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1 Introduction

The double copy is a surprising relationship that allows us to write gravitational theories as
the “square” of gauge theories [1–3]. While its original form consists of a relation between
scattering amplitudes, it also applies more broadly to other observables and classical solu-
tions [4–51]. Recently, a new direction in the exploration of the applicability of the double
copy has arisen. This consists of understanding the massive gauge theories which can
satisfy colour-kinematics duality and lead to a physical double copy. In four dimensions,
it has been noticed that the double copy of massive Yang-Mills amplitudes corresponds
to dRGT massive gravity [52] (with a special choice of Wilsonian coefficients) amplitudes
at 4-points [53, 54]. Nevertheless, the 5-point double copy suffers from the appearance of
non-physical (spurious) poles [54]. The origin of these spurious poles is well understood. In
the massive double copy, one can always construct kinematic numerators that satisfy the
colour-kinematics duality, but this comes at the expense of having a more involved expres-
sion for the double copy in terms of the unshifted numerators. For example, at 4-points
the double copy is

− i
(
κ

2

)−2
M4 = n2

s

s−m2 + n2
t

t−m2 + n2
u

u−m2 −
(ns + nt + nu)2

m2 , (1.1)
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where ni are the unshifted kinematic numerators, i.e. ns + nt + nu 6= 0. The amplitude
above was obtained from the BCJ double copy of the massive Yang-Mills amplitude taking
c→ ñ, where ñ are the shifted numeratore that satisfy ñs+ ñt+ ñu = 0. The generalization
to 5-points leads to an amplitude with spurious poles. This can be avoided if one considers
a theory with a tower of massive gauge bosons satisfying a special relationship between
their masses which has been dubbed the spectral condition. Up till now, the only theory
that has been shown to satisfy this condition for all its scattering amplitudes up to 5-points
is the Kaluza-Klein theory where one compactifies the fifth dimension over S1 [55, 56].

In [57], a new possibility to avoid the spurious poles without requiring a tower of
massive gluons was explored. By noticing a special feature of the massive double copy in
3 dimensions, it was shown that one can construct a physical double copy up to 5-points
as long as the Yang-Mills amplitudes satisfy a single (instead of 4 as in the massless case)
BCJ relation. Furthermore, it was shown that Topologically Massive Yang-Mills (TMYM)
amplitudes satisfy such relation and that their double copy is the Topologically Massive
Gravity (TMG) amplitudes [57, 58]. An interesting question is whether the double copy
relationship holds when we include matter interactions. This has been explored in different
contexts in [59–61], where it was shown that the double copy holds in a non-trivial manner
and depends on the type of matter that scatters through topologically massive mediators.
These studies suggest that the double copy holds for sources whose stress-energy tensor is
traceless, otherwise a non-trivial relation arises.

In this paper, we will take a step forward in understanding the topologically massive
double copy involving matter fields. First, we introduce the topologically massive theories
including a minimal coupling to matter fields in section 2. We take a look at the 2-2
scattering of scalars through a massive mediator and find that the double copy requires an
extra contact term interaction between the scalars. This extra term becomes subdominant
in the eikonal limit in which the sources are highly energetic and their stress-energy tensor
becomes traceless, leading to the standard double copy relation as suggested in [61]. Given
this, we will explore the eikonal limit in more detail in section 3. We take advantage of
the fact that both abelian and non-abelian objects can double copy to the same gravita-
tional object [34] and look at the linearized TMYM case, that is, Topologically Massive
Electrodynamics (TME). We prove that the TMG and TME amplitudes exponentiate in
the eikonal limit, but a simple double copy relation as in the massless 4d case does not
arise. Instead, we show that information beyond the eikonal limit is required to construct
the correct massive double copy. Nevertheless, we can construct a simple double copy for
the phase shift. To further understand the double copy relation of topologically massive
theories in the high-energy limit, we take a look at the classical solutions generated by a
highly energetic particle in section 4. We show that a coordinate space Kerr-Schild double
copy can be obtained for wave solutions when taking into account a special set of bound-
ary conditions. In the process, we show how the choice of iε prescription for obtaining
the phase shift is related to the boundary conditions of the topologically massive field.
Lastly, we conclude in section 5 by discussing other possible double copy relations and
future directions.
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2 Topologically massive theories with matter couplings

In this section we briefly review the actions of Topologically Massive Yang-Mills (TMYM)
and Topologically Massive Gravity (TMG) theory with a minimal coupling to matter. The
action of TMYM with a source is,

STMYM =
∫
d3x

(
− 1

4F
aµνFaµν + εµνρ

m

12
(
6Aaµ∂νAρa + g

√
2fabcAaµAbνAcρ

)
+ g√

2
AµaJµa

)
,

(2.1)
where m is the mass of the gauge field and g the coupling strength. The equations of
motion can be easily obtained from (2.1) and read

