,

same as eq. (2.10) in section 2.3.
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Next, we verify that the Wilson operator for this action,

W = exp
{

i
∫
ω1
e1

[
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2

)]
+ i
∫
ω2
e2

[
C2 + 1

2
2πq
N2

(
d−1C3A1 − d−1A1C3

)]
+ i

∫
γ3
e3

[
A3 + 1

2
2πq
N3

(
d−1A1A2 − d−1A2A1

)]}
, (B.22)

is invariant under the gauge transformations. This Wilson operator is composed of three
similar terms. Below we show that C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2) is invariant under

transformation (B.21); the other components of W can be proven gauge-invariant in a
similar way. After gauge transformation (B.21),∫

ω1
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2

)
→
∫
ω1
C1 + dT 1 − 2πq

N1

(
χ2C3 −A2T 3 + χ2dT 3

)
+ 1

2
2πq
N1

(
d−1A2 + χ2

) (
C3 + dT 3

)
− 1

2
2πq
N1

(
d−1C3 + T 3

) (
A2 + dχ2

)
=
∫
ω1
C1 + dT 1 − 2πq

N1

(
χ2C3 −A2T 3 + χ2dT 3

)
+ 1

2
2πq
N1

(
d−1A2C3 + χ2C3 + d−1A2dT 3 + χ2dT 3

)
− 1

2
2πq
N1

(
d−1C3A2 + T 3A2 + d−1C3dχ2 + T 3dχ2

)
=
∫
ω1
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2

)
+ dT 1 − 1

2
2πq
N1

χ2C3 + 1
2

2πq
N1

A2T 3

− 1
2

2πq
N1

χ2dT 3 − 1
2

2πq
N1

T 3dχ2 + 1
2

2πq
N1

d−1A2dT 3 − 1
2

2πq
N1

d−1C3dχ2. (B.23)

Because d
(
χ2T 3) = dχ2T 3 + χ2dT 3 = T 3dχ2 + χ2dT 3,∫

ω1

(
−1

2
2πq
N1

χ2dT 3 − 1
2

2πq
N1

T 3dχ2
)

= −1
2

2πq
N1

∫
ω1

(
χ2dT 3+T 3dχ2

)
= −1

2
2πq
N1

∫
ω1
d
(
χ2T 3

)
.

(B.24)
Meanwhile, using ∫

ω1
d
(
d−1A2T 3

)
= 0 =

∫
ω1
A2T 3 +

∫
ω1
d−1A2dT 3, (B.25)∫

ω1
d
(
d−1C3χ2

)
= 0 =

∫
ω1
C3χ2 +

∫
ω1
d−1C3dχ2, (B.26)

we have∫
ω1

1
2

2πq
N1

A2T 3 +
∫
ω1

1
2

2πq
N1

d−1A2dT 3 = 1
2

2πq
N1

(∫
ω1
A2T 3 +

∫
ω1
d−1A2dT 3

)
= 0

(B.27)∫
ω1

[
−1

2
2πq
N1

(
χ2C3

)
− 1

2
2πq
N1

d−1C3dχ2
]

=− 1
2

2πq
N1

(∫
ω1
χ2C3 +

∫
ω1
d−1C3dχ2

)
= 0.

(B.28)
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Therefore, we can see that after gauge transformation,∫
ω1
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2

)
→
∫
ω1
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2

)
+
∫
ω1

boundary terms, (B.29)

i.e., exp
{

i
∫
ω1
e1
[
C1 + 1

2
2πq
N1

(
d−1A2C3 − d−1C3A2)]} is invariant. Similarly, W can be

verified as gauge-invariant.
Last but not least, it should be emphasized that the idea of derivation of gauge trans-

formation can be generalized to all actions discussed in this paper, as long as we carefully
deal with the shift terms for the gauge fields serving as Lagrange multipliers.

