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1 Introduction

The search for new physics, albeit so far unsuccessful at the Large Hadron Collider (LHC)
remains a cornerstone of the collider phenomenology programme. The lack of direct evi-
dence for new states beyond the Standard Model (BSM) can be interpreted as an indication
of a separation between the electroweak scale and the scale of new physics Λ. Integrating
out BSM states can then be cast into a consistent and systematic extension of the SM
by higher dimensional operators O with dimensions [O] > 4 [1]. Turning the argument
around, constraints on any extension of the SM can be obtained by agnostically reflecting
all a priori allowed operator deformations in the interpretation of LHC results up to a
considered order in the Λ−1 expansion. At operator level up to dimension six in Standard
Model Effective Theory (SMEFT) [2–7]

L = LSM +
∑
i

Ci
Λ2Oi , (1.1)

this programme has been comprehensively addressed from a theoretical perspective (see
e.g. [8–14] and [15] for a recent review) and provides a theoretically consistent interpretation
at this order in the Λ−1 expansion. Related phenomenological (proof-of-principle) analyses
have focussed on (combinations of) Higgs physics [16–23], electroweak precision observ-
ables [24–26], and the top sector [27–34], owing to good statistical and systematic control
at past and present collider experiments, and their expected roles in BSM physics in general.

The experimental implementation of such a strategy is far from trivial. The number of
involved and independent effective interactions can be large, thus potentially limiting the
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sensitivity of a single, specific analysis. In parallel, systematic uncertainties can lead to
weak constraints, giving only loose and perhaps non-perturbative limits when understood
as UV constraints in concrete matching calculations.

There are two avenues to improve phenomenological sensitivity. Firstly, decreasing
the theoretical and experimental uncertainties alongside systematics of the EFT and SM
hypotheses, possibly via data-driven approaches, will lead to improved limits when more
data become available (assuming agreement with the SM prevails). Lower limits on the
direct evidence of new states, e.g., via s-channel production are predominantly driven by
the available LHC centre-of-mass energy. Therefore, the lower limit on Λ in eq. (1.1),
which is driven by the LHC’s energy coverage, will not change dramatically in the future.
Thus, any modelling improvement at scales |Q2| � Λ2 where the EFT expansion can
be considered reliable will be reflected in improved constraints on the Wilson coefficients
(WCs) Ci (modulo remaining blind directions).

Secondly, we can resolve to a more comprehensive extraction of information from exper-
imental data. Such strategies are highlighted in the recent resurgence of machine learning
(ML) applications to particle physics [35–45] (in particular focusing also on experimental
improvements [46, 47]). ‘Traditional’ collider observables such as transverse momenta, an-
gles and (pseudo)rapidities, alongside rectangular cuts on these, might not fully capture
the exclusion potential when all ad hoc modifications of correlations are considered, which
is the key motivation of the EFT approach (in particular this extends to the inclusion of
systematic uncertainties [48]).

The latter of these two avenues is the focus of this work. We focus on EFT parameter
constraints for the top sector [27–34]. In particular, we focus on pp → tt̄ production with
semi-leptonic top decays as this provides a relatively clean channel with good statistical
control to discuss ML-improved EFT strategies (see also ref. [39]). To reflect expected
correlations between the final state (i.e. fully showered and hadronised) objects, we employ
Graph Neural Networks (GNNs) with Edge Convolution [49–52]. This setup exploits the
structure of data as well as the correlations (‘edges’) of different intermediate and final state
particles (‘nodes’) and is therefore well motivated for particle physics applications [53–64].

This paper is organised as follows. In section 2, we review the EFT operators relevant
for this case study. We also detail our simulation, analysis and fit setup of tt̄ production.
section 3 is devoted to the machine learning aspects of this study: we briefly outline our
baseline cuts (taking the experimental analysis of [65] as guidance), review our ML setup,
and discuss input parameters, training and classification. We highlight the performance
improvements of a ML-informed top sector fit in section 4 and conclude in section 5.

