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1 Introduction

Quantum quadratic gravity (QQG) is a possible UV complete QFT of gravity that was
shown early to be renormalizable [1]. QQG describes a massless graviton, a massive spin-2
ghost and a massive scalar, and we shall refer to these particles collectively as graviparticles.
The theory may be defined in terms of the ghost mass mG and the graviscalar mass mS ,

S = − 1
16πG

∫
d4x
√
−g

(
R+

RµνR
µν − 1

3R
2

m2
G

− R2

6m2
S

)
. (1.1)

These masses are naturally of order the Planck mass mPl. The quantity Gm2
G is a dimen-

sionless coupling, and it is an asymptotically free coupling, even when including all matter
contributions to the running [2–4]. The graviton exists in both the IR and UV limits of the
theory. Both of these limits are well behaved due to the massive graviparticles that alter
and improve the UV behavior of the theory above their mass scale. Unlike QCD, where the
quarks and gluons are appropriate degrees of freedom only for the UV limit, the perturbative
degrees of freedom of QQG are sufficient to describe both the IR and UV limits.

The perturbative theory satisfies the usual requirements of locality, unitarity and
analyticity. What the theory lacks is positivity. Both the lack of positivity and the
renormalizability of the theory originates in the same place, namely a relative minus sign
between the massive spin-2 propagator and the graviton propagator. The lack of positivity
has two further implications. One is that the dressed ghost propagator is such that the
ghost decays backward in time. The other is that certain exclusive cross sections involving
the ghost are negative. These two apparent problems cancel each other. The former shows
that the ghost is not a true asymptotic state, and so the particular cross sections that are
negative are not physically meaningful on their own. On the other hand these minus signs
end up ensuring good high energy behavior of suitably inclusive cross sections [5]. This is
how the theory ensures good high energy behavior of physically relevant cross sections, as
might be expected in a theory that is unitarity, renormalizable and perturbatively predictive.
Cancellations that occur at the level of cross sections is not a new concept in QFT; it is
well known in the treatment of infrared divergences.
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In [5] we studied the ultra-Planckian scattering of graviparticles and we developed a
parton-shower-like description. The hard scattering subprocesses are described by inclusive
differential cross-sections and we found these to be well-behaved. In QCD the cross sections
for jet production are similarly obtained from suitably inclusive cross sections among the
quarks and gluons, the partons in this case, even though the partons are not the asymptotic
states. In QQG the partons are the graviparticles, and the spin-2 ghost in particular is
not an asymptotic state. The relevance of inclusive partonic cross sections is due to an
effective duality between all possible partonic states and all possible physical states. We also
learn from QCD that partonic cross sections apply even though the actual hard subprocess
scatters the off-shell partons participating in the initial state or final state parton showers.
In QQG it is with this off-shell description that we see cancellations at the amplitude level
that are occurring because of differing signs of off-shell graviparticle propagators. This is
another way of seeing how good high energy behavior can follow, in a way similar to how
renormalizability follows. The differing signs and cancellations among exclusive partonic
cross sections is just another manifestation of this.

The topic of this paper is more straightforward. We are interested in the corrections to
the low energy theory in the form of powers of E/mPl that result from the UV completion,
in particular from the tree-level exchange of massive graviparticles. These corrections
should provide an imprint of the good high energy behavior that this theory enjoys. But
something unusual happens when this issue is explored in the context of graviton-graviton
scattering. In the particular case of gg → gg tree-level amplitudes, QQG produces results
that are identical to those produced by GR [6]. Thus in this case there are no E/mPl
corrections, although presumably they would show up at one-loop level. We will thus turn to
photon-photon scattering to explore the relation between IR corrections and the UV theory.

It has become popular to establish constraints on the IR corrections even when the
UV theory is not known, e.g. [7–11]. These constraints follow from dispersion relations
along with the analyticity and unitarity of the UV theory. Positivity is also crucial for these
results, and this is either just assumed implicitly, or it is assumed to be a consequence of
unitarity. Perturbative QQG is an explicit counter-example that enjoys analyticity and
unitarity but not positivity. Thus it is of interest to explore our results in the context of
these standard methods. In addition we are able to more easily address the issue of the
t-channel pole in the forward scattering amplitude, due to the massless graviton, since we
are working in the context of a UV complete theory.

