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1 Introduction

Hamiltonian Truncation methods are a powerful approach to studying Quantum Field
Theory (QFT) at strong coupling. Their basic strategy is to numerically diagonalize the
Hamiltonian restricted to a finite dimensional subspace of the full Hilbert space. The
resulting energy eigenvalues and eigenvectors provide a wealth of information about the
theory at strong coupling, but it is not always straightforward to assemble this output into
the dynamical observables of interest.

In this paper, we will focus on two particular types of observables involving local
operators, namely spectral densities of two-point functions, and two-particle form factors. We
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will use Lightcone Conformal Truncation (LCT), which is a specific Hamiltonian truncation
method [1, 2]. Spectral densities, through the Källen-Lehmann spectral decomposition, can
be used to easily reconstruct two-point correlators in position space or momentum space, in
Euclidean or Lorentzian signature. They describe the inclusive scattering cross-sections
that result when one weakly couples the theory to an external probe. However, in a
truncation framework, they suffer from the fact that one must necessarily perform some
type of discretization of the multi-particle continuum when truncating the Hilbert space.
Such discretizations are at odds with the typically smooth behavior of spectral functions on
the multi-particle continuum in infinite volume. In the cases we consider, this discrepancy
will be particularly offensive: the truncated spectral density is a sum over delta functions,
but the continuum limit is supposed to be a smooth function in the multi-particle regime.
One of our goals in this work will be to improve the spectral density to rectify this issue.

The other type of observable we consider, the form factors, have their own scars from
the truncation of the Hilbert space. There are two kinds of form factors we consider, related
to each other by crossing symmetry. The first kind of form factor is a matrix element of a
local operator O between single-particle states, i.e. FO1,1 ≡ 〈m, p|O(0)|m, p′〉. The second is
a matrix element of O between the vacuum and a two-particle asymptotic scattering state,
i.e. FO2,0 ≡ 〈vac|O(0)|m, p;m, p′〉. The former can be computed directly in LCT, though
as we will see, the act of truncation ruins some of the important analytic properties of
the function FO1,1 and one of our goals will be to undo this damage. The second cannot
be computed directly, since multi-particle asymptotic scattering states are not generally
eigenstates of the Hamiltonian. Instead, we will aim to improve the behavior of FO1,1 enough
to obtain FO2,0 from it by analytic continuation.

We choose to specifically focus on the φ4 model in 2d:

SUV =
∫
d2x

(
−1

2(∂φ)2 − 1
2m

2
0φ

2 − λ

4!φ
4
)
. (1.1)

The main reason for this choice is that LCT has been developed furthest for this model,
and so this is the model where we will be able to obtain the highest quality truncation data;
we expect the approach in this paper to apply more generally.

We will define all operators in the Lagrangian to be normal-ordered, which removes all
divergences in the theory. The theory depends only on the dimensionless quartic coupling
λ defined as1

λ ≡ m−2
0 λ. (1.2)

We will work in lightcone quantization, which shifts the value of the bare mass-squared m2
0

relative to equal-time quantization [3–5]. The theory is in the unbroken phase in range
0 ≤ λ ≤ λ∗, where λ∗ ≈ 23.1 [6]. At the critical value λ∗, the theory flows in the IR to 2d
Ising model.2

1Notice the mismatch of notation with the work [2]. One has λhere = 4πλthere.
2See e.g. [6–10] for various recent works applying Hamiltonian truncation methods to 2d φ4 theory, and

in particular [11] which extracted the scattering phase shifts in the broken phase of the theory with the aid
of powerful equal-time renormalization methods from [12–16].
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Summary of main results. In this paper, we use the LCT method to compute the form
factor of the trace of the stress tensor and the spectral density of the trace of the stress
tensor ρΘ(s). One of our main results is a procedure that leads to significant improvements
in the spectral densities of local operators, compared to previous LCT work. In figure 4,
we show our improved spectral density in φ4 theory for a range of couplings over the
entire unbroken phase region 0 ≤ λ ≤ 23.1; for λ � 4π, our truncation results match
the perturbative ones very well. As mentioned above, the “raw” truncation result for the
spectral density is a sum over δ functions, since the truncated spectrum is discrete, so any
smooth result for the spectral density is already an improvement. But our procedure also
significantly improves integrals of spectral densities, as the C-function plotted in figure 5
shows. Our method uses the fact that the time-ordered correlator converges fairly quickly
away from poles and branch cuts, and the derivatives of the time-ordered correlator in the
convergent region can be used to reconstruct its behavior near the branch cuts.

We also show how form factors FO1,1 for any local operator O at physical external values
of the particle momenta can be obtained directly from the one-particle eigenvectors of
the Hamiltonian in LCT. The “raw” result in this case is obtained by applying a simple
formula (4.17) to the LCT data. We then use this raw result as a starting point for various
improvements that significantly reduce truncation effects. The final results are given in
figures 4 and 12 for various values of λ. Again, for λ � 4π, the match to perturbation
theory is quite good. The form factor FO1,1 at physical external momenta is equivalent by
crossing symmetry to FO2,0(s) at s < 0. By contrast with s < 0, there is no direct way of
computing FO2,0(s) with s > 0 using the LCT method. In principle, it can be obtained by
analytic continuation from s < 0 to s > 0, and in this paper we attempt to perform this
extrapolation with reasonable results shown in figure 13 and 14. As one can see in figure 13,
at strong coupling this extrapolation produces results that do not quite satisfy unitarity
consistency conditions in the elastic regime 4m2 < s < 16m2. In a companion paper [17],
we propose to obtain the form factors, as well as the S-matrix, in this elastic regime via the
S-matrix/form factor bootstrap program with the observables computed in this paper as
the input.

Outline of the paper. In section 2, we give a brief review of the LCT method. In
section 3, we first discuss how one can compute spectral densities and time-ordered correlators
directly using the LCT eigenvalues and eigenvectors. We then propose to use a two-point
Padé approximant of the time-ordered correlators to improve the result for the spectral
densities. In section 4, we compute the two-particle form factor of the trace of the stress
tensor at s ≤ 0, and discuss how one can obtain more accurate result by using various tricks.
We then make a first attempt to go to the s > 0 regime directly by analytic continuation.
We end with a brief discussion in section 5. A number of technical details of our approach
are relegated to appendices. Additionally, in appendix C, we check the results of our method
in the limit of perturbative coupling λ, as well as at large N in the O(N) generalization
of the model, where we find excellent agreement with the standard perturbative Feynman
diagram approach.
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2 Lightning review of LCT

The LCT approach works with the Hamiltonian in lightcone quantization, so states are
defined on a null plane and the Hamiltonian P+ evolves them forward in lightcone time x+.
The relation between the lighcone and cartesian coordinates is given by

x± ≡ x0 ± x1
√

2
. (2.1)

The advantage of lightcone quantization is that the vacuum does not mix with other states
in the theory, so there are no “vacuum bubble” diagrams and one may formally take the
limit of infinite volume from the outset. Additionally, LCT decomposes the Hamiltonian as
H = H0 + V , where H0 is the Hamiltonian for a UV CFT, and V is one or more relevant
deformations. The truncation subspace is then taken to be all states that sit inside a
representation of the conformal group with quadratic Casimir below some cut-off.3 Roughly
speaking, one keeps all states created by operators with dimension below some cutoff ∆max.
More precisely, the basis states are of the form

|O, p〉 ≡ 1
NO

∫
ddxe−ip·xO(x)|vac〉, (2.2)

where O is a primary operator of the UV CFT with dimension ≤ ∆max, and NO is a
normalization constant.

The practical advantage of this basis is that conformal symmetry highly constrains the
correlation functions of such operators, which in turn increases the efficiency of computing
the matrix elements of the Hamiltonian. We will see shortly that it also greatly aids the
computation of form factors of local UV operators.

The mass-squared operator

M2 ≡ −P 2 = 2P+P− − P 2
⊥ (2.3)

depends linearly on the lightcone Hamiltonian P+. We are free to work in a momentum
frame where P⊥ = 0, and P− = p− is some value of our choosing. When we diagonalize P+,
we can label the eigenvectors by their M2 and P− eigenvalues µ2 and p−, and write them
as a sum over our basis states:

|µ2
i , p−〉 =

∑
Oj

C
µ2
i
Oj |Oj , p〉 with µ2

i = 2p+ip−. (2.4)

Because the quantization surface x+ = 0 preserves boosts in the x1 direction, the matrix
elements of M2 = 2p−P+ are invariant under such boosts. A very useful consequence is that
diagonalizing P+ at one value of p− effectively gives us the eigenvectors for all values of p−.

Having diagonalized the truncated Hamiltonian P+ (or equivalently M2), one can
compute several observables from the eigenvalues and eigenvectors. In this work, we focus
on two such observables: the spectral density, which we address in section 3, and the two-
particle form factor, which we address in section 4. For the definitions of the observables
and conventions used in this paper, see appendix A.

3Discrete Lightcone Quantization (DLCQ) [18] uses a different basis constructed by first compactifying
in the lightlike direction. See [19, 20] for an early application to 2d φ4 theory.
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3 Spectral densities

The most natural quantity to compute in the LCT framework is the spectral density ρO of
local operators. In terms of the eigenvectors of M2, for a scalar operator O it is simply

ρO(s) =
∑
i

|〈vac|O(0)|µ2
i , p−〉|2δ(s− µ2

i ), (3.1)

where the sum in i is a sum over states in a fixed momentum frame. From (3.1) one can easily
obtain the O two-point function in Lorentzian or Euclidean signature, in position space
or momentum space. For instance, the Fourier transform of the time-ordered correlator is
(with s = −p2)

∆O(p) ≡
∫
ddxeip·x〈vac|O(x)O(0)|vac〉T

=
∫ ∞

0
dµ2ρO(µ2) i

s− µ2 + iε
=
∑
i

i|〈vac|O(0)|µ2
i , p−〉|2

s− µ2
i + iε

. (3.2)

Due to (2.2) and (2.4), the matrix element entering in (3.1) and (3.2) can be simply written
as linear combinations of Fourier transforms of CFT two-point functions of local operators as

〈vac|O(0)|µ2
i , p−〉 =

∑
Oj

C
µ2
i
Oj

1
NOj

∫
ddxe−ip·x〈vac|O(0)Oj(x)|vac〉. (3.3)

When O is a CFT operator in the UV CFT, the two-point function on the r.h.s. is the
usual CFT two-point function in the Lorentzian signature, and without loss of generality
we can choose an operator basis so that it is only non-vanishing if Oj = O. Its momentum
space expression4 can be found in [21]. If O is an operator in our basis and we choose the
normalization coefficients NO so that 〈O, p|O, p′〉 = 2p−(2π)δ(p− − p′−), then the overlap
is simply5

〈vac|O(0)|µ2
i , p−〉 = C

µ2
i
O 2p−NO. (3.4)

In Hamiltonian truncation methods, the Hilbert space is truncated to a finite-
dimensional subspace. As a consequence, the eigenvalue spectrum of the Hamiltonian
typically is discrete and therefore the spectral densities computed using equation (3.1) are
sums over δ functions.6 However, the exact spectral densities have continuous contributions
from multi-particle states. Obviously a sum over δ functions can at best reproduce a

4For 2d, it is simply given by∫
d2xe−ip·x〈vac|O(0)O(x)|vac〉 =

4π2p2h−1
+ p2h−1

−

Γ(2h)Γ(2h)
Θ(p+)Θ(p−)

where h and h are the conformal dimensions of O, and the position space two-point function is normalized
to have norm equal to 1 in the above formula. For holomorphic operators h = 0, the limit h → 0 of the
above formula produces a δ(p+) function.