DµF
µν + m

2 ε
νργFργ = g√

2
Jν , (2.2)

where Dµ = ∂µ − ig√
2Aµ, Fµν = F aµνT

a, with F aµν the Yang-Mills field strength and T a the
generators of the gauge group. A large simplification occurs when we consider an ansatz
for the gauge field of the form Aµ a = caAµ such that the equations of motion become
linear and read

∂µF
µν + m

2 ε
νργFργ = g√

2
Jν , (2.3)

where Fµν is the Maxwell field strength since we have linearized the theory.
On the gravitational side, we use the conventions κ2 = 16πG and gµν = ηµν + κhµν .

Therefore, the action of TMG is,

STMG = 1
κ2

∫
d3x
√
−g

(
−R− 1

2mεµνρ
(

Γαµσ∂νΓσαρ + 2
3ΓαµσΓσνβΓβρα

)
+ LMatter

)
, (2.4)

and the equations of motion are,

Gµν + Cµν/m = −κ2Tµν/2 , (2.5)

where Gµν = Rµν− 1
2Rg

µν is the Einstein tensor and Cµν = εµαβ∇α(Rνβ− 1
4g
ν
βR) the Cotton

tensor. The equations of motion largely simplify if we consider a Kerr-Schild ansatz for
the graviton field hµν = φkµkν for which the equation of motion is linear.

2.1 2-2 scattering of matter

In this subsection, we look at the scattering of minimally coupled massive scalars through a
topologically massive mediator and analyze their double copy relation.1 We take the mass
of the scalars to be that of the topologically massive mediators.2 We write the tree level
2-2 scattering amplitude of scalars in the adjoint representation coupled to TMYM as

A4 = g2
3∑
i=1

cini
si −m2 , (2.6)

1In all the scattering amplitude calculations presented here, we work in Lorenz gauge for TMYM and
in de Donder gauge for TMG.

2When the mass of the scalar, m, is not the same as the mass of the mediator, M , the double copy
of A4 can be written as MDC

4 = M4 + P (s,t,u)
stu

, where P is a polynomial. This P (s,t,u)
stu

term has massless
poles their residues are proportional to m2 − M2. If we require that MDC

4 only has contributions from the
exchange of a massive mediator and contact terms, we have to set M = m.

– 3 –
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where the kinematic factors are given by

ns = i

2 (u− t)− 2mεµνρp
µ
1p

ν
2p
ρ
3

s
,

nt = i

2 (s− u)− 2mεµνρp
µ
1p

ν
2p
ρ
3

t
,

nu = i

2 (t− s)− 2mεµνρp
µ
1p

ν
2p
ρ
3

u
, (2.7)

where s = −(p1 + p2)2, t = −(p1 + p3)2 and u = −(p1 + p4)2. Here, the coupling to
TMYM is given by eq. (2.1) with Jµ a = fabc∂µφbφc. Similarly, the minimally coupled
scalar scattering amplitude in TMG is given as

M4 =
(

8εµνρpµ1pν2p
ρ
3m

(
4m2 − 2s− t

)
− 32im4s+ 8im2 (s2 + st+ t2

)
+ it3

t (m2 − t)

+ 8εµνρpµ1pν2p
ρ
3m

(
−4m2 + s+ 2t

)
+ i

(
−32m4t+ 8m2 (s2 + st+ t2

)
+ s3)

s (m2 − s)

− i
(
−8iεµνρpµ1pν2p

ρ
3m(s− t) + 192m6 − 112m4(s+ t) + 4m2 (5s2 + 8st+ 5t2

)
− (s+ t)3)

(−4m2 + s+ t) (−3m2 + s+ t)

)
κ2

16 ,

(2.8)

where we have used s + t + u = 4m2 to express u in terms of s and t. The double copy
of (2.6), MDC

4 , differs from (2.8) by

M4 −MDC
4 = −im2κ2, (2.9)

which means that we can match them by adding a contact term, −κ2m2

4! φ4, in the action
of TMG with a minimally coupled scalar. This non-trivial realization of the double copy
reduces to the trivial case when taking the high-energy (large s and small t) limit. In such
limit, the contact term contribution becomes subdominant since the scattering through
the topologically massive graviton grows as s2. In the rest of this paper we will explore in
detail the double copy in the eikonal limit and leave the analysis of the double copy with
more general matter for future studies.

