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1 Introduction

One of the best tools for constructing field theories in lower dimensions is to compactify
a higher dimensional theory on a compact manifold. If the parent theory has a brane
construction one can view the compactified theory as arising from wrapping the branes on
certain cycles. Following the seminal work in [1], one may probe these constructions holo-
graphically by constructing interpolating flows across dimensions: that is AdSd geometries
flowing to AdSd−p × Σp geometries. The canonical method of preserving supersymmetry
in these constructions was to perform a so called topological twist of the theory [2]. The
smoking gun of a topological twist, is a Killing spinor which is constant on the compact-
ification manifold. The twist is engineered so that background R-symmetry gauge fields
cancel off the spin connection such that the spinor is constant.

More recently a different realisation of preserving supersymmetry has been given in [3]
for compactifications of D3 branes on a spindle. A spindle is topologically a sphere ad-
mitting orbifold singularities at both poles, characterised by relatively prime integers n±
labelling the deficit angles 2π(1− n−1

± ). It transpires that the Killing spinors are sections
of non-trivial bundles of the spindle, and thus not constant. Consequently, supersymmetry
is not preserved via a topological twist. Spindle constructions have since been extended to
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setups involving; multi-charge spindles of D3 branes [4, 5], (rotating) M2 branes [6, 7] and
(multi-charge) M5 branes [5, 8].

Independently, in [9, 10] solutions containing a topological disc and preserving super-
symmetry in a similar manner have been constructed. These are dual to Argyres-Douglas
theories arising from compactifying M5-branes on a sphere with two punctures, one regular
and one irregular. Another interesting feature of these solutions is the presence of smeared
M5-branes lying along the boundary of the disc. This construction was extended to D3-
branes wrapped on topological discs in [11, 12] where in the former reference it was noted
that the disc can be obtained from a different global completion of the multi-charge spindle
solutions of [5]. Later work has extended this to D4-D8 branes [13] wrapped on discs.

In this paper we will consider multi-charge AdS2 × Σ solutions in 4d N = 2 U(1)4

STU supergravity. The solutions we consider can be uplifted to 11d supergravity on S7

and their local forms were originally found in this 11d guise in [14]. We will perform a full
global analysis of these solutions from both 4d and 11d, in a similar manner to the global
regularity performed in [6] and [10]. We will show that different global completions of the
solution give rise to two classes of solutions, one where Σ is a spindle and another where Σ
is a topological disc. We appropriately quantise the fluxes of the four abelian gauge fields
so that the fibration

S7 ↪→ Y9 → Σ , (1.1)

is well-defined before considering the full 11d solutions. We show in the spindle class of so-
lution that the internal metric Y9 is smooth. For the disc solution we show that the solution
takes the form of a S5×S1

z×S1
φ4

fibration over a rectangle. On the boundary of the rectangle
we show that the metric degenerates smoothly except at two of the four corners with the
singularities associated to the presence of smeared M2 branes and a monopole respectively.

This paper is organised as follows. In section 2 we study the AdS2×Σ solutions in 4d
N = 2 U(1)4 gauged STU supergravity. We study the regime in which the solutions are
well-defined and impose appropriate quantisation conditions in preparation for uplifting
the solutions to 11d in section 3. We show explicitly that supersymmetry is not realised
by a topological twist by computing the Euler character of Σ and comparing this with the
sum of the charges of the gauge fields. In section 3 we consider the uplifted solutions on
an S7, presenting the solutions in both the canonical AdS2 × Y9 form of [15] and in the
canonical uplift form. In the spindle class we show that the solutions are regular. For the
disc class we show that the singularities in 4d may be interpreted as a smeared M2-branes
and the existence of a monopole. Finally we quantise the flux and compute the on-shell
Newton’s constant, giving a prediction for the entropy of a putative asymptotically AdS4
black hole with horizon Σ. We conclude in section 4 and relegate some technical material
on smeared M2-branes to appendix A.

Note added. Whilst we were preparing the manuscript for publication [16] appeared on
the arXiv, which has some overlap with the topological disc solutions presented here. We
find that some of our regularity analysis differs with that conducted there. In addition, [17]
appeared which has overlap with the spindle solutions presented here.
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Theory Scalars Gauge Fields
T3 X(1) = X(2) = X(3) A1 = A2 = A3

X0X1 X(1) = X(3) , X(2) = X(4) A1 = A3 , A2 = A4

Einstein-Maxwell X(1) = X(2) = X(3) = X(4) = 1 A1 = A2 = A3 = A4

Table 1. The three consistent truncations of 4d N = 2 U(1)4 gauged supergravity. We will largely
ignore the Einstein-Maxwell truncation since it has appeared previously in the literature, and can
be viewed as a special case of the other two truncations.

2 4d black hole near-horizons

In this section we will study a family of supersymmetric AdS2 solutions in 4d U(1)4 gauged
supergravity which may be uplifted to solutions of 11d supergravity on an S7. The local
form of the 11d solutions we study was originally found in [14] using dualities between
multi-charge superstar solutions. We will study in detail the 4d AdS2 × Σ solutions in
this section. One finds that there are two distinct ways of extending the local solutions
globally, distinguished by the different properties of Σ. The first class gives rise to a spindle,
WCP1

[n−,n+]. Whilst in the second class of solution, Σ is a topological disc and is (naively)
singular. As we will see in section 3, this singularity arises due to the presence of smeared
M2-branes in the full 11d solution and is therefore physical.

2.1 Multi-charge solutions of 4d U(1)4 gauged supergravity

The solutions we will study arise in 4d N = 2 U(1)4 gauged supergravity which is a
consistent truncation of N = 8 SO(8) gauged supergravity. The action, following the
conventions in [18], with which we may uplift solutions to 11d on S7, is1

S = 1
16πG(4)

∫ (
R− 1

2

4∑
I=1

(X(I))−2(dX(I))2 +
∑
I<J

X(I)X(J) − 1
2
∑
I

(
X(I))−2∣∣F I ∣∣2)dvol4 ,

(2.1)
subject to X(1)X(2)X(3)X(4) = 1. One may obtain the above action from the general 4d
N = 2 supergravity action by using the pre-potential2

F = −i
√
X(1)X(2)X(3)X(4) , (2.2)

see appendix B for further details. There are three further consistent truncations of the the-
ory of interest to us named T3, X0X1 and Einstein-Maxwell and are specified by reducing
the independent scalars and gauge fields as given in table 1.

The local AdS2 solutions that we will consider here are obtained from truncating the
11d solutions in [14] to 4d. Truncating the aforementioned solution of the seven-sphere, one

1For ease of notation we have set the coupling constants for each of the gauge fields to 1 without loss of
generality.

2See for example [19].
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obtains an AdS2 solution to 4d U(1)4 gauged supergravity. The bosonic sector is given by

ds2
4 =

√
P (w)

(
ds2(AdS2) + ds2(Σ)

)
, (2.3)

ds2(Σ) = f(w)
P (w)dz2 + f(w)−1dw2 , (2.4)

AI = − w

2(w − qI)
dz , (2.5)

X(I) = P (w)1/4

w − qI
, (2.6)

where the polynomials f(w) and P (w) are

P (w) =
4∏
I=1

(w − qI) , f(w) = P (w)− w2 . (2.7)

The solution is specified by four constants, qI , which are in principle independent. In the
following section we will extend this local solution to a well-defined global solution which
requires constraints on the parameters to be imposed. We will show that the topology of
Σ depends on the choice of parameters qI giving rise to two distinct classes of solutions.

2.2 Global analysis

In order to extend the local solution (2.3)–(2.6) to a globally well defined one, one must
impose a number of additional constraints. Firstly, we must require that the metric is both
real and has the correct signature. This implies that both functions f(w) and P (w) must
be positive definite. Moreover, we must fix the domain of the coordinate w so that Σ is
a compact space. To do this we identify two zeroes of the function f(w) between which
both f(w) and P (w) are strictly positive. Since f(w) is a quartic polynomial it admits four
roots. Clearly we need at least two real roots, in fact we can immediately rule out f(w)
admitting only two real roots. This follows since f(w) tends to infinity as w → ±∞, and
therefore the only domain where it is positive in this case is between the larger root and ∞
or −∞ and the smaller root, consequently the domain is non-compact and therefore also
Σ. We conclude that we must require four real roots.

