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1 Introduction

In 3+1 dimensional Conformal Field Theory (CFT) the problem of counting local operators
is equivalent to the problem of counting states in the Hilbert space Hgs of the theory on S3.
More elegantly, we may Wick rotate to Euclidean signature, compactify the time direction,
and study the partition function on S x S*:

Zgaysr =y e NI
A

where R is the radius of S and /27 is the radius of the S'. The sum over A runs over all
the scaling dimensions of local operators in the CFT. One can decorate this partition func-
tion with chemical potentials for global symmetries. One particularly interesting chemical
potential that will be important below is the insertion of (—1)%, which leads to alternating
signs in the partition function, depending on whether the corresponding state is bosonic
or fermionic.

Of course, in interacting theories this partition sum is too complicated to evaluate.
Here we will be interested in theories with N/ = 1 superconformal supersymmetry, where
some simplifications occur once we add appropriate chemical potentials. From now on,



we set R = 1 without loss of generality. If there is a supercharge Q that furnishes a
supersymmetry of the theory on S3 x R and if Q; are some ordinary conserved charges
which commute with Q, then the partition function

T = Try, (—1)Fe 012 e i@

has some interesting properties. Since bosons and fermions cancel for nonzero {Q, Q'},
the partition function is in fact d-independent and only receives contributions from states
annihilated by both 9, and of.

For theories with N' = 1 supersymmetry, one can choose a supercharge such that
{Q,0} ~ A —2j; + %r, with j; the angular momentum with respect to the left SU(2)
acting on S3 and r is the superconformal R-charge. We may call this Hilbert space where
A —2j5 + %7“ = 0, Hpps. One can think of it as a 1/4-BPS Hilbert space. There are two
additional canonical chemical potentials which can be always added, corresponding to the
right-moving angular momentum j, and a combination of A and j;. One therefore arrives
at a function Z of two parameters (for a review along with references to the extensive
literature on the subject see [1, 2])

T — TrHBPS(_1)Fp%(A+j1)+j2q%(A+j1)—j2 ) (1_1)

This index can be thought of as a partition function on S3x S! with appropriate background
gauge fields turned on. Then p, ¢ are interpreted as the two complex structure parameters
on the space with topology S% x S! [3, 4]. Globally, the superconformal index is defined
on some cover of the space of complex structures. For A" =4 SYM, as we will see, it turns
out to live on a triple cover of the space of complex structure moduli. This is perhaps
analogous to the discussion in [5].

If we consider |p| = |g| then this corresponds to a round S® base. One can then adopt
the general parameterization p = e #1191 ¢ = e 92 where 01,2 are real parameters
corresponding to the fibration of S' over S3. For instance, if 01 = o9 = 0 then the
corresponding manifold S3 x S' is now a direct product space with S of length 3. The
index then takes the form

7= TrHBPS(—l)FefgaA*Zjl) = TrHBPS(—l)Fe*ﬁ(AJF%’") . (1.2)

The limit 3 — 0" then simply counts all the BPS operators with signs. This is the limit
of small S' with no fibration over S3.

The index (1.1) can be calculated in many conformal gauge theories in four dimensions,
which is possible because supersymmetry guarantees that the index is independent of the
exactly marginal parameters (and hence can be typically computed at zero coupling). Our
primary interest here would be A/ = 4 maximally supersymmetric Yang-Mills theory, which
from the point of view of A/ = 1 supersymmetry has an ordinary (non-R) global SU(3)
symmetry. From the point of view of the maximally supersymmetric theory, the index
counts some 1/16-BPS operators. We will take the two chemical potentials for the SU(3)
charges to vanish. The superconformal index then takes the form

1 N-1 dz; F3((pq)1/32'/zk-'p' q)
I:7p’pN—1q’qN—1/ ‘ LI Ak vy 1.3
N!( ) (,9) g 2miz; ].l;lk I'(2i/2k:03 ) (1)




_k+1, m+1
where (a;b) = [[20(1 — ab®) and T'(2,p, q) = | | oy W
z; variables are over the unit circles. The denominator of the integrand can be interpreted

. The integrals over the

as being due to a vector multiplet (in the ' = 1 language) while the numerator is due to
three chiral multiplets with » = 2/3 in the adjoint representation.

One should interpret the z; in (1.3) in terms of the eigenvalues of the holonomy on
St Since the holonomy is an SU(NN) matrix, the eigenvalues live on a circle. The ratio of
I' functions is then some potential for the SU(/N) matrix. Since each term in the product
depends on some ratio zj/z; one can write the matrix model as a double-trace random
matrix model.

To simplify the expressions we will take the gauge group to be U(N) rather than SU(N).
We rewrite the index Z as an integral over the U(N) group manifold. One finds that

— 1 n —-n
T = UGU(N)[DU] exp (;1 Ean(p,q)TrU Tr(U )) , (1.4)

where for the maximally supersymmetric theory,

an(p,q) = f(p",q"), (1.5)

and
_ 2pq —p — q+3(pg)'/? — 3(pg)*/?

f(p,q) =
(1-p)(1—q)
The invariant integration measure in terms of the eigenvalues is as usual:
N
L 7 db: 0; i |2
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Finally, since [[i<;<j<n et — ¢103|2 = ¢ 21<i<i<N 2uk K and since we can

write TrUF Te(U™%) = Y14 5<n eth0i—ik; — do1<i<j<N e®0i=k0; 1 c.c. + N, we see that
up to an overall factor which is independent of the chemical potentials p, g we can rewrite
the superconformal index as

N s
7= [l 5 ew (Z L (o) - 1) wnmv-n)) | (16)

n=1

Note that f(p,q) — 1= %, i.e. it nicely factorizes.

A well known observation [6] is that for real 0 < p < 1,0 < ¢ < 1 the scaling of logZ is
O(1) at large N. Indeed, we see that since f(p,q) —1 <0 forallsuch0<p<1,0<¢g<1
the exponential of (1.6) has all negative coefficients, which means that the most dominant
configuration is the one with TrU™ = 0 (for n < N), i.e. the eigenvalues are spread out
uniformly on the circle and the center symmetry is unbroken, appropriately for the confined
phase. In particular for p = ¢ = e~? the free energy remains O(1) for all positive 8 which
signifies large cancellations in (1.2) between the bosons and fermions in (1.2). This is a

special case of the asymptotic relation [7]

logZ ~ ;(a—c), (1.7)



(where a, c are the usual conformal anomalies) which in the present case leads to a confined
phase since a = ¢ in N/ = 4 supersymmetric Yang-Mills theory.

The cancellations between bosons and fermions for p = ¢ = e~ # prevent a deconfine-
ment transition. These cancellations are puzzling and disappointing since it has been known
for a while that 1/16 BPS black holes exist in AdS5 whose macroscopic Bekenstein-Hawking
entropy is of order N2 [8-11]. The lack of a deconfinement transition in the superconfor-
mal index with p = ¢ = e~ P for real beta is not by itself a contradiction, it just signals
massive cancellations between the black hole microstates. Some interesting attempts to
understand the black hole microstates despite these cancellations have appeared in [12-15]
and see references therein. From the conformal bootstrap perspective, the extremal black
hole microstates are some large charge operators. Unlike more familiar large charge limits
of the conformal bootstrap [16-25] where the ground state has O(1) entropy, the existence
of supersymmetric extremal black holes allows for a large ground state entropy, which is
exactly what the superconformal index counts (with various phases). It would be nice to
understand if there is a useful explicit effective theory for these states.

More recently, starting with the work of [26-28], it was understood how to sidestep
these enormous cancellations. This gives us a glimpse into the enumeration of black hole
microstates. Our approach in this paper is very much based on the random matrix model
formalism (1.6). A different, very interesting, formalism based on the Bethe equations was
developed and used in [29-31] (see also [32-35]). We will not have much new to say about
this other formalism though we will make some comparisons in section 4. Some additional
references on the subject are [36-46]. A nice review of the state of the art of black hole
microstate counting can be found in [47].