The following propagator describes the propagation of the three graviparticles (graviton,
ghost G and graviscalar S),

Gµνρσ = i16πG
(
− 2m2

G

q2(q2 −m2
G)
P 2
µνρσ + m2

S

q2(q2 −m2
S)
P 0
µνρσ

)
, (1.2)

P 2
µνρσ = 1

2(θµρθνσ + θµσθνρ)−
1
3θµνθρσ,

P 0
µνρσ = 1

3θµνθρσ θµν = ηµν −
qµqν
q2 .
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For γγ → γγ there are three diagrams with graviparticles exchanged in the s, t and u

channels. We display the required graviparticle-photon-photon vertex in the appendix.
In addition to γγ → γγ we shall also consider γγ → GSGS where GS denotes any of the
graviparticles, g, G or S. Here there are two diagrams with a photon exchanged in the t
and u channels, one with a graviparticle in the s-channel, and one contact diagram. The
additional vertices for this process are displayed in the appendix, at least for vertices
involving photons.

It is worth stressing that the usual Feynman iε prescription applies at all poles of the
graviparticle propagator, and thus only the overall sign of the ghost pole is unusual. This
is key to the renormalizability of the theory [1]. It is also associated with perturbative
unitarity, that is with the standard perturbative derivation of the optical theorem. The
optical theorem in QQG reflects the lack of positivity by having new minus signs in some
corresponding terms on either side of the relation [5]. Up to such minus signs, the analytic
properties of Feynman diagrams is standard. We previously mentioned the dressed ghost
propagator that is obtained via a resummation, and this yields nonstandard analytic
properties corresponding to backward in time decay. But the perturbative expansion utilizes
the bare propagator in (1.2), and the perturbative results order by order will have standard
analytic properties.

2 Photon-photon scattering to two photons

The differential cross-section for γγ → γγ is

dσ

dΩ = 1
64π2s

1
4 |M|

2, (2.1)

where sums over polarizations are implicitly present in |M|2 and the 1/4 is due to the
average over initial polarizations. We shall present various results for |M|2 in terms of
Mandelstam variables, which can be transformed back to CoM variables E and θ if desired.
Our full tree-level gravity-induced result, valid at all energies, is

|M|2 = 32π2G2m4
G

F1 + F2m
2
G + F3m

4
G + F4m

6
G + F5m

8
G

u2t2s2(s−m2
G)2(t−m2

G)2(u−m2
G)2 , (2.2)

F1 = 1
32v

6 − 1
2w

2v3 + 3w4, (2.3)

F2 = 1
2wv(v3 − 8w2), (2.4)

F3 = −1
8v

2(v3 − 12w2), (2.5)

F4 = −w(v3 + 12w2), (2.6)

F5 = 1
8v(v3 + 32w2) = s8 + t8 + u8, (2.7)

where v = s2 + t2 + u2 and w = stu. The ghost mass mG appears, but not the graviscalar
mass mS , even though the full graviparticle propagator has been used. We will return to
this point in section 4 where S appears in the final state.
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The low energy limit (mG →∞) is

|M|2 = 32π2G2 s
8 + t8 + u8

s2t2u2 . (2.8)

When written in the CoM frame in terms of E =
√
s/2 and the scattering angle θ, this is

|M|2 = (8πG)2E4 cos(θ)8 + 28 cos(θ)6 + 70 cos(θ)4 + 28 cos(θ)2 + 129
sin(θ)4 . (2.9)

This agrees with eq. (15) of [12]. At low enough energy this result will dominate the electron
loop contribution, since that falls faster in the infrared like |M|2 ∼ α4E8/m8

e. The latter
also doesn’t have the 1/ sin(θ)4 enhancement.