Let us denote the roots by wI , I = 1, . . . , 4, with the labels chosen such that w1 ≤
w2 < w3 ≤ w4. The domain of w is then [w2, w3], inside which, by construction, both P (w)
and f(w) are non-negative. Note that we do not allow w2 = w3 as this would not give
a finite size domain for w, and therefore the geometry is not well-defined. Depending on
the choice of qI we will find two classes of solutions characterised by the behaviour of the
metric at the end-point w2. When w2 6= 0 we find that Σ is a spindle, whilst for w2 = 0 we
encounter a topological disc. The main distinctions between these two classes have been
summarised in table 2.

Before we study the metric around such end-points, let us look at the constraints for
well-defined scalars. Since they are related to dilatons they must be non-negative.3 This

3As we will see later, it is in fact consistent to allow the dilatons to vanish at an end-point of the interval.
The apparent singularity due to vanishing dilatons will be interpreted as the presence of a smeared M2 brane
and is thus of physical nature.
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Spindle Topological disc
f(w2)/P (w2) 0 1
f(w3)/P (w3) 0 0

parameters
qI < w2
qI 6= 0

qi < 0
q4 = 0

Table 2. Summary of the main properties that distinguish the spindle and topological disc solu-
tions. The ratio f(w)/P (w) indicates whether the circle S1

z degenerates or remains of finite size
at the endpoints of the domain [w2, w3]. Schematic graphs of the functions f(w) and P (w) for the
two respective classes of solutions have also been included in figures 1 and 2.

f

P

w1 w2 w3 w4

w

Figure 1. A schematic plot showing the root structure of f and P . Here the shaded green region
indicates the domain of w where the metric is defined.

requires w − qI ≥ 0 on the domain of w. We may reduce this condition to w2 ≥ max{qI}
which, if we label the qI in ascending order, simply becomes w2 ≥ q4. Below we will
study the constraints on the parameters qI such that the function f(w) and the scalars
have the properties discussed above. Schematically, all the constraints discussed above are
equivalent to finding constraints on the qI such that the functions f(w) and P (w) take the
schematic form given in figure 1.

Before moving on to studying the constraints on the parameters qI let us now look at
the charges of the solution. The solution admits four magnetic charges. Using (2.5), and
parametrising our temporary ignorance of the period of the z coordinate by denoting it by
∆z, we find the magnetic charges

QI = 1
2π

∫
Σ

dAI = qI(w3 − w2)
2(w3 − qI)(w2 − qI)

∆z
2π . (2.8)

Since the charge depends explicitly on the period ∆z we will postpone quantising the fluxes
for the moment. However we may still compute the sum of the charges

4∑
I=1

QI = ∆z
4π

(
sgn(w3) |f

′(w3)|
|w3|

+ sgn(w2) |f
′(w2)|
|w2|

)
. (2.9)
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Finally we can also compute the Euler character of the space4

χ(Σ) = 1
4π

∫
Σ
RdvolΣ = −w

2f ′(w)− 2wf(w)
2P (w)3/2

∆z
2π

∣∣∣∣w=w3

w=w2

= ∆z
4π

( |f ′(w3)|
|w3|

+ |f
′(w2)|
|w2|

)
, (2.10)

where, in the last line, we have used that f ′(w2) > 0 > f ′(w3). Note in the two results
above we have implicitly assumed that there is not a root at 0. As we will see later this is
a special point in the parameter space of the solution and requires a separate treatment.
Note that the sum of the charges and Euler character can only be the same if the roots are
both of the same sign, in this case we would have a solution of type ‘topological topological
twist’.5 For roots with different sign, which we will study here, these two quantities are
not equal and therefore the solution is not dual to a CFT which has been (topologically)
topologically twisted.

2.2.1 Spindle

We now want to study how the metric degenerates around an end-point of the domain of
w. First let us assume that the roots w2 and w3 are single roots6 and non-zero.7 Around
such an end-point the metric on Σ becomes

ds2(Σ) = 1
f ′(w∗)(w − w∗)

dw2 + f ′(w∗)(w − w∗)
w2
∗

dz2 = 4
|f ′(w∗)|

(
dR2 + |f

′(w∗)|2

4w2
∗

R2dz2
)
,

(2.11)
where we changed coordinates to R2 = ±(w −w∗) in the last line, taking the plus sign for
the expansion around w2 and the minus sign for w3. Note that f ′(w2) > 0 > f ′(w3) and
the sign introduced in the definition of the new radial coordinate has been absorbed by
introducing the norm. From (2.11) we can see that the metric around the end-point looks
locally like that of R2 if z has period

∆z
2π = 2|w∗|

|f ′(w∗)|
. (2.12)

Since we have the same type of degeneration at both poles the space takes the form of a
topological sphere. For this to be a round sphere we must avoid conical singularities at
both poles, i.e. that the period given in (2.12) is the same at both end-points∣∣∣∣f ′(w2)

w2

∣∣∣∣ =
∣∣∣∣f ′(w3)
w3

∣∣∣∣ . (2.13)

Using the explicit form of f(w) this is equivalent to the roots satisfying

|w3|(w2 − w1)(w4 − w2) = |w2|(w3 − w1)(w4 − w3) . (2.14)
4We assume that there is no boundary to Σ here. As we will see later we must amend this, however it

turns out that the boundary contribution is trivial.
5Solutions of this form will be addressed in [20].
6For a double root the metric around the root looks locally like hyperbolic space, see for example [21].
7We will study the case where one of the roots is zero later in section 2.2.2, since this corresponds to

the class of topological disc solutions rather than spindle solutions.

– 6 –



J
H
E
P
0
4
(
2
0
2
2
)
1
0
7

For the two roots having the same sign the condition reduces to8

w1w4 = w2w3 , (2.15)

whilst for opposite sign we have

w4 = w2w3(2w1 − w2 − w3)
w1w2 + w1w3 − 2w2w3

. (2.16)

Since the roots of the quartic are particularly unwieldy, in order to study the solutions
analytically we will consider the solution in the truncated theories.

X0X1 truncation. First consider the solution in the X0X1 truncation. To trun-
cate (2.3)–(2.6) to a solution of the X0X1 theory we must set X(1) = X(2), X(3) = X(4)

and A1 = A2, A3 = A4 as in table 1. This is equivalent to setting the constants qI to
satisfy q1 = q2 and q3 = q4. In this truncation the function f(w) takes the simplified form

f(w) = (w − q1)2(w − q3)2 − w2 . (2.17)

Both q1 and q3 are non-zero, since a constant equal to zero would automatically imply a
common root between f(w) and P (w), which we will study in the section 2.2.2. To proceed,
it is useful to define

s = q1 + q3 , p = 4q1q3 , (2.18)

which allows us to write the four roots of f(w) in the compact form

1
2
(
s+ 1±

√
(s+ 1)2 − p

)
,

1
2
(
s− 1±

√
(s− 1)2 − p

)
. (2.19)

Note that we have not assigned these roots the names wI with I = 1, . . . , 4 yet, because
we must still determine their order. There are two regimes where all the roots are real,
distinguished by the sign of s. We find these regimes to be

s ≥ 0 , p ≤ (1− s)2 or s ≤ 0 , p ≤ (1 + s)2 . (2.20)

It turns out that there is only one ordering of the roots which is consistent with the positive
scalar condition, w2 − q3 > 0:

w1 = 1
2
(
s− 1−

√
(s− 1)2 − p

)
, w2 = 1

2
(
s− 1 +

√
(s− 1)2 − p

)
,

w3 = 1
2
(
s+ 1−

√
(s+ 1)2 − p

)
, w4 = 1

2
(
s+ 1 +

√
(s+ 1)2 − p

)
,

(2.21)

along with the additional constraints, either

− 1 < s ≤ −1
2 , 0 < p < (1 + s)2 , or − 1

2 < s < 0 , 0 < p ≤ s2 , (2.22)

which are a further restriction of the conditions in (2.20). In terms of q1 and q3 (q1 ≤ q3)
these conditions reduce to

− 1
4 < q3 < 0 , −

(
1−
√
−q3

)2
< q1 ≤ q3 . (2.23)

8We drop any solutions which sets roots equal or to 0.
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One may naturally wonder if these regimes are compatible with a spherical horizon, i.e.
one where the conical singularities can be removed. It is simple to show that this is not
possible and one always obtains a spindle. Plugging the roots (2.21) into either of (2.15)
or (2.16), we find that the only possibilities to satisfy either of them are to set one of q1 or
q3 to zero or q1 = −q3. Both of these options are incompatible with the region in (2.23).
The case where either q1 or q3 vanish needs a more careful treatment since we introduce a
different degeneration of the solution as we will see in the next section.