Let us describe the idea of how to avoid the cancellations in the superconformal index
in general and then specialize to N’ = 4 theory. One considers the index (1.1) starting from
real p, ¢ and then one takes p = pe?™ while ¢ is fixed. In the convention that p = e #+io1,
q = e P92 (where |p| = |q| is assumed), this is the same as shifting o1 by 27 which
corresponds to a particular fibration of the S' over S3. This transformation multiplies
the superconformal index by the phase ¢~ 52mi(Atj1) =2mijz Using the BPS condition A =
241 — %r we find that the phase becomes e 27101 172)+7"  For fermions ji + jo is half integral
while for bosons it is integral. Therefore the index turns into

T = Trygpg e”’"ﬁ%(AHI)HQq%(AHI)*jQ : (1.8)

The sign (—1)F is thus replaced by ¢™" which does not lead to such strong cancellations

between BPS states.! We can now set p = ¢ = e ? and take the E — 0 limit which leads
to [49] ‘
i

logZ ~ ﬁ(?)c —2a) . (1.9)

An interesting point is that even for theories with a # ¢, the growth of states in (1.9) is

faster than in (1.7) since the density of states in (1.7) looks like that of a two-dimensional
theory while in (1.9) it looks like that of a three-dimensional theory.

The replacement corresponds to a choice of spin structure on the supersymmetric S x S* background.
In three dimensions this was analyzed in [48].



There is however a very important subtlety here. In (1.9) there is an 7 in the numerator.
Therefore, if we strictly set p = ¢ = e~# with real B and take the limit B — 0 we would not
encounter an exponential growth of states but rather rapid phase oscillations. We should
therefore approach the point p = ¢ = 1 more carefully, with some imaginary part for B
We can only trust the estimate (1.9) if the real part of logZ is positive. Locally, this means
that there is a deconfinement behavior only if one approaches B = 0 from one quadrant in
the half-plane Re B > 0.

It is straightforward to switch to the p, ¢ variables in the matrix model description (1.6).
One finds

N 00
db; 1 —omi~ n _n
7= /ZE o &P (T; - (an(e D,q) — 1) T U" Tr(U )) . (1.10)
with prina P
. 1 — ¢~ 2min ~ \n
an(e—szi C_Z) —1— ( € (pq) )

(1=p)1—q")
If we take p, ¢ to be both real and smaller than 1, then Re a,, < 1 for all n and hence the
confined phase with homogeneously spread eigenvalues would dominate. No deconfinement
transition occurs. As we take p,q — 1 however, some (a, — 1) become purely imaginary
(essentially all the a,, for n not divisible by 3). This leads to rapid phase oscillations. But
it also means that if we now approach p,q = 1 from a slightly different directions some
Re a, can become greater than 1 and a deconfined phase may appear. This is in agreement
with (1.9).

Note that in N' = 4 the following identity holds for all local operators e
(This is a spin-charge relation.) This means that ™" = e¢~2™"(—1)¥ and hence, for N = 4

SYM, we can equally well take p = ¢ and rotate both p,q by e 2™. We would like to

3mir _ (_1)F

emphasize that this is equivalent to the index (1.8) only in the particular case of N' =4
SYM. Actually for N' = 4 SYM the following parameterization is very useful: we can
take p = ¢ = ye™ and study the phases of the theory as a function of (y,1). The “old”
Cardy limit (1.7) corresponds to (y,%) = (1,0) (at this point and its neighborhood there is
confinement, of course) while the “new” Cardy limit (1.9) corresponds to (y,v) = (1, 27).
Whether or not there is deconfinement depends on how this point is approached. If one
keeps strictly 1 = 2m then there are wild oscillations. Later we will see that this is the
edge of the deconfinement region. More generally one would like to study the phases
of the theory as a function of (y,%). From the definition (1.1) and the BPS condition
A = 25 — %r we see that the superconformal index is 67 periodic in ¥. We will find
that in the fundamental domain where ¢ € (—6m,0], there is a deconfinement region
for ¢ € (—4m, —37) U (—3m, —2m). The two intervals where deconfinement occurs in the
fundamental domain are not really different since the superconformal index is the same
up to complex conjugation for these two intervals. At the end-points of the intervals
(—4m,—37m) U (—3m, —27) for no y < 1 deconfinement occurs. In the bulk of the intervals,
deconfinement occurs for finite y < 1.

Matrix models of the double trace type as (1.6) have appeared in various applications,
especially in connection with partition functions of weakly coupled Yang-Mills theories or



as exact results for supersymmetric theories. One common thread in the literature is that
the deconfinement transition, i.e. the transition from eigenvalues being spread on the unit
circle to eigenvalues which only have a support on a subset of the unit circle, is related to
some of the Re a, — 1 changing sign. One would think that at the point that

sgn(Reay, — 1)

changes from being positive to negative, one should discard the confined saddle point with
TrU = TrU? = --- = 0 and switch to a deconfined saddle point where the eigenvalue dis-
tribution is not invariant under translations along the circle. Indeed, this seems appealing
since for Rea,, — 1 < 0 (for some n) the equally spread eigenvalues distribution develops
tachyons.

This logic is in general incorrect. The point is that for complex a, there could be
large cancellations in such a putative deconfined phase and in fact the transition can be
delayed. Moreover, unlike in the case of real a,, the transition is first order and not second
order (more precisely, for real a,, it is weakly first order but there is no phase co-existence
and hence it looks like a 2nd order transition [50-52]). These facts will be crucial for
matching the matrix model predictions with the gravitational story. We will demonstrate
this phenomenon of a delayed deconfinement transition with a simple ordinary integral in
section 2 and then with a toy matrix model in section 3.

Indeed, in N' = 4 SYM, one finds that the condition Re(a,) — 1 = 0 disagrees with
the results from 1/16 BPS black holes in AdSs. This led to some speculations about the
existence of new gravitational saddle points [28]. In fact, Re a, = 1 is the natural con-
dition to impose for transitions that are 2nd order or higher. But we will see that the
phase transitions are generically strongly 1st order and they are generally delayed, namely,
the confined phase may persist even when Re a, > 1. As we said, this is possible when
the coefficients in front of Tr U™ Tr(U ") are complex due to massive cancellations in the
deconfined phase. Our picture fits much better the expectations from gravity. Indeed, the
Hawking-Page transition is first order rather than second order and we will see that we
are able to reproduce quite precisely the Hawking-Page transition “temperature” from the
superconformal index! Therefore no new unfamiliar gravitational saddle points seem to
be required to explain the discrepancy between the Hawking-Page transition temperatures
computed in field theory and in gravity. We do not solve the matrix model (1.6) exactly,
of course. Rather, we devise a technique to understand this phenomenon of delayed de-
confinement through an exact solution of the model with a; (and also ag in section 4) and
then performing an expansion in the other coefficients. This brings us remarkably close to
the gravitational prediction, as can be seen from figure 6, comparing the black dashed and
red lines.

The techniques we use can be applied in many recently studied problems of microstate
counting and phase diagrams of large N theories, including in non-supersymmetric theories
such as in the recent work of [53], where the study of the phases of gauge theories away
from real temperature was undertaken (building upon the previous literature with real a,,
see especially [50, 51, 54]). Here we will limit ourselves to elucidating the situation in
N = 4 theory only. Another problem we leave to the future is the question of partially
deconfined phases.



This paper is organized as follows. In section 2 we present a pedagogical example in
the realm of ordinary complex integrals showing that modes with negative mass squared
do not necessarily “condense.” In section 3 we consider a truncated version of the matrix
model (1.6) with only the coefficient a; present. This truncated model exhibits a lot of
the general features, including delayed deconfinement and the edges of the deconfinement
curve. This truncated model is simply the Legendre transform of the Gross-Witten-Wadia
model [55, 56]. In section 4 we include the effects of the higher a,’s and show that they
are numerically small. We compute the corrections to the deconfinement curve and show
a remarkable agreement with the Hawking-Page line in AdSs. Two appendices contain
technical details.

2  Warm up: an ordinary integral

We will consider in this section the pedagogical example of the ordinary integral

o0 1 1
/ dx exp (—N (2g$2 + 4:104)) .

The integral converges for all complex g. The integral can be done analytically in terms of
Bessel functions. It is not essential to keep N as a parameter, but we think about it as a
large positive number to make the presentation clearer.

