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1 Introduction

The limit of scattering amplitudes where an external massless gauge boson becomes soft or

collinear to a fermion has important applications from a conceptual quantum field theory

point of view, but also for concrete applications in higher-order calculations. In this paper

we consider QED with massive fermions and using a diagrammatic approach provide new

explicit results of the limiting behaviour of one-loop radiative amplitudes with practical

applications in mind.

In order to meet the experimental precision the calculation of next-to-leading order

(NLO) or even next-to-next-to-leading order (NNLO) QED corrections has become manda-

tory. A lot of work has therefore been put into the computation of the corresponding

loop amplitudes where the presence of non-vanishing fermion masses results in significant
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complexity. Furthermore, the need to account for non-trivial detector geometries and ac-

ceptances has triggered the development of numerous Monte-Carlo codes that allow for the

calculation of fully differential observables.

Most of these calculations face the difficulty of a strong scale hierarchy due to small

fermion masses acting as regulators of collinear singularities. It is therefore one of the main

challenges of fully differential higher-order QED calculations to achieve numerically stable

implementations of the amplitudes. Particularly delicate in this regard are radiative loop

amplitudes evaluated in the phase-space region where the emitted photon is soft. These

numerical instabilities are further exacerbated if the photon becomes collinear to a light on-

shell fermion. The approximation of the corresponding expression using the soft expansion

up to subleading power yields an elegant solution to this problem. This next-to-soft stabil-

isation has facilitated the first calculation of fully differential NNLO QED corrections to

Bhabha [1] and Møller [2] scattering. Even though the soft expansion can straightforwardly

be computed with the method of regions [3] the corresponding calculation is cumbersome.

The currently limited knowledge of universal soft and collinear behaviour in QED makes

therefore a systematic study highly desirable. Hence, in this article we present two universal

results for radiative amplitudes at one loop, the next-to-soft limit and the collinear limit.

It is a well-known fact that in QED radiative amplitudes exhibit universal factorisation

at leading power in the soft limit given by the eikonal approximation to any order in

perturbation theory [4]. Furthermore, it has been shown a long time ago by Low, Burnett,

and Kroll [5, 6] that also the subleading term is related to the non-radiative amplitude

at tree level via a differential operator.1 This so-called LBK theorem was later extended

to massless particles [10] where a universal radiative jet function was introduced to take

into account collinear effects. More recently, the massless version of the theorem has

attracted some attention in the context of resummation of next-to-leading power threshold

logarithms. To this end the theorem was extended to also include loop corrections in the

framework of diagrammatic factorisation [11–13] as well as in soft-collinear effective theory

(SCET) [14–16]. In this paper, however, we are interested in the case of QED where all

fermion masses and all other scales are considered to be much larger than the energy of

the emitted photon. In this case, these recent loop-level extensions are not applicable since

the underlying effective theory is heavy-quark effective theory (HQET) and not SCET.

In particular, there is no radiative jet function in this scenario due to the absence of any

collinear scale. This leaves hard and soft modes as the only relevant degrees of freedom.

The collinear limit of radiative amplitudes has been extensively investigated in the

context of QCD with massless quarks where it gives rise to infrared singularities. The

factorisation into a process-independent splitting function multiplying the non-radiative

amplitude has therefore been known for some time now [17, 18]. While the splitting func-

tions correspond to the Altarelli-Parisi kernels at tree level, this is no longer true if loop

corrections are taken into account. The two-loop corrections to the QCD splitting func-

tions have been calculated in [19, 20]. Unfortunately, much less is known in the case of

QED where collinear divergences are regularised by finite fermion masses. Taking these

1In the case of gravity this even holds true up to sub-subleading power [7–9].
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masses to be small, we expect a similar factorising structure. This is due to the applica-

bility of SCET to the case of small but non-vanishing fermion masses. Nevertheless, the

corresponding splitting function is currently only known at tree level where it coincides

with the QCD version up to an additional mass term [21–24].

It is therefore the goal of this paper to present the one-loop generalisation of both, the

LBK theorem as well as the small-mass collinear factorisation formula in QED. The paper

is organised as follows: we start by giving the most important conventions and definitions

in section 2. Section 3 then discusses the soft limit at subleading power while we present

our findings about the leading power collinear limit in section 4. In both cases we first

give a brief summary of the tree-level derivations before presenting the one-loop extension.

The main results of this paper are given in (3.31), (4.22) and (4.23). In section 5 we then

apply and validate these formulas in the process e−e+ → e−e+γγ. Finally, we comment

on possible applications and future developments in section 6.

2 Notation and conventions

We denote the amplitude for a process with n final state particles by An and the cor-

responding QED l-loop correction by A(l)
n . Analogously, we use Mn and M(l)

n for the

unpolarised squared amplitude and refer to it as matrix element. The correponding quan-

tities for the radiative process with one additional photon in the final state are given by

n → n + 1. The perturbative expansion of the amplitudes and matrix elements is done

in terms of the fermion charge Q where Q = −e for an incoming particle or an outgoing

antiparticle and Q = +e otherwise. The symbol Γ is used in various places to generically

parametrise part of an amplitude.

In what follows we always denote the loop momentum by ℓ. Furthermore, we con-

sistently take k to represent the momentum of the emitted photon in a radiative process.

It is the soft and collinear limit of this particle that is studied in the following sections.

Other on-shell momenta are denoted by pi, i.e. p2
i = m2

i with mi the particle mass. The

corresponding velocity is then given by βi = (1 − m2
i /E2

i )1/2 where Ei is the energy. In the

situation where a particle may also be off shell we use qi instead.

To make the power counting in the soft expansion transparent we introduce the soft

book-keeping parameter ξ. The soft limit is then governed by the scaling k ∼ ξ ≪ mi ∼ ξ0

which yields the expansion

Mn+1
k∼ξ
=

1

ξ2
MsLP

n+1 +
1

ξ
MsNLP

n+1 + O(ξ0), (2.1)

with the leading and subleading power contributions MsLP
n+1 and MsNLP

n+1 .

Similarly, we introduce the book-keeping parameter λ for the power counting in the

collinear limit. The corresponding expansion is only meaningful if the collinear fermion

is light. We therefore take the mass to scale as p2 = m2 ∼ λ2. This in turn gives the

behaviour k · p ∼ λ2 due to

k · p
∢(k,p)→0

= EkEp(1 − βp)
m2∼λ2

= EkEp

(

λ2 1

2

m2

E2
p

+ O(λ4)

)

. (2.2)
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At the level of the matrix element this gives rise to the expansion

Mn+1
k·p∼λ2

=
1

λ2
McLP

n+1 + O(λ−1). (2.3)

In the collinear limit the amplitudes scale as An+1 ∼ λ−1 and not as ∼ λ−2 as one would

naively expect.

The parameters ξ and λ are just used to facilitate the book keeping of the corresponding

expansions. In all our equations their numerical value is ξ = λ = 1. Furthermore, we

emphasize that the different treatment of the fermion masses in the two limits has crucial

implications. The small mass in the collinear limit introduces a collinear scale that is absent

in the soft limit. From a more formal effective field theory perspective, the collinear case is

therefore governed by SCET while the soft behaviour can be described in terms of HQET.

It is well known [4] that the leading-power term in the soft expansion is given by

MsLP
n+1 = EMn (2.4)

to all orders in perturbation theory with the eikonal factor

E = −
∑

ij

QiQj
pi · pj

(k · pi)(k · pj)
(2.5)

summing over all external legs. It is the purpose of this paper to present similar uni-

versal results for the subleading term MsNLP
n+1 (section 3) as well as the leading collinear

contribution McLP
n+1 (section 4).