C Classification for all combinations of AAC terms when G = ∏4
i=1 ZNi

When the gauge group is G =
∏4
i=1 ZNi , the action and corresponding classification depend

on the which AAC terms are considered if α = {N1, N2, N3} or α = {N1, N2, N3, N4}. In
this appendix, we list all classifications for each compatible combination of AAC terms and
other twisted terms when G =

∏4
i=1 ZNi .

In main text, for α = {N1, N2, N3}, we have demonstrate the situation in which the
A1A2C3 term is included in the action:

S =
∫ 3∑

i=1

Ni

2πC
idAi + N4

2π B̃
4dB4 + pN1N2N3

(2π)2N123
A1A2C3 +

〈∑
i=1,2

AidAidAi,

A1dA2dA1, A2dA1dA2,
∑
i=1,2

(
B4B4Ai +B4AidAi

)
, A1A2dB4, B4A2dA1

〉
(C.1)

with p ∈ ZN123 \ {0}, whose classification is

(ZN123 \ {0})×
2∏
i=1

ZNi × (ZN12)2 × (ZN14)2 × (ZN24)2 × (ZN124)2 . (C.2)

In fact, besides A1A2C3, possible linearly independent AAC terms are A2A3C1 and A3A1C2.
If A2A3C1, instead of A1A2C3, is added to the action, the action is

S =
∫ 3∑

i=1

Ni

2πC
idAi + N4

2π B̃
4dB4 + pN1N2N3

(2π)2N123
A2A3C1 +

〈∑
i=2,3

AidAidAi,

A2dA3dA2, A3dA2dA3,
∑
i=2,3

(
B4B4Ai +B4AidAi

)
, A2A3dB4, B4A3dA2

〉
(C.3)

with p ∈ ZN123 \ {0} and its classification is

(ZN123 \ {0})×
∏
i=2,3

ZNi × (ZN23)2 × (ZN24)2 × (ZN34)2 × (ZN234)2 . (C.4)
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If A3A1C2 appears in the action, the action is

S =
∫ 3∑

i=1

Ni

2πC
idAi + N4

2π B̃
4dB4 + pN1N2N3

(2π)2N123
A3A1C2 +

〈∑
i=1,3

AidAidAi,

A3dA1dA3, A1dA3dA1,
∑
i=1,3

(
B4B4Ai +B4AidAi

)
, A3A1dB4, B4A1dA3

〉
(C.5)

with p ∈ ZN123 \ {0} and its classification is

(ZN123 \ {0})×
∏
i=1,3

ZNi × (ZN13)2 × (ZN14)2 × (ZN34)2 × (ZN134)2 . (C.6)

For α = {N1, N2, N3, N4}, there are more possible AAC terms and more of them
are compatible thus can be added to the action simultaneously. In the main text, we
have shown the classifications for cases in which A1A2C4, A1A2C4 + A1A3C4, A1A2C4 +
A1A3C4 +A2A3C4, and A1A2C4 +A1A2C3 are included in actions respectively. Below we
exhaust all possible combinations of AAC terms and give corresponding classifications.

A2A3C1 The action is

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN2N3N1

(2π)2N123
A2A3C1 +

〈 ∑
i=2,3,4

AidAidAi,

∑
2≤i<j≤4

(
AidAjdAi +AjdAidAj

)
, A2dA3dA4,

∑
i=2,3,4

A2A3A4dAi
〉

(C.7)

with p ∈ ZN123 \ {0}. Its classification is

(ZN123 \ {0})×
4∏
i=2

ZNi ×
∏

2≤i<j≤4

(
ZNij

)2
× (ZN234)4 . (C.8)

A2A4C1 The classification is (ZN124 \ {0})×
4∏
i=2

ZNi ×
∏

2≤i<j≤4

(
ZNij

)2
× (ZN234)4.

A3A4C1 The classification is (ZN134 \ {0})×
4∏
i=2

ZNi ×
∏

2≤i<j≤4

(
ZNij

)2
× (ZN234)4.