2 Effective interactions for top pair production with leptonic decays

Any differential cross section that follows from eq. (1.1) can be written as

dσ = dσSM + Ci
Λ2dσ

(1)
i + CiCj

Λ4 dσ(2)
ij , (2.1)

where the Ci are the Wilson Coefficients (WCs) and Λ is the generic scale of new physics
(NP). The first term shows the contribution from the Standard Model (SM) only, while
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Distribution Observable Binning
1
σ

dσ
d|yh

t |
|yht | [0.0, 0.2, 0.4, 0.7, 1.0, 1.3, 1.6, 2.5]

1
σ

dσ
d|yl

t|
|ylt| [0.0, 0.2, 0.4, 0.7, 1.0, 1.3, 1.6, 2.5]

1
σ

dσ
d|ytt̄|

|ytt̄| [0.0, 0.2, 0.4, 0.6, 0.9, 1.3, 2.3]
1
σ

dσ

dpt,h
⊥

pt,h⊥ [0, 45, 90, 135, 180, 225, 270, 315, 400, 800] GeV
1
σ

dσ

dpt,l
⊥

pt,l⊥ [0, 45, 90, 135, 180, 225, 270, 315, 400, 800] GeV
1
σ

dσ
dmtt̄

mtt̄ [300, 375, 450, 530, 625, 740, 850, 1100, 2000] GeV
1
σ

dσ
d|ytt̄|d|mtt̄|

|ytt̄| [0.0, 0.2, 0.4, 0.6, 0.9, 1.3, 2.3]
mtt̄ [300, 375, 450, 625, 850, 2000] GeV

1
σ

dσ

dpt,h
⊥ d|yh

t |
pt,h⊥ [0, 45, 90, 135, 180, 225, 270, 315, 400, 800] GeV

|yht | [0.0, 0.5, 1.0, 1.5, 2.5]

Table 1. Distributions provided in ref. [65] and included in the fit in this work.

the second term is the contributions from the interference of the EFT and the SM terms.
The third term represents the contribution from the EFT squared or cross-terms which
are Λ4 suppressed. In the following, we will limit ourselves to dimension 6 (differential)
cross sections ∼ Λ−2 that result from interference of the EFT and SM amplitudes. While
this is a theoretically consistent approach, it also constitutes a conservative case for EFT
limit setting: contributions ∼ Λ−4 typically show a dramatic momentum-transfer enhanced
behaviour and are therefore relatively easy to constrain, even using standard approaches.
Put differently, any sensitivity improvement that we can identify for the linearised approach
will generalise to the inclusion of the ∼ Λ−4 terms in eq. (2.1).

2.1 Analysis setup and fit methodology

We use the SMEFTSim [66, 67] implementation to include the effective operators, which is
then interfaced with MadGraph5 [68] via FeynRules [69] and UFO [70] to generate the event
samples at leading order (LO)1 for

pp→ tt̄→ `bb̄j + /ET . (2.2)

We use a
√
s = 13 TeV analysis by the CMS collaboration [65] as inspiration to investigate

(correlated) differential measurement results and representative data binning as given in
table 1. SM predictions are injected as mock reference data for the luminosity Lref =
2.3 fb−1 of ref. [65] and we scale statistical uncertainties relative to this luminosity, using

1In this work, we focus on GNN performance of EFT parameter fits and limit ourselves to a leading
order analysis. We note that including higher order contributions for the SM hypothesis is crucial to obtain
consistency with the measured data, but will not impact the qualitative results of this work. We have
checked that the results of table 2 are qualitatively reproduced by a full NLO fit using a forthcoming
version of TopFitter [71].
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Figure 1. Representative diagram for the input graph and the network architecture used in this
paper.