Let us consider some complex g = |g|e?. For Reg < 0 it seems favorable for z2 to
be away from the origin, such as to increase the magnitude of the term e~3N9e®  This
growth should be only terminated by the term %az‘l, i.e. at 22 ~ —Reg > 0 and hence
the integral should be naively exponentially large ~ e1(Re9)®N - Thjg analysis is perfectly
correct for real negative g. But in the general case of complex g it is incorrect due to large
cancellations. We will see that the integral is not exponentially large for —37/4 < 6 < 37 /4.
In particular, the integral does not become exponentially large when Re g = 0 is satisfied.
The integral only becomes exponentially large at § = +37/4 due to an anti-Stokes line, as
we will explain below. This sort of delayed exponential growth due to large cancellations
is also important in our matrix model, which is why it is useful to go over this pedagogical
example first.

For any nonzero g there are three non-degenerate saddle points:

0,£v/—g .

Since the saddle points £./—¢g are generically away from the contour of integration one
has to first understand when they should be taken into account. This amounts to finding
the Lefschetz thimbles in the complexified z-plane. See [57] for additional details on the
subject. There are four degenerate cases: § = 0,+i¢, 7. As long as we stay away from these
four cases, the Lefschetz thimbles (and their dual upward paths) are non-degenerate and
one has a well defined decomposition of our original contour into Lefschetz thimbles. Let
us denote the three thimbles [Jp, J+ and their dual upward paths Ko, 1. We denote our
original integration contour by Cr. We will restrict to Im g > 0 without loss of generality.
For 0 < § < m/2 one finds that
Cr ~J0, (2.1)
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Figure 1. Structure of Lefschetz thimbles (blue color) Jy + and upward flow lines (red color) Ko +
respectively for @ = 0.7 (left frame), # = 1.7 (center frame) and 6 = 2.7 (right frame).

where the ~ sign means Cr can be deformed to the thimble on the right hand side. See
the left frame of figure 1. Therefore, for 0 < 6 < 7/2 the saddle points at £,/—¢ do not
contribute at all. The integral is O(1). At § = 0 the upward flow path Cy intersects the
saddle point at x = +,/—¢ and so the situation is somewhat degenerate. But deforming
away from this point clearly shows that the J+ do not contribute and the conclusion (2.1)
therefore also stands for 6 = 0.

For 7/2 < 6 < 7 the situation is quite more interesting. One finds

Cr~Tp —Jo+J-. (2.2)

See the center frame of figure 1. The decomposition has therefore jumped discontinuously
at @ = 7/2, which means that purely imaginary g corresponds to a Stokes line (where the
upward flows from the saddle points £,/—g cross the origin). There is now a contribution
from the complex saddle points at +,/—g which is of the order ~ ¢19°N | This is exponen-
tially larger than the O(1) contribution from the saddle point at the origin when Re g% > 0,
which corresponds to 37/4 < 6 < 7. See the right frame of figure 1. We therefore identify
0 = 3m/4 as an anti-Stokes line since this complexified saddle point begins to dominate
the integral.

Therefore, for 7/2 < 0 < 37/4 we have Reg < 0 and x appears to be tachyonic,
but the integral is still O(1) due to large cancellations. The situation of § = 7 is again
somewhat degenerate, but the integral is of course exponentially large for § = 7 and
behaves like ~ ¢19°N 2 For 6 = 7 all the saddle points are on the real axis and there are
no cancellations, which is why the naive estimate gives the correct answer.

The main take-away lessons from this example are twofold:

e When the quadratic piece in the action is “tachyonic” it does not necessarily mean
that the tachyon is about to condense. A phase transition can be delayed if the action
is complex.

o Complexified saddle points may or may not contribute to the integral — this depends
on the structure of the thimbles.

2The degeneracy at § = 7 is actually quite more interesting than the one at = 0 because the decom-
position jumps discontinuously for 6 > m. See, for example, [58] for a discussion of the consequences.



3 Phase transition at complex couplings

The large-N analysis of the full N' = 4 superconformal index (1.4), (1.5) is quite compli-
cated due to the presence of an infinite number of double-trace interactions. It is therefore
instructive to start from the toy model

Zlay, N] = /[DU] exp (a1 Tr U Tr U*l) , (3.1)

which is obtained by truncating (1.4) to the first term. We refer to (3.1) as the a; model.
While we refer to it as a “toy model,” it is not actually a trivial system to analyze at all
and there is much that is not known about it.

In the case of real fugacities,? it was shown in [50-52, 59] that such a toy model captures
the essential physics of the problem. In particular (3.1) gives an exact prediction for the
critical parameters where a phase transition of the full model occurs (1.4). The reason
is that the phase transition for real couplings belongs to the second order universality
class (more precisely: weakly first order, but since there is no phase coexistence for real
a1, it behaves as a second order transition for our purposes) and as in Wilson’s general
paradigm, the terms corresponding to a, with n > 1 are essentially irrelevant. However,
when the couplings are complex, this is no longer the case: the analysis of the double-
trace model is modified and many new features emerge. Most notably, as expected also
from the gravitational counterpart of this problem, the phase transition becomes (strongly)
first order.

The goal of this section is to introduce the large-N analysis for (3.1) when a; takes
complex values and to study how this modifies the phase transition observed in the real
case. For the moment, we do not attempt at motivating whether or not the truncation (3.1)
is physically justified. We will address this point in sections 3.3 and 4. We consider the
complex model (3.1) with a; = |a;|e’. In addition, we require Re(a;) > 0 for the integrals
below to converge. At this stage, it is very convenient to introduce the so-called Hubbard-
Stratonovich (HS) transformation [52, 59, 60], which allows us to recast (3.1) as

2.2

dgg exp (— ]\iaf ) /[DU] exp (]\;g (TrU + Tr U1>> , (3.2)

with g being a complex variable and the integration range of g over ~y(¢) is from 0 to co

Zlar, N] :/

()

on a line in the complex plane emanating from the origin all the way to infinity at angle ¢.
The introduction of a Hubbard-Stratonovich field g allow us to decouple the double-trace
interaction.? As a result, the main problem is now divided into two steps. We first analyze
the matrix integral

Z]g,N] = /[DU] exp <J\;g(’1‘rU+’I‘rU_1)> , (3.3)

3Namely for real p, q on the first sheet in (1.5), such that a, are all real.

4To derive this Hubbard-Stratonovich transformation we start from two conjugate variables (g,g) and
then using the freedom in absorbing the phase of g into the matrix U, we can convert the integral over
(g,9) to a radial integral, as in (3.2).



which is a famous single-trace unitary matrix model whose real-g large-IN study was pio-
neered in [55, 56], it is usually called the Gross-Witten-Wadia (GWW) model. Later we
will perform a saddle point analysis of the integral over g in (3.2).

3.1 The Gross-Witten-Wadia model

Let us expand the discussion on the matrix integral (3.3). We first review some well-
known fact about real coupling g. It is useful to write (3.3) in term of eigenvalues® «; of
U = diag(e'®, ..., e!N) as

Zlg, N1 = 45 H/

Let us first consider 0 < g < 1. The dominant effect comes from the eigenvalue repulsion

do |A2( i _ )| exp (gNZcos o ) . (3.4)

=1

in the Vandermonde determinant and consequently the eigenvalues tend to spread out on
the circle. Indeed, it is possible to show that [55, 56] at large N and 0 < g < 1, the
eigenvalues are distributed along the whole unit circle with the following density

L 14 gcos(a)),  aclo2n]. (3.5)

pla) = o

This makes sense for 0 < g < 1 since the density is everywhere non-negative. For this
reason this is usually called the “ungapped phase.” If g > 1 the above density is no longer
positive definite, hence such a distribution does not make sense.

Indeed at g = 1 the model has a third order phase transition. For g > 1 the eigenvalue
distribution develops a gap on the unit circle. More precisely we have

() = £ cos(a2) ; “sin2(0)2), € |—aead. (3.6)

with o, = 2sin~! (ﬁ)
Since in both cases the eigenvalue distribution is supported on one single interval we
refer to such solutions as one-cut. The free energy® for these two phases has been computed

in [55, 56] and reads

R ungapped, one-cut

9-5 logg — 1 gapped, one-cut .

We emphasize that, in the large-IV solution of the GWW model, there is no competition
between the gapped and ungapped phase since, for real g, these solutions do not have an

5 . . .
° Alternatively, one can use complex eigenvalues z; = e'*¢

Zlg,N] = ]\1”1]\7_[/51 dziA*(zi — zj) exp [ Z <7 2+ 2 log(zi)>] .