5See [2], eq. (4.81).
6One way around this statement is to use a truncated basis that is different in each momentum frame, so

that a continuous spectrum of eigenvalues arises from the continuum of momentum frame choices. See e.g. [22]
for an example of such an approach in the large N limit of the 3d O(N) model and Chern-Simons theories.
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continuous function in some distributional sense but not in an absolute sense. So for
instance, the integrated spectral density (or more generally, the spectral density integrated
against any smooth kernel) may exhibit absolute convergence to its continuum limit.

If we want precise results for the spectral densities from Hamiltonian truncation, we
therefore seem to have two possible options. Either, we formulate all applications of the
spectral densities in terms of weighted integrals thereof, or we process the spectral densities
in some way to make them continuous. We think that both of these approaches are worth
pursuing. Here, we will focus on the latter approach, in an attempt to construct a smooth
spectral density. Our motivation for focusing on this direction is that if we can significantly
improve the convergence of the spectral density itself (from convergence in a distributional
sense to convergence in an absolute sense), it seems likely that the integrated moments
of the spectral density will also be improved.7 However, the method we introduce will
involve some guesswork, and it may be the case that integrated spectral densities would
allow greater mathematical rigor.

3.1 Padé approximation

The basic idea is to focus first not on the spectral density itself, but rather on the time-
ordered two-point function. If we can obtain an accurate result for the time-ordered
two-point function, then the spectral density is simply its real part

2πθ(p0)ρO(−p2) = 2Re
∫
ddxe−ip·x〈vac|O(x)O(0)|vac〉T . (3.5)

After factoring out an overall momentum-conserving δ function, the time-ordered two-point
function is an analytic function of s away from poles and cuts corresponding to physical
states. Therefore, at values of s in the complex plane away from the branch cut, we can
expect much better convergence of the time-ordered correlator. The trick is to then use
this convergence of the function away from the branch cut to reconstruct its behavior on
the branch cut.

As a simple example, consider the spectral density ρΘ of the stress tensor in the 2d
free theory, λ = 0. The exact result, from a one-loop computation, is that

∆Θ(p) ≡
∫
d2xe−ip·x〈vac|Θ(x)Θ(0)|vac〉T = 1

2πi

(
∆(s)− s

6

)
, (3.6)

where ∆(s) is given in (C.3). In figure 1, we show a comparison of the imaginary part of
this exact time-ordered correlator above against the result from LCT with ∆max = 12. The
truncation result at s > 4m2 has poles at the eigenvalues of the truncated Hamiltonian,
and is a very poor approximation to the true correlator (the real part is a sum over δ
functions and cannot even be plotted). However, note that at s < 4m2, LCT gives a very
good approximation, even with this relatively small value of ∆max. To take advantage of
this faster convergence away from s > 4m2, we can compute the Taylor coefficients in s

around some point in the complex plane and use these series coefficients to reconstruct a
function with smooth real and imaginary parts near the branch cut. This can be done via

7And in fact we check explicitly in figure 5 that we improve the integrated spectral density by our methods.
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Figure 1. Imaginary part of the time-ordered correlator ∆Θ(s) from LCT using the spectral
representation (3.2) at ∆max = 12 (red, solid) compared to the exact result (black, dashed) in the
free scalar theory (3.6). Because the truncated Hamiltonian has a discrete spectrum, the resulting
time-ordered correlator has a series of discrete poles at s > 4m2, whereas the continuum limit should
give a smooth function as shown. The real part from LCT is not shown because it is a sum of
δ functions.

using the Padé approximation. Note that the time-ordered two-point function computed
in LCT using the spectral representation (3.2) is a symbolic function of s, and therefore
derivatives around any point may be taken symbolically rather than numerically. As usual,
to improve convergence, it helps to use the variable % defined via

s = 16m2%

(1 + %)2 . (3.7)

This maps the cut plane to the unit disk. As an example, in figure 2, we show that taking
the order (5, 5) Padé approximant8 around the point % = 0 produces a function whose real
and imaginary parts are very good approximations to the time-ordered correlator even at
s > 4m2. Although this method requires some care — in particular, taking the order of the
Padé approximant too high or too low gives poor results, and it depends on which points in
s one chooses to expand around — it can be a powerful way to improve the calculation of
the spectral densities from Hamiltonian truncation.

There are a couple additional improvements we can make to the method. The first is
that we can do a “multi-point” Padé approximation where we fix the Taylor coefficients of
the approximant around multiple points. We will limit ourselves to two points, s = 0 and
s =∞. The advantage of s =∞ (which is % = −1) is that the large s limit of the theory is
free and therefore controlled by perturbation theory, even when λ is large. We can in fact
fix the first two powers of 1/s exactly with very little work. For the stress tensor one has9

∆Θ(p) = s2∆T−−(p) = is2

12π

(
1
s

+
6m2

0 + 3λ
4π

s2 + . . .

)
. (3.8)

8Following convention, we refer to the rational function of the form
∑n

i=0
aiz

i

1+
∑m

j=1
bjzj

with series coefficients

matching those of f(z) up to O(zn+m) as the (n,m) Padé approximant of f around z = 0.
9It is important that the bare mass-squared m2

0 that appears in (3.8) is the bare mass in lightcone
quantization, which differs from the bare mass in equal-time quantization due to zero modes [3–5]. It is
interesting and perhaps surprising that the large s expansion of the Θ two-point function, which is a simple
physical observable, should be so directly related to the lightcone bare mass.
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Figure 2. Real (left) and imaginary (right) parts of the time-ordered correlator ∆Θ(s) in the free
scalar theory, comparing the exact result (black, dashed) to the LCT result at ∆max = 12 (red, solid)
after using Padé approximants as described in the text.

λ 1 3 6 8 10 12 14 16 18 20
m/m0 0.9988 0.9901 0.9637 0.9372 0.9025 0.8579 0.8000 0.7236 0.6186 0.4629

Table 1. Mass gaps as a function of dimensionless coupling λ.

We provide the detailed derive of this result in appendix B. We can use this knowledge to
fix the coefficients in an expansion in % about % ∼ −1 up to O((1 + %)5), since the next
term 1/s3 will only contribute at order O((1 + %)6).

One final advantage of computing Taylor coefficients in s or % is that each coefficient
can be computed for any value of ∆max, and then we can attempt to extrapolate them to
∆max =∞. In practice, we have found that this convergence is fastest if we fix the mass
gap to be the same for each value of ∆max; this requires dialing the coupling λ as a function
of ∆max to keep the gap fixed. In figure 3, we show the convergence for some of the Taylor
coefficients of the time-ordered correlator ∆Θ(%) =

∑∞
n=0 cn%

n at % = 0. In general, for a
given n, the convergence slows down as we increase λ, and for a given λ, the convergence is
becoming worse for larger n.

3.2 Final results for the spectral density

Let us summarize our approach for computing the spectral densities. We use LCT to
compute time-order two-point function ∆Θ at different values of ∆max up to ∆max = 40
as a symbolic function of s, and Taylor expand around s = 0 (equivalently, % = 0). We
then extrapolate these Taylor coefficients to ∆max = ∞. Combining with the several
Taylor coefficients from equation (3.8) at % = −1, we perform a two-point diagonal Padé
approximation to obtain a rational function expression for ∆Θ in % that behaves nicely at
s > 4m2. Taking the imaginary part of this rational expression then gives us the spectral
density ρΘ. We show the final result we got for the spectral densities for various values
of λ in figure 4. The mass gaps in unit of m0 for various values of λ are given in table 1
for reference.

There are various sources of uncertainty in our final result for the spectral densities.
First, we chose the function a + bx2 with x = 1/∆max to extrapolate the coefficients to

– 8 –
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Figure 3. Convergence of the Taylor coefficients cn of ∆Θ(%(s)) =
∑∞
n=0 cn%

n at % = 0. For a
given λ, we computed the coefficients cn for each ∆max up to ∆max = 40, and then extrapolated
them to ∆max =∞ by fitting them as a function of x = 1/∆max. The function we used to fit these
coefficients is a+ bx2, and the solid lines are the results of the fits.

∆max =∞, which seems to work well, but we do not know if this is the correct asymptotic
rate of convergence, and also the best fit parameters depend on the number p of points
used in the fit. Second, when performing the two-point Padé approximation, we also need
to choose what order of the Padé approximant to use. We used a simple procedure to
determine these parameters: we scan over some reasonable range of p, and then obtain
the result for different orders of the Padé approximant. We then choose p such that there
exist three or four consecutive orders of the Padé approximant that give almost the same
result for s ∈ [4m2, 100m2]. For example, for λ ≤ 10, the results we obtained this way for
the spectral density are very similar for Padé approximants of orders between (14, 14) and
(17, 17) (both diagonal and non-diagonal).10 For larger λ, we had to consider lower order
Padé approximants due to slower convergence of the higher order Taylor coefficients (as can
been seen from the last plot in figure 3), e.g., for λ = 20, we looked at Padé approximants of
orders between (8, 8) and (10, 10). If we simply consider the uncertainty from the differences
in these different orders of Padé approximants, then it is O(10−6) at λ = 1, and O(10−2)
at λ = 20 in the range s ∈ [4m2, 100m2]. Of course, this is at most a lower bound of the
actual uncertainty in the spectral densities we obtained.