√
Lref/L for extrapolations. Our implementation relies on Rivet [72, 73], which processes

events after showering with Pythia8 [74] before feeding them into the fit.
To avoid imposing any assumptions as to correlations — and remove the chance that

double-counting of events would artificially inflate sensitivity to EFT contributions — a
single distribution is used where bin-to-bin correlations are included, and a single bin is
used where they are not. In the absence of a full reference correlation/covariance matrix
the selection of the bin/distribution is made on a coefficient-by-coefficient basis, with the
input with maximum deviation from a fixed point on that axis being selected. This maxi-
mum sensitivity, minimum correlation assumption input subset is then used to determine
individual and profiled bounds for the coefficient being studied. Where a normalised dis-
tribution is used we must drop a bin, as otherwise the covariance matrix will be singular.
The dropped bin is chosen such that we obtain the most stable covariance matrix, with
the bin with the largest uncertainty being dropped if there are multiple bins leading to an
equivalently well-conditioned covariance matrix.2

In the following we will consider bounds for all relevant operators using the dimen-
sionless ‘bar’ notation

C̄i = Ci
v2

Λ2 , (2.3)

with the electroweak expectation value v ' 246 GeV.
In many standard analyses, cut-and-count techniques are often used to restrict the

phase space region in such a way that the SM contamination is minimised, and as a
result this yields an increased new-physics sensitivity. However rectangular cuts often
yield inferior sensitivity compared to the methodically selected regions by means of machine
learning classifiers. In our scenario an efficient event-by-event classification using GNNs,
separating the generated events into either pure SM or the SMEFT operators that sourced
them, could lead to improvements on the bounds of WCs after imposing cuts on the output
score of the network.

2For details on statistical inference we refer interested readers to refs. [27, 28].
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3 Graph representation of events

In order to use a GNN as a classifier, the events need to be embedded in a graph structure
with nodes, edges and features associated to observables of final states or reconstructed
objects. While various different approaches are possible to construct a graph from the
IR-safe, calibratable and detectable final states, we employ a physics-motivated strategy,
creating graphs similar to the tree of the chain of eq. (2.2).3 Concretely, we pre-process
the data samples and require at least two jets of transverse momentum pT (j) > 20 GeV
and pseudorapidity |η| < 5 that are not b-tagged. The event is vetoed if there are not at
least two b-jets and one lepton ` in the central part of the detector (|η(`)| < 2.5), where
the b-jets must also satisfy pT (b) > 20 GeV. Subsequently, we embed the passed events
into graphs using the following steps (see also figure 1):

(i) Nodes. Firstly, the missing transverse momentum (MTM) is identified by balancing
the net visible momenta, −p(visible), neglecting the longitudinal components. A node is
added corresponding to MTM. Then, for each lepton, we attempt to reconstruct the W
four-momentum as a sum of the lepton’s four-momentum and the MTM. The invariant
mass of the W candidate is calculated and if it falls within [65, 95] GeV a node is added,
labelled W1, as well as one for the b-jet b1 that has the smallest separation ∆R =√

∆η2 + ∆φ2 from W1. In the case where there are more lepton-MTM combinations
with compatible invariant mass, the one closest to the W boson mass is selected. The
top from the leptonic decay chain t1 is finally reconstructed from the four-momenta of `,
b1 and MTM and obtains its respective node. Following a similar procedure, we consider
combinations of jets to find a pair with dijet invariant mass 70 GeV ≤ m(jj) ≤ 90 GeV.
If a pair is found we add nodes for the two jets j1, j2 and for the second boson W2,
otherwise we only add nodes for the two leading jets. From the remaining b-jets a node
is added for the leading one, b2, as well as for the second top t2 whose four-momentum
is reconstructed using b2, j1 and j2. We scan over the remaining particles and if any are
within ∆R < 0.8 of any of the identified or reconstructed objects we add a node that will
be connected only to the nearby object.

(ii) Edges. The connections between the nodes create the adjacency matrix of the graph
and the nodes of the final states are connected to the ones of the reconstructed objects
from which they are derived. We first connect the MTM and lepton to W1 and subse-
quently, W1 and b1 are connected to the first top quark node. If a W1 was not created
then the aforementioned final states connect directly to t1.4 Similarly, for the other leg
of the decay chain, if W2 was successfully reconstructed, we join its node with the two
jets used to reconstruct it, and then W2 and b2 are connected to the top node. The jets
are directly connected to the top if there is no node for W2. Any node originating from
the remaining final states is connected to the node of the object that satisfied ∆R < 0.8.