We conclude that it is not possible to find a spherical horizon in the X0X1 truncation.
The solutions we have found here are spindles and admit conical singularities. Following [6],
instead of making a single choice for the period ∆z we impose

∆z = 4π|w2|
n−|f ′(w2)| = 4π|w3|

n+|f ′(w3)| , (2.24)

which exhibits the space as the spindle Σ = WCP1
[n−,n+], with conical deficit angles 2π(1−

n−1
± ) at the two poles.

We can now return to the quantisation of the magnetic charges. Following [6] the
correct quantisation condition to impose is

QI = 1
2π

∫
Σ
FI = pI

n−n+
with pI ∈ Z . (2.25)

As explained in [6] with this quantisation, and for charges pI coprime to both n±, this
gives rise to a well-defined and smooth orbifold circle fibration of the seven-sphere over the
spindle

S7 ↪→ Y9 →WCP1
[n−,n+] . (2.26)

The twist parameters of the fibration are pI and is such that it leads to a compact space
Y9. From (2.8) and (2.25) we find that the twist parameters are given by

pI = n−n+
qI(w3 − w2)

2(w3 − qI)(w2 − qI)
∆z
2π . (2.27)

Inserting the expression for the period, (2.24) into the sum of the roots (2.9) and the Euler
character (2.10) we find

4∑
I=1

QI = 1
n+
− 1
n−

, (2.28)

χ(Σ) = 1
n+

+ 1
n−

, (2.29)

confirming that this solution does not involve the usual topological twist.

2.2.2 Topological disc

Let us now consider the second way of obtaining a degeneration of the surface: a common
root between P (w) and f(w). We can see immediately from the form of f(w), namely
f(w) = P (w) − w2, that if f(w) and P (w) have a common root, then this root must be

– 8 –
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f

P

w1 w2 w3 w4

w

Figure 2. A schematic plot showing the root structure of f(w) and P (w) such that we find a topo-
logical disc. As before the shaded green region indicates the domain of w where the metric is defined.

located at w = 0. Since the roots of P (w) are given by the parameters qI , this means that
(at least) one of the charges must be zero. In order to find a topological disc as the black
hole horizon, we want the zero root of f(w) to be a boundary of the domain of w, i.e. it
should be either w2 or w3 in the notation above. Recall that for the scalars to be positive
we need to impose w2 ≥ max{qI}, which for at least one qI = 0 implies w2 ≥ 0. It is clear
that the only consistent specification of the roots is to set w2 = 0, and w3 > 0 with q4 = 0
(all other q’s are then ≤ 0). It follows that in order for the solution to have a root at 0 we
must require the second root of f(w) and the fourth root of P (w) to be equal to zero. A
schematic plot of this setup is given in figure 2.

Now consider the possibility of a double root at zero. In order for this to work we
have to set either w1 or w3 equal to zero. We can see immediately that the option w3 = 0
is not allowed since a finite domain requires w3 > w2 = 0. This leaves w1 = 0. We can
see from figure 2 that this option would set all four qI to zero by requiring f(w) ≤ P (w)
everywhere. Consequently in this case we would simply have P (w) = w4 and f(w) =
P (w)−w2 = w2(w− 1)(w+ 1). We see that this expression for f(w) has one negative and
one positive root, which is in contradiction with our choice that w1 = w2 = 0. We conclude
that the only setup with a single root at zero, i.e. setups with a root structure as in figure 2,
are the relevant ones to consider, all others do not give rise to well-defined solutions.

T3 truncation. We saw above that we must fix only one root of f(w) to be zero. Con-
sequently, this completion of the space is not possible in either the Einstein-Maxwell the-
ory nor the X0X1 truncation. In order to analyse this setup somewhat analytically we
study this completion in the T 3 truncation, fixing the three non-zero charges equal, i.e.
q1 = q2 = q3 ≡ q < 0. This essentially pushes the three negative roots of P (w) in figure 2
together into a triple root. In this case the functions simplify to

P (w) = w (w − q)3 ,

f(w) = w
(
(w − q)3 − w

)
.

(2.30)

– 9 –
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w1

w3

w4

0

1

-1

-
2

3 3

q

roots

Figure 3. The values of the three roots of f(w)/w as a function of q in the T 3 truncation. The
root w3 approaches zero as q → 0 but is positive for all values in the range q ∈

[
− 2

3
√

3 , 0
)
.

We now require the cubic polynomial f(w)/w = (w− q)3−w to have one negative and two
positive roots, so that the root equal to zero is indeed w2.

It is straightforward to compute the discriminant of the polynomial f(w)/w, and is
given by 4 − 27q2. A cubic polynomial has three real roots if its discriminant is non-
negative, which gives us the constraint − 2

3
√

3 ≤ q ≤ 2
3
√

3 for the allowed values of q. We
have already imposed that q must be negative for the positivity of the scalars, and so we
restrict to the range − 2

3
√

3 ≤ q < 0.
The equation f(w)/w = 0 can be solved analytically, but since the results are surpris-

ingly bulky for such a simple polynomial equation, we will not present the explicit values
here. Instead, we plot the three roots in figure 3 to show that indeed one is negative and
two are positive as required. We see that for all values of q in the range

[
− 2

3
√

3 , 0
)
we

indeed obtain one negative and two positive roots, therefore for all of these values we have
a solution with a horizon admitting a completion with a root at 0.

We now want to determine the global form of the metric. At w3 we may use our results
in the previous section to determine that the metric on Σ degenerates as the orbifold R2/Zk
if the period of z is fixed to be

∆z = 4πw3
k|f ′(w3)| . (2.31)

Consider now the degeneration at w = 0. Note that we must consider the full 4d-solution
now since the overall warp factor P (w) vanishes here. Around w = 0 the metric takes the
form

ds2
4 =

√
|q|3w

(
ds2(AdS2) + dz2 + 1

w|q|3
dw2

)
. (2.32)

This is conformal to the direct product of AdS2 with a cylinder, however note that the
conformal factor vanishes in this limit and the metric has a singularity at w = 0. To add
to the apparent misery, in this limit three of the four X(I)’s vanish despite being dilatons.
Fortunately all is not lost: this singularity is physical! Since this is best seen from the 11d
uplifted solution we will postpone this discussion until section 3.2.2 and proceed unabated.
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We now want to ascertain what space Σ is. We see that at w = w3 the space looks like
the orbifold R2/Zk whilst at w = 0 we have a circle which does not contract. This is
describing a topological disc with an orbifold singularity at the centre. Consider the Euler
characteristic of Σ. We find9

χ(Σ) = 1
k
. (2.33)

Recall that for an orbifold O, the Euler characteristic is given by χ(O) = 1
dχ(M) where M

is a compact oriented manifold providing a finite covering of O of degree d. We therefore
see that this is precisely the expected result for a Zk orbifold of a disc. Next let us examine
the sum of the magnetic charges of the gauge fields. Since we set q4 = 0 we see that A4
is now pure gauge, whilst the remaining three are all equal. We find that the sum of the
charges is10

4∑
I=1

QI = 1
k
− ∆z

4π . (2.34)

Note in particular that the sum of the charges does not equal the Euler characteristic of the
disc, and in fact can never be made to. This implies that the mechanism for preserving su-
persymmetry, like in the spindle case studied above, is not the usual topological twist. One
can also see this from computing the explicit Killing spinors on the four-dimensional solu-
tion; they depend on the disc coordinates which is not the case for a standard topological
twist, see appendix B.