The high energy limit (mG → 0) is

|M|2 = 32π2G2m4
G

v6/32− w2v3/2 + 3w4

s4t4u4 . (2.10)

This remains bounded in the high energy limit when s, t, u → ∞. It yields a differential
cross section dσ/dΩ that falls like 1/E2 as E → ∞, as might be hoped for in a UV
complete QFT for gravity. (Similar good high energy behavior for scalar-scalar scattering
in QQG was reported in [13].) Compared to the low energy result, there is an even stronger
1/(t4u4) ∼ 1/ sin(θ)8 enhancement in the forward and backward scattering limits. We see
from the full result (2.2) how 1/(t2u2) behavior goes to 1/(t4u4) behavior when t, u→∞.

Since we expect that the gravitational coupling Gm2
G is of order one, (2.10) can easily

dominate over the high energy contributions from charged matter loops that are suppressed
by α4. The one-loop corrections to our tree-level result will cause Gm2

G to effectively run
and become weaker in the deep UV. Any matter particle or graviparticle in the loop
contributes to the weakening effect.1 Thus in the deep UV it could be that the coupling
Gm2

G becomes weaker than some other asymptotically-free matter coupling. But at least in
some energy range, gravity dominates ultra-Planckian scattering.

Let us turn to a study of the amplitudes. We will denote the polarization vector of
each photon by t when it is in the scattering plane, and by u when it is orthogonal. For the
various combinations of polarizations there are four amplitudes,

tttt or uuuu: g(s, t, u) (2.11)
tutu or utut: h(t; s, u) (2.12)
ttuu or uutt: h(s; t, u) (2.13)
tuut or uttu: h(u; s, t) (2.14)

The tttt or uuuu amplitude involves four identical particles and thus g(s, t, u) is s-t-u
symmetric. The other three amplitudes are respectively s-u, t-u, s-t symmetric. The two

1In [10] it is argued that a particular contribution to photon-photon scattering, the electron-loop vertex
correction to the graviton exchange diagram, produces some problem at high energy. We do not agree with
that assessment.
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functions are, with a factor of 8πG implicit,

g(s, t,u)≡
1
4(v3−12w2)m2

G+2vwm4
G+ 1

2v
2m6

G

4stu(s−m2
G)(t−m2

G)(u−m2
G)

, (2.15)

h(t;s,u)≡ (−2s4−5s3u−8s2u2−5su3−2u4)m2
G+(4s2u+4su2)m4

G+(4s2+6su+4u2)m6
G

4t(s−m2
G)(t−m2

G)(u−m2
G)

.

(2.16)

Expanding in powers of 1/m2
G gives

g(s, t, u) = (s2 + t2 + u2)2

8stu − s2 + t2 + u2

2m2
G

+ 3stu
4m4

G

+ · · · , (2.17)

h(t; s, u) = −2s2 + 3su+ 2u2

2t + su

m2
G

− t(2s2 + su+ 2u2)
4m4

G

+ · · · . (2.18)

The first terms are present in GR, and we can compare and expand these GR terms of all
four amplitudes (2.11)–(2.14),

(s2 + t2 + u2)2

8stu = −s
2

2 t
−1 − 1

2s− t+ t3

2su, (2.19)

−2s2 + 3su+ 2u2

2t = −s
2

2 t
−1 − 1

2s− t, (2.20)

−2t2 + 3tu+ 2u2

2s = −s− 1
2 t−

1
2st

2, (2.21)

−2s2 + 3st+ 2t2

2u = s+ 1
2 t+ 1

2st
2 + t3

2su. (2.22)

If we wish to take the t→ 0 limit naively then these results show that this can only be done
for (2.13) and (2.14). Taking this limit for (2.13) allows us to have a first look at s/m2

G

corrections,

−s2
(s2 − 2m4

G)
s2 −m4

G

= −s− 1
2m4

G

s3 − 1
2m8

G

s5 − 1
2m12

G

s7 +O(s9). (2.23)

(2.14) is the same but without the overall minus sign. The fact that both signs occur is
related to the fact that the t→ 0 limits of (2.13) and (2.14) are not elastic forward scattering
amplitudes, which thus prevents their use in the optical theorem. ((2.14) represents elastic
scattering in the backward limit, but this gives the pole −1

2s
2/u.)