A2A3C1 +A2A4C1 The action is

S=
∫ 4∑

i=1

Ni

2πC
idA1 + pN2N3N1

(2π)2N123
A2A3C1 + p′N2N4N1

(2π)2N124
A2A4C1 +

〈 ∑
i=2,3,4

AidAidAi,

∑
2≤i<j≤4

(
AidAjdAi +AjdAidAj

)
, A2dA3dA4,

∑
i=2,3,4

A2A3A4dAi
〉

(C.9)

with p ∈ ZN123 \ {0} and p′ ∈ ZN124 \ {0}. Its classification is

(ZN123 \ {0})× (ZN124 \ {0})×
4∏
i=2

ZNi ×
∏

2≤i<j≤4

(
ZNij

)2
× (ZN234)4 . (C.10)
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A2A3C1 +A3A4C1 The classification is

(ZN123 \ {0})× (ZN134 \ {0})×
4∏
i=2

ZNi ×
∏

2≤i<j≤4

(
ZNij

)2
× (ZN234)4.

A2A4C1 +A3A4C1 The classification is

(ZN124 \ {0})× (ZN134 \ {0})×
4∏
i=2

ZNi ×
∏

2≤i<j≤4

(
ZNij

)2
× (ZN234)4.

A2A3C1 +A2A4C1 +A3A4C1 The classification is

(ZN123 \ {0})× (ZN124 \ {0})× (ZN134 \ {0})×
4∏
i=2

ZNi ×
∏

2≤i<j≤4

(
ZNij

)2
× (ZN234)4 .

A3A1C2 The action is

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN3N1N2

(2π)2N123
A3A1C2 +

〈 ∑
i=1,3,4

AidAidAi,

∑
1≤i<j≤4
i,j 6=2

(
AidAjdAi +AjdAidAj

)
, A1dA3dA4,

∑
i=1,3,4

A1A3A4dAi
〉

(C.11)

with p ∈ ZN123 \ {0}. Its classification is

(ZN123 \ {0})×
∏

i=1,3,4
ZNi ×

∏
1≤i<j≤4
i,j 6=2

(
ZNij

)2
× (ZN134)4 . (C.12)

A4A1C2 The classification is (ZN124 \ {0})×
∏

i=1,3,4
ZNi ×

∏
1≤i<j≤4
i,j 6=2

(
ZNij

)2
× (ZN134)4 .

A3A4C2 The classification is (ZN234 \ {0})×
∏

i=1,3,4
ZNi ×

∏
1≤i<j≤4
i,j 6=2

(
ZNij

)2
× (ZN134)4 .

A3A1C2 +A4A1C2 The classification is
(ZN123 \ {0})× (ZN124 \ {0})×

∏
i=1,3,4

ZNi ×
∏

1≤i<j≤4
i,j 6=2

(
ZNij

)2
× (ZN134)4 .

A3A1C2 +A3A4C2 The classification is
(ZN123 \ {0})× (ZN234 \ {0})×

∏
i=1,3,4

ZNi ×
∏

1≤i<j≤4
i,j 6=2

(
ZNij

)2
× (ZN134)4 .

A3A4C2 +A4A1C2 The classification is
(ZN234 \ {0})× (ZN124 \ {0})×

∏
i=1,3,4

ZNi ×
∏

1≤i<j≤4
i,j 6=2

(
ZNij

)2
× (ZN134)4 .

A3A1C2 +A4A1C2 +A3A4C2 The classification is
(ZN123 \ {0})×(ZN124 \ {0})×(ZN234 \ {0})×

∏
i=1,3,4

ZNi×
∏

1≤i<j≤4
i,j 6=2

(
ZNij

)2
×(ZN134)4 .