10Note that we use six Taylor coefficients of the time-order two-point function ∆Θ at % = −1 as
determined by equation (3.8) for the two-point Padé approximant, so for order (n, n), we will need 2n− 6
Taylor coefficients at % = 0.
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Figure 4. Spectral densities of the trace of the stress tensor ρΘ in the φ4 model computed for
various values of λ from LCT (with the inset showing more details near s = 4m2). These plots
are obtained by taking the imaginary part of the two-point Padé approximant of the trace of the
stress tensor two-point function as described in the main text. As a comparison, we also plotted
the perturbative spectral density for λ = 1 (red dotted line) computed via

∣∣FΘ
2,0(s)

∣∣2 /(2πN2),
where FΘ

2,0(s) is the two-loop form factor given in equation (C.2). One can see that it agrees with
the LCT non-perturbative λ = 1 result very well at large s as expected, since λ = 1 � 4π is in
the perturbative regime. This provides a consistency check for our procedure for computing the
non-perturbative spectral density from LCT. However, one can also see the difference near s = 4m2,
where perturbative theory breaks down. Especially, the perturbative result has a singularity at
s = 4m2, while the non-perturbative LCT result is regular there.

In figure 5, we also show the C-function

C(s) = 12π
∫ s

4m2
ds′

ρΘ(s′)
s′2

(3.9)

computed by integrating the Padé approximated expression of the spectral density, where
one can see that it is consistent with the result from simply integrating the δ function
expression (3.1). This provides a consistency check of our procedure for obtaining the
spectral density.

3.3 Padé approximation: general comments

Finally, we end this section with some general comments about using Padé approximants for
time-ordered correlators. Because of their spectral representation, time-ordered correlators
are Stieltjes functions, defined as functions f(x) on the cut plane C/Rx<0 of the form

f(x) =
∫ ∞

0
dt

µ(t)
1 + xt

, (3.10)

for some non-negative measure µ(t) that decays sufficiently rapidly at t → ∞ that the
moments

∫∞
0 tnµ(t)dt exist for all positive integer n. Clearly, ∆O(−s) for any operator O

– 10 –
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Figure 5. The C-functions for various coupling constants. The piecewise continuous lines are
computed from the truncation data with ∆max = 40 directly (that is, by integrating the δ functions
in equation (3.1)), while the dashed lines are computed from integrating the Padé approximant of
the spectral density of Θ (i.e., real part of the Padé approximant of the 〈ΘΘ〉 two-point function).
One can see that they agree with each other fairly well, but the Padé approximant smooths out the
unphysical steps in the raw truncation result.

is of this form, with µ(t) = t−1ρO(t−1). Convergence of the moment integrals at t ∼ ∞
follows in a gapped theory from the fact that ρ(µ2) = 0 when µ is smaller than the gap of
the theory; convergence at t ∼ 0 follows for any operator O in the UV CFT basis from the
argument around (B.3) that the leading moment n = 1 is simply given by the normalization
of the corresponding basis state.

For such functions, one can prove that the order (N,N) diagonal Padé approximants
PNN (x) and the order (N,N + 1) off-diagonal Padé approximants PNN+1(x) are upper and
lower bounds, respectively, on the exact function at x > 0, and moreover that they
monotonically decrease and increase, respectively, with increasing N [23]. In equations,
P 0

1 (x) ≤ P 1
2 (x) ≤ · · · ≤ f(x) ≤ · · · ≤ P 2

2 (x) ≤ P 1
1 (x), when x > 0. Therefore if for some N ,

PNN (x) is very close to PNN+1(x), then they are guaranteed to give a good approximation to
the true function on the positive real axis. Of course, in our case we have an additional
source of uncertainty, which is that LCT does not give us the exact Taylor coefficients
around s = 0. However, as long as we limit ourselves to Padé approximants that use only
the Taylor coefficients that have converged as a function of ∆max well enough to do an
accurate extrapolation to ∆max = ∞, then we will have an accurate calculation of these
Padé approximants, and in that case they will provide bounds on the true time-ordered
correlators. Finally, our ultimate goal for our bootstrap application is to obtain the time-
ordered correlators at s > 4m2, i.e. x < 0, and in this case we do not know of any results
that say the true result is bounded by Padé approximants. However, one can still show [23]
that the diagonal and off-diagonal sequences PNN (z) and PNN+1(z) converge in the entire cut
plane, and if their N →∞ limits are identical then they converge to the true time-ordered
correlator near the branch cut as well.
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4 Form factors

In this section, we explain how to compute form factors in the LCT approach. In section 4.1
we introduce the formalism and show an explicit example. We proceed in section 4.2 by
checking our results in perturbation theory. In section 4.3 we show how one can significantly
improve the precision of our numerical results by using various approximations of the raw
data. We present our final numerical results for the form factor of the trace of the stress
tensor in the φ4 model (in the s < 0 kinematic regime) in section 4.4. We consider the
analytic continuation of these results to the s > 0 kinematic regime in section 4.5.

4.1 Computing form factors

Form factors are the matrix elements of local operators in a basis of asymptotic states.
In LCT, they are more difficult to compute than spectral densities because we do not
have direct access to asymptotic states, only to eigenstates of the Hamiltonian. However,
there is one kind of asymptotic state that we can immediately calculate, namely the stable
single-particle states |m, ~pi 〉, where ~pi is the spatial momentum of the ith particle. The
single-particle state is an eigenstate of the Hamiltonian, and also both an ‘in’ and ‘out’
asymptotic state. The single-particle states obey the “mass-shell” condition −p2

i = m2. As
a result their energy reads p0 =

√
m2 + ~p 2.

In the two-dimensional lightcone coordinates, we can label the single-particle states by
pi− and the other coordinate pi+ is fixed by the “mass-shell” condition as

pi+ = m2

2pi−
. (4.1)

Thus, we denote the single-particle states by |m, pi−〉 in the lightcone coordinates. In 2d, it
is often more convenient to work with the rapidity variable θi defined via

p0
i = m cosh θi, p1

i = m sinh θi. (4.2)

In terms of the lightcone coordinates, we simply have

θi = log
(
m

pi−

)
. (4.3)

In LCT, by diagonalizing the Hamiltonian P+ (or equivalently the mass-squared operator
M2), we obtain a set of eigenstates. Selecting the eigenstate with the lowest eigenvalue, we
obtain the single-particle state |m, p−〉. Using it we can compute the following two-particle
form factor of a local operator O with Lorentz spin ` in 2d

FO1,1(θ1, θ2) = e−
`
2 (θ1+θ2)FO1,1(θ) ≡ 〈m, p1−|O(0)|m, p2−〉, (4.4)

where θ ≡ θ1 − θ2. The first equality holds due the covariance to under boosts. For
convenience, let us discuss here various variables one can use to describe the two-particle
form factors. Instead of θ, one can use either the s or t variables defined by

s ≡ −(p1 + p2)2, t ≡ −(p1 − p2)2, t = 4m2 − s. (4.5)

– 12 –
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Plugging (4.2) into (4.5), we find that the s and t variables are related to the rapidity
variable θ as

s = 4m2 cosh2(θ/2), t = −4m2 sinh2(θ/2). (4.6)

Another variable that will be useful for us is

X ≡ p1−
p2−

. (4.7)

Setting p− = p1− + p2−, one can show that

s =
m2p2

−
p1−p2−

= m2(1 +X)2

X
. (4.8)

We will be particularly interested in the case where O is the stress-tensor. In lightcone
quantization, the component T−− is not only holomorphic (i.e. depends only on x−, not
x+) in the CFT limit, but moreover it is simply T−− = −(∂−φ)2 even in the presence of
the relevant deformations φ2 and φ4. We can relate its form factors to that of the trace of
the stress tensor

Θ ≡ Tµµ = 2T+−. (4.9)

This is done by using the Ward identity

[P+, T−−] +
[
P−,

1
2Θ
]

= 0 (4.10)

which leads to the following simple relation

〈m, p1−|Θ(0)|m, p2−〉 = eθ1+θ2〈m, p1−|T−−(0)|m, p2−〉. (4.11)

By inspection of (4.4) and the fact that T−− and Θ transform under boosts like ` = 2 and
` = 0 respectively, we see that

FΘ
1,1(θ) = FT−−1,1 (θ), (4.12)

so when we compute the form factor, we may use T−− or Θ depending on which is easier
in context.

Let us discuss in more detail how we compute FO1,1 in LCT. Diagonalizing the Hamilto-
nian gives us the eigenstates in the form (2.4). The eigenstate corresponding to the smallest
µ2
i gives us the one-particle state |m, p−〉. For clarity we denote the coefficients Cµ

2
i
Oj in (2.4)

by cj in the case of one-particle states. Thus, we can write

|m, p−〉 =
∑
j

cj |Oj , p〉. (4.13)

Inserting this expression in the definition of FO1,1 given by (4.4), we find

FO1,1(θ1, θ2) =
∑
j,j′

c∗jcj′〈Oj , p1|O(0)|Oj′ , p2〉, (4.14)

where due to (2.2) the matrix element reads as

〈Oj , p1|O(0)|Oj′ , p2〉 =
∑
j,j′

1
NOjNOj′

∫
d2xd2x′ei(p1·x−p2·x′)〈Oj(x)O(0)Oj′(x′)〉. (4.15)

– 13 –



J
H
E
P
0
4
(
2
0
2
2
)
1
0
9

The three-point function on the r.h.s. above is a Wightman three-point function of primary
operators in a CFT, and therefore is fixed by conformal invariance up to an overall constant
OPE coefficient. The integrals over x can be computed in closed form [21]. In this work,
we will only need the result in the specific case where O,Oj and Oj′ are all holomorphic.
We thus have

〈Oj , p1|O(0)|Oj′ , p2〉 = COjj′ · (p1−p2−)
hO
2 Xhj−

hO
2

× 4π

√
Γ(2hj)Γ(2hj′)

Γ(hj + hj′ + hO − 1)P
(2hj−1,1−2hO)
hO+hj′−hj−1 (1− 2X), (4.16)

where 0 ≤ p1− ≤ p2−. The corresponding formula for 0 ≤ p2− ≤ p1− follows easily by
taking the Hermitian conjugate to swap the bra and ket state. Here COjj′ is the OOjOj′
OPE coefficient in the UV CFT (without the relevant deformation), P (α,β)

n are the Jacobi
polynomials. Putting it all together, we obtain a formula for the form factor FO1,1 when O
and the basis operators Oj are holomorphic:

FO1,1(θ) =
∑
j,j′

c∗jcj′COjj′X
hj−

hO
2

4πmhO
√

Γ(2hj)Γ(2hj′)
Γ(hj + hj′ + hO − 1) P

(2hj−1,1−2hO)
hO+hj′−hj−1 (1− 2X). (4.17)

We explain in appendix D how we compute the OPE coefficients efficiently in the 2d free
massless scalar theory, using a generalization of the methods from [2].