3 Forward scattering amplitudes

Thus we must focus on (2.11) and (2.12), and the first thing we can do is to look at their
large s behavior for fixed t. The leading term at large s for both amplitudes is

m2
Gs

2

2t(t−m2
G)

= −s
2

2 t
−1 − 1

2
s2

m2
G

− 1
2
s2

m4
G

t− 1
2
s2

m6
G

t2 +O(t3), (3.1)

which we have then expanded in t. We continue to leave the 8πG factor implicit. Thus along
with the −1

2s
2/t pole there is another s2 term that survives as t→ 0, coming from the UV
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completion. This −1
2s

2/m2
G contribution to the forward scattering amplitude means that

the Froissart bound is not satisfied. This is despite the locality, analyticity and unitarity of a
theory that produces bounded amplitudes when s, t, u→∞. Although the Froissart bound
is often assumed to apply to gravity theories, we see from (3.1) that it is violated for the
simple reason that the UV completion generates a massive t-channel pole that accompanies
the massless t-channel pole.

We may define the full UV contribution to the forward scattering amplitude as

MUV (s) =
(
M(s, t)−MGR(s, t)

)∣∣∣
t=0

. (3.2)

Using either (2.11) or (2.12) forM(s, t), with the associated (2.19) or (2.20) forMGR(s, t),
we find

MUV (s) = − s2

2m2
G

(s2 − 2m4
G)

s2 −m4
G

(3.3)

= − 1
m2
G

s2 − 1
2m6

G

s4 − 1
2m10

G

s6 − 1
2m14

G

s8 +O(s10). (3.4)

Thus the UV completion contributes to the forward scattering amplitude in such a way
that the low energy expansion parameters are negative definite.

Before discussing the meaning of this, it is interesting to put it into the context of
standard approaches that are used when, unlike our case, the UV completion is not known.
If M(s, t = 0) is an elastic forward scattering amplitude, then positivity constraints on
expansion parameters are usually found by considering the behavior of An(s) =M(s, t =
0)/sn on the complex s plane, with n = −3 being the typical choice. It is a well known
problem for gravity thatM(s, t = 0) is not defined due to the −1

2s
2/t pole, as is the case

for (2.11) and (2.12). We shall approach this problem by holding t fixed at some small
negative value in such a way that t→ 0 can taken at the end.

Noting that u = s when s = −t/2, we introduce

A(n,t)(s) = M(s, t)
(s+ t/2)n . (3.5)

This quantity will help us to separate the IR corrections of interest from the effects of the
−1

2s
2/t pole. A(n,t)(s) is a rational function of s and so we can make use of an identity

that relates the residues of its simple poles on the complex s plane. Since we know the UV
completion we will be able to handle effects that arise at asymptotically large values of |s|.
This may be done by adding the point at ∞ to the complex plane to render it compact.
Then if s = pi are the pole locations and RespiA(n,t)(s) is the residue of the ith pole we have∑

i

RespiA(n,t)(s) + Res∞A(n,t)(s) = 0. (3.6)

The residue of a possible pole at∞may be calculated via Res∞A(n,t)(s)≡−Res0A(n,t)(1/s)/s2.
With this we have a relation that is true for any n at fixed t. Violation of the Froissart
bound is of no concern.

– 6 –



J
H
E
P
0
4
(
2
0
2
2
)
1
3
3

n 0 −t −t/2 ∞ −t/2 ∞ m2
G −m2

G − t

−2 0 0 0 0 0 0 1
4m

8
G −1

4m
8
G

−1 0 0 0 0 0 −1
2m

6
G

1
4m

6
G

1
4m

6
G

0 0 0 0 0 0 0 1
4m

4
G −1

4m
4
G

1 0 0 0 0 0 −1
2m

2
G

1
4m

2
G

1
4m

2
G

2 −2 2 0 0 0 0 1
4 −1

4

3 −4t−1 −4t−1 15
2 t
−1 1

2 t
−1 −m−2

G
1
2m
−2
G

1
4m
−2
G

1
4m
−2
G

4 −8t−2 8t−2 0 0 0 0 1
4m
−4
G −1

4m
−4
G

5 −16t−3 −16t−3 32t−3 0 −1
2m
−6
G 0 1

4m
−6
G

1
4m
−6
G

6 −32t−4 32t−4 0 0 0 0 1
4m
−8
G −1

4m
−8
G

7 −64t−5 −64t−5 128t−5 0 −1
2m
−10
G 0 1

4m
−10
G

1
4m
−10
G

Table 1. Residues of poles of A(n,t)(s) in (3.5). The pole locations are given at the top. The poles
at −t/2 and ∞ each have two columns since there are two types of contributions to their residues.
The left half of the table is due GR and the right half is due to the UV completion.