– 46 –



J
H
E
P
0
4
(
2
0
2
2
)
1
3
8

A1A2C3 The action is

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN1N2N3

(2π)2N123
A1A2C3 +

〈 ∑
i=1,2,4

AidAidAi,

∑
1≤i<j≤4
i,j 6=3

(
AidAjdAi +AjdAidAj

)
, A1dA2dA4,

∑
i=1,2,4

A1A2A4dAi
〉

(C.13)

with p ∈ ZN123 \ {0}. Its classification is

(ZN123 \ {0})×
∏

i=1,2,4
ZNi ×

∏
1≤i<j≤4
i,j 6=3

(
ZNij

)2
× (ZN124)4 . (C.14)

A1A4C3 The classification is (ZN134 \ {0})×
∏

i=1,2,4
ZNi ×

∏
1≤i<j≤4
i,j 6=3

(
ZNij

)2
× (ZN124)4.

A2A4C3 The classification is (ZN234 \ {0})×
∏

i=1,2,4
ZNi ×

∏
1≤i<j≤4
i,j 6=3

(
ZNij

)2
× (ZN124)4.

A1A2C3 +A1A4C3 The classification is
(ZN123 \ {0})× (ZN134 \ {0})×

∏
i=1,2,4

ZNi ×
∏

1≤i<j≤4
i,j 6=3

(
ZNij

)2
× (ZN124)4 .

A1A2C3 +A2A4C3 The classification is
(ZN123 \ {0})× (ZN234 \ {0})×

∏
i=1,2,4

ZNi ×
∏

1≤i<j≤4
i,j 6=3

(
ZNij

)2
× (ZN124)4 .

A2A4C3 +A1A4C3 The classification is
(ZN234 \ {0})× (ZN134 \ {0})×

∏
i=1,2,4

ZNi ×
∏

1≤i<j≤4
i,j 6=3

(
ZNij

)2
× (ZN124)4 .

A1A2C3 +A1A4C3 +A2A4C3 The classification is
(ZN123 \ {0})×(ZN134 \ {0})×(ZN234 \ {0})×

∏
i=1,2,4

ZNi×
∏

1≤i<j≤4
i,j 6=3

(
ZNij

)2
×(ZN124)4 .

A1A2C4 The action is

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN1N2N4

(2π)2N124
A1A2C4 +

〈 3∑
i=1

AidAidAi,

∑
1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
, A1dA2dA3,

3∑
i=1

A1A2A3dAi
〉

(C.15)

with p ∈ ZN124 \ {0}. Its classification is

(ZN124 \ {0})×
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 . (C.16)
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A1A3C4 The classification is (ZN134 \ {0})×
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 .

A2A3C4 The classification is (ZN234 \ {0})×
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 .

A1A2C4 +A1A3C4 The classification is

(ZN124 \ {0})× (ZN134 \ {0})×
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 .

A1A2C4 +A2A3C4 The classification is

(ZN124 \ {0})× (ZN234 \ {0})×
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 .

A2A3C4 +A1A3C4 The classification is

(ZN234 \ {0})× (ZN134 \ {0})×
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 .

A1A2C4 +A1A3C4 +A2A3C4 The classification is

(ZN124 \ {0})× (ZN134 \ {0})× (ZN234 \ {0})×
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 .

A1A2C3 +A1A2C4 The action is

S =
∫ 4∑

i=1

Ni

2πC
idA1 + pN1N2N3

(2π)2N123
A1A2C3 + pN1N2N4

(2π)2N124
A1A2C4+

+
〈 2∑
i=1

AidAidAi, A1dA2dA1, A2dA1dA2
〉

(C.17)

with p ∈ ZN123 \ {0} and p ∈ ZN124 \ {0} . Its classification is

(ZN123 \ {0})× (ZN124 \ {0})×
2∏
i=1

ZNi × (ZN12)2 . (C.18)

A1A3C4 +A3A1C2 The classification is (ZN134 \ {0})× (ZN123 \ {0})×
∏
i=1,3

ZNi × (ZN13)2 .