3We also checked the fully connected graph and found low performance for the given network as the
number of edges increases, which carry much less physics information. Hence the decay chain-like structure
in the graph gives good performance.

4We expect that this will lead to a further enhancement of sensitivity when the Λ−4 non-resonant
contributions are considered.
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(iii) Node features. After constructing the node and edges, we associate each node with a
feature vector [pT , η, φ, E,m,PID], which represent transverse momentum, pseudorapid-
ity, azimuthal angle, energy, mass and particle identification number respectively.

3.1 Graph neural network with edge convolution

Convolution networks have seen a range of developments in the past few years. These have
created the capability to employ multi-scale localised spatial features. However, Convolu-
tional Neural Networks (CNNs) are limited to work on regular Euclidean-data like images.
Recent GNN developments have overcome this limitation through generalising CNNs to
operate on graph structured data, facilitating the exploration of non-Euclidean domains
of the data [75]. This was formalised as Message Passing Neural Networks (MPNNs) in
ref. [51] for supervised learning applications. We briefly describe the general paradigm of
the MPNN, which we will generalise later for the edge convolution (EdgeConv) network
used in this paper. MPNNs have two main components: a message-passing phase and a
graph readout layer. The message passing is defined as a mathematical operation between
two nodes i and j. We define x(l)

i as the ith node’s features and ~e (l)
ij as the edge connecting

the nodes i and j at the lth time-step, where the vector sign represents the directed graph.
A graph can be undirected or directed; we have used bi-directed graphs for this study.
During the message-passing phase a message ~m (l)

ij is calculated between the two nodes by
the following operation,

~m
(l)
ij = ~M (l)(~x (l)

i , ~x
(l)
j , ~e

(l)
ij ) . (3.1)

The message function can be a linear activation function or a multilayer-perceptron (MLP),
which is shared between the edges and is analogous to convolution operation (here we use
a linear activation function for the message function). Once the messages between all
connected nodes have been calculated in a layer, each node feature is updated using an
aggregation function

~x
(l+1)
i = ~A(~x (l)

i , {~m (l)
ij | j ∈ N (i)}) , (3.2)

where N (i) are the nodes which are connected to ith node and ~A is the permutation
invariant function (for instance ‘max’, ‘sum’, or ‘mean’). The vector ~x (l+1) is the input
to the next message passing layer. For graph classification, after some message passing
operation L we perform a permutation invariant graph readout operation � on the final
node features x(L)

i ,
~X = �(~x(L)

i |i ∈ G), (3.3)

where G denotes the input graph. This gives us fixed length representation of (possibly)
variable length graphs, and feeds into a downstream neural network.

We use an EdgeConv network in this study, which is an ideally suited network for
exploiting the edge features from given node features. The edge convolution operation is
defined with the following message-passing function

~x
(l+1)
i = 1

|N (i)|
∑

j∈N (i)
ReLU

(
Θ(~x (l)

j − ~x
(l)
i ) + Φ(~x (l)

i )
)
, (3.4)
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where aggregation for each node is done using ‘mean’, after which the features of each
node are updated. The linear layers Θ and Φ take the inputs and map them to identical
dimensional spaces. We use L = 2 and mean graph-readout.

3.2 Network architecture and training

We use the Deep Graph Library [76] and PyTorch [77] to construct the graphs and the
networks that classify the different EFT signal contributions and the SM ‘background’.
Models with different architectures are trained on data samples that consist of 70000 events
for each class, with 80%, 10% and 10% used for training, validation and testing respectively.
The network models considered, incorporate EdgeConv layers followed by hidden linear
layers and ReLU is used as the activation function for each layer. Probabilities for each
class can be obtained from the output layer by applying the softmax function. We choose
the categorical cross-entropy loss function for the multi-class classification problem and
use the Adam optimiser with a learning rate of 0.001 to minimise the loss function. The
learning rate decays with a factor of 0.1 if the loss function has not decreased for three
consecutive epochs. We train the models for 100 epochs in mini-batches of 100 graphs and
an early stopping condition when no loss decrease has occurred for ten epochs.