Beyond the T3 truncation. We have argued above that one cannot obtain a disc from
our local solution in either the X0X1 truncation nor the Einstein-Maxwell truncation.
One may wonder if it is possible to have a solution keeping the remaining non-zero qI ’s
distinct. Studying this more general solution near to the singular point one finds that
the uplift interpretation is not simply a smeared M2-brane as in the T 3 truncation. It
would be interesting to see if it is possible in this case to give the singularity a physical
interpretation, we have not been able to rule out a more complicated completion involving
a more exotic brane configuration.

3 Uplift to 11d supergravity

In this section we discuss the 11d uplift of the 4d AdS2 solutions given in section 2. We
find that the class of spindle solutions is lifted to a smooth 11d geometry. For the other
class we find that the boundary of the topological disc gives rise to a stack of smeared
M2-branes, making this singularity of physical nature.

9Note that since Σ has a boundary one must be slightly more careful with this computation than in the
spindle case. The Gauss-Bonnet theorem contains a contribution from the boundary

χ(Σ) = 1
4π

∫
Σ
Rdvol(Σ) + 1

2π

∫
∂Σ
κdvol(∂Σ) ,

which we neglected earlier. However in the present case the geodesic curvature κ vanishes and therefore
the boundary does not contribute to the Euler characteristic.

10One sees that this is the same as the analogous result for M5 branes on a disc as in [10].
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3.1 STU truncation uplift

The local solution we considered in section 2 was originally found in 11d in [14]. The full
metric after a little rewriting is given by

ds2 = e2A
(

ds2(AdS2) + f(w)
P (w)dz2 + 1

f(w)dw2

+ 4
P (w)Y

4∑
I=1

(w − qI)
[
dµ2

I + µ2
I

(
dφI −

w

2(w − qI)
dz
)2])

, (3.1)

where the µI ’s are the embedding coordinates of an S7 satisfying

4∑
I=1

µ2
I = 1 . (3.2)

The functions f(w) and P (w) are as in (2.7), whilst Y and eA are given by

Y =
4∑
I=1

µ2
I(w − qI)−1 ,

e3A = P (w)Y . (3.3)

We see that the constraint on the scalars being positive definite is equivalent to the metric
having correct signature in 11d.

It is also convenient to rewrite the metric in the form of the classification of AdS2
solutions in [15]. Using the results in [14] it takes the form

ds2 = e2A
(
ds2(AdS2) + (dz + σ)2 + e−3Ads2

8

)
, (3.4)

with

σ = − 2w
P (w)Y

∑
I

µ2
IdφI , (3.5)

ds2
8 = P (w)Y

f(w) dw2 + 4
∑
I

(w − qI)(dµ2
I + µ2

Idφ2
I)−

4w2

P (w)Y

(∑
I

µ2
IdφI

)2
. (3.6)

In this rewriting the R-symmetry vector is manifest. It is important to note that the
R-symmetry vector is

R1d = ∂z . (3.7)

A change in the gauge of the gauge fields, which can be reabsorbed by a coordinate shift
of the φI ’s will alter as we will see later. Note that the Killing spinors have charge 1

2 under
z. The 8d space is Kähler with Kähler form

J8 = 2dw ∧
∑
I

µ2
I dφI + 4

∑
I

(w − qI)µIdµI ∧ dφI . (3.8)
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3.2 General analysis

We start by computing some general quantities of interest for the family of solutions that
we study. We compute the free-energy/entropy of the dual CFT, which for AdS2 solutions
is given by

S = F = 1
4G2

, (3.9)

and we check that the M2-brane fluxes are properly quantized. Furthermore, we check the
regularity of the 11d solutions in both the spindle and the disc cases, and examine some
interesting regions of the solutions.

Flux quantisation. As usual, we need to check that the flux of the solution is quantized
so that the solution can be properly lifted to M-theory. The four-form flux of the solution
is given by

G4 = L3 dvolAdS2 ∧
[
d
(
e3A(dz + σ)

)
− J8

]
. (3.10)

There are no non-trivial four-cycles in our geometry, but there are non-trivial seven-cycles,
so we focus on the Hodge dual flux which can be written as [22]

∗G4 = L6 (dz + σ) ∧ dσ ∧ J
2
8
2 + closed piece . (3.11)

Since the closed piece does not contribute to any of the integrals we refrain from presenting
it here.

Both the spindle and the topological disc have a seven-cycle given by the S7. In order
to compute the flux through this cycle we go to one of the endpoints of the w interval,
because there the seven-sphere decouples from the rest of the geometry which allows us to
integrate over this cycle. We compute this integral as

1
(2π`p)6

∫
S7
∗G4 = 2L6

π2`6p
≡ N , (3.12)

and hence find the quantisation condition N ∈ Z.
For the spindle this is the only non-trivial seven-cycle. However, for the topological

disc we find an additional cycle in the simultaneous µ4, w → 0 limit, associated with the
presence of smeared M2-branes. We will discuss the quantisation condition arising from
this cycle in section 3.2.2.

Free energy. In order to compute the free energy, it is convenient to use the metric in
the form of (3.4). We find that the two-dimensional Newton’s constant is given by the
simple expression

1
G2

= L9

G11

∫
Y9
e9A dvolY9 = 8L9

3π3`9p
(w3 − w2) ∆z , (3.13)

where we ahve used that G11 = (2π)8`9p
16π , and `p denotes the 11d Planck length. Using the

quantisation of the flux and the definition of N above we have

S = 1
4G2

= 1
3
√

2
N3/2 (w3 − w2) ∆z . (3.14)
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3.2.1 Spindle

Here we study the regularity of the spindle solutions in the uplift to 11d. We will find that
the singularities from 4d have disappeared in the uplift, and that the solution is regular.
This is a well-known feature of M2- and D3- branes on spindles (though not for M5’s), see
for example [3, 5, 6], and is sometimes referred to as desingularization.

In 4d we found conical singularities at w = w2 and w = w3, so here we again focus on
these points. Our 11d solution has five U(1) Killing vectors, namely ∂z and ∂φI . In order
to check for conical singularities, we are looking for linear combinations of these Killing
vectors that have vanishing norm at w2 or w3. It turns out that the only such Killing
vectors are given by11

∂ψi = ci

(
∂z +

∑
I

wi
2(wi − qI)

∂φI

)
, (3.15)

where i = 2, 3. For these, we find that ||∂ψ2 ||2(w2) = ||∂ψ3 ||2(w3) = 0. We can now fix
the normalization constants ci by imposing that these Killing vectors have the appropriate
periodicity of 2π around the point where they degenerate. We expand the norm of the ∂ψi
in ∆w = ±(w − wi) which gives

||∂ψi ||
2 = e2A c2

i |f ′(wi)|
P (wi)

∆w +O
(
∆w2) , (3.16)

and therefore the metric spanned by w and ψi close to wi can be written as

1
|f ′(wi)|∆w

dw2 + c2
i

|f ′(wi)|
P (wi)

∆w dψ2
i = 4
|f ′(wi)|

[
dR2 + c2

i f
′(wi)2

4P (wi)
R2dψ2

i

]
. (3.17)

Here we have omitted the overall warping e2A, and we have made the change of coordinates
∆w = R2. We see that in order to get the correct periodicity, we must fix the normalization
constants as

ci =
(

f ′(wi)
2
√
P (wi)

)−1

=
(∑

I

wi
2(wi − qI)

− 1
)−1

. (3.18)

These coefficients are identical to the ones found in [14], where the regularity of this family
of solutions was previously studied.