3 Soft factorisation at subleading power

It has been shown a long time ago by Low, Burnett, and Kroll that the soft expansion of

radiative tree-level amplitudes can be related up to subleading power to the non-radiative

process by means of a differential operator [5, 6]. In this section we will generalise this

LBK theorem to the one-loop level. We first start in section 3.1 by giving a short review of

the tree-level derivation. The one-loop extension is then discussed in detail in the following

section 3.2 with the main result given in (3.31).

3.1 The LBK theorem

Following [6] we split the radiative tree-level amplitude A(0)
n+1 into contributions due to

external and internal emission

A(0)
n+1 =

∑

i

( k

Γext

pi
)

+

k

= Aext
n+1 + Aint

n+1. (3.1)

In addition to the set of on-shell momenta {p} = {p1, . . . , pi, . . . , pn} we define the sets of

momenta {p}i = {p1, . . . , pi − k, . . . , pn} that are adapted to emission from line i. Taking
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all particles apart from the emitted photon to be incoming (but ignoring the complex

conjugation of the polarisation vector ǫ) allows us to write the soft expansion of Aext
n+1 as

Aext
n+1 =

∑

i

Qi

Γext({p}i)(/pi
− /k + m)γµu(pi)ǫµ(k)

2k · pi
(3.2a)

=
∑

i

Qi

(

ǫ · pi

k · pi
Γext({p}i) − Γext({p}i)/k/ǫ

2k · pi

)

u(pi) (3.2b)

k∼ξ
=

∑

i

Qi

(

1

ξ

ǫ · pi

k · pi
Γext({p}) − ǫ · pi

k · pi
k · ∂

∂pi
Γext({p}) − Γext({p})/k/ǫ

2k · pi

)

u(pi)

+ O(ξ), (3.2c)

Since {p} satisfies the radiative momentum conservation
∑

i pi = k this is not a strict

expansion in ξ. Following [25] we can make the above split gauge invariant (up to subleading

power) via the modification

Aext
n+1 → AI

n+1 ≡ ǫ · AI
n+1 = Aext

n+1 +
∑

i

Qiǫ · ∂

∂pi
Γext({p})u(pi), (3.3a)

Aint
n+1 → AII

n+1 ≡ ǫ · AII
n+1 = Aint

n+1 −
∑

i

Qiǫ · ∂

∂pi
Γext({p})u(pi). (3.3b)

Indeed, k · AI
n+1 ∼ O(ξ2). The leading contributions in ξ vanish due to

∑

i Qi = 0 and

the subleading contributions cancel between the two terms of the last expression in (3.3a).

Because the full amplitude is gauge invariant we also have k · AII
n+1 ∼ O(ξ2). Following the

reasoning in [25], we observe that the leading O(ξ0) term in AII
n+1 must be independent

of k due to the lack of 1/k poles in Aint
n+1. Combined with the Ward identity this directly

implies that AII
n+1 ∼ O(ξ). As a consequence, the soft expansion of the total amplitude

can be written as

A(0)
n+1 =

∑

i

Qi

(

1

ξ

ǫ · pi

k · pi
Γext({p}) − Γext({p})/k/ǫ

2k · pi
−
[

ǫ · DiΓ
ext({p})

]

)

u(pi) + O(ξ) (3.4a)

with the LBK operator

Dµ
i =

pµ
i

k · pi
k · ∂

∂pi
− ∂

∂pi,µ
. (3.4b)

Squaring the amplitude, summing over spins and polarisations, and using the identity

( /pi + m)/ǫ/k + /k/ǫ( /pi + m)

2k · pi
=

ǫ · pi

k · pi
/k − /ǫ = ǫ · Di( /pi + m) (3.5)

then yields for the matrix element

M(0)
n+1({p}, k) =

∑

ij

QiQj

(

− 1

ξ2

pi · pj

(k · pi)(k · pj)
+

1

ξ

pj · Di

k · pj

)

M(0)
n ({p}) + O(ξ0). (3.6)

This shows that not only the leading term in the soft expansion is related to the non-

radiative matrix element but that this is also true at subleading power at tree level. How-

ever, the non-radiative matrix element in (3.6) is evaluated with a set of momenta {p} that
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does not satisfy momentum conservation. This is unproblematic for the tree-level matrix

elements considered here. If, on the other hand, loop corrections are taken into account

(section 3.2) this significantly complicates the evaluation of the corresponding integrals. In

this case a different formulation of the LBK theorem is helpful. To this end, we reabsorb

the first term of the LBK operator into the matrix element to undo the expansion and write

M(0)
n+1({p}, k) = −

∑

ij

QiQj

(

1

ξ2

pi · pj

(k · pi)(k · pj)
+

1

ξ

1

k · pj
pj · ∂

∂pi

)

M(0)
n ({p}i)+O(ξ0). (3.7)

Since {p}i satisfies momentum conservation we can now express the non-radiative matrix

element in terms of invariants

M(0)
n ({p}i) = M(0)

n ({s}i, {m2}i) (3.8)

with {s}i =
{

s({p}i, {m2}i)
}

and {m2}i = {p2
1 = m2

1, . . . , (pi − k)2, . . . , p2
n = m2

n }. The

corresponding expansion in k can then be written as

M(0)
n ({s}i, {m2}i) = (3.9)

=

(

1 − ξ
∑

L

(

k · ∂sL

∂pi
+ 2k · pi

∂sL

∂m2
i

)

∂

∂sL
− ξ 2k · pi

∂

∂m2
i

)

M(0)
n ({s}, {m2}) + O(ξ2),

where the sum L is over the set of independent invariants {s} =
{

s({p}, {m2})
}

expressed

in terms of the momenta {p} and the on-shell masses {m2}. Similarly, we can write

pj · ∂

∂pi
M(0)

n ({s}i, {m2}i) = (3.10)

=

(

∑

L

(

pj · ∂sL

∂pi
+ 2pi · pj

∂sL

∂m2
i

)

∂

∂sL
+ 2pi · pj

∂

∂m2
i

)

M(0)
n ({s}, {m2}) + O(ξ).

Inserting (3.9) and (3.10) into (3.7), all derivatives with respect to the masses cancel and

we obtain the simple formulation of the LBK theorem in terms of invariants

M(0)
n+1({p}, k) =

(

1

ξ2
E +

1

ξ

∑

ij

QiQj
pj · D̃i

k · pj

)

M(0)
n ({s}, {m2}) + O(ξ0) (3.11a)

with the modified LBK operator

D̃µ
i =

∑

L

(

pµ
i

k · pi
k · ∂sL

∂pi
− ∂sL

∂pi,µ

)

∂

∂sL
. (3.11b)

The advantage of (3.11) over (3.6) is that conventional one-loop techniques can be applied

in this case. We emphasise that the choice of {s} =
{

s({p}, {m2})
}

is ambiguous since the

momenta {p} do not satisfy momentum conservation. This is however not an issue as long

as the same definition is used in the calculation of the derivatives ∂sL/∂pµ
i . The above

formula can therefore be conveniently used to analytically compute the soft limit of tree-

level matrix elements up to subleading power. An alternative approach that is particularly

suitable for the numerical evaluation of the LBK theorem was recently presented in [26].