We first take M(s, t) to be the tttt or uuuu amplitude in (2.11) with u = −s − t.
Then in table 1 we show how (3.6) is satisfied for various n. The explicit poles inM(s, t)
are the two at 0 and −t which correspond to the massless s and u poles, and the two at
m2
G and −m2

G − t which correspond to the massive s and u poles. There is also the pole
structure introduced in (3.5) at −t/2, as well as the possible pole at infinity. Table 1 shows
all contributions to the residues of these poles that survive the t→ 0 limit. There are two
types of contributions to the −t/2 and ∞ residues, the contributions singular for t→∞
in the third and fourth columns and the nonsingular contributions in the fifth and sixth
columns. We see that n = 3 is the only case where there are residues at both −t/2 and ∞
simultaneously.

If we instead takeM(s, t) to be the amplitude in (2.12), the massless u and s poles
do not exist, and the result is that the only singular contributions occur for n = 3 where
there are −1

2 t
−1 and 1

2 t
−1 entries in the third and fourth columns. The right half of the

table remains the same as in table 1. We may also take M(s, t) to be the purely GR
results in (2.19) and (2.20). Then the results for the left half of table 1 are identical to the
respective results for (2.11) and (2.12), while the right half of the table for (2.19) and (2.20)
are identically zero. Thus we have a clean separation between the effects that are purely due
to GR, the left half of the table, and the effects that are purely due to the UV completion,
the right half of the table. All effects singular in 1/t are in the left half.

Most importantly, the effects in each half of the table cancel amongst themselves for
every n with respect to relation (3.6). Thus we can now safely take t→ 0, which means that
the pole locations for the fifth and eighth columns are moving to 0 and −m2

G respectively.
The fifth column gives the coefficients of a Taylor series expansion in s, and the table

– 7 –
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relates these to the UV physics as reflected by the residues of the massive poles and the
pole at ∞. In fact our result for MUV (s) in (3.3) reproduces the right half of the table
via AUVn (s) = MUV (s)/sn, with pole locations at 0, ∞, m2

G and −m2
G. This reinforces

MUV (s) as being the full UV contribution to the forward scattering amplitude.
Not let us discuss the meaning of our result forMUV (s). Since the usual Feynman iε

prescription applies in QQG, as mentioned in the Introduction, the sign of the residue of a
pole is opposite in sign to the imaginary part of the pole. In turn from the optical theorem,
a particular imaginary contribution to a forward elastic scattering amplitude is related to a
particular exclusive cross-section, in this case for the production of the particle giving the
pole. From (3.3), the pole ofMUV (s) at s = m2

G has positive residue, and this points to
a negative exclusive cross section for the production of a ghost. As discussed in [5], the
perturbative theory produces negative cross-sections for processes with an odd number of
ghosts. This is permissible because the ghost does not survive as an asymptotic state; its
dressed propagator describes a state that decays backwards in time. Associated with this
is a negative decay width, and so the minus signs cancel in the production and decay of
a ghost. But here, as in [5], we are working at lowest order in perturbation theory, and
then the negative exclusive cross-sections that occur are a necessary part of a consistent
description. We shall see more of how this works in the next section.

In any case, the fundamental property of perturbative QQG is unitarity without
positivity. It is sometimes argued that it is due to unitarity that the exchange of massive
degrees of freedom are not allowed to produce the signs we are seeing here. QQG shows that
it is not unitarity but only positivity that needs to be relaxed. Unitarity without positivity
and the resulting unusual signs that we see here are all part of a theory that produces good
high energy behavior.