In principle, if we know FO1,1(θ) exactly, then we can use crossing symmetry and
analyticity to also obtain the following two particle form factor:

FO2,0(θ) ≡ e
`
2 (θ1+θ2)

out〈m, p1−;m, p2−|O(0)|vac〉 = FO1,1(θ + iπ). (4.18)

However, in practice we will only know FO1,1 at real values of θ, and we will not know it
exactly. In particular, we cannot simply perform the analytic continuation of θ term-by-term
in the sum in (4.17). One way to see why analytically continuing equation (4.17) in θ to
obtain the FO2,0 form factor cannot be as simple as analytically continuing each individual
term in the sum is that, for even hO, each term is manifestly a polynomial in X, and this
ratio goes from being real and positive to being real and negative (as can be seen from (4.8))
when θ → θ + iπ to turn the out state into an in state. Therefore, the sum (4.17) is a sum
over real numbers, whereas the FO2,0 form factor, with two in-states, will in general have a
complex phase related to physical scattering processes.

4.1.1 Illustrative example

As an illustration, let us consider the case where we take a very small ∆max = 5. There are
only four Z2-odd primaries in the UV CFT with ∆ ≤ ∆max:11

O1 ∝ ∂φ, O2 ∝ (∂φ)3, O3 ∝ (6∂3φ(∂φ)2 − 9(∂2φ)2∂φ), O4 ∝ (∂φ)5. (4.19)
11In the UV CFT, which is the free massless boson theory, there are vertex operators with conformal

dimensions below ∆max. However, once we deform the UV CFT by adding the mass term, which is what we
are doing here, the energy of the states created by these vertex operators becomes infinite, and so they are
lifted out of the spectrum and will not have any overlap with the physical low-energy states. That is why
we do not need to include them in (4.19). This point is explained in detail in appendix E of [2]. A related
discussion of the effect of zero modes in lightcone quantization of 2d φ4 theory can be found in [5].
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The Hamiltonian matrix elements from the mass term L ⊃ −m2
0

2 φ
2 and interaction term

L ⊃ − λ
4!φ

4 are M2 = −P 2 = 2P+P− = m2
0M

2
φ2 + λM2

φ4 with

M2
φ2 =


1 0 0 0
0 15 4

√
3 0

0 4
√

3 27 0
0 0 0 45

 , M2
φ4 =


0

√
5

4π

√
15

8π 0√
5

4π
15
4π

√
3
π

√
105
2π√

15
8π

√
3
π

33
8π 0

0
√

105
2π 0 45

2π

 . (4.20)

We can now diagonalize M2 numerically for any given value of λ. As a result of this
diagonalisation at, for example, λ = 1 we obtain the following eigenstate

|p〉 = 0.99994|O1, p〉 − 0.01036|O2, p〉 − 0.00280|O3, p〉+ 0.00033|O4, p〉, (4.21)

which corresponds to the lowest eigenvalue m2 ≈ 0.99773 (physical mass). The state (4.21)
is the one-particle states with mass m. When λ is small one can perform the above
diagonalization for a generic value of λ order by order in λ. For instance one has12

|p〉 = |O1, p〉 − λ
(

5
√

5
316π |O2, p〉+ 3

√
15

1264π |O3, p〉
)

+O(λ2). (4.22)

Notice that the state |O4, p〉 does not enter the expression (4.22) at linear order in λ. For
λ = 1, (4.22) matches well the numerical expression (4.21).

The last missing ingredient for obtaining the form factor of trace of the stress tensor is
the OPE coefficients of the stress tensor with other operators. These can be computed by
hand or using the methods in appendix D. We find13

CTjj′ = 〈Oj(∞)T−−(1)Oj′(0)〉 = −(4π)−1


2 −

√
6 −2

√
6
7 0

−
√

6 6 12√
7 −2

√
5

−2
√

6
7

12√
7 10 0

0 −2
√

5 0 10

 . (4.23)

Plugging all the above results into equation (4.17), we obtain the final expression for
the form factor of the trace of the stress tensor. For example, for λ = 1, using the state
in (4.21), we get

m−2FΘ
1,1(X) + 2 = 0.000804(1−X)2 − 0.0118P (1,−3)

3 (1− 2X)

+ 0.000078P (1,−3)
4 (1− 2X)− 0.00437P (1,−3)

5 (1− 2X). (4.24)

12Alternatively this expression can also be derived using time-independent perturbation theory, see
appendix C.2. For larger size of the mass-squared matrix M2, the latter becomes much more efficient for
computing the perturbative corrections. We will employ this technique in the next section.

13Following a common abuse of notation, we have denoted RO(0)R by “O(∞)”, where R is a conformal
inversion. The operators Oj are normalized by the Zamolodchikov metric, i.e. 〈Oj(∞)Oj(0)〉 ≡ 1. By
contrast, the stress tensor is defined here as T−− ≡ −(∂−φ)2, where 〈φ(x)φ(0)〉 ≡ − 1

4π log x.
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Figure 6. Comparison of ξ(X) ≡ m−2FΘ
1,1(X)+2
λ/4π

computed using the LCT approach with ∆max = 5
(black, dashed) and using perturbation theory (red, solid) at leading order in λ.

.

Notice that P (1,−3)
n (1− 2X) vanish like ∼ (1−X)3 at X = 1 for n ≥ 3. At small coupling

instead, we can use the perturbative one-particle state (4.22), and we get analytically

m−2FΘ
1,1(X) + 2
λ/4π

= − 1
158

(
25P (1,−3)

3 (1− 2X) + 9P (1,−3)
5 (1− 2X)

)
+O(λ). (4.25)

The perturbative analytic expression for the form factor of the trace of the stress tensor
can be computed from Feynman diagrams. The result up to two-loop (order λ2) is given
in (C.2). Let us write it here again for convenience. At linear order in λ, it reads

m−2FΘ
1,1(X) + 2
λ/4π

= 2X log(X)
X2 − 1 − 1 +O(λ). (4.26)

We compare the LCT result (4.25) with the analytic result (4.26) in figure 6. We find an
excellent agreement.

4.2 Analysis of residuals

In this section we analyze in more detail the residual errors in our computation of the
form factor.

Let us start from the “perturbative” LCT expression (4.25). It tries to build (4.26) as
a sum over Jacobi polynomials. To see this precisely, expanding (4.26) in a series of Jacobi
polynomials, one has

2X log(X)
X2 − 1 − 1 =

∞∑
n=3

anP
(1,−3)
n (1− 2X), (4.27)

where the values of the first three coefficient read as14

a3 = 5(−10 + π2)
4 ≈ −0.162994, a4 = 0, a5 = −533 + 54π2 ≈ −0.04136. (4.28)

14These coefficients can be computed straightforwardly since the polynomials P (1,−3)
n (1−2x) are orthogonal

with respect to the inner product (f, g) =
∫ 1

0 dx
x

(1−x)3 f(x)g(x) and have norm
√

(P (1,−3)
n , P

(1,−3)
n ) =√

n+1
(n−2)(2n−1) .
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Figure 7. Convergence of the ãn coefficients of the normalized Jacobi polynomials P̃ (1,−3)
n for the

one-loop form factor (ξ(X) =
∑
n ãnP̃

(1,−3)
n ). Left: plot of coefficients as a function of ∆max. The

straight lines are the exact values computed from (4.27), shown for comparison. Right: absolute
value of the difference between truncation result for ãn and the exact result, as a function of 1/∆max.
The line (2.4/∆max)8 is an approximate numeric fit to the case n = 3, shown for comparison.

These are fairly close to the ones of the truncation result (4.25), with which are

a3 = −25/158 ≈ −0.158, a4 = 0, a5 = −9/185 ≈ −0.057. (4.29)

These were obtained at ∆max = 5. When we increase ∆max,15 these coefficients approach
the exact values fairly quickly — numerically, for instance, the error on a3 behaves approxi-
mately like

|a3 − a3,exact| ≈
( 2.4

∆max

)8
. (4.30)

In figure 7, we show the convergence for n = 3, 5, 10, 20 for the coefficients ãn of the
normalized Jacobi polynomials P̃ (1,−3)

n defined as

ãn ≡
an√

(n−2)(2n−1)
n+1

, P̃ (1,−3)
n ≡

√
(n− 2)(2n− 1)

n+ 1 P (1,−3)
n . (4.31)

However, note that for larger values of n, one must reach higher values of ∆max before
the asymptotic convergence rate sets in. This is evident already from the fact that the
Jacobi polynomials of high order do not even begin to appear in the LCT formula until
large values of ∆max.

Summarizing, in practice, at any finite ∆max, LCT will give us an accurate estimate for
some finite number of coefficients an and a poor estimate for the remaining infinite set of
coefficients in the decomposition of the form factor as a sum over Jacobi polynomials. The
sum over Jacobi polynomials is absolutely convergent to the true form factor on the interval
0 < X < 1. However, the same cannot be said of the derivative of the form factor (with
respect to, say, X). In general, as we increase ∆max, the resulting form factor approaches
the true form factor with a residual whose amplitude is decreasing but with increasingly

15In the perturbative regime at larger values of ∆max in this section, we use time-independent perturbation
theory discussed in appendix C.2 in order to obtain the eigenstates instead of diagonalizing the mass-square
matrix M2. See also footnote 12.
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oscillatory behavior. If one wants to analytically continue our result beyond the real line
segment 0 < X < 1, one needs to find some way to remove these oscillatory residuals.

As the values of the coefficients an for small n stabilize, most of the error in the form
factor will come from the error in the an coefficients with large n. To get a more concrete
sense of the shape of their contribution, we can look at the asymptotic formula for P (1,−3)

n

at large n:

X
3
4

(1−X)
5
4
P (1,−3)
n (1− 2X) = −

cos
[
π
(
(n− 1

2)ϕ+ 1
4

)]
√
πn

+O(n−3/2), (4.32)

where X = sin2(πϕ). The largest source of error will typically come from the most “recently”
added Jacobi polynomials, i.e. those with large n that appear in the truncation result but
whose coefficients have not converged as well as those with smaller values of n. So most
of the error will be highly oscillatory, with a period of roughly ∼ 1

∆max
in the variable

ϕ. By contrast, the “slowly-varying” part of the form factor will be much more accurate.
Moreover, the slowly varying part of the form factor is the part that behaves well under
analytic continuation.