By varying the amount of layers and nodes, and training the different models on the
data, we find that the configuration of two EdgeConv layers of 60 nodes and one hidden
linear layer of 40 nodes performs particularly well for our scenario. Any event used during
training or validation is not considered further in any other part of this work. The loss and
accuracy curves for the classifying events have been checked to avoid overtraining. It is
worth highlighting that we observe signs of overtraining when we consider deeper networks.
The good performance of a relatively shallow network signifies that non-resonant physics is
characterisable by relatively few phenomenological properties, which is consistent with the
findings of traditional differential EFT fits (see in particular ref. [19]). This observation will
form the baseline of the qualitative discussion of a two-operator example in the next section.

4 GNN-improved Wilson coefficient constraints

4.1 A minimal example

For illustration purposes, we first limit our study to a three-class classification problem.
The network output in this example returns the probability of an event belonging to each
of the three classes. An event is then assigned to the EFT/SM class with the greatest
corresponding probability. Generalising this to a higher and critical number of WCs will
be the focus of section 4.2.

The restriction employed in this section is motivated from the generic modifications
that can be expected from EFT interactions. Momentum-dependent interactions will typ-
ically enhance the tails of momentum-dependent distributions compared to the SM, while
interactions that modify SM couplings (feeding into, e.g., a modified top quark width)
will predominantly lead to a modified inclusive rate with momentum-related distributions
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Figure 2. The normalised pT (b1) dis-
tributions at the 13TeV LHC for the
two operators of the three-class exam-
ple, eq. (4.1).
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Figure 3. The probabilities calculated for each event to be a result of each SMEFT insertion is
shown. On the right the Receiver Operator Characteristic (ROC) curves are shown. We calculate
these in a one-vs-rest scheme for each operator.

similar to the SM. We reflect this in our choice of operators for this section:

O(8)ii33
qu = (q̄iγµTAqi)(ū3γ

µTAu3) ,

O(3)ii33
qq = (q̄iγµτ Iqi)(q̄3γ

µτ Iq3) .
(4.1)

The distributions of the hardest b jet for these operators are given in figure 2. Correlated
with the events hardness are more central final states and characteristically modified an-
gular and rapidity separations. Identifying the most appropriate superposition of physical
observables is therefore critical for a particularly sensitive EFT analysis. We consider the
two operators of eq. (4.1) as they exhibit a particularly distinguishable phenomenology,
but they will also allow us to discuss the limitations of using different approaches to a
ML-informed limit setting.

In figure 3 (left), the probabilities calculated for each event to be a result of each
SMEFT insertion are shown. As can be expected, events arising from O8(ii33)

qu are more
commonly located in the upper left region (large O8(ii33)

qu probability, small O3(ii33)
qq proba-

bility) while events from O3(ii33)
qq are in the bottom right. In contrast, the SM events usually
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Figure 4. Example two-dimensional his-
tograms for each contribution, normalised to
the cross section rate.

end up in a region where the probabilities for O8(ii33)
qu and O3(ii33)

qq are both low (and the
probability of belonging to the SM is high due to the normalisation of probabilities). The
network is able to discriminate efficiently among the three classes and different regions can
be efficiently removed by cuts on the two output probabilities. On the right in figure 3 the
Receiver Operator Characteristic (ROC) curves are shown. We calculate these in a one-vs-
rest scheme by first binarising the labels and using the network score output for each WC.
We also show an EFT vs SM ROC curve where all EFT labels are marked as signal and
the SM as background. We construct the ROC curve using the summed scores for each
new physics WC, which we later generalise when more than two contributions are on.

To examine the improvement of the network performance for this simplified test case
of two WCs modifying SM production, we performed a χ2 fit for each operator to yield
bounds on the WCs. To construct the χ2 (for details see ref. [28]), we use the distribution
pT (b1), the transverse momentum of the leading b-jet. To gain as much statistical control as
possible, we also extrapolate the results to an integrated luminosity of 3 ab−1, in line with
the expected performance of the High-Luminosity (HL) LHC. The qualitative pattern of
results, however, is independent of the luminosity chosen. Performing this analysis on the
full datasets gives the contours shown in black in figure 5, establishing a baseline against
which we can evaluate the improvement in the constraints from applying the GNN results.