N[

i=1

5Defined as Fo(g) = limy—eo N72log Z|N,g].
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overlapping region of validity. The free energy is a continuous and differentiable function
of g for real g. There is a third-order transition at g = 1.

When we turn to generic complez g the picture is richer (and not fully understood).
Indeed the model also admits multi-cut phases where the eigenvalue distribution is sup-
ported on disconnected intervals. Some related results have appeared in [61].7 As we
will see below, such multi-cut phases are always suppressed for real g. A general way to
think about the large-N matrix integral with s-cuts is by introducing the notion of filling
fractions n;. These are defined as

S
ni =< > Ns=N, (3.8)
i=1

where we can think of N; as the number of eigenvalues accumulating around the " cut. The
full partition function is schematically obtained by summing over all possible arrangements
of eigenvalues:

Zlg,N]~ Y. Z[g,Ni,---,Ny. (3.9)

Ni+-+Ns=N

See for instance [62-64] for more details. (It is also possible to add theta-angles for multi-
cut phases, but this will not be important here.) In the large-N regime different phases
of the model are represented by regions in g space in which a given configuration in (3.9)
dominates. For a given ¢, it is natural to regard the sub-dominant saddles appearing
in the sum as instanton solutions which, when available, are connected to the dominant
configuration by tunnelling processes. These contributions can be estimated explicitly by
computing the corresponding instanton action A(g)

FHn(g) ~ ~N?A(g). (3.10)

Let us now discuss how this picture matches nicely with the analysis of the real-g phases
discussed above. In particular we want to illustrate how we can explain the GWW phase
transition by exploiting the instanton actions.

We first consider the ungapped one-cut phase. The instanton action AY(g) was com-
puted and discussed in [65, 66] and reads

A¥(g) = 2cosh™! (1> —24/1—g2. (3.11)

9

One can think of this action as describing the tunneling from the ungapped one-cut phase
toward a multi-cut phase. See for instance [67] for a numerical study and (B.30) for a
direct connection with the free energy of the two-cut phase.
From (3.10) we have that as long as Re(A%(g)) > 0, instantons are suppressed and
there is no need to consider multi-cut solutions. This is clearly the case if 0 < g < 1.
Similarly, the instanton action for the gapped one-cut phase reads [66]

A%(g) = 24/g(g — 1) — cosh™'(2g — 1) . (3.12)

"We have computed the two-cut free energy in appendix B.3. However, as we will see below, this phase
is not directly relevant for the physical application we are interested in.
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multi-cut
\ > )gappcd

ungapped

ReAY >0 ReA® >0

Figure 2. Regions of dominance of various phases in the complex-g plane. The regions are delimited
by the anti-Stokes lines Re(A4%/%(g)) = 0. In the blue region the one-cut gapped phase dominates, in
the orange region the ungapped one-cut phase dominates and in the yellow region presumably none
of them dominates. While as shown in the appendix one cut phases exist in the yellow “multi-cut”
region, presumably they do not dominate since the instanton actions for eigenvalues tunneling out
of the one cut phases are not suppressed.

One can also think of this action as describing the tunneling from the gapped one-cut phase
towards a multi-cut phase, see for instance [61, 66, 67]. In appendix B we show that (3.12)
can actually be written by using the free energy in the two-cut phase (B.30).

To have a dominant gapped one-cut phase we therefore require

Re(A%(g)) > 0. (3.13)

This is clearly satisfied for real g with g > 1. Hence, for real g, we can explain the phase
structure of the GWW model by looking at the instanton actions.

Let us now consider the gapped one-cut phase for complex g, without loss of generality
we focus on Reg > 0. In particular, we want to know in which region of the g-plane the
analytic continuation of the gapped solution (3.6) exists and dominates. We expect that
this region is determined by the following requirements [68]®

o A positive definite analytic continuation of the eigenvalue density (3.6) must exist.
e Instanton tunneling towards others phases should be suppressed. Hence we require:

Re(A%(g)) > 0. (3.14)

The first requirement is discussed in appendix A where we argue that it is indeed possible
to define a positive definite density on the cut for ¢ € C/[0,1]. This follows from a
construction of the cut with complexified endpoints a = 1/b = 1 — % + zg\/ﬁ that
we carry out explicitly. It follows that the only non-trivial? constraints is (3.14) which is
analyzed in figure 2.

8See also [69] for an early discussion and [64, 70-73] for more recent developments.
9Notice that the one-cut gapped solution can in principle contribute also in the region where Re(A%(g)) <
0. It is possible that somewhere a Stokes line emerges implying that the gapped saddle needs does not
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A similar reasoning can be repeated for the weak coupling phase by using A% (g).
We thus have analytic control over the two regions in the complex g plane where one-
cut solutions exist and dominate shown in figure 2. In the complementary region multi-
cut solutions will dominate and in general exhibit a complicated pattern of transitions
between them. Luckily, these regions will not be of relevance for our analysis of the
confinement /deconfinement transition, as we will conjecture below.

3.2 Complex saddles

Our strategy to solve the large-N double trace model (3.1) consists in performing a saddle
point evaluation of the integral (3.2) in the variable g. The same strategy was adopted for
example in [52, 59] for real couplings. Nevertheless when ay is complex, there are some
subtle aspects that need to be treated carefully. And as we have mentioned, for complex
a1 the transition is first order rather than second order and hence there are also conceptual
differences when compared to the case of real a;.

In order to find the relevant saddle we thus need to consider the following potential

2
g
Qla1,9) = = —+ Folg), (3.15)
ai
where Fy(g) is the genus zero free energy of (3.3). Then, at large-NN the integral (3.2) is
dominated by

Zlar, N] = Y exp <N2Q(a1,g*)) , (3.16)
gx

where (a1, g«) is the potential evaluated over the relevant saddle points g, of (3.2) and
will depend on the value of a;. The sum >/ is there to remind us that we have to sum
over various saddle points. Since the function Fy(g) is naturally defined in a piece-wise
manner, we find the saddle point equation in each region and, after having checked that
the critical point still lies in said region, we choose the one with the largest Q (a1, g«).

Of course, equation (3.16) is somewhat loosely written. We need to sum over the saddle
points with coefficients depending on the Lefschetz thimbles. In fact, since we do not have a
reliable estimate of Fj(g) in the whole complex g plane, we are unable to enumerate all the
saddle points, leave alone computing the thimbles. Below we will identify two important
saddle points which reside in a region in parameter space that we understand in great detail
(the blue and orange regions in figure 3).

Let us first consider the ungapped one-cut phase of (3.3). From (3.15) and (3.7) it is
clear that g, = 0. This corresponds to a saddle point with eigenvalues uniformly spread
over the circle. The contribution from this saddle point has no exponential growth since
TrU = 0.

Zla1, Nl ~O(1) + 3 exp (NQQ(al,g*)) . (3.17)
g« 70

contribute. This is exactly analogous to the situation in the toy model of the previous section for real
positive g, for instance. We have checked that this is indeed the case for the one-instanton solution by
imposing Im(AS/w (g)) = 0. This discussion is not important for our analysis.
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Now let us look for saddle points with g, # 0. The free energy of gapped one-cut
solutions was given in (3.7). This furnishes a reliable estimate of Fy(g) only for those g
that satisfy (3.13). In other words, a saddle point from gapped one-cut distributions of
eigenvalues would be self-consistent as long as

Re(A%(g«)) > 0. (3.18)

Using (3.7), we find that the potential (3.15) has a complex saddle point for

g =a£/al —ay. (3.19)

One can verify by explicitly plotting Re(A4%(¢g7)) that as long as Re(a;) > 1, the saddle
point g, is never in the region where the one-cut phase dominates. This means that only
g7 potentially falls in the region where we have a self-consistent saddle point with a gapped
one-cut distribution of eigenvalues. We hence discard g, and focus our attention on the
saddle point g;-. We will thus use the notation

g« = a1 +y/ai(a; —1). (3.20)

Substituting back we find that Q(a1,g«) is given by

1
Qa1,g9+) = 3 (a1 + /(a1 — 1)a; — log <a1 +4/(a1 — 1)0,1) — 1) . (3.21)
As a function of complex a1, the potential (3.21) has a well defined region where

Re(Q(a1,9+)) > 0. (3.22)

Whenever (3.22) is satisfied, the partition function (3.2) has exponentially growing behav-
ior. On the complex aj-plane, the boundary of (3.22) is given by a complex curve which
we denote Cp defined by (see figure 3)

Cp: Re(Q(a1,9+)) =0. (3.23)

We claim that the curve Cp should be used to detect the large- N deconfinement phase
transition of (3.1).