We conclude this section by pointing out that the numerical non-perturbative LCT
result (4.24) for λ = 1 is numerically very close to the “perturbative” LCT result (4.25),
since λ = 1 � 4π is in the perturbative regime. The main qualitative difference is that
now the form factor approaches −2m2 like (1 − X)2 as X ∼ 1. This feature makes the
Jacobi polynomials P (1,−2)

n (1− 2X) a more appropriate basis than P (1,−3)
n (1− 2X), since

they each individually have this behavior for n ≥ 2. Therefore, to get a more accurate
result for the form factors, we convert the different Jacobi polynomials in equation (4.17) to
P

(1,−2)
n (1− 2X) using some Jacobi polynomial identities. See appendix E for more details.

As a result, our final form factor is written as

m−2FΘ
1,1(X) + 2 =

∑
n

ãnP̃
(1,−2)
n (1− 2X), (4.33)

where P̃ (1,−2)
n s are the normalized Jacobi polynomials defined as

P̃ (1,−2)
n =

(2n(n− 1)
n+ 1

)1/2
P (1,−2)
n (1− 2X). (4.34)

In figure 8, we show the convergence of the coefficients at various λ. For each λ, we
computed the coefficients ãn for each ∆max up to ∆max = 40, and extrapolated them to
∆max =∞ as a function of 1/∆max.16

In general, for fixed n, ãn becomes larger as we increase λ. Therefore, to obtain
more accurate result for the form factor with larger λ, we will have to sum up to larger
n. Unfortunately, for fixed λ, the convergence becomes slower as we increase n. In this
paper, we have settled on computing the sum in equation (4.33) up to n = 18 for various λ

16In fact, as in the case for extrapolating the coefficients in the time-ordered two-point function in
section 3.1, we found that the convergence is better if we fix the mass gap to be the same for each value of
∆max, which requires dialing the coupling λ slightly as a function of ∆max to keep the gap fixed.
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Figure 8. Convergence of the ãn coefficients of normalized Jacobi polynomials P̃ (1,−2)
n for the

non-perturbative form factor for various λ. Here we show the coefficients as a function of x = 1/∆max.
We extrapolate these coefficients to infinite ∆max by using a quadratic function a+ bx+ cx2 to fit
these coefficients (actually, for n > 16, we used a + cx2, which seems to work better). The solid
lines are the results of the fits. The convergence of these coefficients becomes worse for larger λ, and
in this paper, we have gone up to λ = 20, and for most cases, we take the sum of ãnP̃ (1,−2)

n up to
n = 18 as an approximation to the form factors.

values, which means that the result is less accurate for larger λ. From figure 8, one can see
that assuming the extrapolation to ∆max =∞ is accurate, discarding ãn with n ≥ 19 will
introduce an uncertainty of order O(10−6)) for λ = 1 and order O(10−3) for λ = 20, since
the Jacobi polynomial is P̃ (1,−2)

n (1− 2X) is order 1 in 0 < X < 1 (it is slightly larger than
order 1 near X = 0).

4.3 Improved form factor from rational approximations

In this section we discuss two methods which allow one to improve the “raw” LCT results
for the form factor. In practice we use both of them together when computing the final
results. We will begin with a simple approach where we fit a rational function to our raw
form factor in the regime s < 0 where it is fairly accurate. As we explain in more detail,
the resulting rational fit will turn out to be more accurate than the original raw form factor.
However, in the subsequent analysis in section 4.3.2, we will show that with more work we
can do significantly better if we perform such a rational fit after first improving the raw
form factor in several ways that reduce the error in the s < 0 regime. These improvements
take advantage of the structure of the truncation calculation itself, and in particular rely
on the fact that truncation builds up the form factor as a sum over orthogonal polynomials.
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In our final result, we perform the following sequence of steps: i) extract the coefficients of
these orthogonal polynomials as a function of ∆max, ii) for the coefficients that have started
to converge, extrapolate them as a function of ∆max to ∆max =∞, otherwise we discard
them if they have not started to converge, iii) extend the domain of convergence from the
interval 0 < X < 1 to an open subset of the complex plane by separating the raw form
factor into the sum of two separate pieces, each which individually has a larger domain of
convergence than their sum does, and iv) finally, fit a rational polynomial to the improved
result of steps (i)-(iii). We find that the final result is drastically improved at s < 0, and
works reasonably well even at s > 4m2 when we analytically continue.

4.3.1 Rational approximation from direct fit

In the previous subsection, we saw that the raw computation of the form factor FO1,1 in
LCT produces a function that is quite accurate when the momenta of both the ‘in’ and ‘out’
particle are positive, but rapidly becomes completely incorrect as one analytically continues
away from this region. Relatedly, the raw form factor is mainly contaminated by errors
that are rapidly oscillatory functions of the momentum ratio X. In this subsection, we
will discuss a simple procedure for reducing these errors. This method will be particularly
robust in the regime where the raw result is already accurate, and we are simply reducing
small errors even further. Outside of this regime, we will effectively be doing a kind of
extrapolation which requires a bit of caution. In a companion paper [17], we will discard
this extrapolation and replace it with bounds from the S-matrix/form factor bootstrap,
where constraints from unitarity make the extrapolation more systematic.

The basic idea is to approximate the form factor as a rational function of a “nice”
variable. We find the approximate rational function by doing a fit over the range where
the raw form factor is already a good approximation. The “nice” variable we use here was
already exploited in (3.7). It is defined as

% ≡ lim
ε→0+

2m−
√

4m2 − s− iε
2m+

√
4m2 − s− iε

. (4.35)

Notice that (3.7) is simply the inverse of (4.35). The “rational approximation Ansatz” can
be written

FΘ
2,0(s) = −2m2

(
1 +

∑N
n=1 bn%

n

1 +
∑N
m=1 cn%

m

)
. (4.36)

While the form of this Ansatz is identical to that of a Padé approximation, we emphasize
that its coefficients will be fixed by performing a fit rather than by matching Taylor series
coefficients. Clearly, the Ansatz depends on the choice of the number 2N of free parameters.
If N is too small, the Ansatz becomes inaccurate because there are not enough terms to
accurately reproduce the shape of the form factor, whereas if N is too large then the best
fit will simply reproduce the raw form factor and all the issues associated with it. For some
intermediate regime, however, the Ansatz is able to accurately reproduce the form factor
while essentially “smoothing out” the high frequency oscillations that are causing most of
the error, leading to a significant improvement. In practice, we have found that N = 2 is
almost always too small, but N = 3 already usually works well at reducing the errors.
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Figure 9. Exact one loop form factor (black, thick) at s < 0 compared with the LCT form factor
(red, dashed), and the residual errors (inset). Left: “Raw” LCT result from direct computation
expanded to O(λ). Right: LCT result from performing a fit to the “raw” result with a rational
function (4.36) at N = 3. As can be seen from the insets, the rational function approximation
removes the large “high-frequency” errors and reduces the overall error significantly.

Let us demonstrate this method in the regime of small values of λ. In this regime, we
can simply compare the exact one-loop form factor (4.26) with the LCT one-loop result
computed using time-independent perturbative theory (see appendix C.2 for more details).
That is, we want to look at the following quantity

ξ(s) ≡
m−2FΘ

2,0(s) + 2
λ/4π

. (4.37)

In figure 9, we show ξ(s) computed using LCT with ∆max = 40 at leading order in λ and
compare it with the exact one-loop form factor (4.26). In the left plot we show the “raw”
LCT result obtained with (4.17), while in the right plot we show the improved form factor
from fitting to a rational function of the form (4.36) with N = 3. The residuals are shown
in the insets. They are small in both cases, but fitting to the rational Ansatz improves
the errors by removing the “high-frequency” components and reducing the overall error by
about two orders of magnitude. Moreover, because the Ansatz is manifestly an analytic
function of s (up to branch cuts and poles, by construction), we can evaluate it in the main
region of interest, at s > 4m2. In figure 10, we compare the real and imaginary parts of the
approximate one-loop form factor to its exact behavior in this regime.

In principle, if one knew the best values of the parameters in the rational function
Ansatz (4.36), one could approximate the form factor arbitrarily well by increasing the
number of terms 2N in it. In any practical computation, we know at most a finite number
of these terms, but the Ansatz still approaches the correct form factor fairly quickly as the
number of such terms increases. The basic reason is that the form factor has a branch cut
at 4m2 < s <∞, and the % variable maps this branch cut to the boundary of the unit disk.
We notice that for functions with this behavior, rational approximations converge much
better near the branch cut than do series expansions, which require a large number of terms
to approximate the behavior near the branch cut.
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Figure 10. Imaginary (left) and real (right) parts of the one-loop form factor, comparing the exact
result (black, thick) to the result from performing a fit to the ∆max = 40 result with a rational
function (4.36) at N = 3 (red, dashed).

It is interesting and encouraging that the simple rational function approximation (4.36)
provides a fairly simple way to continue the “raw” LCT result for the form factor at s < 0
into the region of interest s > 4m2. The main advantage of this method is that it is easy to
implement. On the other hand, its main disadvantage is that it is not as systematic as we
would like. In particular, the accuracy of the result at s > 4m2 depends on the order N
of the rational function being used, and even at the largest values of ∆max that we could
run, the result is more sensitive to N than we would like (for instance, the accuracy tends
to degrade for N ≥ 5). We have not used the fact that the absolute value of the form
factor at 4m2 < s < 16m2 is known from the LCT computation of the spectral density
(see section 3), and perhaps this information could be used to make the rational function
approximation more robust. While we think that there is potential for improvement along
these lines, we will not pursue this direction further in this paper. Instead, we will focus in
the next subsection on improving the result for the form factor in the regime s < 0, so that
it is as accurate as possible.

4.3.2 Rational approximation from analyticity

We are not quite done improving the accuracy of our form factor from truncation. To go
farther, we need to understand in more detail why the “raw” LCT result, which represents
the form factor as a sum over polynomials in the momentum ratio X, is quite accurate
at 0 < X < 1 (i.e. s < 0), but completely incorrect anywhere else in the complex plane.
As we have discussed, the analytic structure of the full form factor is that it has a branch
cut along the ray X < 0 but otherwise is analytic; by contrast, polynomials are analytic
everywhere except at ∞. How then can there be any sense in which the infinite sum over
polynomials converges to the correct analytic function everywhere in the complex plane?