We now have six Killing vectors that degenerate somewhere in the manifold, but there
are only five isometries. We therefore know that they must be related by the constraint12

a2 ∂ψ2 + a3 ∂ψ3 + p1 ∂φ1 + . . .+ p4 ∂φ4 = 0 , (3.19)

for some coprime integers a2, a3, p1, . . . , p4. Notice that the constants ci may be rewritten as

c2 = n−∆z
2π , c3 = −n+∆z

2π (3.20)

11Note that the z circle, that gave rise to the conical singularities in the 4d solution, does not pinch
anywhere in the uplifted manifold. The norm of the corresponding Killing vector is simply given by
||∂z||2 = e2A.

12Since it turns out that the constant coefficients of the φI Killing vectors become the magnetic charges
pI defined in (2.25), we have chosen to call them pI from the outset. Note that there was no assumption
that these are magnetic charges in reaching this conclusion.
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by using (2.24). Expanding the terms in the sum (3.19) we find the constraints

0 = a2n− − a3n+ , (3.21)

0 =
3∑
i=2

aiciwi
2(wi − qI)

+ pI . (3.22)

where the latter must be satisfied for all I. We may solve the first by

a2 = n+ , a3 = n− , (3.23)

where we have used that a2 and a3 should be coprime. Plugging this into the second
constraint we find

pI = n+n−QI , (3.24)

which is precisely the quantisation condition we imposed on the fluxes in (2.25). We
conclude that provided the fluxes pI (defined in (2.25)) are relatively prime to both n+
and n−, which are relatively prime themselves, then the 11d solution is smooth and free
of conical singularities.

R-symmetry vector. Let us now consider the R-symmetry of the solution. Using the
general results in [15, 22] and the form presented in (3.4) we can identify the 1d R-symmetry
vector as

R1d = ∂z . (3.25)

However, this leads to a Killing spinor which has charge 1
2 under the isometry of the

spindle. To see why this is true, note that the 11d Killing spinor is the tensor product
of the Killing spinor of the 4d solution with the Killing spinor on S7. The uplift of our
solution to 11d, as given in [14] which uses the gauge fields in (2.5), is in the correct form
of the classification in [15] (we follow the conventions in [22] though). This implies that
the 11d Killing spinor has charge 1

2 under z and therefore the 4d Killing spinor has the
same charge. Now, since the Killing spinor on S7 has charge 1

2 under each of the U(1)’s we
may absorb the z dependence by a coordinate shift:

φI → φ̃I = φI −
1
4z . (3.26)

The R-symmetry vector is then

R1d = ∂z + 1
4

4∑
I=1

∂φ̃I , (3.27)

and we identify the summand with the 3d superconformal R-symmetry of ABJM before
compactification. Note the similarity with the D3 case in [5].

Entropy. Finally Newton’s constant is given in equation (3.14),

1
G2

= 2
√

2
3 N3/2 (w3 − w2) ∆z . (3.28)
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We now want to write this in terms of the charges QI given in (2.25). Since the result for
the Newton’s constant takes the same form in the general STU solution as in the truncated
solution we will present the general result for the four charges. To proceed it is useful to
note that the term (w3 − w2)∆z appears in the expression for the charges. A simple but
tedious computation using the properties of the two polynomials P (w) and f(w) and the
four charges allows us to express the roots implicitly in terms of the charges13

Q̂(4)≡
4∏
I=1

QI=
(∆z(w3−w2)

4π

)4w1w4
w2w3

, (3.29)

Q̂(3)≡
4∑
I=1

∏
J 6=I

QJ=
(∆z(w3−w2)

4π

)3w1w4
w2w3

[
(w1+w4)w2w3

w1w4
+(w1+w2−2w2−2w3)

]
, (3.30)

Q̂(2)≡
∑

1≤I<J≤4
QIQJ=

(∆z(w3−w2)
4π

)2w1w4
w2w3

[
1+3(w2+w3)2−2(w2+w3)(w1+w4)+w1w4

−3w2w3+ 1
w1w4

(
w2w3+w2w3

∑
1≤I<J≤4

wIwJ+(w1+w4−2w2−2w3)
4∑
I=1

∏
J 6=I

wI

)]
, (3.31)

Q̂(1)≡
4∑
I=1

QI=
(∆z(w3−w2)

4π

)(
2(w1+w4)−(w2+w3)−w1w4

w2w3
(w2+w3)

)
. (3.32)

Note that Q(1) can be expressed in terms of n± as in (2.28) once the constraint on the
periods, (2.24) is taken into account. To proceed it is useful to define

x = ∆z(w3 − w2)
4π , α = w1 + w4 , β = w1w4 , (3.33)

where, as in all good algebra problems, ‘x’ is what we want to compute.
We first solve the constraint on the periods, namely equation (2.24), for the variable

β which has solution

β = −
w2w3

(
n−(w2 − α) + n+(w3 − α)

)
n+w2 + n−w3

. (3.34)

With this solution we see that both Q̂(1) and χ take the expected form. We next eliminate
α in favour of the new variable x which gives

α = n+w2(1− n−w2x) + n−w3(1 + n+w3x)
n−n+x(w3 − w2) . (3.35)

Substituting the new variables and constraints into the functions of the charges Q̂(A), for
A = 2, 3, 4 gives three equations for the three unknowns x,w2, w3. It is again convenient
to change variables, introducing

γ = w3 + w2 , δ = w3 − w2 . (3.36)
13See [20] for further details on these expressions in terms of the quartic invariant.
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We may now solve for x, γ, δ in terms of n±, and Q̂(A), A = 2, 3, 4 giving14

x =

√√√√1 + n−n+Q̂(2) −
√(

1 + n−n+Q̂2
)2 − 4n2

−n
2
+Q̂

(4)

2n−n+
, (3.37)

δ = (n− + n+)x√(
1 + n−n+Q̂2

)2 − 4n2
−n

2
+Q̂

(4)
, (3.38)

γ =

(
(n+ − n−)

(
1 + n−n+Q̂

(2))+ 2n2
−n

2
+Q̂

(3)
)
x(

1 + n−n+Q̂2
)2 − 4n2

−n
2
+Q̂

(4)
. (3.39)

In principle we can now invert to solve for the roots in terms of the charges however this
leads to ugly expressions and so we will spare the reader this pain. Instead, we can now
express the entropy in terms of the charges and Euler characteristic as

S = 1
4G2

= π

3N
3
2

√
4Q̂(2) + χ2 −

(
Q̂(1))2 −√(4Q̂(2) + χ2 −

(
Q̂(1))2)2

− 64Q̂(4) , (3.40)

with Q̂(A) the symmetric combination of the charges defined above. This result is com-
pletely general and valid for the full STU solution, not just the X0X1 truncated solution
we studied in detail in this section.15

3.2.2 Topological disc

In this section we will study the different regimes of the topological disc solution. The
internal metric takes the form of an S5×S1

φ4
×S1

z fibration over the rectangle given by
(µ2

4, w) with µ2
4 ∈ [0, 1] and w ∈ [0, w3]. Within the rectangle the manifold does not

degenerate, but on each of the boundaries some part of the metric degenerates, see figure 4
for a pictorial representation of the solution.

Before we begin it is convenient to reparametrise the S7 embedding coordinates as

µi =
√

1− µ2
4mi , with

3∑
i=1

m2
i = 1 , (3.41)

and to define

Y = 1
w

(
µ2

4 + w(1− µ2
4) Ŷ

)
, Ŷ =

∑
i

m2
i

w − qi
, P (w) = wP̂ (w) , f(w) = wf̂(w) .

(3.42)

14One actually obtains four solutions when inverting these results however the constraints δ > 0 and
x > 0 which follow from regularity leave a single physically sensible solution.

15In [17] the authors study solutions in the X0X1 truncation and present an expression for the entropy in
that truncation. The form given there does not obviously agree with the one presented here when restricted
the X0X1 case, however one can show that the two expressions give numerically equivalent results. Despite
this one can show that this alternative expression for the entropy relies on a relation between the roots wI
which is not true for the full STU solution and therefore cannot be extended to the full multi-charge solution.
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0

µ2
4

1

ww3S1
φ4

shrinks

S5 shrinks

M
onopole

L̂
=

3
k

L̂ = 0

Sm
eared

M
2
brane

Figure 4. A schematic plot of the rectangle over which the S5×S1
φ4
×S1

z is fibered. The blue line
indicates that the φ4 circle pinches smoothly to R2. Along the green edge the metric is smooth,
but has a singularity consistent with a smeared M2 brane at the intersection with the blue line. At
the opposite corner sits a monopole leading to a R8/Zk orbifold.