The above formula assumes all particles apart from the photon to be incoming. In the

case of outgoing particles the corresponding momentum p has to be replaced with −p. In

particular, this also implies ∂/∂pµ → −∂/∂pµ.

– 6 –
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q2 q3

q1 qm

k

ℓ

ℓ̃

(a) L1.

q2 q3

q1 qm

k

ℓ

(b) L2.

q2 q3

q1 qm

k

q̃

(c) L3.

Figure 1. Classification of one-loop integrals encountered in the calculation of radiative QED

amplitudes. The legs that connect to the loop can either be on shell or off shell.

3.2 One-loop generalisation of the LBK theorem

The derivation of the previous section cannot be applied one-to-one in the presence of

loop corrections due to contributions from regions where the loop momentum is small

(ℓ ∼ ξ). In this soft region the power counting used to derive the LBK theorem is no longer

valid. In particular, individual contributions from internal emissions already contribute at

leading power. Fortunately, the method of regions [3] can be used to disentangle the soft

contribution from the hard one. For the latter the LBK formula (3.6) still holds. The soft

contribution will be evaluated in a generic way in the following sections. The collinear

regions, on the other hand, all vanish due to the absence of collinear scales in the soft limit

as defined in section 2. The combination of hard and soft contributions, that will be given

in section 3.2.4, therefore generalises the LBK theorem to one loop.

3.2.1 General considerations regarding the soft contribution

In order to systematically analyse possible origins of the soft contribution we classify the

one-loop integrals as illustrated in figure 1 where the momenta qi can be off shell (internal)

or on shell (external). The circle symbolises the one-loop integral associated with the

one-particle irreducible (1PI) part of a particular Feynman diagram. The first class, L1,

includes (m+1)-point integrals from diagrams where the photon is directly attached to this

1PI part. Class L2 includes m-point integrals from diagrams where the photon is attached

to a leg that directly connects to the 1PI part with momentum q1 − k. As we will see, the

treatment of these integrals depends on whether the momentum of the adjacent leg qm is

on shell or off shell. Finally, for integrals of the type L3 the photon is attached indirectly

to the m-point 1PI part such that the momentum flowing into the loop integral is q1 −k + q̃

with a non-zero q̃.

For integrals to have a non-vanishing soft contribution the momentum routing has to

be chosen such that the loop momentum ℓ is aligned with a photon propagator. All other

choices lead only to linear propagators in the soft momentum expansion and therefore van-

ish as a consequence of the residue theorem. There can thus be at most as many soft regions

as the number of photons in the loop. However, most of them yield scaleless integrals and

vanish in dimensional regularisation. This is in particular the case for all possible routings

of L3. The presence of the momentum q̃ allows to set ℓ = 0 for the soft contribution in

– 7 –
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all propagators except for the photon propagator with momentum ℓ. Hence, loop integrals

of the form L3 do not contribute to the soft region. For the second class, on the other

hand, there is one non-vanishing soft contribution indicated by the momentum routing in

figure 1b if the corresponding internal propagator is given by a photon and if in addition q1

is on shell. In the case where qm is off shell the soft expansion starts at O(ξ) and is given by

IL2
(q2

m 6= m2
m) =

∫

ddℓ

(2π)d

1

[ℓ2] [2ℓ · q1 − 2k · q1] [(q1 + q2)2 − m2
2] . . . [q2

m − m2
m]

. (3.12)

For on-shell qm the leading integral reads instead

IL2
(q2

m = m2
m) =

∫

ddℓ

(2π)d

1

[ℓ2] [2ℓ · q1 − 2k · q1] [(q1 + q2)2 − m2
2] . . . [−2ℓ · qm]

(3.13)

which already contributes at O(ξ0). Finally, the first class of loop integrals L1 gives rise

to up to two non-vanishing soft contributions given by the two momentum routings ℓ and

ℓ̃ in figure 1a if the corresponding propagators are photons. The integral for routing ℓ

IL1
=

∫

ddℓ

(2π)d

1

[ℓ2] [2ℓ ·q1 +q2
1 −m2

1] [2ℓ ·q1 −2k ·q1 +q2
1 −m2

1] . . . [−2ℓ ·qm +q2
m −m2

m]
(3.14)

is only non-zero if q1 is on shell and it starts to contribute at O(ξ−1) if qm is on shell and

at O(ξ0) otherwise. The analogous statements hold for the ℓ̃ momentum routing.

The above reasoning allows to represent every possible soft contribution according to

the three pairs of diagrams shown in figure 2 where the external legs are now all on shell.

Every Rint, ext
{e,a} corresponds to an amplitude with a specific choice of the momentum routing

where the soft contribution does not vanish. The labels for emission and absorption {e, a}
take on the values 1 . . . n or Γ. The superscript int, ext indicates whether the photon k is

attached internally or externally. In the former (latter) case we are dealing with integrals

of the type L1 (L2). As mentioned in connection with L1, it is possible that one amplitude

contributes to two soft representations. Taking e = i and assuming pi to be incoming, we

can write the corresponding expressions generically as

iRext
{e,a} =

Q2
i Γµ

{e,a}(/ℓ + /pi − /k + m)γµ( /pi − /k + m)/ǫu(pi)

−2k · pi[ℓ2][ℓ2 + 2ℓ · (pi − k) − 2k · pi]
, (3.15a)

iRint
{e,a} =

Q2
i Γµ

{e,a}(/ℓ + /pi − /k + m)/ǫ(/ℓ + /pi + m)γµu(pi)

[ℓ2][ℓ2 + 2ℓ · (pi − k) − 2k · pi][ℓ2 + 2ℓ · pi]
. (3.15b)

All terms related to the emission from leg e = i and the soft photon propagator are given

explicitly in (3.15). The vertex and fermion propagator related to the absorption is common

to Rext
{e,a} and Rint

{e,a} and is included in Γµ
{e,a}. This implies the scalings Γµ

{i,j} ∼ Γµ
{i,i} ∼ ξ−1

and Γµ
{i,Γ} ∼ ξ0. We then write the expansion in the soft region of the sum of the diagram

pairs as

iRsoft
{e,a}

k∼ξ
=

1

ξ
SLP

{e,a} + SNLP
{e,a} + O(ξ) (3.16a)

=
1

ξ

(

SLP,ext
{e,a} + SLP,int

{e,a}

)

+ SNLP,ext
{e,a} + SNLP,int

{e,a} + O(ξ), (3.16b)
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pj

pi
k

ℓ

pj

pi k

ℓ

(a) R
ext,int

{i,j} .

pi

k

ℓ

pi
k

ℓ

(b) R
ext,int

{i,i} .

pi

k

ℓ

pi
k

ℓ

(c) R
ext,int

{i,Γ} .

Figure 2. Diagrammatic classification of the soft contributions each corresponding to a particular

momentum routing of a Feynman diagram.

with the leading and subleading power terms denoted by SLP
{e,a} and SNLP

{e,a}, respectively.

Based on the previously discussed power counting of the integrals L1 and L2 we can deduce

that SLP
{i,Γ} = SLP,ext

{i,Γ} = SLP,int
{i,Γ} = 0.