To see how we might make sense of this problem, it helps to consider a similar but
technically simpler problem, of the decomposition of the function log x into a sum over
Chebyshev polynomials Tn:

log x = − log 4 +
∞∑
n=1

2
n
Tn(1− 2x). (4.38)
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Like our form factor decomposition, the above decomposition converges for 0 < x < 1 but
diverges everywhere else in the complex plane. Nevertheless, we can put it into a more
favorable form by changing variables:

1− 2x = w + w−1

2 ⇒ Tn(1− 2x) = wn + w−n

2 . (4.39)

Collecting the positive powers of w into a function f(w) and the negative powers of w into
a function f(w−1), we can rewrite the decomposition of log x as

log x = f(w) + f(w−1), f(w) ≡ − log 2 +
∞∑
n=1

wn

n
= log

(1− w
2

)
. (4.40)

Now it is easy to see that indeed f(w) +f(w−1) = log(2−w−w−1

4 ) = log x. More importantly,
however, while the partial sums in f(w) + f(w−1) converge only on the line segment
0 < x < 1, the partial sums for f(w) alone converges for |w| ≤ 1. From this point of view,
the problem with our decomposition is that we are adding up two functions (f(w) and
f(w−1)) that individually converge on |w| ≤ 1 and |w| ≥ 1, so that even slight deviations
from the contour |w| = 1 push us outside one or the other domain of convergence. However,
since we know that the function f(w) is analytic except on the ray w > 1, we can improve
its convergence by mapping to the appropriate variable ρ related to w as

w = 4ρ
(1 + ρ)2 . (4.41)

This map pushes the contour |w| = 1, where we want to evaluate f(w), deeper inside a ball
where its Taylor series (now in ρ) converges, as depicted in figure 11.17

This example illustrates how we can improve the result for the form factors. From the
expression in (4.33), we can transform to the w coordinate, take the positive power terms
and then transform to the ρ coordinate. Finally, we perform a Padé approximation in the ρ
variable, and add the corresponding contribution from the negative w power terms to get
the form factor.

4.4 Final results for the form factors at s < 0

In the last subsection, we discussed two procedures one can do to the “raw” form factors
from LCT to reduce the uncertainties. The fist one is to use a simple rational function fit
to the “raw” form factor, while the second one is more complicated, which involves a Padé
approximation after two coordinate transformations. The second procedure makes use of
the analytic properties of the form factor, and is supposed to give better result. Here, we
present the result obtained through the second procedure.

To summarize, to get an accurate result for the form factor, we first compute the form
factor from LCT as a sum over Jacobi polynomials given by (4.17), then we transforms all

17In general, |ρ(w)| = |ρ(w−1)| for |w| = 1, and moving away from |w| = 1 decreases one of |ρ(w)| or
|ρ(w−1)| at the expense of increasing the other, so the accuracy of this method will still be best on the
contour |w| = 1.
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Figure 11. Contour |w| = 1 (black, solid) shown in the ρ plane. The branch cut at w > 1 is
mapped to |ρ| = 1 (purple, dotted), so that all points along the |w| = 1 contour except for w = 1
are at finite distance from the radius of convergence.

these different Jacobi polynomials to the ones of the form P̃
(1,−2)
n (1− 2X), such that the

form factor is brought to the form (4.33), which we write here again for convenience

m−2FΘ
1,1(X) + 2 =

∑
n

ãnP̃
(1,−2)
n (1− 2X). (4.42)

We remind that the relation between the s and X variables is given by (4.8). We compute
ãn coefficients at different ∆max, up to ∆max = 40, and extrapolate them to ∆max = ∞,
and only keep those coefficients that have converged (in the results presented in this paper,
we keep ãn up to n = 18). We then transform the result to the w coordinate related to X by

X = 1
2

(
1− 1

2

(
w + 1

w

))
. (4.43)

Then we take the positive power terms, transform to the ρ coordinate by (4.41) and perform
a Padé approximation in ρ at ρ = 0. Finally, we take the sum of this Padé approximation
and the corresponding one from negative w power terms, and use the relationship between
ρ and s to write the result as a function of s.

The final result for the form factor is shown in figure 12, where we also show that in the
perturbative regime, the form factor obtained this way agrees with analytic perturbative
two-loop form factor (equation (C.2)) very well. The uncertainty in the form factor increases
as we increases λ, due the slower convergence rate of the coefficients ãn at larger λ. The
plots in figure 12 are obtained from degree (7, 7) Padé approximant. To roughly estimate
the uncertainty of the final form factors we got, we compared the degree (7, 7) Padé
approximation with those of degree (7, 8), (8, 7) and (8, 8), and the differences between
them range from O(10−5) at λ = 1 to O(10−3) at λ = 12, and O(10−2) at λ = 20 (this is
at s ∼ −100m2, and the convergence is much better for smaller |s|.).

4.5 Analytic continuation to s > 0

In the previous section, we made use of analyticity to obtain accurate results for the form
factors in the s < 0 regime. One natural question to ask is: if we simply analytically
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Figure 12. The form factor of the trace of the stress tensor FΘ
2,0 in the φ4 model computed for

various values of λ from LCT. As a comparison, we also plotted the perturbative two-loop form
factor (equation (C.2)) for λ = 1 and λ = 3 (red dotted lines). One can see that for λ = 1, the
perturbative result agrees with the LCT non-perturbative λ = 1 result very well as expected, since
λ = 1 is in the perturbative regime (λ/4π � 1), while for λ = 3, they start to deviate. This
provides a consistency check for our numerical code for computing the non-perturbative form factors
from LCT.

continue these form factors to get the results at s > 0, how good are they? In section 4.3.1,
we studied this question for the one-loop form factor by analytically continuing the rational
approximation of the form factor at s < 0 directly from LCT, and the result in figure 10
looks reasonably good. In this section, we revisit this problem by analytically continuing
the non-perturbative results obtained in section 4.4. In fact, we need to perform an
rational approximation of the form (4.36) to the result obtained in last subsection before
we analytically continue, since the result of last subsection was optimized specially for
s < 0, and the analytic structure of it is actually not right at s > 0. We show the results in
figure 13 and 14.

The above method of analytic continuation is not rigorous and one can ask a question:
how trustworthy these results are? In the “elastic” regime it is easy to answer this question
by recalling that the spectral density is related to the two-particle form factor as

ρΘ(s) = (2πN2)−1|FΘ
2,0(s)|2, s ∈ [4m2, 16m2]. (4.44)

In the “elastic” regime we can thus reconstruct the spectral density from the obtained
analytic continuation of the LCT form factors and compare it with the direct LCT results

– 25 –



J
H
E
P
0
4
(
2
0
2
2
)
1
0
9

5 10 15 20

5

10

15

20

25

Figure 13. Comparison of 2πN2ρΘ(s) computed in section 3.2 (solid lines) and reconstructed
via (4.44) from the analytically continued form factor obtained in this section (dotted lines). The
dotted lines are the average of the rational fits with degree N = 3, 4, and 5, while the shaded areas
are the uncertainties determined by the differences in these three rational fits.
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Figure 14. Form factors in the s > 0 regime. The solid lines are obtained through the S-matrix/form
factor bootstrap developed in [17], while the dotted lines are the average of rational approximations
with degrees N = 3, 4 and 5, and the shaded areas are the uncertainties determined by the difference
in these three rational approximations.

for the spectral density obtained in section 3.2. We show this comparison in figure 13.
One sees a good agreement for lower values of λ and less perfect agreement for higher
values λ. Nevertheless even for larger values of λ the rough shape of the spectral density
reconstructed from the analytically continued LCT form factors is roughly the same as the
direct computed LCT spectral density.

In the companion paper [17] we will obtain the two-particle form factor more rigorously
by combining the LCT data with the S-matrix/form factor bootstrap. For completeness
we show in figure 14 the form factors obtained in [17] compared with the less rigorous
ones obtained here. As already expected from figure 13 there is a very good agreement for
smaller values λ and less perfect agreement for larger values of λ.
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5 Discussion

The main goal of this paper was to develop new methods to obtain numerical nonperturbative
results in LCT. We focused on the spectral density and the two-particle form factors of
the stress tensor in the 2d φ4 theory. While we only studied the case of the stress tensor
and d = 2, the idea behind this construction was fairly general and should be applicable to
any UV CFT operator in any theory to which LCT can be applied, regardless of spacetime
dimension.18 There are many other interesting CFTs to which these methods can be applied,
and in particular another natural application where there has been significant lightcone
Hamiltonian truncation work is QCD in two dimensions [27–32]. Moreover, we think it is
likely that one could generalize this approach to equal-time truncation computations as well
without much trouble. The main advantage of lightcone truncation was that the Hamiltonian
preserves boosts, so obtaining one-particle states as a function of their momentum is trivial.
However, in equal-time truncation, one may be able to simply repeat the diagonalization
procedure in many different boosted frames. It would be interesting to develop such an
approach in an equal-time setting.19 In principle, the spectral densities should also be
computable in equal-time truncation, so all of the LCT data obtained in this work could be
reproduced with an equal-time approach, which would provide a useful check.

Perhaps most generally, we hope that this work might help to encourage further efforts
among future Hamiltonian truncation studies of all stripes to obtain a wide range of
dynamical observables such as form factors and spectral densities, and beyond.
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A Summary of conventions

In this work we use the “mostly plus” Lorentzian metric, ηµν = diag(−1,+1,+1, . . . ). Our
methods can be applied to form factors and spectral densities of general local operators,
but we will mostly focus on the stress tensor for concreteness. We will follow convention
and define Θ to be the trace of the stress tensor,

Θ(x) ≡ ηµνTµν(x). (A.1)

When we compute two-point functions, we use subscripts to distinguish the Wightman
two-point function,

〈vac|Θ(x1)Θ(x2)|vac〉W ≡ lim
ε→0+

〈vac|Θ(x0
1 − iε, ~x1)Θ(x2)|vac〉 (A.2)

18See e.g. [1, 24–26] for recent equal-time and lightcone truncation studies of φ4 in d > 2, and in particular
the recent progress in [25, 26] on understanding how to handle state-dependent counter-terms in d = 3.