A1A4C3 +A4A1C2 The classification is (ZN134 \ {0})× (ZN124 \ {0})×
∏
i=1,4

ZNi × (ZN14)2 .

A2A3C4 +A2A3C1 The classification is (ZN234 \ {0})× (ZN123 \ {0})×
∏
i=2,3

ZNi × (ZN23)2 .

A2A4C3 +A2A4C1 The classification is (ZN234 \ {0})× (ZN124 \ {0})×
∏
i=2,4

ZNi × (ZN24)2 .

A3A4C1 +A3A4C2 The classification is (ZN134 \ {0})× (ZN234 \ {0})×
∏
i=3,4

ZNi × (ZN34)2 .
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D Typical examples of BF theories and classification when G = ∏5
i=1 ZNi

In this appendix, we give some representative examples of BF theories and their classifi-
cations. It is tedious to list all BF theories with twisted terms for G =

∏5
i=1 ZNi due to

lots of combinations of compatible twisted terms. Nevertheless, the discussion in section 3
and appendix C can be straightforward generalized to cases of gauge groups with arbitrary
cyclic subgroups. Following the same line of thinking, we can figure out compatible twisted
terms, write down the action, and find out the corresponding classification.

If α = ∅, the action is

S =
∫ 5∑

i=1

Ni

2π B̃
idBi, (D.1)

whose classification is Z1.
If α = {N1}, the action is

S =
∫
N1
2π C

1dA1 +
5∑
i=2

Ni

2π B̃
idBi

+
〈
A1dA1dA1,

5∑
i=2

BiBiA1,
5∑
i=2

BiA1dA1,
∑

2≤i<j≤5
BiBjA1

〉
, (D.2)

whose classification of topological gauge theories is ZN1 ×
5∏
i=2

(ZN1i)
2 ×

∏
2≤i<j≤5

ZN1ij .

If α = {N1, N2}, the action is

S =
∫ 2∑

i=1

Ni

2πC
idAi +

5∑
i=3

Ni

2π B̃
idBi +

〈 2∑
i=1

AidAidAi, A1dA2dA1, A2dA1dA2,

∑
3≤i<j≤5

2∑
k=1

BiBjAk,
5∑
i=3

2∑
j=1

(
BiBiAj +BiAjdAj

)
,

5∑
i=3

(
A1A2dBi +BiA2dA1

)〉
,

(D.3)

whose classification is

ZN1 × ZN2 × (ZN12)2 ×
∏

3≤i<j≤5

(
ZN1ij × ZN2ij

)
×

5∏
i=3

(ZN1i × ZN2i)
2 ×

5∏
i=3

(ZN12i)
2.

If α = {N1, N2, N3}, we should be aware of keeping all twisted terms compatible with
each other. Below we show two examples.

1. If we do not include AAC terms in twisted terms, the action is

S =
∫ 3∑

i=1

Ni
2πC

idAi +
5∑
i=4

Ni
2π B̃

idBi +
〈 3∑
i=1

AidAidAi,
∑

1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
,

A1dA2dA3,

3∑
i=1

A1A2A3dAi,

3∑
i=1

B4B5Ai,

3∑
i=1

5∑
j=4

(
BjBjAi +BjAidAi

)
,

∑
1≤i<j≤3

5∑
k=4

(
AiAjdBk +BkAjdAi

)
,

5∑
i=4

A1A2A3Bi

〉
, (D.4)
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whose classification is
3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 ×

3∏
i=1

ZNi45 ×

3∏
i=1

[
(ZNi4)2 × (ZNi5)2

]
×

∏
1≤i<j≤3

[(
ZNij4

)2
×
(
ZNij5

)2
]
×

5∏
i=4

ZN123i .