Note that wY is non-zero except at w = µ4 = 0 and Ŷ is strictly positive definite. With
these definitions the metric takes the form

ds2=
[
P̂ (w)

(
µ2

4+w(1−µ2
4)Ŷ

)]2/3(
ds2(AdS2)+ f̂(w)

P̂ (w)
dz2+ 1

wf̂(w)
dw2

+ 4(1−µ2
4)

P̂ (w)
(
µ2

4+w(1−µ2
4)Ŷ

) 3∑
i=1

(w−qi)
[
dm2

i+m2
iDφ

2
i

]
(3.43)

+ 4
P̂ (w)

(
µ2

4+w(1−µ2
4)Ŷ

)[dµ2
4+µ2

4Dφ
2
4+

3∑
i=1

(w−qi)
(
m2
iµ

2
4

1−µ2
4

dµ2
4−2miµ4dµ4dmi

)])
.

Note that the cross terms dµ4dmi vanish if all qi are set equal.

Smeared M2-branes. Let us begin with the line µ2
4 = 1 away from the end-points of w.

We see that this point corresponds to the degeneration of the (squashed) S5, with both the
S1
z and S1

φ4
circles remaining of finite size. However, it is only for q1 = q2 = q3 ≡ q that the

degeneration is smooth and gives R6. We will therefore restrict to the T3 truncation from
now on.16 Conversely, consider the degeneration at µ4 = 0 away from the end-points of w.

16Note that this simplifies the metric considerably. In particular we have Ŷ = (w − q)−1 and the cross
terms dµ4dmi drop out.
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We see that the only part of the metric which degenerates is the circle S1
φ4
, degenerating

smoothly if φ4 has period 2π. This is of course the required period for the round S7 in the
uplift.

Next let us consider the degeneration at w = 0 away from both end-points of µ4.
Since all the hatted objects, P̂ (w), f̂(w) and Ŷ are non-zero and positive at w = 0 the
only degeneration of the metric is the line-interval and the metric is therefore smooth. In
particular, note that the singularity that we encountered at w = 0 in 4d has been removed
in the uplift. Instead, we have a singularity at w = µ4 = 0. To investigate this properly it
is convenient to make the change of coordinates

P̂ (0)w = −qr cos2
(
θ

2

)
, P̂ (0)µ2

4 = r sin2
(
θ

2

)
, (3.44)

and then expand around r = 0, which gives the metric in the form

ds2 = r2/3
(

ds2(AdS2) + dz2
)

+ |q|
r1/3

(
dr2 + r2

(
dθ2 + sin2 θdφ2

4

)
+
∑
i

[
dm2

i +m2
iDφ

2
i

])
.

(3.45)
In comparing with appendix A, where we study the metric of various smeared M2-branes,
we see that this takes the form of an M2-brane with world-volume AdS2×S1

z, localised at
the centre of R3 and smeared on a round S5. The singularity is meaningful, it arises due to a
flavour M2-brane in the geometry. Similar results were found in the M5 [10, 12], D3 [11, 12]
and D4-D8 system [13] cases. Note that we could have taken the limits separately, and
in either order, and obtained the same result, the change of coordinates was introduced
for convenience. It is also simple to see that the limit w = 0, µ4 = 1 is smooth given
the discussion above. It is interesting to note that the location of the smeared brane for
both D3- and M2-branes is the bottom most corner of the diagram in figure 4, for the
M5-branes it is located along the w = 0 side [10]. This seems to be a general feature of
odd dimensional spheres, the smeared brane is located at a single point in the uplift, whilst
for even dimensional spheres it is located along a line. One also sees a different behaviour
between the uplift of spindle solutions on even and odd-dimensional spheres. Uplifting
on odd-dimensional spheres allows for the orbifold singularities to be resolved whilst on
even-dimensional spheres orbifold singularities remain in the uplifted solution.

Monopoles. We have left the most subtle limits for last. We first want to consider
the w = w3 limit before taking the simultaneous w = w3 µ2

4 = 1 limit. For this it is
best to rewrite the metric as a fibration of the S1

z over the S7. In doing this rewriting
it is convenient to allow an arbitrary gauge choice for the four gauge fields of the form
δAI = nIdz. There are two convenient choices that one can make. The first is such that
the gauge field vanishes at the orbifold point, that is we take

δAI = w3
2(w3 − qI)

dz . (3.46)

This choice of gauge has the benefit of leading to a well defined gauge field in 4d when going
to the orbifold point, recall that z shrinks there, however it leads to a Killing spinor which
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is charged under the isometry of the disc. Following our earlier discussion above we may
perform a gauge transformation of the gauge fields so that the spinor is uncharged under
the rotation generator of the disc. It turns out that this is the best choice of gauge to make.

First note that A4 is pure gauge at the moment. We should therefore first perform a
gauge transformation to set A4 = 0, that is we have A4 → A4 + 1

2dz = 0. This is equivalent
to performing a change of coordinates φ4 → φ̃4 = φ4 − 1

2z, since this preserves the form
of dφ4 + A4. Now consider the phase of the Killing spinor after this transformation: it is
proportional to

z

2 +
3∑
i=1

φi + φ̃4 . (3.47)

We may now perform the coordinate shift φi → φ̃i = φi − 1
6z which removes the z depen-

dence of the phase of the Killing spinor. We can ensure that the one-forms dφi + Ai are
invariant under this coordinate transformation provided we perform a gauge transformation

Ai → Ai + 1
6dz , A4 → A4 + 1

2dz . (3.48)

After this slightly round-about argument we conclude that the gauge transformation above
is equivalent to removing the z dependence in the 4d Killing spinor and the expressions
above we should set

ni = 1
6 and n4 = 1

2 . (3.49)

Notice that the gauge choice we make here will not change the analysis that we have
performed earlier in this section, however it has an important effect here.

Rewriting the metric in the form of an S1
z fibration over the seven sphere we have

ds2=e2A
[
ds2(AdS2)+ 1

wf̂(w)
dw2+4(w−q)(1−µ2

4)
P̂ (w)(w−qµ2

4)

3∑
i=1

dm2
i+Rz

(
dz−L

3∑
i=1
m2
i dφi

)2
(3.50)

+R1m
2
1

(
dφ1−S1

3∑
i=2
m2
i dφi

)2
+R2m

2
2

(
dφ2−S2m

2
3dφ3

)2
+R3m

2
3dφ2

3+ 4w(w−q)µ2
4

P̂ (w)(w−qµ2
4)

dφ2
4

]
,

where

Rz = (q + 2w)2(1− µ2
4) + 9(w − qµ2

4)f̂(w)
9P̂ (w)

,

R1 =
4(w − q)2(1− µ2

4)
(
(1−m2

1)(2w + q)2(1− µ2
4) + 9(w − qµ2

4)f̂(w)
)

(w − qµ2
4)P̂ (w)

(
(2w + q)2(1− µ2

4) + 9(w − qµ2
4)f̂(w)

) ,

R2 =
4(w − q)2(1− µ2

4)
(
m2

3(2w + q)2(1− µ2
4) + 9(w − qµ2

4)f̂(w)
)

(w − qµ2
4)P̂ (w)

(
(1−m2

1)(2w + q)2(1− µ2
4) + 9(w − qµ2

4)f̂(w)
) ,

R3 = 36(w − q)2(1− µ2
4)f̂(w)

P̂ (w)
(
m2

3(2w + q)2(1− µ2
4) + 9(w − qµ2

4)f̂(w)
) , (3.51)

L = 6(w − q)(2w + q)(1− µ2
4)

(2w + q)2(1− µ2
4) + 9(w − qµ2

4)f̂(w)
,
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S1 = (2w + q)2(1− µ2
4)

(1−m2
1)(2w + q)2(1− µ2

4) + 9(w − qµ2
4)f̂(w)

,

S2 = (2w + q)2(1− µ2
4)

m2
3(2w + q)2(1− µ2

4) + 9(w − qµ2
4)f̂(w)

.