19See also [33, 34] for another approach to computing form factors using TCSA.
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form the time-ordered two-point function

〈vac|Θ(x1)Θ(x2)|vac〉T ≡ θ(x0
1 − x0

2)〈vac|Θ(x1)Θ(x2)|vac〉W
+ θ(x0

2 − x0
1)〈vac|Θ(x2)Θ(x1)|vac〉W . (A.3)

The spectral density ρΘ is related to these two-point functions as follows [35]:

2πθ(p0)ρΘ(−p2) ≡
∫
ddxe−ip·x〈vac|Θ(x)Θ(0)|vac〉W , (A.4)

2πθ(p0)ρΘ(−p2) = 2Re
∫
ddxe−ip·x〈vac|Θ(x)Θ(0)|vac〉T . (A.5)

We denote the one-particle stable states with mass m and momentum ~p as

|m, ~p 〉, (A.6)

with the conventional normalization,

〈m, ~p1 |m, ~p2 〉 = 2ωp1(2π)d−1δd−1(~p1 − ~p2) = 2p1−(2π)d−1δ(p1− − p2−)δ(d−2)(p1⊥ − p2⊥),
(A.7)

where ω2
p1 ≡ ~p1

2 + m2, p± ≡ ωp±px√
2 are lightfront momentum, and p⊥ is the momentum

perpendicular to the lightfront.
We denote the two-particle in and out asymptotic states by

|m, ~p1;m, ~p2 〉in and |m, ~p1;m, ~p2 〉out, (A.8)

with the following normalization:

in〈m,~k1;m,~k2|m, ~p1;m, ~p2 〉in = out〈m,~k1;m,~k2|m, ~p1;m, ~p2 〉out

= 4
√
m2 + ~p 2

1

√
m2 + ~p 2

2 (2π)2(d−1)δ(d−1)(~p1 − ~k1)δ(d−1)(~p2 − ~k2) + (~p1 ↔ ~p2). (A.9)

Form factors are defined as matrix elements of local operators in the basis of asymptotic
states. We will use subscripts to denote the number of ‘in’ and ‘out’ particles in the ket
and bra of these matrix elements, e.g.

FΘ
1,1(t) ≡ out〈m, ~p1 |Θ(0)|m, ~p2〉in,
FΘ

2,0(s) ≡ out〈m, ~p1 ;m, ~p2 |Θ(0)|vac〉.
(A.10)

The analogues of the Mandelstam variables for the form factors are defined as

s ≡ −(p1 + p2)2, t ≡ −(p1 − p2)2 = 4m2 − s. (A.11)

In the case of a scalar operator, such as Θ, the form factors depend only on the Mandelstam
variable s. Moreover, in this case F2,0 and F1,1 are related by crossing symmetry:20

FΘ
2,0(s) = FΘ

1,1(s), (A.12)
20We assume without loss of generality that there is no disconnected piece in FΘ

1,1(s), since it can always
be removed by a counterterm that subtracts off the energy of the vacuum.
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that is, they are (analytic continuations of) the same function (note that s and t were
swapped in their definition (A.10)). At p1 = p2, F1,1 is the diagonal matrix element of Θ in
the one-particle state |m, ~p1〉. Moreover, no momentum flows through Θ in this case, so
this matrix element just measures the rest mass of the particle. As a consequence, we have
the following exact condition:21

lim
s→0
FΘ

2,0(s) = −2m2. (A.13)

In d = 2, the C-function [37, 38] is directly related to the Θ spectral density:

C(s) ≡ 12π
∫ s′

0
ds′

ρΘ(s′)
s′2

. (A.14)

The central charge of the UV CFT is simply cUV = C(∞). By inserting a complete set of
states in the form of asymptotic states, the spectral density can be written as a sum over
contributions with definite particle number n:

ρΘ(s) =
∞∑
n=1

ρ
(n)
Θ (s)θ(s− n2m2), (A.15)

where the superscript (n) denotes the n-particle part of the spectral density. In particular,
the two-particle part of the spectral density is related to the two-particle form factor as

ρ
(2)
Θ (s) = (2πN2)−1|FΘ

2,0(s)|2. (A.16)

B Two-point functions at large energy

Consider the time-ordered two-point correlator of the stress tensor. Expanding its spectral
representation (3.2) in 1/s series we get

∆T−−(p) = i
∞∑
n=0

s−n−1∑
i

|〈T−−(0)|µ2
i , p〉|2µ2n

i = i
∞∑
n=0

s−n−1〈T−−|M2n|T−−〉, (B.1)

where we have used the fact that the states |µ2
i , p〉 are eigenvalues of the mass-squared

operator M2 = 2p−
∫∞
−∞ dx

−V (x). For n ≥ 2, the operator product (M2)n is typically
singular and must be regulated, which moreover introduces additional log s dependence.
However, the special cases n = 0 and n = 1 are readily evaluated. In fact, because |T−−〉
is already one of the states in the LCT basis, |T−−〉 = 1√

12π |(∂−φ)2; p〉, the n = 0 term
is manifestly22

∆T−−(p) = i

12πs + . . . (B.2)

21See e.g. appendix G in [36] for details.
22The state |T−−〉 in equation (B.1) is slightly schematic; an overall normalization, including a momentum-

conserving δ function, has been implicitly factored out, so that 〈T−−|T−−〉 → 1
12π .
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This agrees with the fact that the coefficient of 1/s in the T−− time-ordered two-point
function is fixed by the UV central charge:

∆T−−(p) =
∫ ∞

0
dµ2ρT−−(µ2) i

s− µ2 + iε

= i

s

∫ ∞
0

dµ2ρT−−(µ2) +O(s−2) = icUV
12πs +O(s−2). (B.3)

The next term is only slightly more complicated, and requires computing a single matrix
element of M2:23

〈(∂−φ)2|M2|(∂−φ)2〉 = 6m2
0 + 3λ

4π . (B.4)

Therefore, we find that the first two powers of 1/s of ∆Θ are

∆Θ(p) = s2∆T−−(p) = is2

12π

(
1
s

+
6m2

0 + 3λ
4π

s2 + . . .

)
. (B.5)

C Truncation results in perturbation theory

As a check of our truncation results for the form factor and spectral density, we can use
time-independent perturbation theory to isolate specific orders in perturbation theory. For
instance, if we want to compare the O(λ) truncation result with the Feynman diagram
result, it is much more accurate to do the truncation computation with time-independent
perturbation theory than it is to compute the all-orders result at small λ and try to
numerically extract the leading linear-in-λ dependence. Moreover, at O(λn), only states
with at most 1 + bn2 c or 2 + bn2 c particles contribute in the form factor or spectral density,
respectively, which allows us to go to much higher ∆max for low orders in λ.

C.1 Perturbative results from Feynman diagrams

In this section we provide analytic results for the φ4 model and the 2d O(N) model in the
large N limit from standard loop computations. The main objects we would like to compute
are the form factors of the trace of the stress-tensor and the spectral density defined in
appendix A. In d = 2 all these observables are functions of a single variable s. The relation
between the lightcone quantization bare mass m0 and the physical mass m is given by [5]

m = m0

(
1− λ

2

768 +O(λ3)
)
. (C.1)

The form factor up to O(λ2) is given by the following simple expression:

m−2FΘ
2,0(s) = −2 +

(
λ

4π

)
∆(s)

+ 1
2

(
λ

4π

)2(
π2s

8(s− 4m2) −∆(s) (∆(s)/2 + 1)
)

+O(λ3), (C.2)

23See e.g. tables 8 and 10 of [2].
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where, for any complex s, the function ∆(s) is defined as

∆(s) ≡ −1 + lim
ε→0+

4m2ArcTan
( √

s√
4m2−s−iε

)
√
s
√

4m2 − s− iε
. (C.3)

The spectral density of the trace of the stress tensor up to O(λ) is given by

2πN2
4m4 × ρΘ(s) = 1 + λ

4π ×
(

1 + 4m2N−1
2 log

(√
s+
√
s− 4m2

√
s−
√
s− 4m2

))
+O(λ2), (C.4)

where we have defined
N2 ≡ 2

√
s
√
s− 4m2. (C.5)

We also reproduce here the stress tensor two-particle form factor and spectral density
of the large N limit (N →∞) of the 2d O(N) model with the following Lagrangian:

V
O(N)
φ4 (φ) ≡ 1

2m
2
0(φiφi) + λ

8N (φiφi)(φjφj). (C.6)

Repeated indices are summed over. This model is solvable at infinite N , which will provide
a useful example to test some of our methods. The exact two-particle form factor and
spectral density are

m−2FΘ
2,0(s) = −2 + 2λ∆(s)

8π + λ (1 + ∆(s))
. (C.7)

2πN2ρΘ(s) = |FΘ
2,0(s)|2. (C.8)

For details of these computations, see appendix C of [17].

C.2 Perturbative results from LCT

To perturbatively compute the form factor in LCT, we choose a specific truncation ∆max and
exactly diagonalize the mass term Hamiltonian H2 = m2 ∫ dx−φ2, but treat the interaction
term Hamiltonian H4 = 2 λ4!

∫
dx−φ4 as a perturbation. The interacting eigenstates given

by the standard time-independent perturbation theory result:

|n〉 = |n(0)〉+
∑
k 6=n

Vkn
Enk
|k(0)〉+

∑
k1 6=n

∑
k2 6=n

(
Vk1k2Vk2n

Enk1Enk2

)
− VnnVk1n

E2
nk1

 |k(0)
1 〉

− 1
2
∑
k1 6=n

Vk1nVnk1

E2
k1n

|n(0)〉+ . . . , (C.9)

where in our case the zeroth order eigenvalues En and eigenstates |n(0)〉 are the eigenstates of
the mass term H2, Enk ≡ En−Ek, and V is the φ4 Hamiltonian term H4. The one-particle
state at λ = 0 is just the momentum-space state created by the primary operator ∂φ. At
∆max = 5, we worked through the O(λ) form factor explicitly in section 4.2. Here we repeat
the analysis, but at ∆max = 50, and we also obtain the O(λ2) piece. Once the eigenstates
are known up to a given order in λ, one simply needs to substitute their components ci in
the primary operator basis into equation (4.17). The results at O(λ) and O(λ2) are shown
and compared to the exact answer from (C.2) in figure 15, as a function of X; recall that
m−2s = 2−X −X−1.
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Figure 15. Comparison of Θ two-particle form factor FΘ
1,1 in perturbation theory from LCT (black,

thick) at ∆max = 50 vs Feynman diagrams (red, dashed), as a function of X = p1−
p2−

, for O(λ) (left)
and O(λ2) (right). The difference between the truncation result and the exact result is shown in
the insets.