3 Double copy in the eikonal limit

The high-energy limit of scattering processes has been largely studied due to its connections
to classical backgrounds, which was first explored in [62]. Recently, the focus on the eikonal
limit has increased given the ability of obtaining classical observables that describe the
inspiral phase of the coalescence of compact binaries from the phase shift [63–76]. In this
limit, it has been shown that a simple double copy relation arises in 4 dimensions [4, 77,
78]. Since the eikonal amplitude includes information at all loop orders, a double copy
relation for topologically massive eikonal amplitudes will be the first hint for an all orders
double copy.

We proceed to analyse in detail the topologically massive double copy in the eikonal
limit where we expect it to hold without requiring extra interactions on the gravitational

– 4 –
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side. We consider the 2-2 scattering of external scalar fields with the following kinematics,

pµ1 =
(

1
2pv

(
q 2

4 +m2
)
, pv,

q

2

)
, pµ3 =

(
−1
2pv

(
q 2

4 +m2
)
,−pv, q2

)
, (3.1)

pµ2 =
(
pu,

1
2pu

(
q 2

4 +m2
)
,−q2

)
, pµ4 =

(
−pu, −1

2pu

(
q 2

4 +m2
)
,
−q
2

)
. (3.2)

These momenta are on-shell, p2
1 = p2

2 = p2
3 = p2

4 = −m2, and satisfy the momentum
conservation condition pµ1 + pµ2 + pµ3 + pµ4 = 0. Here we work in lightcone coordinates
(u, v, x1),

u = 1√
2

(
x0 − x1

)
, v = 1√

2

(
x0 + x1

)
. (3.3)

The independent Mandelstam invariants are

s = −(p1 + p2)2 = (4m2 + 8pvpu + q2)2

32pupv
(3.4)

t = −(p1 + p3)2 = −q 2 . (3.5)

In the eikonal limit, the momenta pv and pu are much larger than q and m and hence
s ≈ −u� t and s� m2.

In the following, we compute the eikonal amplitude to all orders for TMG and TME.
We focus on the Abelian case for simplicity since we expect that in the eikonal limit both
Abelian and non-Abelian cases double copy to the same gravitational solution, as in both
cases the same diagrams contribute to the eikonal scattering amplitude. Also, we know
that eikonal amplitudes are related to classical shock wave solutions, which are solutions
to both Abelian and non-Abelian theories.

3.1 Eikonal resummation in TMG

In 4d, it has been shown that the ladder and cross-ladder diagrams for massive particles
of arbitrary spin, which are expected to dominate in the eikonal limit, re-sum in impact
parameter space [79]. The eikonal 2− 2 amplitude to all loop orders is given by

iMeik (s, t) = 2s
∫

dD−2~bei~q·
~b
(
eiδ(s,

~b) − 1
)
, (3.6)

where the eikonal phase reads

δ(s,~b) = 1
2s

∫ dD−2~q

(2π)D−2 e
−i~q·~bMtree(s, t = −(~q)2) , (3.7)

with Mtree(s, t = −(~q)2) the 4-point, tree level scattering amplitude given by the t-channel
graph in the eikonal limit. Furthermore, this phase can be expressed in terms of the square
of 3-point amplitudes by applying a BCFW-like shift. We prove the eikonal resummation
for topologically massive theories in appendix A. For TMG Mtree is given as

Mtree(s, t = −(qy)2) = −iκ2s2m

2(qy)2(qy + im) . (3.8)

– 5 –
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To compute the phase shift explicitly, we see that we need to regulate the following
divergent integral,

δ = −iκ
2sm

4

∫
dq

2π
1

q2(q + im)e
−ibq , (3.9)

that is, we need to choose some iε prescription for integrating around the pole at q = 0.
This freedom corresponds to the freedom in choosing boundary conditions. Following [80]
we shift q → q − iε and close the integration contour in the lower half plane when b > 0
and in the upper half plane when b < 0. This way the contour at infinity goes to zero and
we can evaluate (3.9) as a contour integral. It picks the residue of the pole at q = −im
when b > 0, and the residue of the pole at q = 0 when b < 0. Therefore we can write

δ = κ2sm

4

(
−Resq=−im

( 1
q2(q + im)e

−ibq
)
θ(b) + Resq=0

( 1
q2(q + im)e

−ibq
)
θ(−b)

)
.

(3.10)
Evaluating the residues we get that the phase shift is given by

δ = κ2s

4m
(
e−mbθ(b) + (1−mb)θ(−b)

)
. (3.11)

Then the eikonal amplitude reads

iMeik = 2s
∫
dbe−ibq

(
exp

(
iκ2s

4m
(
e−mbθ(b) + (1−mb)θ(−b)

))
− 1

)
. (3.12)

Note that this could be explicitly evaluated in terms of incomplete gamma functions
as in [81].