To demonstrate the power of the GNN approach, we cut on the datasets, based on
the probability assigned by the network of belonging to a given class; only events with a
probability greater than an optimised value of belonging to one operator class are used in
the χ2 fit. The correlation of figure 3 (left) allows us to select a threshold probability to cut
on, which has the effect of substantially reducing the SM background and the contamination
from the other operator, resulting in a relatively stronger signal effect and thus a tighter
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Figure 5. WC constraint contours at the 95% C.L. from χ2 fitting; in black from the data of the
baseline selection of section 2 which also passes the network requirements. The left plot shows the
contours from cuts on the NN scores at the optimal value of these score cuts, with the analysis
performed using pT (b1) distributions. The right plot shows the BSM score cut as in the left plot,
along with the contour from the 2D score histogram of figure 4 (with no score cuts) analysis, as
well as an analysis using the 1D BSM score histogram. For details see text.

constraint on the WC for the operator for which the cut is performed. This is shown in
the blue and red contours in figure 5, where the values of the cuts have been tuned to give
maximal performance for each operator respectively, whilst avoiding completely depleting
bins in the SM pT (b1) distribution, as to do so would lead to unrealistic bounds on the
WCs as statistical control is lost.

Due to this optimisation the bounds on individual coefficients improve, yet the other
coefficient is essentially free, with expectedly far worse performance than in the original
case with the full dataset. To resolve this and improve the combined bounds, we consider
the probability P(BSM), which is simply the sum of the network assigned probabilities of
each operator, i.e.

P(BSM) = P(O(8)ii33
qu ) + P(O(3)ii33

qq ) (4.2)

for the two operator classification considered here. This does indeed result in a combined
bound that is superior to the original analysis.

An alternative approach to formulating constraints is to directly employ the output of
the GNN, i.e. using 2D histograms of the probabilities from the network (see, for example,
the individual histograms from each contribution in figure 4), in place of the pT (b1) distri-
butions of figure 2. A d-dimensional classification can be converted into a d−1 dimensional
probability histogram. This can act as a template for limit setting using the information
that has condensed down the phenomenologically available information into the opera-
tor classification. Considering again O(8)ii33

qu and O(3)ii33
qq , this is demonstrated in figure 4,

where the three histograms can be used to construct a χ2, in the same way as the 1D pT (b1)
distributions, allowing the information of all three histograms to contribute. The resulting
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Figure 6. ROC curves for the scenario where multi-class classification is performed on thirteen
SMEFT operators and the SM.

contour from this method is shown on the right plot of figure 5. This method also improves
the bounds on the WCs compared to the original pT (b1) distribution analysis with no cuts
on the probabilities required. This approach is feasible when we consider only a small
(sub)set of the relevant interactions. Turning to the full d− 1 dimensional histogram very
quickly increases the statistical uncertainty. As can be seen from the qualitative similarity
of the two approaches, a minimisation of

P(SM) = 1− P(BSM) (4.3)

appears to be adequate for multi-dimensional EFT analyses, particularly at luminosities
below 3 ab−1.

It should be noted that the one-dimensional P(BSM) histogram could be used to
construct a χ2 as well, in order to obtain the contours on the C(3)ii33

qq −C(8)ii33
qu plane. How-

ever, the sensitivity is limited compared to the other approaches along certain directions,
as shown in figure 5, due to the loss of information in the projection of the two-dimensional
output to a one-dimensional score. We therefore have not explored this approach further.

4.2 Fit constraints with GNN selections

Extending the qualitative discussion of the previous section to the thirteen dimensional
SMEFT parameter space, we show the Receiver Operator Characteristic (ROC) curves
of the full classification in figure 6. The ROC curves are calculated with the generalised
procedure discussed above. Again we see that the network5 is capable of distinguishing
operators adequately.

Starting from the baseline sensitivity as quoted in table 2 (see also section 2), we
first show how contributing operators are impacted by imposing ML score cuts in figure 6.
Sizeable improvements can be obtained when the momentum enhancement is present (e.g.