As we have explained, our computations do not provide a proof that Cp is in fact the
exact deconfinement curve as not all the saddle points of Q(a1,g) are presently known.
However, Cp does agree with the known results for real a; and it also provides encouraging
results in the comparison with gravity, as we will later see.

Let us now make some comments regarding the nature of the phase transition at Cp and
its order. In the blue region in figure 3 the ungapped one-cut (homogeneously distributed
eigenvalues) and the gapped one-cut phase, of the full model, co-exist. While one is in
the blue region the ungapped phase dominates and as soon as one enters the grey area
the gapped phase begins to dominate. This is clearly a first order transition. For real aq,
since the blue region pinches at a; = 1, the transition is higher order as the two minima
never coexist. Indeed, for real a1, if one approaches from the gapped one-cut phase one
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Figure 3. Deconfinement in the complexified model (3.1). In both gray and blue areas the gapped
one-cut phase contributes as a saddle point. However, only in the grey region we have deconfinement
(Re(Q) > 0) . The deconfinement curve Cp is drawn in red. The black dot is a; = 1.

has Z ~ eV?Qa1.94)  with Q(a1,g«) given in (3.21). For real a; > 1, as we approach a; = 1,
Q(a1, g«) goes to zero, and in addition, %Q(al,g*) stays finite. In terms of a; this is a
weakly first-order transition. Since for real a; the two phases never co-exist it is indeed a
higher-order transition than for generic complex a;.

Two comments summarizing our claims:

o Forreal a; the integral in (3.2) runs over the real line and it is easy to check that (3.23)
is equivalent to the well known condition

al = 1, (3.24)

that has been used extensively to detect large- NV phase transitions in unitary matrix
models with real couplings. This is clearly visible in figure 3. However, for generic a;
the transition happens beyond the point Re(a;) > 1, i.e. inside the region bounded
by Cp. This means that, even if there are exponentially growing configurations in
the original matrix integral (Re(a;) > 1), they will not lead to deconfinement due to
destructive interference, as in the toy model in the previous section.

o As we discussed around equation (3.17), the ungapped one-cut phase has a dominat-
ing saddle for g, = 0. Hence a phase transition can only occur whenever a second
minimum of Q(aj, g) descends below zero (see figure 4). Thus, the unitary matrix
model with complex coupling (1.4) has a strongly first order phase transition. This
is very different from the physics of unitary matrix models with real couplings which
have been used in the past to analyze higher order phase transition. It will have
crucial consequences for the validity of the toy model (3.1) in the context of the full

superconformal index.
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Figure 4. A plot of (3.15) in the real (left) and complex case (right, we take Arg(a;) = 7/4 for
the sake of illustration). Different colors correspond to different values of |a;|. In the second plot,
the phase of g is always chosen to be that of g.(a1) in (3.20). Notice that in the complex case
the appearance of a second maximum does not coincide with deconfinement. The latter happens
only when the second maximum becomes positive. The intermediate dashed region is presumably
dominated by multi-cut configurations.

3.3 The N = 4 supersymmetric Yang-Mills theory matrix model

Let us now connect our results to the analysis of the superconformal index of N’ = 4 Yang-
Mills theory. Following the introduction, we consider the double trace matrix model (1.6),
further specializing the computation to the case of equal fugacities p = ¢. It is also useful
to introduce the polar decomposition p = ye¥. The couplings a, appearing in (1.4) can
be expressed as

1— pZn/B 3
an(p) =1 - =p™) = pn)2) : (3.25)
In particular, for a; we have
1— p2/3 3

Using the explicit form of a; we can now apply the results from section 3.2. As before, we
ignore for the moment the contributions of the higher a,,. We will justify this in the next
section.

With the previous discussion in mind, we define a function

f(p) = Re(Q(a1(p), 9+)) , (3.27)

given by the potential (3.15) evaluated in the gapped one-cut phase and on the complex
saddle (3.19) with a; expressed as in (3.26). We expect this to give a good first approxi-
mation for the phases of the superconformal index.
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Figure 5. Left: deconfinement for the truncated model in the N' = 4 case. The grey area is the
prediction coming from our analysis, while the blue area is the region where tachyonic modes exist
(Reaj > 1) but the index is not yet deconfined. The black dot is the point p, while the red point
is the gravity prediction pgp. Right: the numerical values of higher a,, as a function of y.

It is easy to plot the function f in the (y,)-plane, as we did in figure 5. Clearly, the
locus where f is zero on the (y,v)-plane defines the deconfining curve Cp. This means
that there exists a range of (y, ) values for which Re(Q(a1, g«)) satisfies (3.22) and leads
to exponential behavior. In this region, the large-N field theory has a deconfining behavior
with large-N free energy scaling as O(N?) with a positive coefficient. Note that the point
a1 = 1 where the transition in the original model (3.1) is higher order has essentially
disappeared in the (y,1) variables. This is very encouraging, as we expect the Hawking-
Page transition to be always first order in gravity.

We can consider the point p, € Cp which maximizes the absolute value of w:

Py A 0.279 ¢~ (rH1336)7 (3.28)

The very first deconfining phase transition that can be detected on the (y,)-plane will
occur exactly at this point. The importance of this special point will be discussed in
section 3.4.

Direct computation shows that, in the neighborhood of p,, instantons are still sup-
pressed, hence we are well within the regime where our analysis is correct:

Re(A%(g«(px))) =~ 0.0074 . (3.29)

In the region around py, the higher a,, are somewhat numerically small, which explains
why our result for p, agrees quite well with the gravitational computation to follow.'? We
will compute the corrections from as in the next section and we will see that the agreement
becomes even better.

19Tf one imposes the more naive criterion Re(a1) > 1 one finds the maximizing point [27, 28]

pSKKN ~ 0.926 ¢ (27 +1:336) i 7

which indeed has smaller real part than (3.28) and does not agree with the Hawking-Page transition in
the bulk.
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To conclude this section, let us briefly comment on the new Cardy limit (upper-right
edge in figure 5) which we described in the introduction. In the new Cardy limit p =
q=e "2 |u| < 1 the index can be resummed explicitly [27]. From (1.9),!! deconfined
behavior is expected for

Im (w) >0, Re(w)—0t. (3.30)

In this limit the a,, coefficients behave as

% = —% sin (;Lmr> +Ow™), (3.31)
so that all of the a,’s are parametrically growing and it would seem reckless to consider
the model with only a;. Yet, as we can see in figure 5, our model reproduces a similar
looking edge, which locally divides the space at y = 1,9 = —27 to two half-planes one of
which is in the deconfined phase and the other in the confined phase.

Let us demonstrate this analytically in the model with only a;. We expand around

G (1),
a1 = 2 sin 37r
This means that
g« =2a1 + O(1). (3.32)

The instanton action (3.18) is dominated by the square root part, so
A%(g+) = 4a1 + O(log(ay)) - (3.33)

This implies that instantons are suppressed precisely in the region of Imw > 0 and Rew
small and positive. In addition the potential (3.15) now reads

Q(a1,9+) = a1 + O(log(ay)) . (3.34)

This means that log Z ~ ﬁ near the Cardy limit, in qualitative agreement from what one
expects of the full superconformal index (1.9). Therefore our toy model correctly captures
the deconfinement transition of the full index also at the new Cardy limit.

The above discussion on the Cardy limit can be generalized to a limit where only a
subset of the ay coefficients in the matrix model becomes parametrically large. Such limit,
which corresponds to p — e*™m from below with n, m co-prime integers, has been analyzed
in [40]. Following the same logic we adopted in this section we can study a model

N2972nm

Z[am,N] = /dgmgmeXp <_ da

N
) /[DU] exp (gm (Tr U™+ Tr U—m)> . (3.35)
A preliminary test suggests that the above model is dominated by partially deconfined
saddles with Z,, symmetry. It would be interesting to use this approach to study the
nature of the saddles appearing in [40] and their putative gravitational duals.