3.2 Eikonal resummation in TME

The sum of all loop diagrams for TMYM is complicated due to the different colour factors
arising at each loop order. Since we are interested in shock wave solutions which are also
solutions of the linearised theory here we will consider the eikonal amplitude in topological
massive electrodynamics (TME) of two scalars of charge Q. From now on we slightly
change the notation by absorbing the 1/

√
2 factor into Q. In other words, the covariant

derivative acting on the scalar is now Dφ = (d − igQA)φ. The calculation of the TME
eikonal amplitude is given in A and the expressions are very similar to the TMG case:

iAeik = 2s
∫
dbe−ibq

(
eiδ − 1

)
, (3.13)

where the phase shift reads

δ = 1
2s

∫
dqy

2π Atree(s, t = −(qy)2)e−ibqy , (3.14)

and Atree is given as

Atree(s, t = −(qy)2) = 2sg2Q2

qy(qy + im) . (3.15)

– 6 –
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Evaluating this explicitly and choosing the same contour of integration as in the TMG
case gives

δ = −ig
2Q2

2 2
(
−Resq=−im

( 1
q(q + im)e

−ibq
)
θ(b) + Resq=0

( 1
q(q + im)e

−ibq
)
θ(−b)

)
,

(3.16)
which finally leads to a compact expression for the TME phase shift

δ = −g
2Q2

m

(
e−mbθ(b) + θ(−b)

)
. (3.17)

3.3 Double copy of eikonal amplitudes and phase shift

After showing that the exponentiation in the eikonal limit is a feature of TMG and TME
amplitudes just like in the gravity and Yang-Mills case in 4d, we would like to understand
if a simple double copy relation arises in this limit just like in 4d [4]. To do so, it is useful
to write the n− 1 loop diagrams of the TME eikonal amplitude as

iAn−1

(
√

2g)2n = i

n!

( 1
2s

)n−1 ∫
dbe−ibq

(∫
dqy

2π
sQ2(qy − im)
qy((qy)2 +m2)e

−ibqy
)n

. (3.18)

comparing this with ,
iAn−1

(
√

2g)2n ∼
∫
cN

D
, (3.19)

where c is the colour factor, N is the kinematic factor and D is the product of all propa-
gators (which also includes the factor of (2s)n−1 which comes from propagators), we can
identify c = Q2n, N = (s(1− im/qy))n and D = (2s)n−1((qy)2 + m2)n. Following the
prescription of leaving propagators untouched and exchanging colour (in this case electric
charge Q) for kinematics, we can now find the double copy by considering the replacement
Q2 → s(1− im/qy) which leads to

iMD.C.
n−1

(iκ/2)2n = 1
n!

( 1
2s

)n−1 ∫
dbe−ibq

(∫
dqy

2π
s2(qy − im)

(qy)2(qy + im)e
−ibqy

)n
. (3.20)

When comparing to the TMG result in eq. (A.12), eq. (3.8) and eq. (A.14), we can see that
there is a mismatch in the amplitudes. Naively, this could be interpreted as requiring new
degrees of freedom on the double copy side. Nevertheless, we will show that this is not the
case, and instead it is just an artifact of the massive double copy.

We now proceed to understand the origin of the mismatch between the double copy
and TMG eikonal amplitude by looking at the tree level result in detail. We start by
looking at the eikonal limit of the kinematic factors of the four-point scalar amplitude in
topological massive Yang-Mills:

ns = nu = −i s2 , nt = s

(
i± m√

−t

)
, (3.21)

where the ± sign comes from εµνρp
µ
1p

ν
2p
ρ
3 = ±1

2
√
stu. We see that in the Yang-Mills

amplitude the t channel dominates since the s and u channels are suppressed by 1/s:

Aφ4 → g2 ctnt
t−m2 . (3.22)

– 7 –
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However, when constructing the massive double copy we have a new term proportional
to (ns + nt + nu)2 coming from requiring the CK duality. In this term all channels con-
tribute equally:

ns + nt + nu = ± ms√
−t
. (3.23)

Therefore, the double copy of this amplitude is not simply proportional to n2
t :

−i
(
κ

2

)−2
M4 = n2

s

s−m2 + n2
t

t−m2 + n2
u

u−m2 −
(ns + nt + nu)2

m2

→ n2
t

t−m2 −
(ns + nt + nu)2

m2

= −2ms2(m± i
√
−t)

t(t−m2) ,

(3.24)

which correctly reproduces the TMG eikonal amplitude. This tells us that to correctly
double copy the scattering amplitude in the eikonal limit we require information beyond
the eikonal limit. Alternatively, one could further require that |t| � m2 in which case a
simple double copy relation arises if we take Q2 → ms√

−t and note that in this limit the
propagators are given by −m2 [57]. Nevertheless, restricting to the large mass limit would
lead to an incorrect computation of the phase shift as can be seen from the previous sections.