3.2.2 Vanishing of the soft contribution at leading power

The leading-power soft contribution to (3.15) is given by

SLP,ext
{e,a} =

Q2
i Γµ

{e,a}( /pi + m)γµ( /pi + m)/ǫu(pi)

−4k · pi[ℓ2][ℓ · pi − k · pi]
= −

Q2
i Γµ

{e,a}u(pi)pi,µpi · ǫ

[ℓ2][ℓ · pi − k · pi][k · pi]
, (3.17a)

SLP,int
{e,a} =

Q2
i Γµ

{e,a}( /pi + m)/ǫ( /pi + m)γµu(pi)

4[ℓ2][ℓ · pi − k · pi][ℓ · pi]
= +

Q2
i Γµ

{e,a}u(pi)pi,µpi · ǫ

[ℓ2][ℓ · pi − k · pi][ℓ · pi]
. (3.17b)

The propagators can be brought to the same form with the partial fraction identity

1

[ℓ · pi − k · pi][ℓ · pi]
=

1

k · pi

(

1

[ℓ · pi − k · pi]
− 1

[ℓ · pi]

)

(3.18)

where the second term in the curly brackets can be neglected up to scaleless integrals. We

then see immediately that

SLP
{e,a} = SLP,ext

{e,a} + SLP,int
{e,a} = 0. (3.19)

We therefore arrive at the known result that the eikonal approximation in QED does not

receive genuine loop corrections. Furthermore, this also shows that SNLP
{i,Γ} = 0 since it effec-

tively corresponds to a leading-power contribution. The third class of soft contributions,

Rsoft
{i,Γ}, can therefore be omitted in the following discussion.
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3.2.3 Soft contribution at subleading power

At subleading power there are contributions in (3.15) from either the higher-order expansion

of propagators (denominator) or from numerator terms proportional to ℓ or k. We therefore

write

SNLP
{e,a} = S

(NLP,D)
{e,a} + S

(NLP,N)
{e,a} =

(

S
(NLP,D),ext
{e,a} + S

(NLP,D),int
{e,a}

)

+
(

S
(NLP,N),ext
{e,a} + S

(NLP,N),int
{e,a}

)

.

(3.20)

For the denominator type the leading-power cancellation of section 3.2.2 occurs if

propagators other than [ℓ2 +2ℓ ·(pi −k)−2k ·pi] or [ℓ2 +2ℓ ·pi] are expanded. Furthermore,

expansion in ℓ2 of these two propagators results only in linear propagators. Consequently,

we only have to consider the expansion in ℓ · k of the propagator [ℓ2 + 2ℓ · (pi − k) − 2k · pi]

in (3.15). Using partial fraction then yields the simple contribution

S
(NLP,D)
{e,a} = S

(NLP,D),ext
{e,a} + S

(NLP,D),int
{e,a} = −

Q2
i Γµ

{e,a}u(pi)pi,µpi · ǫ ℓ · k

(k · pi)2[ℓ2][ℓ · pi − k · pi]
. (3.21)

The numerator type can be written as

S
(NLP,N)
{e,a} =

Q2
i Γµ

{e,a}

4k · pi[ℓ2][ℓ · pi − k · pi]

(

T ext
µ + Kext

µ + T int
µ + K int

µ

)

u(pi) (3.22a)

with

T ext
µ = −(/ℓ − /k)γµ(/pi

+ m)/ǫ, (3.22b)

Kext
µ = (/pi

+ m)γµ/k/ǫ, (3.22c)

T int
µ = (/ℓ − /k)/ǫ(/pi

+ m)γµ, (3.22d)

K int
µ = (/pi

+ m)/ǫ/ℓγµ. (3.22e)

Due to various cancellations among T ext,int
µ and Kext,int

µ we obtain the simple result

S
(NLP,N)
{e,a} =

Q2
i Γµ

{e,a}u(pi)

k · pi[ℓ2][ℓ · pi − k · pi]

(

kµpi · ǫ − ǫµk · pi + pi,µℓ · ǫ
)

, (3.23)

where we have used the replacement ℓ · pi → k · pi in the numerator which holds up to

scaleless integrals.

To make further progress at this point we need to treat SNLP
{i,j} and SNLP

{i,i} separately

in order to specify the form of Γµ
{e,a}. In the case where the photon is reabsorbed by the

emitting leg, i.e. SNLP
{i,i} , we have

Γµ
{i,i}u(pi) = −

QiΓ
(0)( /pi − /k + m)γµu(pi)

−2k · pi

k∼ξ
=

1

ξ
QiA(0)

n

pµ
i

k · pi
+ O(ξ0) (3.24)

where A(0)
n = Γ(0)u(pi) corresponds to the non-radiative tree-level amplitude. In this case,

we further have the simple Passarino-Veltman decomposition

ℓρ → ℓ · pi

m2
i

pρ
i (3.25)
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where we can again replace ℓ · pi with k · pi. It is then straightforward to see that

SNLP
{i,i} = S

(NLP,D)
{i,i} + S

(NLP,N)
{i,i} = 0. (3.26)

Hence, diagrams where the loop corrects only the emitting leg do not contribute at sub-

leading power.

In the case of SNLP
{i,j} , on the other hand, we find for an incoming particle pj that

Γµ
{i,j}u(pi)

k∼ξ
= −1

ξ
QjA(0)

n

pµ
j

[−ℓ · pj ]
+ O(ξ0). (3.27)

This in turn results after the tensor decomposition

ℓρ →
ℓ · pj pi · pj − ℓ · pi m2

j

(pi · pj)2 − m2
i m2

j

pρ
i +

ℓ · pi pi · pj − ℓ · pj m2
i

(pi · pj)2 − m2
i m2

j

pρ
j (3.28)

in the only non-vanishing subleading power contribution of the form

SNLP
{i,j} ≡ SNLP

{i,j}(pi, pj , Qi, Qj) = −Q2
i Qj(iA(0)

n )

(

pi · ǫ

k · pi
− pj · ǫ

k · pj

)

S(pi, pj , k), (3.29a)

where we have defined the function

S(pi, pj , k) =
m2

i k · pj
(

(pi · pj)2 − m2
i m2

j

)

k · pi

(

pi · pjI1(pi, k) + m2
jk · piI2(pi, pj , k)

)

. (3.29b)

The analytic results for the integrals

I1(pi, k) = i

∫

ddℓ

(2π)d

1

[ℓ2 + iδ][ℓ · pi − k · pi + iδ]
, (3.29c)

I2(pi, pj , k) = i

∫

ddℓ

(2π)d

1

[ℓ2 + iδ][−ℓ · pj + iδ][ℓ · pi − k · pi + iδ]
(3.29d)

can be found in appendix A. The causal +iδ prescription is given explicitly in the above

integrals.

The result (3.29) is also valid for incoming antiparticles with the overall sign difference

parametrised by the fermion charges Qi and Qj . The total soft contribution can thus be

obtained by summing the above expression over all external charged fermions, i.e.

A(1),soft
n+1 =

1

ξ

∑

i6=j

SNLP
{i,j}(pi, pj , Qi, Qj) + O(ξ0). (3.30)

The corresponding expression for the matrix element can be obtained by interfering with

the eikonal approximation of the tree-level amplitude. The resulting formula is given in

the following section.
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k

k∼ξ
= E Mn + D Mn + MnS + O(ξ0)

Figure 3. Schematic illustration of the soft factorisation of (3.31) at subleading power and at one

loop.