2. If we add an AAC term, e.g., A1A2C3, to twisted terms, the action is

S =
∫ 3∑

i=1

Ni
2πC

idAi +
5∑
i=4

Ni
2π B̃

idBi + pN1N2N3

(2π)2
N123

A1A2C3 +
〈 2∑
i=1

AidAidAi, A1dA2dA1,

A2dA1dA2,

2∑
i=1

B4B5Ai,

2∑
i=1

5∑
j=4

(
BjBjAi +BjAidAi

)
,

5∑
i=4

(
A1A2dBi +BiA1dA2)〉

(D.5)

with p ∈ ZN123 \ {0}. Its classification is (ZN123 \ {0}) ×
∏2
i=1 ZNi × (ZN12)2 ×∏2

i=1 ZNi45 ×
∏2
i=1 (ZNi4 × ZNi5)2 ×

∏5
i=4 (ZN12i)

2.

If α = {N1, N2, N3, N4}, we give an example for each situation.

1. If no AAC terms appear in this mixed BF theory, the action is

S=
∫ 4∑

i=1

Ni

2πC
idAi + N5

2π B̃
5dB5 +

〈 4∑
i=1

AidAidAi,
∑

1≤i<j≤4

(
AidAjdAi +AjdAidAj

)
,

∑
1≤i<j<k≤4

AidAjdAk,
∑

1≤i<j<k≤4

( ∑
s=i,j,k

AiAjAkdAs
)
, A1A2A3dA4, A3A2A4dA1,

A1A3A4dA2,
4∑
i=1

(
B5B5Ai +B5AidAi

)
,
∑

1≤i<j≤4

(
AiAjdB5 +B5AjdAi

)
,

∑
1≤i<j<k≤4

AiAjAkB5
〉
, (D.6)

whose classification is
4∏
i=1

ZNi ×
∏

1≤i<j≤4

(
ZNij

)2
×

∏
1≤i<j<k≤4

(
ZNijk

)4
× (ZN1234)3 ×

4∏
i=1

(ZNi5)2 ×
∏

1≤i<j≤4

(
ZNij5

)2
×

∏
1≤i<j<k≤4

ZNijk5 .

2. If twisted terms include A1A2C4 +A1A3C4 +A2A3C4 terms, the action is

S =
∫ 4∑

i=1

Ni

2πC
idAi + N5

2π B̃
5dB5

+ pN1N2N4

(2π)2N124
A1A2C4 + p′N1N3N4

(2π)2N134
A1A3C4 + p′′N2N3N4

(2π)2N234
A2A3C4

+
〈 3∑
i=1

AidAidAi,
∑

1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
, A1dA2dA3,

3∑
i=1

A1A2A3dAi,

3∑
i=1

(
B5B5Ai +B5AidAi

)
,
∑

1≤i<j≤3

(
AiAjdB5 +B5AjdAi

)
, A1A2A3B5

〉
(D.7)
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with p ∈ ZN124 \ {0}, p′ ∈ ZN134 \ {0}, and p′′ ∈ ZN234 \ {0}. Its classifica-

tion is
∏

1≤i<j≤3

(
ZNij4 \ {0}

)
×

3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4 ×

3∏
i=1

(ZNi5)2 ×

∏
1≤i<j≤3

(
ZNij5

)2
× ZN1235 .

3. If A1A2C3 +A1A2C4 terms are added to twisted terms at the cost of excluding some
other terms, the action is

S =
∫ 4∑

i=1

Ni

2πC
idAi + N5

2π B̃
5dB5 + pN1N2N3

(2π)2N123
A1A2C3 + p′N1N2N4

(2π)2N124
A1A2C4

+
〈 2∑
i=1

AidAidAi, A1dA2dA1, A2dA1dA2,

2∑
i=1

(
B5B5Ai +B5AidAi

)
, A1A2dB5, B5A2dA1

〉
(D.8)

with p ∈ ZN123 \ {0} and p′ ∈ ZN124 \ {0}. Its classification is (ZN123 \ {0}) ×
(ZN124 \ {0})×

∏2
i=1 ZNi × (ZN12)2 ×

∏2
i=1 (ZNi5)2 × (ZN125)2.