4 Photon-photon scattering to two graviparticles

We now consider an inelastic process, the production of graviparticles γγ → GSGS . The
polarization states of the graviton are (2e, 2o) and for the ghost they are (2e, 2o, 1e, 1o, 0)
(see appendix A of [5] for details). We start with the amplitudes for γγ → gg from QQG,
which reproduce the GR amplitudes and which are regular as t→ 0,

M(tt2e2e) = 8πG
2

t2 + u2

s
, (4.1)

M(tu2e2o) = 8πG
2 (u− t). (4.2)

Each interchange t↔ u and/or e↔ o gives the same results and so we need the combination
4 · (4.1)2 + 4 · (4.2)2, which gives

|M|2 = 2(8πG)2 t
4 + u4

s2 . (4.3)

This agrees with the result in [14] for GR.

– 8 –
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We first focus on γγ → GSGS at asymptotically high energies. The leading contributions
are given by the following representative amplitudes, omitting the factor of 8πG. The
amplitudes without external spin-2 graviparticles are

M(tt00) = −m2
G

tu

s2 , (4.4)

M(ttSS) = 2m2
G

tu

s2 , (4.5)

M(tt1e1e) = 1
2m

2
G

t2 − 8tu+ u2

s2 , (4.6)

M(tu1e1o) = 1
2m

2
G

t− u
s

. (4.7)

Even though S is in the final state in (4.5), there is still no dependence on mS . This
phenomenon is also seen in [5], where some (but not all) of the amplitudes with external
S’s do not depend on mS .

We consider amplitudes with spin-2 graviparticles in the form of the following sums,

∑
mass

(−1)ng
pf
pi
|M(tt1e2e)|2 = −2m4

G

(t2 − 1
2 tu+ u2)(t− u)2

s4 , (4.8)

∑
mass

(−1)ng
pf
pi
|M(tu1e2o)|2 = −2m4

G

(t2 − 5
2 tu+ u2)
s2 , (4.9)

∑
mass

(−1)ng
pf
pi
|M(tt2e2e)|2 = −1

2m
4
G

(t− u)2(t2 + u2)2

tus4 , (4.10)

∑
mass

(−1)ng
pf
pi
|M(tu2e2o)|2 = −1

2m
4
G

(t− u)4

tus2 . (4.11)

For each external spin-2 graviparticle, we are summing over the two states of differing mass,
that is the graviton and spin-2 ghost with masses 0 and mG. This sum is performed at the
level of exclusive differential cross-sections, and thus the factor of pf/pi. (−1)ng is the extra
minus sign that occurs when there is an odd number of ghosts. Because of these signs the
sums result in cancellations that reduce the overall power of E in the asymptotic behavior
down to the E0 behavior observed in (4.8)–(4.11).

The interchanges t ↔ u and e↔ o, as well as the interchange 1↔ 2 in (4.8) and (4.9),
give the same results, up to a minus sign in (4.7). Thus we need the following combination
to form a quantity that will yield an inclusive differential cross section for γγ → GSGS in
the high energy limit,

2 ·(4.4)2 +2 ·(4.5)2 +4 ·(4.6)2 +4 ·(4.7)2 +8 ·(4.8)+8 ·(4.9)+4 ·(4.10)+4 ·(4.11).

The result is

dσGG

dΩ = −(8πG)2m4
G

64π2s

(
t6 + 11

2 t
5u− 7t4u2 − 37

2 t
3u3 − 7t2u4 + 11

2 t u
5 + u6

)
tus4 . (4.12)
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This is positive for scattering into the transverse plane, u = t = −s/2. But there is a
1/(tu) ∼ 1/ sin(θ)2 pole with a negative residue, and thus the differential cross-section is
not positive definite. We shall comment below on how a more inclusive process, one that
also includes the elastic scattering, is positive definite.

The 1/ sin(θ)2 pole in (4.12) is a result of the high energy limit E →∞. For a finite
E, the 1/ sin(θ)2 pole is regulated for sin(θ) . mG/E. Thus for a finite E the integral∫ π

0 (dσ/dΩ) sin(θ)dθ can be done and a finite cross-section σGG(s) for γγ → GSGS is obtained.
We do this by using the full amplitudes, not just their high energy limit.2 The optical
theorem then implies an imaginary contribution to the γγ forward scattering amplitude
that we were considering in the last section, in the form of a branch cut along the real s
axis. Because of an intermediate state with two massless gravitons, this branch cut extends
to s = 0, as does the corresponding branch cut for negative s.