3.2.4 One-loop extension of the LBK theorem

Based on the previous discussion we find that the one-loop correction to a generic radiative

process in QED in the limit where the emitted photon becomes soft satisfies the expansion

M(1)
n+1({p}, k)

k∼ξ
= M(1),hard

n+1 + M(1),soft
n+1 (3.31a)

with

M(1),hard
n+1 =

∑

l

∑

i

QiQl

(

− 1

ξ2

pi · pl

(k · pi)(k · pl)
+

1

ξ

pl · D̃i

k · pl

)

M(1)
n ({s}, {m2})

+ O(ξ0), (3.31b)

M(1),soft
n+1 =

1

ξ

∑

l

∑

i6=j

Q2
i QjQl

(

pi · pl

(k · pi)(k · pl)
− pj · pl

(k · pj)(k · pl)

)

2S(pi, pj , k)

× M(0)
n ({s}, {m2}) + O(ξ0). (3.31c)

This is the generalisation of the LBK theorem at one loop. We emphasize that the above

result assumes all particles to be incoming. For outgoing particles one can simply replace

the corresponding momentum p with −p. Furthermore, the LBK operator D̃i and the

function S(pi, pj , k) are defined in (3.11b) and (3.29b), respectively.

A conceptual illustration of the factorisation formula (3.31) is shown in figure 3. Con-

tributions with hard and soft origin are depicted in green and orange, respectively. The first

two diagrams on the r.h.s. correspond to the hard sector given by (3.31b). The factorisation

of (3.31c) into a universal soft function — connecting three external legs simultaneously —

and the non-radiative matrix element is illustrated in the third diagram. Based on this, a

naive extrapolation to higher orders in perturbation theory is possible by interpreting fig-

ure 3 as an all-order statement. First of all, this would imply that the LBK operator yields

the hard contribution also beyond one loop. More interestingly, however, it would signifi-

cantly constrain the mixed hard-soft structure. At two loops, for example, the hard-soft re-

gion would be fixed through objects that already enter in (3.31). In particular, it would cor-

respond to (3.31c) with M(0)
n → M(1)

n . The only new contribution in the factorisation for-

mula would therefore be the two-loop soft function corresponding to the purely soft region.

4 Collinear factorisation at leading power

In this section we consider the leading-power behaviour of radiative amplitudes in the

limit where the emitted photon (k) becomes collinear to a light on-shell fermion (p). This
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configuration is governed by the scale hierarchy

k · p ∼ m2 ∼ λ2 ≪ {s} ∼ λ0, (4.1)

where {s} denotes all other scales in the process. As mentioned in the introduction it

was shown a long time ago that the leading-power contribution to the tree-level ampli-

tude factorises in this limit into a process-independent splitting function multiplying the

non-radiative amplitude with radiative kinematics [21–24]. It is the goal of this section

to present the one-loop generalisation of this formula. We first start in section 4.1 by

reproducing the tree-level derivation from [21] and then discuss the one-loop extension in

section 4.2. The final factorisation formula is then given in (4.22) for initial-state radiation

(ISR) and in (4.23) for final-state radiation (FSR).

4.1 Collinear factorisation at tree level

Contrary to the soft limit, care has to be taken in the collinear case when treating the

gauge dependence of the emitted photon. Only axial gauge, where the sum over photon

polarisations is given by

∑

pol

ǫµ(k)ǫν(k) = −gµν +
kµrν + kνrµ

k · r
, (4.2)

does not mix up the power counting of individual diagrams. At tree level a convenient

choice for the gauge vector r is k̄ ≡ (Ek, −~k). At leading power in the collinear limit we

therefore only need to consider diagrams where the photon is emitted from the collinear

fermion leg. Restricting the discussion for the moment to ISR, we have

A(0)
n+1

k·p∼λ2

= p

k

Γ0 + O(λ0) = −QΓ0(p − k)
/p − /k + m

−2k · p
γµu(p)ǫµ(k) + O(λ0). (4.3)

We then write the fermion propagator in terms of quasi-real spinors [21] with energy

Ep−k ≡
√

(~p − ~k)2 + m2 = Ep − Ek + λ2 k · p

Ep − Ek
+ O(λ4) (4.4)

as

/p − /k + m

−2k · p
=

1

2Ep−k

∑

s

(

us(pik)ūs(pik)

Ep − Ek − Ep−k
+

vs(p̄ik)v̄s(p̄ik)

Ep − Ek + Ep−k

)

(4.5a)

k·p∼λ2

= − 1

λ2

1

2k · p

∑

s

us(pik)ūs(pik) + O(λ−1) (4.5b)

with pik = (Ep−k, ~p −~k) and p̄ik = (Ep−k, −~p +~k). It is then straightforward to derive the

factorised result for the matrix element

M(0)
n+1

k·p∼λ2

=
1

λ2
J

(0)
ISR(x, m) M(0)

n (p − k, m = 0) + O(λ−1), (4.6)

where the tree-level splitting function for ISR in its standard form [24] reads

J
(0)
ISR(x, m) =

Q2

x(k · p)

(

1 + x2

1 − x
− x m2

k · p

)

, x =
Ep − Ek

Ep
. (4.7)
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(a) M1. (b) M2.

(c) M3. (d) M4.

Figure 4. Interference terms that contribute at leading power in the limit where the emitted

photon becomes collinear to the initial-state electron.

The analogous derivation for FSR yields

M(0)
n+1

k·p∼λ2

=
1

λ2
J

(0)
FSR(z, m) M(0)

n (p + k, m = 0) + O(λ−1) (4.8)

with

J
(0)
FSR(z, m) =

Q2

k · p

(

1 + z2

1 − z
− m2

k · p

)

, z =
Ep

Ep + Ek
. (4.9)

Alternatively, J
(0)
FSR(z, m) can be derived from J

(0)
ISR(x, m) via the crossing relation p → −p,

i.e. by replacing k · p → −k · p and x → z−1.

4.2 Collinear factorisation at one loop

The quasi-real electron method from the previous section does not work anymore if loop

corrections are taken into account due to non-factorisable diagrams where the photon is

emitted from a loop. However, the method of regions can be applied in this case to

disentangle universal contributions from collinear degrees of freedom from the process-

dependent hard part. It is therefore possible to determine the splitting function based on

a specific process. To this end we consider muon-electron scattering, i.e.

e(p1)µ(q1) → e(p2)µ(q2)γ(k) (4.10)

and calculate the small-mass collinear limit of the one-loop corrections to the electron line.

The scale hierarchy for ISR then reads

k · p1, p2
1 = p2

2 = m2 ∼ λ2 ≪ q2
1 = q2

2 = M2, {s} ∼ λ0. (4.11)
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Working at leading power and in axial gauge, we only need to take the four interference

terms shown in figure 4 into account. In particular, we have used the convenient choice

r = p2 for the gauge vector. This choice is allowed since p2
2 = m2 is small. Note that r = p1

would not be permissible in this case since the small numerator k · p1 in (4.2) would mix

up the power counting.