From the form of the functions it is clear that all the Ri vanish as µ2
4 → 1, whilst Rz

remains finite. In addition the fibration functions S1,2 vanish in this limit and we have

L(µ2
4 = 1, w) = 0 . (3.52)

This leads to the smooth shrinking of the S5 that we saw previously. Conversely, at w = w3
the Ri are all finite, S1,2 become constant (in particular the µ4 dependence drops out) and
the S5 has a non-zero radius but is twisted. Note that the function L is a non-zero constant
at w = w3,

L(µ2
4, w = w3) = 6(w3 − q)

2w3 + q
= −3k∆z

2π ≡ L̂∆z
2π . (3.53)

Clearly there is a jump at the corner (µ2
4 = 1, w = w3) of the rectangle depending on the

direction we approach the corner from. This signifies the existence of a monopole source
located there. The charge of the monopole is computed by evaluating the Chern number
of the line-bundle,

Qm = 1
∆z

∫
dDz . (3.54)

For the case at hand we find that the monopole charge is

Qim = L̂ = 3k , (3.55)

and this accounts for the singularity at the origin of the disc in 4d.
Since this is somewhat subtle let us study this in a different way. Lets take the

simultaneous µ2
4 = 1, w = w3 limit by changing to the coordinates

µ2
4 = 1− r2 sin2 ξ , w = w3 + (w3 − q)f̂ ′(w3)r2 cos2 ξ . (3.56)

In this limit the metric becomes

ds2=w2/3
3

[
ds2(AdS2)+4dφ2

4 (3.57)

+ 4
w

2/3
3

{
dr2+r2

(
dξ2+ f̂ ′(w3)2

4 cos2ξdz2+sin2ξ
3∑
i=1

[
dm2

i+m2
i

(
dφi+

f̂ ′(w3)
6 dz

)2])}]
.

This is AdS2×S1
φ4
× R8/Zk where we have used (2.31), and we see that the orbifold sin-

gularity at the centre of the disc in 4d arises in 11d from a quotient space R8/Zk, i.e. it
is a monopole. A natural interpretation is that this corresponds to a regular puncture
whilst the smeared M2 brane arises due to an irregular puncture. It would be interesting
to understand this from a field theory computation.
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R-symmetry vector. We conclude the regularity analysis by identifying the R-
symmetry of the solution. From the general form of the metric without the gauge shifts
the R-symmetry vector is simply

R1d = ∂z . (3.58)

However, recall that we performed a gauge transformation above in order for the Killing
spinor to be independent of the spindle U(1) coordinate. Taking into account the gauge
transformation and denoting the new coordinates φ̃I we have

R1d = ∂z + 1
6

3∑
i=1

∂φ̃i −
1
2∂φ̃4

. (3.59)

Note that this is different to the result of the spindle. The φ̃ terms do not give the canonical
R-symmetry for the parent ABJM theory as in the spindle example.

Flux quantisation. As mentioned earlier, there are two more cycles that we should
consider when quantising the flux. The first is the S7/Zk lying at the top right rectangle in
figure 4 where the monopole is located. We find that the quantisation of the flux imposes
that N/k is integer. We shall therefore define

N = kN̂ , N̂ ∈ Z. (3.60)

The second extra cycle we will consider is the one located at the left-most corner of the
rectangle, that is the limiting point where the smeared M2 brane is located. This cycle is
given by S5×S1

z × Iθ, using the parametrisation (3.44). Integration of ∗G4 over this cycle
yields the quantisation condition

1
(2π`p)6

∫
S5×S1

z×Iθ
∗G4 = L6

π2`6p

∆z
2π = N

2
∆z
2π ∈ Z . (3.61)

We may rewrite this in terms of the charges which gives

N

(1
k

+ 3Q
)
∈ Z . (3.62)

We see that this is generically satisfied once N is defined as in (3.60).

Entropy. We may now compute the 2d Newton’s constant and thereby the entropy. We
find

S = 1
4G2

= 2
√

2πN3/2

3k

√
p3

1 + 3p , (3.63)

with Q = pk. Contrast this expression with the entropy for the spindle in (3.40).

4 Conclusions

In this work we have considered holographically, compactifications of M2 branes on Rie-
mann surfaces with non-constant curvature. We have shown that the disc and spindle
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solutions can be obtained from different global completions of the same local solution and
analysed their properties in detail. One of the key features of these solutions is a that
the Killing spinor is a section of a non-trivial bundle over the compactification Riemann
surface in contrast to the more standard topological twist.

It would be interesting to consider the dual field theory computation computing the
index of ABJM on the spindle and topological disc. In contrast to the usual topological
twist solutions, [23] one must twist the theory with the isometry of the Riemann surface.
For the D3- and M5-branes cases the anomaly polynomial gave an efficient method of doing
this, however such a computation is not possible for the theory studied here.

Another interesting direction is to consider the spinning generalisation of the solutions
studied here, see for example [17, 24]. Since the non-rotating Einstein-Maxwell solutions
studied in [6] are a sub-class of the solutions studied here, one would expect that such a
rotating solution is also possible for the multi-charge solutions with four charges. Such solu-
tions would fit into the classification of [25] which studied the near-horizon of rotating black
holes in M-theory. This would also allow for the possibility of spinning discs following the
ideas presented in this paper on the different choices of global completions of the local solu-
tions. Such a generalisation has been studied for rotating multi-charge D3-branes in [4] and
it would be interesting to study the embedding of those solutions in the classification in [25].
Understanding how [25] seems to encompass both magnetic AdS and Kerr-Newmann AdS
solutions is also of particular interest and may be used to generate new rotating solutions.

In [26], it was shown that the dyonic black holes of [27] when uplifted to 11d contain a
non-trivial transgression term for the four-form flux. It would be interesting to study if this
additional magnetic charge is compatible with the spindle and topological disc solutions
studied here and what it corresponds to. Research in these directions is currently underway.
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A Smeared M2 branes

In this appendix we will study the form of the metric for a single stack of M2-branes
smeared over internal manifolds of various dimensions, see [28] for D-branes of this form.
Our interest is in the singularity structure of the solutions, so that we may compare with
the singularities we find in the topological disc solutions of section 3.2.2.

To begin, recall that the metric of a single stack of M2 branes in flat space, takes the
form

ds2 = H−2/3ds2(M1,2) +H1/3ds2
8d . (A.1)

The M2-branes lie along M1,2 whilst the function H is harmonic on the transverse 8d
space. It is typical to impose that the transverse space takes the form of a cone with
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base a compact manifold and that the function H depends only on the radial coordinate.
Indeed writing the transverse space as a cone

ds2
8d = dr2 + r2ds2(X7) , (A.2)

and taking H to be a function of the radial coordinate only, the harmonic function is
given by

H(r) = α+ β

r6 , (A.3)

with α and β two integration constants. This solution describes a stack of M2-branes lo-
calised at the tip of the cone, however this is not the most general solution one can construct.

Rather than considering a cone, one may decompose the space into the direct product
of two pieces of dimensions s and 8 − s respectively. The first part is a space over which
we will smear the M2 brane, whilst the second will be taken to be a cone. Concretely we
decompose the transverse 8d space as

ds2
8d = dr2 + r2ds2(X7−s) + ds2(Ys) , (A.4)

and impose that the function H is depends only on the radial coordinate once again. The
function H now takes the form

H = α+ β

r6−s . (A.5)

For s = 0 this clearly reduces to the usual M2 brane solution.
We may now insert the expressions for the harmonic function into the full brane solu-

tion and study the solution close to the brane in the r → 0 limit. Close to r = 0 the fully
localized M2 brane metric looks like

ds2 ∼ r4ds2(M1,2) + r−2
(
dr2 + ds2(X7)

)
, (A.6)

whilst the smeared metric looks like

ds2 ∼ r4−2s/3ds2(M1,2) + rs/3−2
(
dr2 + r2ds2(X7−s) + ds2(Ys)

)
. (A.7)

We will use this result to show that the naively singular solution obtained in section 3.2.2
is in fact indicating the presence of a smeared M2 brane.