5By optimizing the hyperparameters for this scenario we conclude that the architecture used for the two
operators case continues to perform particularly well. Deeper networks do not significantly improve the
performance and often suffer from longer training times and overtraining.
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Figure 7. Representative relative improve-
ment (decrease in the 2σ Wilson coefficient
interval) over the individual (orange) and pro-
filed (blue) operator constraints quoted in ta-
ble 3 by imposing cuts on the ML score.
Bounds were obtained at an integrated lumi-
nosity of 3/ab.

2.3 fb−1 3 ab−1

Individual Profiled Individual Profiled
C̄G (−0.0543, 0.0535) (−0.1785, 0.1776) (−0.0015, 0.0015) (−0.0047, 0.0047)
C̄

(3)33
ϕq (−0.0317, 0.0326) (−0.0806, 0.0758) (−0.0009, 0.0009) (−0.0022, 0.0022)

C̄33
uG (−0.0253, 0.0247) (−0.0622, 0.0655) (−0.0007, 0.0007) (−0.0017, 0.0017)

C̄33
uW (−0.0234, 0.0228) (−0.0544, 0.0580) (−0.0006, 0.0006) (−0.0015, 0.0016)

C̄
(8)33ii
qd (−0.1543, 0.1558) (−0.3789, 0.3698) (−0.0043, 0.0043) (−0.0104, 0.0104)

C̄
(1)i33i
qq (−0.0202, 0.0204) (−0.0495, 0.0484) (−0.0006, 0.0006) (−0.0014, 0.0014)

C̄
(3)i33i
qq (−0.0101, 0.0102) (−0.0247, 0.0241) (−0.0003, 0.0003) (−0.0007, 0.0007)

C̄
(3)ii33
qq (−3.2964, 3.3259) — (−0.0917, 0.0917) (−0.3045, 0.3046)

C̄
(8)33ii
qu (−0.0867, 0.0875) (−0.2127, 0.2079) (−0.0024, 0.0024) (−0.0058, 0.0058)

C̄
(8)ii33
qu (−0.0577, 0.0583) (−0.1416, 0.1383) (−0.0016, 0.0016) (−0.0039, 0.0039)

C̄
(8)33ii
ud (−0.1598, 0.1613) (−0.3923, 0.3824) (−0.0044, 0.0044) (−0.0107, 0.0107)

C̄i33i
uu (−0.0225, 0.0228) (−0.0553, 0.0540) (−0.0006, 0.0006) (−0.0015, 0.0015)

C̄
(3)ii33
lq — — (−0.3289, 0.3288) (−1.8493, 1.8930)

Table 2. Baseline 2σ bounds for different luminosities.
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2.3 fb−1 3 ab−1

Individual Profiled Individual Profiled
C̄G 0.07% 14.12% 0.07% 11.09%
C̄

(3)33
ϕq 33.74% 34.19% 33.73% 33.48%

C̄33
uG 28.29% 32.18% 28.28% 30.74%

C̄33
uW 34.86% 35.35% 34.85% 35.53%

C̄
(8)33ii
qd 4.71% 4.68% 4.71% 4.76%

C̄
(1)i33i
qq 3.50% 3.45% 3.50% 4.73%

C̄
(3)i33i
qq 4.35% 4.28% 4.35% 5.00%

C̄
(3)ii33
qq 63.83% — 63.83% 71.91%

C̄
(8)33ii
qu 3.45% 3.51% 3.45% 3.48%

C̄
(8)ii33
qu 3.74% 3.72% 3.74% 3.77%

C̄
(8)33ii
ud 4.62% 4.46% 4.62% 4.79%

C̄i33i
uu 3.38% 3.35% 3.38% 1.95%

C̄
(3)ii33
lq — — 10.57% 35.52%

Table 3. Maximum improvements in 2σ bounds via a cut on the ML score.

in case of C̄33
uG). Similarly, the graph network performs well in discriminating the non-

resonant top decay contributions, e.g. in case C̄33
uW . Improvements ranging between 5%

and 60% are achievable in such instances (see table 3), depending on the operators under
consideration, however, always at stringent cuts on the ML score to achieve a generic
BSM-sensitive selection (before losing statistical control for score cuts approaching unity).
Representative operator improvements as a function of the ML score are given in figure 7.
Operators showing a relatively small improvement are already under relatively good control
via the inclusive rate and the baseline selection, which establishes good sensitivity to such
non-SM interactions. In particular this holds for the C̄G direction (which can be constrained
in more adapted ways by exploiting multi-jet production [78, 79]).