If α = {N1, N2, N3, N4, N5}, i.e., type-I BF theory, similar to previous discussion,
different combinations of twisted terms result in different actions and classifications. Some
examples are listed as follow.

1. If there is no AAC terms in the action, i.e.,

S =
∫ 5∑

i=1

Ni

2πC
idAi +

〈 5∑
i=1

AidAidAi,
∑

1≤i<j≤5

(
AidAjdAi +AjdAidAj

)
,

∑
1≤i<j<k≤5

AidAjdAk +
∑
l=i,j,k

AiAjAkdAl

 ,
∑

1≤i<j<k<l≤5

(
AiAjAkdAl +AkAjAldAi +AiAkAldAj

)
, A1A2A3A4A5

〉
, (D.9)

whose classification is given by H5
(∏5

i=1 ZNi ,R/Z
)
, consistent with the Dijkgraaf-

Witten cohomology classification:

5∏
i=1

ZNi ×
∏

1≤i<j≤5

(
ZNij

)2
×

∏
1≤i<j<k≤5

(
ZNijk

)4
×

∏
1≤i<j<k<l≤5

(
ZNijkl

)3
× ZN12345 .

(D.10)
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2. If we put
∑

1≤i<j≤4A
iAjC5 terms in twisted terms, the action is

S =
∫ 5∑

i=1

Ni

2πC
idAi +

∑
1≤i<j≤4

pij5NiNjN5

(2π)2Nij5
AiAjC5 +

〈 4∑
i=1

AidAidAi,

∑
1≤i<j≤4

(
AidAjdAi +AjdAidAj

)
,

∑
1≤i<j<k≤4

AidAjdAk,

∑
1≤i<j<k≤4

 ∑
l=i,j,k

AiAjAkdAl

 , A1A2A3dA4, A3A2A4dA1, A1A3A4dA2
〉
(D.11)

where pij5 ∈ ZNij5 \ {0}, 1 ≤ i < j ≤ 4. Its classification is
∏

1≤i<j≤4

(
ZNij5 \ {0}

)
×

4∏
i=1

ZNi ×
∏

1≤i<j≤4

(
ZNij

)2
×

∏
1≤i<j<k≤4

(
ZNijk

)4
× (ZN1234)3.

3. If
∑

1≤i<j≤3
(
AiAjC4 +AiAjC5) terms are considered, the action is

S =
∫ 5∑

i=1

Ni
2πC

idAi +
∑

1≤i<j≤3

(
pij4NiNjN4

(2π)2
Nij4

AiAjC4 + pij5NiNjN5

(2π)2
Nij5

AiAjC5

)

+
〈 3∑
i=1

AidAidAi,
∑

1≤i<j≤3

(
AidAjdAi +AjdAidAj

)
, A1dA2dA3,

∑
i=1,2,3

A1A2A3dAi

〉
(D.12)

where pij4 ∈ ZNij4 \ {0} and pij5 ∈ ZNij5 \ {0}, 1 ≤ i < j ≤ 3. Its classification is∏
1≤i<j≤3

(
ZNij4 \ {0}

)
×

∏
1≤i<j≤3

(
ZNij4 \ {0}

)
×

3∏
i=1

ZNi ×
∏

1≤i<j≤3

(
ZNij

)2
× (ZN123)4.

4. If A1A2C3 +A1A2C4 +A1A2C5 terms are collected in twisted terms, the action is

S =
∫ 5∑

i=1

Ni
2πC

idAi +
5∑
i=3

p12iN1N2Ni

(2π)2
N12i

A1A2Ci +
〈 2∑
i=1

AidAidAi, A1dA2dA1, A2dA1dA2

〉
(D.13)

where p12i ∈ ZN12i \ {0}, 3 ≤ i ≤ 5. Its classification is
3∏
i=1

(ZN12i \ {0})×
2∏
i=1

ZNi ×

(ZN12)2.
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