The momenta pi = Ei(1, ~niβi) of the energetic electrons can be decomposed into

large and small components via the set of light-cone basis vectors {ni = (1, ~ni)/
√

2, n̄i =

(1, −~ni)/
√

2} which allows us to write any momentum as

pj = (ni · pj)n̄i + (n̄i · pj)ni + pj,(⊥,i) (4.12a)

= p
(+,i)
j + p

(−,i)
j + p

(⊥,i)
j (4.12b)

= (ni · pj , n̄i · pj , pj,⊥)i. (4.12c)

In the case of the energetic particle pi this takes the form of the desired decomposition

pi =
(

Ei(1 − βi)/
√

2, Ei(1 + βi)/
√

2, pi,⊥

)

i
∼ (λ2, 1, λ)i (4.13)

where the scaling can be deduced from

p2
j = 2p

(+,i)
j · p

(−,i)
j +

(

p
(⊥,i)
j

)2
= m2

j ∼ λ2. (4.14)

Applying the light-cone decomposition to the external momenta in our process we find

p1 ∼ k ∼ (λ2, 1, λ)1 ∼ (1, 1, 1)2, (4.15a)

p2 ∼ (1, 1, 1)1 ∼ (λ2, 1, λ)2, (4.15b)

q1 ∼ q2 ∼ (1, 1, 1)1 ∼ (1, 1, 1)2. (4.15c)

Based on the achieved disentanglement of scales it is possible to identify the con-

tributing momentum regions. In order to do so it is helpful to use the formulation of the

method of regions in the alpha parameter representation [27] automatised in the public

code asy.m [28]. The following four regions are then found to contribute to the individual

interference terms Mi:

hard: ℓ ∼ (1, 1, 1)1 ∼ (1, 1, 1)2 (4.16a)

p1-collinear: ℓ ∼ (λ2, 1, λ)1 ∼ (1, 1, 1)2 (4.16b)

p2-collinear: ℓ ∼ (1, 1, 1)1 ∼ (λ2, 1, λ)2 (4.16c)

p2-ultra-collinear: ℓ ∼ (1, 1, 1)1 ∼ (λ4, λ2, λ3)2 (4.16d)

The terms that correct the incoming electron line, i.e. M1 and M2, get only contribu-

tions from the p1-collinear region. Furthermore, at leading power the hard region only

contributes to the factorisable diagram M3. Since we can apply the quasi-real electron

method in this case it follows immediately that

M(1),hard
n+1 =

1

λ2
J

(0)
ISR(x, m)M(1)

n (p1 − k, m = 0) + O(λ−1). (4.17)
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In addition to the hard region, all other three scalings contribute to M3. In the case of

M4, on the other hand, only the p1-collinear and p2-ultra-collinear regions are present at

leading power. As can be expected, the unphysical ultra-collinear region cancels between

M3 and M4. We are then left with the two collinear contributions that turn out to factorise

according to

M(1),p1-coll
n+1 =

1

λ2
J

(1)
ISR(x, m) M(0)

n (p1 − k, m = 0) + O(λ−1), (4.18a)

M(1),p2-coll
n+1 =

1

λ2
Z(1)(m) J

(0)
ISR(x, m) M(0)

n (p1 − k, m = 0) + O(λ−1). (4.18b)

Apart from the interference terms Mi we also need to take into account mass and wave

function renormalisation. All counterterms connected to the heavy particles (muon) enter

in (4.17) in the renormalisation of the non-radiative massless one-loop matrix element

M(1)
n . The counterterms for the emitting electron, on the other hand, renormalise the one-

loop splitting function J
(1)
ISR, while the ones for the other light particle (outgoing electron)

contributes to Z(1). The renormalised results for J
(1)
ISR and Z(1) are given in appendix B.

The factor Z(1) corresponds to the one-loop massification constant of [29]. Massifica-

tion is a method to efficiently determine the leading mass effects of an amplitude solely

based on the massless result. All mass terms that are not polynomially suppressed are

recovered in this way. It is the universality of the aforementioned massification constant

that makes such a reconstruction possible. The p2-collinear contribution therefore takes

the leading-order mass effects of the outgoing electron into account. The one-loop split-

ting function J
(1)
ISR contains both the corresponding mass terms as well as leading-power

corrections due to the collinear emission.

A non-trivial check for the above result is the behaviour in the soft limit

J
(1)
ISR → Z(1)Ecoll, J

(0)
ISR → Ecoll, (4.19)

where Ecoll corresponds to the eikonal factor in the collinear limit. We therefore get the

expected form of the matrix element in the collinear-soft limit given by

M(1)
n+1 → Ecoll

(

M(1)(p1, m = 0) + 2Z(1)(m)M(0)
n (p1, m = 0)

)

= EcollM(1),massified
n . (4.20)

As already mentioned previously the collinear contributions are expected to be process

independent. Thus, one-loop diagrams for muon-electron scattering other than those shown

in figure 4 should not lead to such contributions. We have explicitly checked that this is the

case due to a cancellation between diagram pairs that are related (up to a sign) through the

crossing q1 ↔ −q2. The only additional contribution is therefore the hard one originating

from factorisable diagrams that trivially exhibit the factorising structure of (4.17). If, on

the other hand, we take the muon to be light as well, i.e. M2 ∼ m2 ∼ λ2, there are two ad-

ditional collinear contributions with exactly the same structure as for the outgoing electron

M(1),q1-coll
n+1 = M(1),q2-coll

n+1 =
1

λ2
Z(1)(M)J

(0)
ISR(x, m)M(0)

n (p1 − k, m = 0, M = 0) + O(λ−1)

(4.21)
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consistent with the expectation based on massification. We are thus lead to the main result

of this section that at one loop can be written through the factorisation formula

Mn+1

k·pi,m
2

j
∼λ2

=
1

λ2
JISR(x, mi)

(

∏

j 6=i

Z(mj)

)

Mn(pi−k, mi = 0, mj = 0)+O(λ−1), (4.22a)

where we have defined the all order quantities

JISR = J
(0)
ISR + J

(1)
ISR + O(α3), (4.22b)

Z = 1 + Z(1) + O(α2). (4.22c)

In (4.22) the product is over all external fermion lines j 6= i with a small mass m2
j ∼ λ2.

Furthermore, the same calculation with only minor modifications can also be applied to

the case of FSR yielding the analogous formula

Mn+1

k·pi,m
2

j
∼λ2

=
1

λ2
JFSR(z, mi)

(

∏

j 6=i

Z(mj)

)

Mn(pi +k, mi = 0, mj = 0)+O(λ−1). (4.23)

A schematic illustration of these factorisation formulas is given in figure 5. Furthermore,

the corresponding expressions for JISR, JFSR, and Z can be found in appendix B. As ex-

pected, we find that the ISR and FSR splitting functions are related via crossing symmetry.

It is useful to compare our findings to the corresponding factorisation formula for

massless fermions that can be extracted from the QCD results of [17]. Suppressing the

separation into ISR and FSR, the massless collinear limit can be written as

Mn+1
k·pi→0
= J̄(y)Mn, (4.24)

where the only process-independent contribution J̄ comes from the collinear fermion (pi)

and y ∈ {x, z}. The corresponding expressions at tree level and at one loop are given

in appendix B. For massive particles, on the other hand, every light fermion contributes an

additional factor in the factorisation formula taking into account the corresponding small-

mass effects. This results in the more complex collinear structure of (4.22) and (4.23)

than one would have naively expected based on the known QCD formula. Nevertheless, it

turns out that there is a relation between the massive and massless splitting functions. In

particular, we find

J (0)(y, m)
m→0
= J̄ (0)(y) + O(m), (4.25a)

J (1)(y, m)
m→0
= J̄ (1)(y) + Z(1)(m)J̄ (0)(y) + O(m), (4.25b)

where the massive splitting function reduces in the massless limit to the massless one plus

singular corrections from massification. It is conceivable that the same relation will also

hold beyond one loop. In this case, however, there will be non-vanishing soft contributions

from massification [29]. In addition to being an interesting result in its own right, this

represents a strong check for the validity of the results presented in this section and in

appendix B.
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pj pi
k

k·pi,mj∼λ2

= + O(λ−1)

JZ

Figure 5. Schematic illustration of the collinear factorisation formulas of (4.22) and (4.23).