Since individual constraints focus on one operator fixing the rest of the WCs to zero, it
is common practice to profile over the rest of the WCs by determining their value such that
the χ2 function is minimised. In the scenario where the analysis is particularly sensitive
to the presence of any additional operator, a significant decrease in sensitivity will arise.
We calculate the improvement in the case of profiled WCs which, as shown in figure 7,
remains similar to the individual WCs case. This is expected as the network selection
removes background contributions but keeps new-physics effects. However, we note that
the improvement on profiled bounds can be greater than on individual ones as in figure 7.
This occurs when the cut on the EFT score selects a region where the impact on the
bounds of a particular operator by the presence of additional ones is reduced, even though
the robustness of one class against variations of others is not taken into account in our work.
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5 Summary and outlook

The absence of direct evidence for new physics beyond the Standard Model at the LHC is as
surprising as it is challenging for particle physics. Turning to effective field theory methods
with the aim of fingerprinting new physics through the observation of modifications of
expected SM correlations in the plethora of LHC data is a well-motivated approach to
experimentally challenge, and perhaps, overcome the current status quo. The multitude
of ad hoc new physics interactions in the SMEFT approach demands tailored approaches
to achieve the most sensitive limit setting. In this sense, limiting analyses to a handful
of, albeit motivated, differential distributions is not beneficial for enhancing the sensitivity.
Conversely, employing machine learning techniques that fingerprint and exploit correlations
in data provides a highly adaptive avenue to enhance the overall sensitivity that can be
achieved at the LHC but also other (future) collider experiments.

In this work, we have focused employing on GNNs for EFT limit setting. GNNs are
particularly motivated approaches for this purpose as they allow us to directly reflect the
graph structure which is imposed by EFT interactions in the classification and eventual
limit setting. We base our analysis on the semileptonic tt̄ final states, as this is a motivated
phenomenological arena for the presence of new interactions, but also because we face a
critically large Wilson coefficient parameter space for multi-label classification. We find
that large improvements of the sensitivity become achievable when correlations are not yet
fully exploited in the inclusive base selection. This demonstrates that machine learning of
multi-labelled collider data provides an excellent avenue towards improving the sensitivity
of EFT-related measurements at colliders. We find that this improvement translates from
individual to profiled bounds; our results also indicate a strategic approach to improve pro-
filed constraints by tensioning operators against each other, which is not directly accessible
by minimising the SM probability, but highlights the relative operator probabilities as an-
other avenue for future investigations. Along these lines, we also note that optimisations of
the ML score can be achieved via different weightings of the individual class probabilities.
This way more model-specific (i.e. matched) interpretations of EFT constraints can be in-
cluded to the machine learning stage, which should lead, in principle, to further sensitivity
enhancements.

We note that the results of our exploratory study presented here are based on a Monte
Carlo analysis; the comparison of actual data with Monte Carlo predictions is affected by
a range of theoretical and experimental uncertainties. While our results do not include
such uncertainties, in principle it is possible to treat them via Generative Adversarial
Neural Networks, e.g. [80, 81]. Such an approach would discriminate between the different
(labelled) hypotheses when the data is well-described by individual classes or superpositions
of classes, effectively removing modelled uncertainty parameters from the classifier score.
In general, this will lead to a decreased sensitivity compared to the idealised situation of the
proof-of-principle analysis presented in this work. There are examples of such approaches
to treat theoretical [48] and experimental [82] uncertainties. We leave modifications of the
architecture presented in this paper along these lines for future work.
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