2d O(N) model in the large N limit. We also consider the infinite N limit of the 2d
O(N) model. In this case, only one- and three-particle states from the UV basis contribute to
the form factor FT−−1,1 , and we can obtain analytic expressions for all the Hamiltonian matrix
elements. In fact, the only three-particle states that contribute are created by operators of
the form ∂k1φi∂

k2φj∂
k3φj , summed on j, and their wavefunctions in momentum space can

be written out explicitly:

|[φi[φjφj ]`1 ]`2〉 = 1√
N

∫
dp1dp2dp3δ(P −p1−p2−p3)f`(p1, p2, p3)|p1, i; p2, j; p3, j〉, (C.10)

where
f` = (p1 + p2)`1 P̃ (1,1)

`1

(
p2 − p1
p1 + p2

)
P̃

(2`1+3,1)
`2

(
p3 − p1 − p2
p1 + p2 + p3

)
. (C.11)

Here, P (a,b)
n is a Jacobi polynomial, and the hat indicates that it is normalized,∫ 1

0
dxxa (1− x)b P̃ (a,b)

m (1− 2x)P̃ (a,b)
n (1− 2x) = 1. (C.12)

We can choose a frame where total momentum P = p1 + p2 + p3 = 1, and also choose a
new set of variables:

p1 = x1x2, p1 + p2 = x2 (C.13)

so p2 = x2(1− x1).
For the mass term acting on three-particle states, we have contractions where the φs

from the mass term φ2 hit a φj from the φjφj part of the state, and also contractions where
the φs from the mass term hit a φi from the three-particle states. All cases are leading
order in 1/N . The full contribution is

〈[φi[φjφj ]`1 ]`2 |φ2|[φi[φjφj ]`3 ]`4〉 =
∫
dp1dp2 (p1p2 + p1p3 + p2p3) f`(p)f`′(p) (C.14)

=
∫
x2dx1dx2

(
x2(1− x2) + x1(1− x1)x2

2

)
× x`1+`3

2 P̃
(1,1)
`1

(1− 2x1)P̃ (1,1)
`3

(1− 2x1)P̃ (2`1+3,1)
`2

(1− 2x2)P̃ (2`3+3,1)
`4

(1− 2x2).
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Note that this integral is a sum of two terms that each factorize into an independent
dx1 integral and a dx2 integral. These integrals can be evaluated efficiently by using the
expressions in appendix E to expand the Jacobi polynomials with one index in terms of
Jacobi polynomials with another index that makes them orthogonal when integrated against
the appropriate measure dxxa(1− x)b.

For the interaction itself, we have to consider 1-to-3 processes and 3-to-3 processes.
The contributions that survive at large N are

〈∂φ|φ4|[φi[φjφj ]`1 ]`2〉 ∝
√
N

32π

∫
dp1dp2f`(p) =

√
N

8π

√
(2l1 + 3) (2l1 + 2l2 + 5)

(l1 + 1) (l1 + 2) (l2 + 1) (2l1 + l2 + 4)
(C.15)

for the 1-to-3 interactions, and

〈[φi[φjφj ]`1 ]`2 |φ4|[φi[φjφj ]`3 ]`4〉 (C.16)

∝ N

8π

√
(2`1 + 3)(2`3 + 3)

(1 + `1)(2 + `1)(1 + `3)(2 + `3)

×
∫
dx2x

1+`1+`3
2 (1− x2)P̃ (2`1+3,1)

`2
(1− 2x2)P̃ (2`3+3,1)

`4
(1− 2x2)

for the 3-to-3 interactions. Finally, we need the momentum space overlaps with T−−. At
infinite N , the only ones that contribute are the trivial 1-to-1 matrix element, and the
1-to-3 matrix elements. The 1-to-3 momentum space overlap is

〈∂φi; p|∂−φj∂−φj(0)|[φi[φkφk]`1 ]`2 ; p′〉 ∝ −
√

2
3
√
Nδ`1,0q

3P̃
(3,1)
`2

(
1− 2 q

p′

)
. (C.17)

The infinite N limit is taken so that the coupling λ ∼ N−1, i.e. λN is held fixed. So at leading
order in large N , the 1-to-3 interaction term in the Hamiltonian is suppressed by N−1/2,
and we just need to keep the mass term together with the 1-to-1 and 3-to-3 interaction
terms. However, we cannot simply discard the 1-to-3 interaction term. The reason is that,
although its leading effect on the energy eigenstates is O(N−1/2), when we compute the
form factor there is an additional N1/2 enhancement from the overlap (C.17). Therefore
our method for computing the large N form factor is as follows. We exactly diagonalize
the leading order O(N0) Hamiltonian, at some fixed truncation ∆max. Then, we treat the
1-to-3 matrix elements in the Hamiltonian as a perturbative O(N−1/2) interaction and
compute the leading correction to the one-particle energy eigenstate using time-independent
perturbation theory. Finally, we compute the form factor by taking the overlap of this
one-particle energy eigenstate computed up to O(N−1/2) and looking at its overlap with
the stress tensor using (C.17). The result is O(N0) and is the exact answer when N =∞.
In figure 16, we compare the result at λ = 30 and ∆max = 43 against the exact result from
resumming Feynman diagrams.

D Details of OPE coefficient computation

In this appendix, we explain our method for computing the OPE coefficients COjj′ that
enter in the formula (4.17) for the form factor in LCT. We will focus on the case O = T−−,
our main operator of interest in this paper.
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Figure 16. Comparison of Θ two-particle form factor FΘ
1,1 at infinite N from LCT (black, thick) at

∆max = 43 vs resumming Feynman diagrams (red, dashed), at λ = 30, as a function of X = p1−
p2−

.
The difference between the truncation result and the exact result is shown in the inset.

In general, if O`,O`′ are holomorphic primary operators, the corresponding ‘in’ and
‘out’ states in radial quantization can be decomposed into a sum over ‘monomial’ operators
of the form ∂kφ ≡ ∂k1

− φ . . . ∂
kn
− φ. So, we can begin by working out how the OPE coefficients

of T−− ∝ (∂−φ)2 with such monomials:

〈∂kφ|(∂−φ)2(y)|∂k′φ〉 (D.1)

Matrix elements similar as this were worked out in equation (7.35) of [2], but only
for the special case where the position y was integrated over all space. We can reuse the
same basic approach, however. Here we will be brief, focusing on the new ingredients that
are necessary for this generalization, and the interested reader should consult [2] for more
details. The computation is most efficient if the states and the operator are represented
in terms of the modes of φ in radial quantization of a free scalar on the cylinder, so that
radial quantization creation and annihilation operators simply need to be commuted past
each other. More precisely, the primary operators can be written in terms of monomials as

|O〉 =
∑

k

COk,RQ|∂kφ〉RQ, (D.2)

where the “Radial Quantization” (RQ) monomial normalization is RQ〈∂kφ|∂k′φ〉RQ = δk,k′ .
More explicitly,

|∂kφ〉RQ = 1
‖k‖

a†k|vac〉, (D.3)

where ‖k‖ ≡ n!
number of permutations of k .

24 The annihilation operators a†k that appear here
are (products of) the ‘radial quantization’ annihilation operators that appears in the
mode expansion of ∂φ quantized on the unit circle, and should not be conflated with the
annihilation operators in momentum space.

So, we have

〈O`|O(y)|O`′〉 =
∑
k,k′

C`k,RQC
`′

k′,RQ RQ〈∂kφ|O(y)|∂k′φ〉RQ (D.4)

24More explicitly, “number of permutations of k” means the number of permutations of the elements of
the n-vector k that leave it invariant.
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The operator (∂−φ)2 contains terms of the form ∼ a†a†, aa, and a†a. In the last of
these three cases, the creation and annihilation operator from (∂−φ)2 are commuted to the
left and the right, respectively, producing contributions of the form

G
(∂φ)2

kk′
(y) ∼= −

2NkNk′

4π
∑

k/k=k′/k′

√
kk′yk−k

′−2 ‖k/k‖2 , (D.5)

where Nk ≡
(

1√
4π

)n
Γ(k1) . . .Γ(kn)

√
k1 . . . kn. Because the term ∼ a†a does not change

particle number, these terms only contribute if the number of φ particles in the ‘in’ and
‘out’ state are the same, i.e. if the OPE coefficient is “N -to-N”.

By contrast, in the case of the terms of the form ∼ a†a†, the a†s are both commuted
all the way to the left and produce contributions of the form

G
(∂φ)2

kk′
(y) ∼= −

2NkNk′

4π
∑

k/{k1,k2}=k′

√
k1k2y

k1+k2−2 ∥∥k′∥∥2
. (D.6)

The case ∼ aa is similar to a†a†; for both ∼ a†a† and ∼ aa, the (∂−φ)2 changes particle
number by exactly two, i.e. the OPE coefficient is “N -to-N+2”. Note that because h− k =
h′ − k′ in the first case, and h− k1 − k2 = h′ in the second case, in both cases the power
of y is

yh−h
′−hO (D.7)

as it must be since O`,O`′ and O are primary operators.
Combining the above expressions, we obtain the formulas we use for the OPE coefficients

of (∂−φ)2. The N -to-N matrix element is

〈O`|(∂−φ)2(y)|O`′〉 = y∆`−∆`′−∆O
∑
k,k′

C`k,RQC
`′

k′,RQ
∑

k/k=k′/k′

‖k/k‖2

‖k‖
∥∥k′∥∥√kk′ (D.8)

whereas for N -to-N+2 it is

〈O`|(∂−φ)2(y)|O`′〉 = y∆`−∆`′−∆O
∑
k,k′

C`k,RQC
`′

k′,RQ
∑

k=k′/{k′1,k
′
2}

‖k‖∥∥k′∥∥
√
k′1k
′
2 (D.9)

E Jacobi polynomial identities

In equation (4.17) of section 4.1, we wrote down the expression for the form factor in LCT
as a sum over Jacobi polynomials of the form Xhj−1P

(2hj−1,−3)
1+hj′−hj

(1− 2X) (in this section,
we only consider the case where hO = hΘ = 2 for simplicity, but the method here works for
other cases as well). Here, we provide the formulas that we used to convert these different
Jacobi polynomials into the form of P (α,−2)

n (1− 2X), which is better for obtaining accurate
result for the form factors. We first use the following recursion relation

P (α+1,β)
n (x) = 2

2n+ α+ β + 2
(n+ α+ 1)P (α,β)

n − (n+ 1)P (α,β)
n+1 (x)

1− x (E.1)
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(hj − 1) times to turn Xhj−1P
(2hj−1,−3)
hj′−hj+1 (1− 2X) into a sum of P (α,−3)

n (1− 2X) with some
constant coefficients, and then use the follow formula [39]

P
(α,β)
` (z) =

∑̀
k=0
A(α,β,γ,δ)
`k P

(γ,δ)
k (z), (E.2)

where

A(α,β,γ,δ)
`k = Γ(k + γ + δ + 1)Γ(`+ k + α+ β + 1)Γ(`+ α+ 1)

Γ(`+ α+ β + 1)Γ(k + α+ 1)Γ(2k + γ + δ + 1)Γ(`− k + 1)
× 3F2(k − `, `+ k + α+ β + 1, k + γ + 1; k + α+ 1, 2k + γ + δ + 2; 1)

(E.3)

with β = −3, γ = 1 and δ = −2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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