Note that despite this issue at the level of the scattering amplitudes, a double copy for
the phase shift will arise in the same way as in the 4d Yang-Mills and gravity case. To see
this, one should note that given our choice of boundary conditions, the phase shift is only
physical for y > 0. On this side of the shock wave, the phase shift scales as expected for a
scattering through a massive mediator of spin J, that is, δ ∼ sJ−1e−mb. Thus we see that

δTME

g2 = Q2

m
e−mb −−−−→

Q2→s

δTMG

(κ/2)2 = s

m
e−mb . (3.25)

4 Double copy of classical solutions

In this section, we will relate the eikonal amplitudes computed above to classical field
profiles for the graviton and the gauge field. We do so by interpreting the 4-point scalar
amplitudes as the scattering of a scalar off a shock wave background, which in turn is
generated by a point-particle with large momentum (the second scalar). Since it is possible
to write the gravitational shock wave in Kerr-Schild coordinates, we will explore if we can
construct a classical double copy for such solutions. For the standard massless Yang-
Mills and Gravity cases, the double copy of shock waves has been explored in various
contexts [4, 34, 48, 82].

We proceed by looking at the Kerr-Schild double copy, single copy and zeroth copy
ansatze and understanding the equations of motion that they satisfy. Given a metric of
the form

gµν = ηµν + κkµkνφ , (4.1)

where ηµν is the Minkowski metric and kµ is null and geodetic, the single copy is given by

Aa µ = caAµ = cakµφ . (4.2)

– 8 –
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To understand if this ansatz gives a solution to TMYM we look at the trace reversed TMG
equations with one upper and one lower index

Rµν + 1
m
Cµν = −κ

2

2 (Tµν − Tgµν ) . (4.3)

Contracting this equation with a Killing vector V µ one finds

∇λF λµ + 1
m
εµαβ∇α∇λFλβ + V ν

V λkλ
(Xµ

ν + Y µ
ν ) = κ

2J
µ , (4.4)

Jµ ≡ 2V ν

V ρkρ

(
Tµν − δµνT −

1
2mεµαν∇αT

)
, (4.5)

where ∇ is the covariant derivative of η and

Xµ
ν ≡ −∇̄ν

[
Aµ
(
∇̄λkλ + kλ∇̄λφ

φ

)]
, (4.6)

Y µ
ν ≡ F ρµ∇̄ρkν − ∇̄ρ

(
Aρ∇̄µkν −Aµ∇̄ρkν

)
. (4.7)

This equation for the single copy largely simplifies when we consider wave solutions. In
such case, the source either vanishes or corresponds to a particle sourcing a shock wave
so that the trace of the stress energy tensor vanishes. Furthermore, we can work with
lightcone coordinates such that

ηµνdx
µdxν = −2dudv + dy2 . (4.8)

Meanwhile, the Kerr-Schild and Killing vector are given by

kµdx
µ = −du , Vµdx

µ = dv , k · V = 1 (4.9)

The single copy equation of motion (eom) now reads

∇λF λµ + 1
m
εµαβ∇α∇λFλβ = gJµ = 2gV νTµν , (4.10)

where we have taken κ/2→ g. We note that the single copy does not automatically satisfy
the linearized equation of motion of TMYM unless the covariant derivatives pull out factors
of the mass and give

εµργkγ∇ρ

(
∇2φ

m2

)
= εµργkγ∇ρφ . (4.11)

This is satisfied as long as the zeroth copy, φaã = cacãφ, satisfies the linearized massive
biadjoint scalar equation of motion for a vacuum solution or away of a localized source.
To see that this is a consistent requirement, we obtain the zeroth copy eom by contracting
eq. (4.10) with the Killing vector V and find

∇2φ+ mεµλρVµ(∇λφ)kρ
k · V

+ k · Z = g
J · V
k · V

≡ j , (4.12)

where
Zν ≡ (V ρkρ) ∇̄µ

(
φ∇̄[µkν] − kµ∇̄νφ

)
+mεµλρVµ(∇λkρ)φ . (4.13)
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Considering again the case of wave solutions, we find that the zeroth copy satisfies the
following equation of motion

∇2φ+mεµλρVµ(∇λφ)kρ = j = 2V νV µTµν . (4.14)

Requiring consistency of the double copy restricts the zeroth copy to satisfy ∂yφ = −mφ.
Thus, the Kerr-Schild double copy for TMG waves fixes the zeroth copy to satisfy

φ = Ae−my , (4.15)

where A is a constant. It is trivial to see that plane waves will satisfy the double copy
relation. Hence, in the following we analyze in detail the more involved case of shock wave
solutions.