B Killing spinors of the multi-charge solution

In this appendix we give the Killing spinors of the 4d AdS2 × Σ solution. In order to use
a consistent set of conventions for the supersymmetry transformations and the equations
of motion that our solution solve we will first review how the action (2.1) is embedded
into the general classification of 4d N = 2 gauged supergravity in the presence of vector
multiplets. We will mostly follow the conventions in [19] for 4d N = 2 gauged supergravity.
The bosonic part of the Lagrangian is17

16πGNL =
(
R− 2gαβ̄∂µz

α∂µz̄β̄ − 2V
)
? 1 + Im[NIJ ]F I ∧ ?F J − Re[NIJ ]F I ∧ F J , (B.1)

17Note that we redefine the fields in [19] in order for the Newton’s constant to be an overall prefactor.

– 24 –



J
H
E
P
0
4
(
2
0
2
2
)
1
0
7

where

e−K = i
(
X(I)F̄I − X̄(I)FI

)
, (B.2)

gαβ̄ = ∂α∂β̄ K , (B.3)

NIJ = F̄IJ + iNIKNJLX
(K)X(L)

NPQX(P )X(Q) , (B.4)

NIJ = 2 ImFIJ , FI = ∂IF , FIJ = ∂I∂JF , (B.5)

V = −3X(I)X̄(J) ~PI · ~PJ + gαβ̄∇α∇β̄X̄
(J) ~PI · ~PJ (B.6)

and F is the prepotential. The ~PI are moment maps which are taken to be constant here
and will be aligned as

P rI = δ3rζI . (B.7)

For the prepotential
F = −i

√
X(1)X(2)X(3)X(4) , (B.8)

this agrees with the Lagrangian in (2.1). It is convenient to introduce the three independent
scalars (we set axions to vanish in the following) via

X(1)

X(4) = τ2τ3 ,
X(2)

X(4) = τ1τ3 ,
X(3)

X(4) = τ1τ2 , τi = e−φi . (B.9)

The Lagrangian presented in the main text was understood to be subject to the gauge
condition

X(1)X(2)X(3)X(4) = 1 . (B.10)

The gravitino supersymmetry variation is

δψiµ =
(
∇µ−

i
2Aµ

)
εi− i

2ζIA
I
µσ

3 i
j ε

j + eK/2X(I) Im[NIJ ]/F Jεijγµεj + i
2eK/2ζIX(I)σ3 ijγµεj ,

(B.11)
whilst for the gaugino it is

δχαi = /∂zαεi + 1
4g

αβ̄∇β̄X̄
(I)NIJ

(
F J − i ? F J)abγabεijεj − igαβ̄∇β̄X̄

(I)σ3
ij ε

j . (B.12)

Spinors are taken to be chiral with raised indices and anti-chiral for lowered indices, that is

γ5ε
i = εi , γ5εi = −εi . (B.13)

The supersymmetry parameters are taken to be Majorana, with charge conjugation
defined as

εi = εCi . (B.14)

Following [29] we combine the Majorana spinors into a Dirac spinor, ψ ≡ ψ1 + ψ2 and
ε = ε1 + ε2 which leads to the supersymmetry variations

δψ =
[
∇µ −

i
2Aµγ5 + i

2ζIA
I
µ + eK/2 ImNIJ /F

J
γµ
(

ReX(I) − i ImX(I)γ5
)

− i
2γµζI

(
ReX(I) − i ImX(I)γ5

)]
ε . (B.15)
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In the following we will not need the gravitini Killing spinor equation in this form so we
suppress the details.

In order to solve the Killing spinor equations we will take the following basis of 4d
gamma matrices,

γ0 = iσ2 ⊗ σ3 , γ1 = σ3 ⊗ σ3 , γ2 = 12×2 ⊗ σ1 , γ3 = 12×2 ⊗ σ2 , (B.16)

and take the unit radius metric on AdS2 to be

ds2(AdS2) = −r2dt2 + dr2

r2 . (B.17)

The Killing spinors on AdS2, η satisfy the Killing spinor equation[
∇̂a −

σ

2 ρa
]
η = 0 , (B.18)

with σ a sign that we will determine later, and ρa the 2d gamma matrices which can
be obtained from the above 4d gamma matrices. Note that if η solves the Killing spinor
equation for σ then ρ3η solves the Killing spinor equation for −σ. It is simple to show that
the solutions to the Killing spinor equations are

η+ =
(
a2r
− 1

2 ,
√
r(a1 + a2t)

)
, η− =

(√
r(a1 + a2t), a2r

− 1
2
)
. (B.19)

We can decompose the 4d spinors, depending on the sign σ, in terms of the tensor
product of the spinor on AdS2 and the spinor on Σ, whether it be the spindle or disc. We
have

ε± = η± ⊗ θ± , (B.20)

and the two-component spinor θ± on Σ satisfies the projection condition

σ3θ± = ±θ± . (B.21)

We may now insert this spinor ansatz into the supersymmetry condition (B.15). Reducing
on AdS2 we find

δΨa =
[
∇̂a −

iσ
2 γ23γa + P ′(w)

4
√
P (w)

(
σ

2 −
√
f(w)

2
√
P (w)

γ2 + iσw
2
√
P (w)

γ23

)
γa

]
ε , (B.22)

where we have introduced the sign α which satisfies w−qI = σ|w−qI |. The large bracketed
term is a projection condition that we must impose on the spinors θ±. The resultant Killing
spinor equation becomes [

∇̂a −
iσ
2 γaγ23

]
η± ⊗ θ± = 0 , (B.23)

which is immediately satisfied by our decomposition if we take η+ for σ = 1 and η− for
σ = −1. It remains to solve the two remaining components of the gravitino Killing spinor
equation. We introduce an arbitrary gauge shift for the gauge fields of the form

AI → AI + nIdz , (B.24)
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which is the same gauge we introduced to study the R-symmetry vector in the main text.
Inserting the ansatz into the Killing spinor equation we find the solution

θ+ = P (w)−1/8e
iz
2

(
1−
∑

I
nI
)(√√

P (w) + w , −
√√

P (w)− w
)
, (B.25)

and

θ− = σ3 · θ+ = P (w)−1/8e
iz
2

(
1−
∑

I
nI
)(√√

P (w) + w ,

√√
P (w)− w

)
. (B.26)

One can then check that this solves the gravitini Killing spinor equations. Note that for
the spindle we may remove the phase by taking nI = 1

4 as claimed in the main text.
For the disc, note that the gauge transformation for A4 is further shifted as discussed
in section 3.2.2. Taking this into account we indeed find the R-symmetry vector given
in (3.59). We see that the Killing spinors are manifestly non-constant and therefore we see
immediately that supersymmetry on either the spindle or the disc is not preserved by the
usual topological twist.

First let us focus on the spindle case. Note that we have the identity

√
f(w) =

√√
P (w) + w ·

√√
P (w)− w , (B.27)

moreover at a root of f(w) we have

P (w∗) = w2
∗ . (B.28)

We therefore see that the Killing spinor is never vanishing. Only at the poles of the spindle
does a component of the spinor vanish and for our solutions which preserve supersymmetry
via the anti-twist, where one root is positive and the second is negative, different compo-
nents of the spinor vanish. At the poles of the Killing spinor the preserved Killing spinor be-
come chiral and for the anti-twist are of different chiralities on the two halves of the spindle.

The disc is slightly more subtle. At the non-zero root we have the same discussion as
for the spindle at the positive root. We obtain a chiral spinor. At w = 0 the spinor actually
vanishes as w1/8. Dividing through by this vanishing conformal factor the resultant spinor
is the sum of a chiral and anti-chiral spinor.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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