111 the variables y, ¢ this means y slightly smaller than 1 and ¢ smaller than —27
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3.4 Black hole entropy and Hawking-Page phase transition

In section 3.2 we have shown that there exists a special point p, € Cp where deconfinement
is first supposed to take place. As such, it is quite natural to ask whether p, might have a
physical significance in the context of the AdS/CFT correspondence, to which we alluded
many times above.

It has been appreciated for a long time that the gravitational dual of large-N de-
confinement transition should be thought of as a Hawking-Page transition [74]. At the
semi-classical level the gravitational path integral is dominated by saddle point configu-
rations of two kinds, one of them is thermal (Euclidean) AdSs while the other is a large
AdSs black hole. The large-N free energy contribution from thermal AdSs is expected to
be O(1). This behavior changes when the system reaches a critical Hawking-Page temper-
ature Typ where the large AdSs black hole saddle dominates and the free energy grows
as O(N?).

Here we are interested in 1/16-BPS black holes solutions of IIB string theory on
AdSs x S° [8, 10, 11, 75, 76]. Upon compactification on S°, these are five dimensional
asymptotically AdSs black holes whose near horizon geometry consists of an AdS, fibra-
tion over S [77]. Such solutions are characterized by three electric charges @123 and two
angular momenta J; o whose corresponding fugacities are denoted by Aj 53 and w; 2. The
five charges QQ;, Jx satisfying some highly non-trivial constraints which, at the level of the
fugacities, can be simply expressed as (see also [78])!2

A1+ Ag + A3 —w) —wy = —2m1. (336)

The entropy for these black holes was computed in [13] and reads

3
iy

1Cx (J1 + JQ), (3.37)

S = 27T\/Q1Q2 + Q1Q3 + Q2Q3 —
where /5 is the AdSs radius and Gy is the five-dimensional Newton constant. It was
recently shown [79] that (3.37) is in fact the result of an extremization procedure. More
precisely we have

3 2
S=—Feu+ Y AiQi+ Y wala, (3.38)
i=1 a=1
where
N2A1AA
— Fpy = — 12238 (3.39)
2w1w2

can be thought as the leading terms in the large N black hole free energy. Moreover one
should evaluate (3.38) for fugacities fulfilling the “extremization constraint”

05
oA,

98

0=—.
&uk

(3.40)

12For BPS states which have E > Z?zl Qi + Zi=1 Ja.
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Let us now consider a simpler situation with equal charges Q1 = Q2 = Q3 = @ and equal
angular momenta J; = Jy = J. From (3.36), this also implies that 3A — 2w = —2mi. Then

we have
AN?(—mi + w)?
27w? ’
where w = —log y—i(27+1)) in the conventions of section 3.3. Therefore the Hawking-Page

Fay = (3.41)

line where black holes start to dominate over thermal AdSs is given by
RG(FBH) =0. (3.42)

Note however that the extremalization procedure will in general lead to complex charges
for generic fugacities because of (3.36). These will not correspond to physical black hole
solutions. Since the charges are equal, the reality condition determines a line in the complex
fugacity plane. The intersection between this line and the Hawking-Page line defines a point
in the fugacity plane. At this location we both have a physical black hole solution (with real
charges) and we cross the Hawking-Page line. We will call such a point the Hawking-Page
transition wyp. Converting to our conventions for the fugacities one finds [27]:1

wip = 116 414 — 66v/33 + i 116(1 +V/33 + 16). (3.43)
Which implies:
prp ~ 0.314 ¢~ (rH1:324)1 (3.44)

If we compare pyp with our p, we find

[ps| < |pHp|. (3.45)

See also figure 5. Let us now discuss some consequences of the above result. First, if
our p, were the true deconfining critical value for the full superconformal index (1.3),
deconfinement would take place in field theory before a known large AdS black hole saddle
dominate the gravitational ensemble. In other words, this would necessarily imply that
yet unknown gravitational saddles with have to be found in order to save the AdS/CFT
correspondence.

However, since the transition at p, was shown to be first order, it may shift due to a,~1
corrections. We will see that these corrections can indeed be taken into account, they are
numerically somewhat small, and they remove the discrepancy with AdS/CFT. In other
words, there is presently no need for new gravitational saddles.

4 Corrections to the deconfinement curve

In section 3 we analyzed a simple unitary matrix model (3.1) which is obtained as a
truncation of the N' = 4 superconformal index matrix model to its first interacting term
with coupling a;. Since the truncated model has a first order transition for complex aq,

3From now on we identify p = e~*, this slightly differs from the wy used above by a factor of 2. See
for example [31] for the explicit dictionary. We hope that this will not generate any confusion.

—90 —



there is no sense in which the higher a,, may be “irrelevant.” This is in contrast to the case
of real ay, where the transition of the truncated model is a higher order one, and hence
some of its predictions are exact. Therefore, for complex a1, the deconfinement curve may
and will receive corrections from the higher a,’s. At this point it may seem hard to obtain
a useful approximation of the deconfinement curve. Accounting for the effects of the a,’s
is indeed difficult. However, we will show here that near the deconfinement transition
the effects of the higher a,’s are numerically small and going to second order is already
sufficient to obtain a remarkably close deconfinement curve to the one predicted by gravity.

We emphasize again: in the analysis below, there is no parametric suppression of
the remaining a, corrections. In this sense the situation is more akin to perturbative
computations in QED, where the electromagnetic coupling just “happens” to be sufficiently
small to get accurate results by simple perturbation theory.

4.1 Two-terms model

The simplest improvement of (3.1) is obtained by adding the second smallest coupling near
the region of the Hawking-Page transition, namely as.

Zlay, a9, N] = /[DU] exp <a1 TTUTrU + “;TrUQTrU—2> . (4.1)

We assume that a small enough as only changes the original one-cut saddle in a continuous
way so that no further transition happens. In fact, we will end up treating as perturba-
tively so this is guaranteed. To find the corrections to the deconfinement curve it is again
convenient to apply the Hubbard-Stratonovich transformation to get

Zlay, az, N] = /gngIZdeleQ exp <_ 4@? + (7;1a2 25)

iNZl

N
X /[DU] exp (QQ(TrU FTeUY) +
iNZQ

(Tr U2+ Tr U‘2) (4.2)

_l’_

(02 - mrU-?) ) .

Here, as before, we have redefined the phase of U in order to have just a single complex
coupling g for Tr U. This however still leaves us with three complex couplings, which make
the model much harder to analyze. A simplification occurs by noticing that the original
model has a Zy (charge conjugation) symmetry

U«Ut. (4.3)
under which zo is an odd coupling. Therefore, if we expand the free energy around z3 = 0
it will have only even powers (assuming it is analytic) and hence zo = 0 is a saddle point

of (4.2). Thus, as long as we wish to study the leading saddle in the regime where a9 effects
are small, we may safely set zo = 0. Therefore we wish to calculate the large-N behavior
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of

fVZ 2 PVQhQ
/gdghdhexp (— 49 - )
“ @2 (4.4)

N Nh
X /[DU] exp (29(TrU +Te U™ + - (T&"UQ + HU‘2)> :

where we set h = iz;. Following the same strategy adopted in section 3 we will first focus
on the integral

Zlg,h] = /[DU] exp <A;9(TrU LT + % (Tr0? 4 x U—2)> . 5)

More precisely, up to some unimportant normalization factors we write (4.5) as

Z]g.h] = /F =N T (i — 2)2 [ exp NV (24)] | (4.6)

i<j i
where b
V(z) = g(z + 271 + 5(22 +27%) —logz. (4.7)

When g and h are both real, the contour I' is just the unit circle since the integral (4.1) is
performed over unitary matrices. However we would like to study (4.6) for g and h both
complex. I' then becomes a more general path in the complex plane. The model (4.5)
admits multi-cut phases, see for instance [80]. Thus in order to make contact with the
Hawking-Page transition described in section 3.4 we further need to restrict our attention
to a region of the complex (g, h)-parameters space where the one-cut phase is well defined.
In order to compute the genus zero free energy Fy(g,h) it is useful to consult the classic
reference [80], see also [81] for a pedagogical review. We review some aspects of our main
computation in appendix B. We find that the full genus-zero free energy Fy(g,h) in the
one cut phase is

1
Fo(g.h) = (2h2A% + A% (g — 4h(A = 1)) = 4(A = 1)(=3hA + h + g) + 2log(A))
(4.8)
where 5
A= . 4.9
4h + g + /(4h + g)2 — 24h (4.9)
Hence, at large-N, the integral (4.4) can be further simplified to
}JZ 2 PJZ 2
Zlay,ag, N| ~ /dgdhexp _Ng7  NTh + N?Fy(g,h)| , (4.10)
4a1 2a2

with Fy(g, h) given by (4.8).