4.1 Shock waves

Shock wave solutions are closely related to scattering amplitudes in the eikonal limit. A
probe particle moving in a shock wave background will experience a time delay which can
also be computed by considering the 2 to 2 scattering in the eikonal limit of such particle
with the massless particle generating the shock wave. Understanding the double copy of
shock wave solutions could give a hint of an all order double copy relation. Here, we will
analyze in detail how to construct a double copy for these classical solutions. In TMG,
these solutions have been previously studied in [80, 81, 83] where an important feature is
highlighted, the need to choose boundary conditions to fully fix the metric. In the following,
we construct the TMG, TME and biadjoint scalar shock waves by choosing a special case
of boundary conditions that makes the double copy relation explicit.

We start by constructing the shock wave solution in TMG for a source

Tµν = Eδ(u)δ(y)δµv δνv , (4.16)

with energy E. The metric can be written in lightcone Kerr-Schild coordinates with the
Kerr-Schild scalar given by

φ = δ(u)g(y) , (4.17)

where g satisfies
g′′′(y) +mg′′(y) = κEmδ(y) . (4.18)

The TMG shock wave is not fixed by requiring asymptotic flatness as in the GR case. Since
flatness only requires g′′(y) = 0, given a solution g1 of eq. (4.18), g2 = g1 + c(u)G is an
asymptotically flat shock wave as long as G′′ = 0. So one could ask if there are certain
boundary conditions that allow for a double copy relation in coordinate space. Since we
would like to connect our classical solution to the eikonal amplitudes, we will choose our
boundary conditions such that they are consistent with the phase shift calculation in the
previous section.
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The 2-2 amplitude in the eikonal limit can be reproduced by considering the propa-
gation of a point particle in the shock wave background. Following [81],3 we change the
coordinate v to

v → v + κ

2 θ(u)g(y) (4.19)

which changes dv → dv + κ
2 (δ(u)g(y)du+ θ(u)d(g(y))) so the metric is now

ds2 = −2dudv + dy2 − κ θ(u) du d(g(y)) . (4.20)

For u < 0 the metric if Minkowski in u, v, y coordinates but for u > 0 it is Minkowski
in u, v + κ

2g(y), y coordinates. Therefore, we can write the wavefunction of the incoming
particle with momentum p (in u < 0 region) as

ψin = 1
(2π)3/2 e

ip·x , (4.21)

while for outgoing particle of momentum p′ (in u > 0 region) it is

ψout = 1
(2π)3/2 e

ip′·x+ 1
2 ip

′
vκg(y) . (4.22)

The scattering amplitude Meik defined as

δ(pv − p′v)δ(pu − p′u)Mp.p.
eik (qy = p′y − py) =

∫
d3xψin(x)ψ∗out(x) , (4.23)

is equal to
Mp.p.
eik =

∫
dy

2πe
i(−qy− 1

2κp
′
vg(y)), (4.24)

where for our kinematics p′− p = −p2− p4 = q and pu = E so p′v = s
2E . This matches the

result in (3.12) if
g(y) = −κE

m

(
e−myθ(y) + (1−my)θ(−y)

)
, (4.25)

when taking into account the non-relativistic normalization and conventions:

Mp.p.
eik = δ(q) + Meik

4πs . (4.26)

We can see that this choice gives boundary conditions such that in one side (y > 0) of the
shock wave the metric is Cartesian, i.e., limy→∞ hµν = 0, while for y < 0 it is flat, even if
it is in non-Cartesian coordinates.

We now proceed to compute the shock wave for linearized TMYM, that is, TME in
a similar manner. Consider a source Jµ = Qδ(u)δ(y)δµv and an ansatz for the shock-wave
solution in TMYM of the form

Aa = −caδ(u)f(y)du . (4.27)
3Note that there is a minus sign in front of q in (4.24) compared to [81], since the shock wave geometry

is sourced by particle 1 and the incoming test particle is particle 2. Therefore py − ky of [81] is equal to
py2 + py4 = −q in our convention.
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Plugging this in the TMYM eom gives

f ′′(y) +mf ′(y) = −gQδ(y) . (4.28)

As in the gravitational case, the shock wave is not fully determined by requiring that
the field strength vanishes at infinity. In this case, given a solution f1 of eq. (4.28), f2 =
f1+c(u)F is also a shock wave with asymptotically vanishing field strength as long as f ′ = 0.
This leaves us with the freedom of imposing stronger boundary conditions on the gauge field
to fully fix it. We will proceed as in the gravitational case and fix this boundary condition
by looking at the eikonal scattering amplitudes. We consider the scattering amplitude for
the propagation of a point particle in the shock wave gauge background. Similar to the
TMG case, we first perform a gauge transformation on A

A→ A+ d(θ(u)f(y)) = θ(u)f ′(y)dy . (4.29)