5 Validation

To demonstrate the correctness and applicability of equations (3.31), (4.22) and (4.23) we

consider the soft and collinear limits in the process

e−(p1)e+(p2) → e−(p3)e+(p4)γ(p5)γ(k) (5.1)

at one loop where k can become soft or collinear. This 2 → 4 process is a highly non-trivial

test of our formalism since the full one-loop matrix element is rather involved and contains

hexagon functions. We will compare our approximations to OpenLoops [30, 31] running

in quadruple precision mode [32]. This, while obviously slower, is remarkably stable and

produces reliable results deep into the soft and collinear limits.

The process (5.1) could also be considered to be the real-real-virtual contribution to

the N3LO corrections to Bhabha scattering. Hence, implementing this matrix element in

a way that remains sufficiently stable for collinear and soft emission would be essential for

any future N3LO calculation.

In the following discussion we use a centre-of-mass energy of
√

s = 10.583 GeV, tailored

to the beam energy of the Belle II experiment.

5.1 Soft limit

Let us begin by considering the limit where one of the two photons becomes soft while the

other photon remains hard, i.e. k → 0. Looking at (3.31), we have

p1 → + p1, p2 → + p2, p3 → − p3, p4 → − p4, p5 → − p5, (5.2a)

Q1 = − e, Q2 = + e, Q3 = + e, Q4 = − e, Q5 = 0, (5.2b)

Of course the above sign convention for the outgoing particles also has to be taken into

account in the case of the derivatives ∂/∂pi,µ. Furthermore, we define the set of invariants

{s} as

{s} = {s = (p1 + p2)2, t = (p2 − p4)2, s15 = 2p1 · p5, s25 = 2p2 · p5, s35 = 2p3 · p5}. (5.3)

We emphasise again that this choice is not unique. It is therefore crucial to use the same

definition both in the evaluation of the non-radiative matrix element as well as for the

derivatives ∂/∂pi,µ in the LBK operator (3.11b). Since already the one-loop matrix ele-

ment for ee → eeγ is rather complicated, we have implemented the corresponding deriva-

tives numerically to a very high precision in Mathematica. Combining this with the soft
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Figure 6. Convergence of the soft limit Msoft at leading and subleading power. The reference

value MOL is calculated with OpenLoops using quadruple precision.

contribution from (3.31c) then yields the complete subleading power approximation. The

corresponding ξ−2 and ξ−1 terms can then be compared to OpenLoops as a function of

the ‘softness’ 2Ek/
√

s. The result is shown in figure 6 down to values of 10−10. It is

clearly visible that including the ξ−1 (NLP) terms significantly improves the precision of

the approximation. This behaviour clearly validates our one-loop generalisation of the LBK

theorem presented in (3.31).

5.2 Collinear limit

Next, let us consider the collinear limit. Once the massless one-loop matrix element for

the non-radiative process e−(p1)e+(p2) → e−(p3)e+(p4)γ(p5) is known, the application of

the factorisation formulas (4.22) and (4.23) is rather straightforward. As an example we

consider the case of the photon k becoming collinear to p1 (ISR) or the case of it becoming

collinear to p3 (FSR). The cases of p2 and p4 are completely analogous.

The massified approximation [29] for the matrix element reads

Mn+1
m∼λ
= Z(m1)Z(m2)Z(m3)Z(m4)Mn+1(p1, p2, p3, p4, p5, k; mi = 0) + O(λ) (5.4)

which is valid for the bulk of the phase space, i.e. assuming k is neither soft nor collinear.

Note that the masses are only given indices so that the different Z can be better disentan-

gled once k becomes collinear. Of course all mi are equal.
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at subleading power in the soft limit. The additional loop effects are taken into account by

supplementing the LBK theorem with a soft function that we have evaluated in a universal

way. In addition, we have derived a factorisation formula at one loop that describes the

leading-power collinear limit in the presence of small but non-vanishing fermion masses.

Contrary to the analogous result for massless QCD we also get contributions from non-

collinear light external fermions. These additional terms in the factorisation formula take

into account the corresponding leading small-mass effects.

The approximation of real-virtual amplitudes with the soft limit at subleading power

can be used to achieve a stable and efficient implementation of this contribution. In the

case of Bhabha and Møller scattering this next-to-soft stabilisation enabled the first fully

differential NNLO calculation. Even though the computation of the soft expansion was

straightforward it turned out to be cumbersome. The extension of the LBK theorem pre-

sented in this paper significantly facilitates the application of the next-to-soft stabilisation

method to other processes.

This is particularly relevant in light of the MUonE experiment [33–35] where a theory

prediction at the level of 10ppm is needed to achieve the targeted experimental precision.

The minimal requirement for this is a fixed-order NNLO QED Monte Carlo matched to

a parton shower. This has triggered a wide theory effort [36] where many partial results

have been calculated in the past years. Two Monte Carlo codes are available that include

the dominant electron-line corrections at NNLO [37, 38]. In addition, the subset of the

NNLO corrections with closed (and open) fermion loops are also known [39–41]. Further,

electroweak effects [42] and possible contaminations from physics beyond the Standard

Model [43–45] have been studied. Very recently a crucial step towards the full set of NNLO

QED corrections was accomplished with the calculation of the two-loop amplitude with a

non-zero muon mass [46]. After massification [29] of the massless electron this result can be

included in a Monte Carlo code. The remaining bottleneck is therefore a numerically stable

implementation of the real-virtual contribution. Next-to-soft stabilisation combined with

the extension of the LBK theorem presented in this paper represents an elegant solution

to this problem.

One could in principle also follow a similar approach in the case of the collinear limit.

Contrary to the soft limit, however, the reliability of the approximation is limited by the

scale hierarchy between the light fermion mass and the typical energy scale of the considered

process. Leading-collinear stabilisation could therefore only be used reliably in the case

of high energies. On the other hand, also for low-energy processes the small electron

mass leads to large peaks in the radiative amplitudes in collinear regions complicating the

numerical integration over the phase space. The collinear factorisation formula presented

in this paper could thus be used as basis for a subtraction scheme for these collinear

pseudo-singularities similar to the NLO formalism developed in [24].

In principle, the same strategies applied in this paper can also be used to extend the

next-to-soft and leading-collinear factorisation formulas beyond one loop. However, a more

formal understanding of the presented results in terms of an effective field theory could

facilitate this task. For the LBK theorem (3.31) this would entail a definition of the soft

function (3.31c) in the framework of HQET. In the case of the collinear splitting function,

on the other hand, a construction in the context of SCET would be needed.
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Finally, we remark that this paper makes it possible to calculate contributions from

radiative amplitudes based on the corresponding massless result. In order to do so one

would use massification [29] for the bulk of the phase space and otherwise switch to the

next-to-soft or leading-collinear approximations. While this is not strictly necessary at one

loop it will be indispensable at two loop. The extension of the presented results for radiative

two-loop amplitudes is therefore planned for the future. This in turn would represent a

major step towards the fully differential calculation of the dominant N3LO corrections for

muon-electron scattering.
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A Soft integrals

In (3.29c) and (3.29d) we have defined the two integrals necessary to construct the soft

contribution. These integrals are universal and are given here in d = 4−2ǫ dimensions with

µ denoting the scale of dimensional regularisation. With sij = 2pi · pj , siγ = 2k · pi, and