The cross-section σGG(s) is positive up to the s = m2
G threshold for producing a massive

ghost and a soft graviton. Above this threshold the cross-section is negative, and it remains
negative above a second threshold at s = (2mG)2. This cross-section displays two interesting
features. One is a sσGG(s) ∼ − log(s) behavior in the high energy limit. The log is related
to the fading regulation of the angular divergence as we mentioned. The other feature
occurs when approaching the s = m2

G threshold from above, and it is a 1/ω divergence
where ω is the graviton energy. This is a standard IR divergence due to a soft graviton
emission accompanying the production of the massive ghost, and it means that a one-loop
correction should also be considered. It is not considered here.

Above the s = m2
G threshold the imaginary contribution to the γγ forward scattering am-

plitude is due to intermediate states involving both massless and massive graviparticles. This
imaginary contribution can be attributed to the UV completion, and like the tree level contri-
bution, it is once again negative. This contribution happens to satisfy the Froissart bound.

The inelastic scattering γγ → GSGS is accompanied by the elastic scattering γγ → γγ

as discussed in the last section. The elastic differential cross-section is positive definite and
it completely dominates the inelastic differential cross-section in the forward and backward
regions where the former has a singular limit. It also dominates for all other values of the
scattering angle. The inclusive differential cross-section for photon-photon scattering in the
high energy limit includes both elastic and inelastic scattering, and this is positive definite.

If we wish to translate this more inclusive result into a contribution to the forward
scattering amplitude, we need to do the angular integration to get the inclusive cross section.
But this is divergent without some way of regulating the angular divergence in the elastic
scattering. This is just another consequence of the t-channel pole arising in γγ → γγ

scattering due to the massless graviton, and it here obstructs the determination of the full
imaginary contribution to the forward scattering amplitude. It appears that one should
proceed as we did at tree-level, that is to calculate the 1-loop amplitude and then investigate
the subtractionM1−loop(s, t)−MGR

1−loop(s, t) to see whether this allows a t→ 0 limit. But
this is far beyond the present work.

2Thus far we have calculated this for the tt photon polarizations.
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5 Conclusion

We began this paper by giving the full differential cross section for γγ → γγ induced by
a gravity QFT at tree-level. Its good behavior at high energies is clearly linked to the
moderating effect of the ghost propagator, due to its minus sign relative to the graviton
propagator. The renormalizability of the theory relies on the same effect. And then when we
studied the Taylor expansion of the amplitudes, the negative definite expansion coefficients
are also clearly related to the same minus sign. All of this is a consequence of how the
theory enjoys unitarity without positivity.

The lack of positivity is consistent with unitarity, analyticity and locality, but there
is some violation of causality [16, 17]. We have already mentioned that acausal behavior
shows up in the dressed ghost propagator, and the timescale over which this acausality
occurs is of order 1/mG. The negative correction −4πGs2/m2

G to the forward scattering
of photons that we have found here is also an indication of acausal behavior [7–9]. But if
mG ∼ mPl, which may be expected anyway, the effect is extremely suppressed. It may then
be both intrinsically unobservable [15] and allowed by standard arguments [11].

We found that the violation of the Froissart bound is a simple consequence of the ghost
pole appearing in the t-channel. Since the amplitudes are known we are able to deal not
only with the massive poles, but also with contributions from asymptotically large |s| for
fixed t. We then find cancellations among effects singular in 1/t, which allows us to take
the t→ 0 limit. The result is an effective forward scattering amplitude that can be said to
be due to the UV completion. In particular it includes negative imaginary contributions at
the massive poles.

The lack of positivity showed up in a more nontrivial way for the inelastic production
of graviparticles, γγ → GSGS . Exclusive differential cross sections are not positive definite,
resulting in cancellations when summing over the two masses of graviparticles for fixed
spin-2 polarizations. This yields good high energy behavior of the differential cross sections
that are at least partially inclusive, as in (4.8)–(4.11). We were also able to obtain the cross
section for γγ → GSGS , valid at all energies. It is negative above the ghost threshold, and
this implies further negative imaginary contributions to the γγ forward scattering amplitude.