Our final task is to perform the large-N saddle point analysis of (4.10). However, in
contrast with section 3.2, such analysis is further complicated by the form of Fy(g, h) which
does not allow us to solve the saddle point equations for (g, hs) analytically. This is not
a major obstacle since we can now assume that ag is small, which in turn implies that
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h is also small on the relevant saddle. Thus we may obtain analytic formulae by simply
considering the perturbative regime. The large-N free energy Fy(g,h) can be expressed as
a series in h/g and the saddle point equations for the couplings can be solved recursively.

By performing a perturbative analysis up second order in as we find that the original
model (4.10) can be approximated by

NP NP ) @) @
exp [— dar 2a + NFy™ (g, hs™) | . (4.11)
where
(2) 1 1) B ) (1-g)%h  (16(g/2 — 1)g + 9)h?
Fy7(g,h) = 1 (log <92 +49—-3) + 7 + 5t . (4.12)
and
h? = (1 - 1>a2 (4.13)
aj
(a1 — 1) (4a1 (2@1 —2y/(a1 — Dag — 3) +8y/ (a1 — 1)as + 5) a3
+ 3 ,
1
© 2(ar — 1) (Vs = Dar —a1) az
g = a1 +1/(a1 — 1D)a; — 3 . (4.14)
1

It is easy to iterate this procedure and repeat the analysis to a higher order.

Note that thus far we have only considered the effects of as. We are not presenting the
results of including the effects of a, o since these corrections turn out to be much smaller
numerically than the ao corrections.

4.2 Comparing with the Hawking-Page phase transition

We can now use our analysis of section 4.1 to compare with the gravity prediction described
in section 3.4. Using the explicit expressions for a; and ag in (4.11)

_.2/3\3

g =1 L=p 2) ,
(1=p) (4.15)

| a—py

P T a2

we now study the corresponding deconfining curve as a function of p = yel¥ € C. This
gives a curve in the (y,) plane which is shown in figure 6.
The minimal value of y on the curve is

(y, )@ ~ (0.312, — (27 + 1.355)) . (4.16)

We can compare this numerical value with the Hawking-Page transition point (3.44) which
is shown in red in figure 6. The computation to order a3 leads to a deconfinement curve
remarkably close to the one predicted by the Hawking-Page transition.
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Figure 6. The blue, purple dashed and black dashed curves are respectively deconfinement curves
on the (y,)-plane for the a;-model and the O(az), O(a3) corrections. The red line is the gravita-
tional curve Re Fgy = 0.

Figure 7. The blue region cover a sector of the (y,1)-plane where the Bethe approach of [30, 31]
predicts exponentially growing behavior. The dashed curve is the deconfinement curve obtained in
our approach. The red line is the gravitational curve Re Fpy = 0.

Finally, we would like to compare our results with the large- N analysis of the N' = 4
superconformal index which has been recently described in [30, 31] using a Bethe-Ansatz
inspired formula. In this language, the dominating saddles can be thought of as solutions
of an elliptic Bethe-type equation. The authors of [30, 31] have been able to estimate
analytically in which region of the complex (y,)-plane the index is expected to have ex-
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ponential growth, we show such region in figure 7. One virtue of this approach is that,
in the region of confidence, the Bethe-Ansatz analysis allows to compute exactly the co-
efficient of the O(N?) term. The region where the Bethe approach predicts exponentially
growing behavior is included in the region where our analysis shows that deconfinement
has taken place.
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A Some details on matrix models

Throughout the main body of this work we have discussed planar solutions of (holomorphic)
matrix models. In this appendix we collect some facts about the computations performed
and the general formalism.

Consider a matrix model of the form

N
/dNZlH A?( 2 — %j exp< NZ gV (zi) logzi)>, Reg >0, (A1)
1<J i=1

where A is the Vandermonde determinant,'* V(z) is a single trace potential and T is a
contour in the complex plane. We assume that for real, positive coupling g, I' can be
deformed onto a negatively-oriented unit circle in the complex plane so that so that (A.1)
defines an “analytic continuation” of the unitary matrix integral, see for instance [61, 82—-84]
for a nice exposition. In the case of the GWW model we have

1
where the variable z is related to « in (3.4) by

2 = el (A.3)

MFrom this point of view, the logarithmic term in the potential is needed to get the right Vandermonde
determinant on the unit circle.
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ReG <0 ReG >0 ReG <0 ReG >0 ReG <0

| )

ReG >0

Figure 8. Each image corresponds to a different value of g. In the leftmost figure Re(A4%(g)) >
0 while in the rightmost figure Re(A*(g)) = 0. The black and blue lines represent the region
ReG(z) = 0. The blue line denotes the position of the cut, while red dots are the zeroes of y(z)
in (A.8). Notice that a “pinching” of two lines occurs precisely at the instanton condensation point.

The large N saddles of the model have the eigenvalues lying on a (possibly disconnected)
curve v in the complex plane. We call the number of connected components “number
of cuts”. In the continuum limit this is described by a positive, normalized density p(z)
supported on 7. More precisely p(z) is defined by

L.
%Dlscvy(z)dz = p(2)|dz|, (A.4)

where |dz| is the line element on v and y(z) is the spectral curve namely

Vi(z) = V'(2)

) = (V) -1 [ ~o(a)ldz). (A5)

5 Z—z

The curve y(z) has square root singularities which signal the beginning of a cut, we
call these “endpoints.” For real, positive coupling the cuts belong to the real line and go
from one endpoint to another. Likewise, for complex couplings the shape of the cuts is
fixed by demanding that p is real and positive along the cuts. A nice way to put this into
equations is to define a function (see [68])

()= [ (), (A.6)
where a is one of the endpoints. Then
Re(G%(z)) =0, zZE€". (A.7)

Furthermore, if v defines a branch-cut of the spectral curve, Re(G?(z)) has the same sign
slightly above and slightly below ~.
As an example, let us consider the one-cut phase of the GWW model. We have

y(z)dz = g (z—a)(z=0) Zz%ldz, (A.8)
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ReG < 0 ReG <0

ReG >0 ReG >0

Figure 9. Possible resolutions of the “pinching” singularity. On the left, the one-cut solution is
continued past it. On the right the z = —1 zero of y(z) splits and a new cut opens. Here we
consider a value of g where the instanton action is negative, hence the second process is favorable.

with end-point solving ab =1, a+b = 2(1 —2/g). We can find the function G(z) by
explicit integration

_gz—lsz 10 s(z) — (1 —Az) s(z)+(z—A)
T () +3log s(z)+(1—Az) s(z) = (z—A)]’

2 2z 2 (A.9)

where A = (a +b)/2 and s(z) = /(2 —a)(z—b) = V22 +1—2Az. Suppose we take
g = |gle!® € C, Re(g) > 0 and study the shape of the cut. One can plug (A.9) into (A.7)
and solve the latter numerically. The result is shown in figure 8. It is interesting to note
that at z = —1 the one-cut solution (A.8) pinches and one has

G(-1) = A%(g) (A.10)

where A? is the instanton action (3.12), as expected from [85, 86]. This means that (A.7)
evaluated at z = —1 corresponds to a line where instanton events condense. This singularity
can be resolved either by continuing the one-cut solution or by splitting the point z = —1
creating a second cut as shown in figure 9. If g is such that the instanton action becomes
negative, the latter possibility is energetically favorable.