C(ǫ) =
(4π)ǫ

16π2Γ(1 − ǫ)
(A.1)

we have

I1(pi,k)= i

∫

ddℓ

(2π)d

1

[ℓ2+iδ][ℓ·pi−k ·pi+iδ]
(A.2a)

=−2C(ǫ)

(

m2
i

siγ
+iδ

)2ǫ−1( µ2

m2
i

)ǫ

Γ(1−ǫ)2Γ(2ǫ−1), (A.2b)

I2(pi,pj ,k)= i

∫

ddℓ

(2π)d

1

[ℓ2+iδ][−ℓ·pj +iδ][ℓ·pi−k ·pi+iδ]
(A.2c)

=
8C(ǫ)

sij

(

m2
i

siγ
+iδ

)2ǫ( µ2

m2
i

)ǫ( |sij |
2mimj

)2ǫ
{

Γ(1−ǫ)2Γ(2ǫ−1) 2F1

[ 1
2 −ǫ,1−ǫ

3
2 −ǫ

;v2
ij

]

+iπ

(

− 1

4
+iδ

)−ǫ

v−1+2ǫ
ij Γ(1−2ǫ)Γ(2ǫ)Θ(sij)

}

(A.2d)

=
4C(ǫ)

sij

1+χ

1−χ

(

m2
i

siγ
+iδ

)2ǫ( µ2

m2
i

)ǫ
{

H0(χ)

2ǫ
−ζ2− 1

2
H0,0(χ)−H1,0(χ)

+Θ(sij)6ζ2+iπΘ(sij)

(

1

ǫ
−H0(χ)−2H1(χ)

)

+O(ǫ)

}

, (A.2e)
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where vij =
√

1 − 4m2
i m2

j/s2
ij = (1−χ)/(1+χ). The Mathematica package HypExp [47, 48]

was used to expand the hypergeometric function in I2 in terms of the harmonic polyloga-

rithms (HPLs) of Remiddi and Vermaseren [49]. We then applied the related Mathematica

code HPL [50, 51] to simplify the resulting expression. Since 0 < vij < 1 and thus 0 < χ < 1

all HPLs are manifestly real.

B Splitting functions

In the following we give the explicit expressions for all the quantities that enter the collinear

factorisation formulas (4.22) (ISR) and (4.23) (FSR). The results are presented in a form

that can be used in three major flavours of dimensional regularisation: the four-dimensional

helicity scheme (fdh), ’t Hooft-Veltman scheme (hv), and conventional dimensional regu-

larisation (cdr) (see [52] and references therein for the definitions of these schemes). To

this end, we keep the dimensionality of ǫ scalars, nǫ, explicit in the poles but set it to zero

in the finite parts. The regularisation-scheme dependence is therefore manifest as terms

∝ nǫ. The corresponding results in hv and cdr can be obtained by setting nǫ = 0. Insert-

ing nǫ = 2ǫ, on the other hand, retrieves the expressions in fdh. Furthermore, in the case

of hv and fdh ǫ has to be set to zero in the tree-level splitting function.

In agreement with [29] the massification factor reads

Z(1) = 4παC(ǫ)

(

µ2

m2

)ǫ( 2

ǫ2
+

1

ǫ

(

1 − 1

2
nǫ

)

+ 4 + 2ζ2

)

+ O(ǫ), (B.1)

with α = Q2/(4π) = e2/(4π).

We then define the invariant skp = 2k · p where the photon momentum k is collinear

to an initial- or final-state fermion p. The initial-state collinear splitting function

JISR = J
(0)
ISR + J

(1)
ISR + O(α2) (B.2)

can conveniently be written in terms of

x =
Ep − Ek

Ep
, u =

skp − m2

skp
, (B.3)

as

J
(0)
ISR =

8πα(1−u)

m2(1−x)x

(

1−2x+3x2 +2xu−2x2u−ǫ(1−x)2), (B.4)

J
(1)
ISR = 8παJ

(0)
ISRC(ǫ)

(

µ2

m2

)ǫ( 1

ǫ2
+

1

4ǫ
(2−8H0(x)−nǫ)

)

+α2 4(1−u)

xm2
J̃ISR +O(ǫ), (B.5)

– 23 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
7

with

J̃ISR =
1

u(1 − x)
(−2u2x2 + 2u2 + 2ux2 + 2ux + x2 − x)

+
ζ2

1 − x
(2u2x2 − 4u2x + 2u2 − 12ux2 + 16ux − 4u + 13x2 − 12x + 5)

+
H1(u)

u2
(2u3x − 5u2x − 2u3 + 3u2 + 2ux − u + x)

+
H1(u)H0(x) + H1,0(x)

1 − x
(−8ux2 + 8ux + 10x2 − 8x + 2)

+
(

H2(u) + H1,1(u)
)

(−2u2x + 2u2 + 2ux − 4u + 2).

(B.6)

Because 0 < x < 1 and u < 1 the above expression is always real.

The result for the final-state splitting function

JFSR = J
(0)
FSR + J

(1)
FSR + O(α3) (B.7)

can be obtained from JISR via the crossing relation p → −p. In particular, this implies

x → z−1 and u → v−1 with

z =
Ep

Ep + Ek
, v =

skp

m2 + skp
. (B.8)

The corresponding analytic continuation is unambiguously defined via the prescription

skp → skp + iδ or equivalently u → u − iδ. We then find

J
(0)
ISR =

8πα(1 − v)

m2v2(1 − z)

(

vz2 − 2vz + 3v + 2z − 2 − ǫv(1 − z)2), (B.9)

J
(1)
FSR = 8παJ

(0)
FSRC(ǫ)

(

µ2

m2

)ǫ( 1

ǫ2
+

1

4ǫ
(2 + 8H0(z) − nǫ)

)

+ α2 4(1 − v)

m2v2

(

J̃Re
FSR + iπJ̃ Im

FSR

)

+ O(ǫ), (B.10)

with

J̃Re
FSR =

1

1 − z
(−v2z + v2 + 2vz + 2v + 2z2 − 2)

+
ζ2

1 − z
(−vz2 + 6vz − 7v − 6z + 6)

+
(

H0(v) + H1(v)
)

(v2z − v3 − 2v2 − 3vz + 5v + 2z − 2)

+
H0(v)H0(z) + H1(v)H0(z) + H0,0(z) + H1,0(z)

1 − z
(−2vz2 + 8vz − 10v − 8z + 8)

+
H1,0(v) + H1,1(v)

v
(−2v2z + 4vz − 2v − 2z + 2), (B.11)

J̃ Im
FSR = −v2z + v3 + 2v2 + 3vz − 5v − 2z + 2

+
H0(z)

1 − z
(2vz2 − 8vz + 10v + 8z − 8)

+
H1(v)

v
(2v2z − 4vz + 2v + 2z − 2).
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The imaginary part is given explicitly leaving all of the HPLs real for the physical region

where 0 < z, u < 1. The massless version of the FSR splitting function entering (4.25) can

be extracted from the spin-summed result of equations (II.10) and (II.11) in [17] by taking

the QED limit. The corresponding expressions in the fdh scheme read

J̄
(0)
FSR =

8πα

skp

1+z2

1−z
, (B.12)

J̄
(1)
FSR = 16παC(ǫ)

{

J̄
(0)
FSR

(

− 1

ǫ2

(

− µ2

zskp

)ǫ

+
1

ǫ2

(

− µ2

skp

)ǫ

−H1,0(z)−ζ2

)

− 4πα

skp

}

. (B.13)
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