A positive definite differential cross section for photon-photon scattering is obtained
when the inelastic and elastic ones, those for γγ → GSGS and γγ → γγ, are combined. This
can be compared to what happens in graviparticle-graviparticle scattering where there are
many inelastic and elastic processes to consider [5]. In that case only a few of the inelastic
differential cross sections are negative and these few are relatively small in magnitude. Thus
the more inclusive processes are very easily positive definite.

The more inclusive processes are relevant for a parton-shower-like description of ultra-
Planckian scattering, as described in [5]. Hard scatterings occur via colliding partons in
initial-state parton showers, and the scattered partons then produce final-state parton
showers. When the colliding partons are photons then the differential cross-sections we
have given here could be used, in particular to be convoluted with the photon distribution
functions of the initial-state showers. The photon-photon initial state for the hard process
is just one of many that occur in the interaction of the two initial-state parton showers. All
possible hard processes are involved in the description of ultra-Planckian scattering.
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A Vertices

For the γγ → γγ process we need the vertex with two on-shell photons with polarizations
e1 and e2, and one off-shell graviparticle. It is proportional to

e1 · e2 p1 · p2η
µν − e1 · p2 e2 · p1η

µν − p1 · p2 (eν1e
µ
2 + eµ1e

ν
2)

− e1 · e2 (pµ1pν2 + pν1p
µ
2 ) + e1 · p2 (eν2p

µ
1 + eµ2p

ν
1) + e2 · p1 (eν1p

µ
2 + eµ1p

ν
2). (A.1)

For the γγ → GSGS process we need the vertex with one on-shell photon, one on-shell
graviparticle and one off-shell photon. It is proportional to

eσEαβp1
αp1

β−eαEαβp1
βp1

σ−eσEββp1
αp2α/2−eαEσβp1

βp2α+eαEββp1
σp2α/2+eαEσαp1

βp2β

(A.2)

Notice that Eµν represents the polarization of the any of the graviparticles, g, G, or S, and
so we cannot assume that Eµµ = 0. We also need the vertex for two on-shell photons and
two on-shell gravitons, proportional to

e1
αe2

βE1
µνE2µνp1βp2α − e1

αe2
βE1

µ
µE2

ν
νp1βp2α/2 + e1

αe2
βE1

ν
νE2βµp1

µp2α

− 2e1
αe2

βE1
ν
µE2βνp1

µp2α − 2e1
αe2

βE1
ν
βE2µνp1

µp2α + e1
αe2

βE1βµE2
ν
νp1

µp2α

− e1
αe2αE1

µνE2µνp1
βp2β + e1

αe2αE1
µ
µE2

ν
νp1

βp2β/2− e1
αe2

βE1
ν
νE2αβp1

µp2µ

+ 2e1
αe2

βE1
ν
βE2ανp1

µp2µ + 2e1
αe2

βE1
ν
αE2βνp1

µp2µ − e1
αe2

βE1αβE2
ν
νp1

µp2µ

+ e1
αe2

βE1
ν
νE2αµp1βp2

µ − 2e1
αe2

βE1
ν
µE2ανp1βp2

µ − 2e1
αe2

βE1
ν
αE2µνp1βp2

µ

+ e1
αe2

βE1αµE2
ν
νp1βp2

µ − e1
αe2αE1

ν
νE2βµp1

βp2
µ + 2e1

αe2αE1
ν
µE2βνp1

βp2
µ

+ 2e1
αe2αE1

ν
βE2µνp1

βp2
µ − e1

αe2αE1βµE2
ν
νp1

βp2
µ + 2e1

αe2
βE1µνE2αβp1

µp2
ν

− 2e1
αe2

βE1βµE2ανp1
µp2

ν − 2e1
αe2

βE1ανE2βµp1
µp2

ν + 2e1
αe2

βE1αβE2µνp1
µp2

ν (A.3)

And then there is the s-channel diagram with a three graviton vertex. This vertex receives
contributions from the various terms in the action (1.1), with the R, R2 and RµνRµν terms
contributing 43, 79 and 228 terms respectively. We thus choose not to display the result.
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