The wavefunction of a point particle with charge Q moving in an electromagnetic field,
satisfying DµDµψ = 0, can be written as

ψ = eigQ
∫ x

Aµdxµ+ip·x , (4.30)

where the integral can be taken over any path that ends at x. We choose the path so that
it starts in the u < 0 region. The wavefunction of the incoming particle with momentum
p (in the u < 0 region) is then

ψin = 1
(2π)3/2 e

ip·x , (4.31)

while for the outgoing particle with momentum p′ (in the u > 0 region) is

ψout = 1
(2π)3/2 e

igQ
∫ y

f ′(y′)dy′+ip′·x = 1
(2π)3/2 e

igQf(y)+const.+ip′·x . (4.32)

Additionally, we choose the path such that the constant of integration is zero. Then
by (4.23) the point-particle scattering amplitude, Ap.p.

eik , is equal to

Ap.p.
eik =

∫
dy

2πe
−iqy−igQf(y). (4.33)

Matching this to the eikonal amplitude in eq. (3.17) and (3.13), and taking into account
the non-relativistic normalization of the point particle amplitude in eq. (4.26) we find that

f(y) = gQ

m

(
e−myθ(y) + θ(−y)

)
. (4.34)

This choice corresponds to boundary conditions in which the field strength is zero for y < 0
and on the other side of the shock wave we have limy→∞A

µ = 0.
Lastly, we look at the zeroth copy, φaã = cacãS, shock wave which is a solution of the

linearized bi-adjoint scalar equations of motion:

(∇2 −m2)S = −λδ(u)δ(y) . (4.35)
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The scalar field shock wave solution is

S = λ

2m
(
e−myθ(y) + emyθ(−y)

)
δ(u) . (4.36)

Note that for the scalar case, there is no analog of having the curvature, or field strength
vanishing, or an extra freedom in the solution from choosing boundary conditions. In fact,
in this case the field approaches 0 at both y = ±∞.

Now, we can proceed to construct the double copy of the TMYM shock wave to
understand if it corresponds to the TMG shock wave. We can immediately see that this
construction is highly dependent on our choice of boundary conditions. If we simply look
at the equations of motion, we would naively conclude that the double copy of the TMYM
shock wave does not correspond to the TMG shock wave. Instead, it would suggest that the
source on the gravitational side is given by Tuu = E

mδ(u)∂yδ(y) with all other components
being zero. Nevertheless, one should be careful since we need to choose the appropriate
boundary conditions to completely fix the shock wave solutions. Considering the special
choice used in the computations above, we can see that the Kerr-Schild double copy holds
on the y > 0 side of the shock wave. In this side of the shock wave, the condition for
the Kerr-Schild zeroth copy, eq. (4.15), is fulfilled and the double copy relation is satisfied
when we consider the replacements:

κ

2 ←→ g ←→ 1 , 2E ←→ Q←→ λ , (4.37)

where the factor of 2 is standard in relating the Kerr-Schild sources as seen in eq. (4.10).
On the other hand, the relation does not hold for y < 0, but this should not cause alarm,
since on that side of the shock wave the spacetime is flat and the field strength vanishes.
Hence, the apparent mismatch is simply explained by the choice of boundary conditions
on that side of the shock wave which obscures the double copy relation. This conclusion
is similar to the time delay computation presented in [80]. Naively, computing the time
delay, ∆x− = δ(s, b)/ |p−|, using the phase shift in eq. (3.11) and (3.17) will give a non-zero
result on the y < 0 which is unphysical since in this side of the shock wave the space is flat
(the field strength vanishes).

4.2 Gyratons

Now we consider a generalization of the shock wave metric by adding a classical spin to
the source. In this subsection, we will construct such solutions for TMG, TMYM, and the
biadjoint scalar. In gravitational settings, this type of solutions have been dubbed gyratons
and their metric is

ds2 = −2dudv + dy2 + κφ(u, y)du2 + 2κα(u, y)dudy . (4.38)

The stress tensor is now given by

Tµν =
(
Ekµkν + σk(µε

αβ
ν) kα∂β

)
δ(u)δ(y) , (4.39)

where E is the energy of the source and σ its spin. Writing φ = g(y)δ(u), the TMG
equation of motion now gives

∂2
y

(
g′(y)δ(u)− 2∂uα(u, y)

)
+m∂y

(
g′(y)δ(u)− 2∂uα(u, y)

)
= κmδ(u)

(
Eδ(y)− σδ′(y)

)
.