Alternatively one can construct an explicit parametrization for the cut. Let us take
g = |gle!® € C, Re(g) > 0. We want to find a suitable path

z(t), te (ti,ty) CR. (A.11)
such that the one-cut density
g (Y2 +2(t)71/?) 1 4 _dz(t)
== — - — Al
ph)dt = — 20 2(t) + 0 + 2 =t (A.12)

is positive and normalized to 1. Moreover we also demand that

2(ti)z(ty) =1, 2(t;) +2(ty) =2 — ;L . (A.13)
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As an Ansatz we take
A Y 2 1
2(t) = (V1= e 4ite 309)  te (— — ) . (A.14)
By using (A.14) is it is easy to see that

2| /L _ 42
(t)dt = ¢dt, (A.15)
™

is clearly positive and that equation (A.13) is satisfied.

p

Let us discuss such change of variable more carefully:

o The function z(y) in (A.14) has branch cuts for ¢ = 0 at y = (—o0,—1) and y =
(1,00). This excludes the real segment g € [0,1] where the gapless solution exists
and we restrict our Ansatz accordingly.

o The density (A.12) vanishes by construction at t; and t; but also for ¢ such that
z(ts) = —1. Hence we have to make sure ts; does not belong to our path. It is easy
to show that

2(t)=—-1 =ty =4e 12 (A.16)

Hence the point ts belong to the path only for ¢ = 1 which we have to exclude.

Again, this shows that for g € [0,1] the path hits the singular point at t; We can also
check that
Re(G(z(t))) =0, te (tity), (A.17)

and that, on the two sides of the path, Re(G(z(t))) has the same sign.

B Computing the large-N free energy

In this appendix we review the computation of the genus zero free energy

Fy = lim logN2Z, (B.1)
N—o00
fora generic potential of the form
Gk k —k
=—->) — (T T . B.2
V(U) ]§2<rU+rU) (B.2)
These were also studied in [80, 87]. It is convenient to define the expectation values of the
holonomies:
O =Nz /[DU] Te U* exp (—N (Tr V(U) + Trlog(U))) = 8, Fo . (B.3)
or,
1
OF = — / Fy(z)d B.4
i ., 7). (5.4)

where C, is a closed contour encircling the cut v. Hence the free energy can be derived
easily from y(z) by Taylor expansion plus an integration over 't Hooft couplings.
In the following we show how to derive the saddles which are in the body of the paper.
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B.1 Ungapped saddles

These saddles have only a single cut which is a closed curve. They are characterized by an
Ansatz: 2.
H=(z
2
Yo—cut(2) = nt2 (B.5)
with H(z) a degree 2n polynomial. In this case the necessity for the cut comes from the
need to choose a different sign of the square root between zero and infinity. The equations
of motion are easily solved (say near z = 0) to give

d n _
y(z)dz = ; (1 + %(z +2 D4 gp 42+ + n%(z" +z ”)) ) (B.6)

for real couplings this gives a density on the circle

1 gk
0)=—|(1+2) k=— k6 B.7
p( ) 27T< + kgl 2 COS( )) ? ( )
and
Ok = k%k , (B.8)
which gives a free energy
no 2
Ik
F = k2R B.9
k; 1 (B.9)

having fixed the integration constant to zero by normalizing to the model with a trivial
potential.

B.2 Gapped saddles

These saddles will have a single open cut in the complex plane. We start from the Ansatz
(symmetric under z — 1/2):

1
2 _ 2
yl—cut(z) - 22n+2 (Z +1- AZ)

2
X [ao(zzn_l + D)+ a1 () . Fan (2 + z"_l)} , (B.10)

/ 2
The cut endpoints are located at a = 1/b = % — (g) — 1 and te right asymptotics to
fulfill the equations of motion. The equations of motion expanded near zero up to order

1/z give:

(n—1)

r
_ n
Zcrj]éz(A/2)Oék :5r,0§gn+6r,l gn—1 +---+6r,n> r=0,...,n,0, = ap_1,

k=0
(B.11)

with Cr__lf (A/2) the Gegenbauer polynomials. These can easily be solved recursively case y

case or recasted as a matrix equation by defining M; ; = C,_ 1j/ 2 (A/2), with lower-triangular
M. The final equations for the endpoints are given by a degree n polynomial in A, which
cannot be solved analytically in full generality. We give some examples:
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n = 1. This is the GWW model:

2
%:g,A:20—>, (B.12)
2 g
Expanding y(z):
1
Q=1-—. B.13
5 (8.13)
Matching with the zero-cut solution at the point at ¢ = 1 (where the cut closes):
1 3
F=g—_-1 —--. B.14
g - 5loglg) — (B.14)

n = 2. This is the model of 4, for ease of confrontation we set go = h. We find:

9

A
=h =h—+= B.15
g , Q1 5 + 9 ( )
and the endpoint equation
h  A%h Aoy
1— 2 — = B.1
5 + 3 a1 + 5 0 ( 6)
these have two solutions
1 g
A==(2—-Z+ = A B.17
3 ( N f) £ (B.17)
h RS
=—(14+=4+2)= B.18
Qi 3 ( + h 2) ot ( )

Being £ = /(g + 4h)2 — 24h. Looking for a solution which reduces to the n = 1 case as
h — 0 we see that we need to choose the + branch.
To compute the free energy we expand y(z) to find:

Ql_—f—@fh+3®%r+m&mﬁ+@—4mé+a&m%+%&ﬁ—2mm
864h3 ’

_ g®+12¢°h + 48gh? — &3 — 36gh + 64h> + 288h*

N 432h2

integrating over h and using the n = 1 result to fix the remaining ambiguity gives (4.8).

(B.19)

Q (B.20)

B.3 Two-cut saddles in GWW

Two cut saddles have a much richer (and complicated) structure. Apart from symmetric
choices we have no closed form for their free energy. We can however give a series expansion
at both strong and weak coupling. This is possible thanks to an underlying connection
between the GWW model and Seiberg-Witten theory. Indeed form [88] it follows that the
GWW spectral curve coincides with that of the SU(2) theory with Ny = 2 massive hypers
upon matching parameters.

Denoting by ns =1 — %, where N — N, is the number of eigenvalues in the second
cut, at small g we have:

g% (n? — 2ns +2)

2F(§e) (9,ms) = 4(ng —1)2

+ ns(nslog(g) — 2log(g) — 2 + log(4)) + ns Z " cn(ns)

n>2

(B.21)
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where the first two ¢, (ns) coefficients are

(ns —4)n? +8

128(ny — 1)0

(ns —2)(5(ns — 2)ns — 4)
384(ns — 1)10

co(ng) =
(B.22)

c3(ns) =

The expression (B.21) corresponds to electric expansion in SW theory as in [88, eq (3.19)].1°
The dictionary between [88, eq (3.19)] and our expression (B.21) is given by

A— g,

a

— = 1—mns, (B.23)
m

m — 1.

When ng = 0 we recover the known ungapped one-cut solution

F()(g,O) = (f) . (B.24)

Moreover we find that
Aw(g) = 2ansF0(6) (nsa g) ’nSZO (B25)

where AV is given in (3.11). We have checked (B.25) in the small g expansion up to
O(g'%). This kind of relations are expected from a matrix model perspective, see for
instance [71] and reference therein. However, to our knowledge, this was never worked out
in the literature for the specific example of the GWW model.

The expansion of the free energy at large ¢ is then mapped to the magnetic expansion
in Seiberg-Witten theory. We get

F§™(9,m5) = 9(2ns +1) + 3 (~2n,(n, + 1)(3 +105(16)) — 3)

1 2 g 2 9
+7 (—Zns log (n) —2(ns + 1) log <n n 1)) (B.26)

[e.9]

1
+ns Z gj%pn(nS) )

n=1

where the first two ¢, (ns) coefficients are

~ 1
¢1(ns) = Z(ns +1)(2ns + 1),
1 (B.27)
P2(ns) = 1—6(715 +1)(5ns(ns+1) +1).
These are easily computed by using [89, eq. (A.33)].16 The dictionary between [89, eq.
(A.33)] and the expression (B.27) is given by

s——4dig, Op=—0— 1, v— 2ng+1 (B.28)

5Tn [88, eq (3.19)] one has the freedom to fix an overall g-independent integration constant. Here we fix
it to be ns(2 — log(4)) so that it agrees with (B.25).
16 A similar connection has appeared in [90] but without reference to the GWW two-cut phase.
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When ng = 0 we recover the gapped one-cut phase:

1
Fo(g,0) =g —3/4— 5 logg. (B.29)
Moreover we find that
A3(g) = 00, )™ (15,9) |na=o0 (B.30)

where A® is given in (3.12). We have checked (B.30) in the large g expansion. To our
knowledge, this kind of relations have never been worked out in the literature for the
specific example of the GWW model.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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