(4.40)
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We see that outside the sources the equation of motion is similar to that of the shock wave
but now the y derivative of φ is shifted to ∂yφ = ∂yφ−2∂uα. The metric (4.38) is invariant
under the following transformation [84]:

v → v + κ λ(u, y), α→ α− ∂yλ, φ→ φ− 2∂uλ . (4.41)

We can fix this gauge freedom by imposing

∂yα = 0 . (4.42)

Then the solution of (4.40), with the same boundary conditions for φ as before, is given as

g = κ

m
(E +mσ)e−myθ(y) + κ

m
(E +mσ − Emy)θ(−y) , (4.43)

α = 0 . (4.44)

Here we have chosen α = 0 so that the metric is in Cartesian coordinates on the y > 0 side
of the gyraton. Note that with this choice the metric is in Kerr-Schild coordinates as in
the shock waves case.

It is interesting to note that the inclusion of classical spin changed the expression of
the shockwave Kerr-Schild scalar on the physical side (y > 0) by shifting the energy as

E → E

(
1 +m

σ

E

)
. (4.45)

This type of energy shift was originally found when looking at gravitational anyons in [85].
It is not surprising that the same shift arises for gyratons, since we can think of them
as being sourced by highly-boosted anyons. Alternatively, this shift can be obtained by
shifting the y coordinate as y → y − σ/E and taking the small σ/E limit. This shift is
reminiscent of the spin deformations of 3-point on-shell amplitudes in 3d [60], which in 4d
are related to the Newman-Janis shift [86–91]. We will see in the following that this shift
also arises for the TME and biadjoint scalar gyratons.

On the gauge theory side we can consider the following gauge field:

Aa = ca(ϕ(u, y)du+ β(u, y)dy), (4.46)

which gives only one non-vanishing component of field strength Fuy = −∂yϕ + ∂uβ just
like in the shock wave case. Expressing ϕ = f(y)δ(u), the equation of motion with the
spinning source,

Jµ =
(
Qkµ +Q′εαβµ kα∂β

)
δ(u)δ(y) , (4.47)

gives the following:

∂y
(
f ′(y)δ(u)− ∂uβ(u, y)

)
+m

(
f ′(y)δ(u)− ∂uβ(u, y)

)
= g

(
Qδ(u)δ(y)−Q′δ(u)δ′(y)

)
.

(4.48)
We now choose to impose the Lorenz gauge condition which implies

∂yβ = 0 , (4.49)
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but we still have some residual freedom from choosing boundary conditions which we fix
by picking the same boundary conditions as in the shock waves case, that is, that the
field strength vanishes on one side of the shock wave and on the other side the gauge field
vanishes asymptotically. With this choice, we get the following solution:

f = g
Q+mQ′

m

(
θ(y)e−my

)
+ g

Q

m
θ(−y),

β = 0. (4.50)

An important feature of this choice is that the gauge field is null, as required by the
Kerr-Schild single copy ansatz.

Finally, we construct the zeroth copy solution for a spinning source. The linearized
equation of motion reads

(∇2 −m2)S = −
(
λδ(u)δ(y)− λ′δ(u)δ′(y)

)
, (4.51)

and its solution is given by

S = 1
2m

(
(λ+mλ′)e−myθ(y) + (λ−mλ′)emyθ(−y)

)
δ(u) . (4.52)

Consequently, we see that Kerr-Schild double copy works in a similar way as before in the
region y > 0 where the curvature (field strength) is non-zero, with the replacements now
given by

κ

2 ←→ g ←→ 1 , 2(E +mσ)←→ Q+mQ′ ←→ λ+mλ′ . (4.53)

4.3 dRGT shock waves

As a special case, we will analyze the massive double copy of shockwaves in d ≥ 4. Although
it is known that the double copy construction fails to reproduce dRGT massive gravity at
5-points due to the appearance of spurious poles, it would be interesting to understand
if it is possible that the 4-point double copy holds beyond tree-level. A simple example
that can help us understand this consists of analyzing the classical shock wave solutions
since this can be entirely reproduced from looking at the 2-2 eikonal scattering. In dRGT,
the shock wave solutions for a stress tensor of the form Tµν = Eδ(u)δ(~x− ~x0)δµv δνv can be
written in Kerr-Schild form as

ds2 = −2 dudv + d~x2 + κδ(u)F (~x) du2 , (−∇2 +m2)F (~x) = κEδ(~x− ~x0) . (4.54)

In fact, this is a solution to the equations of motion for a massive graviton with an arbitrary
potential [92], even if such cases include ghosts. The Kerr-Schild vector and scalar are
given by

kµdx
µ = −du , φ = δ(u)F (~x) . (4.55)

Thus, the single copy is given by

Aµ a = −caδ(u)F (~x) δµv . (4.56)
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Using this in the massive Yang-Mills equations of motion and considering the replacements
in eq. (4.37), we find

(−∇2 +m2)F (~x) δ(u) = gQδ(~x− ~x0) , (4.57)

which tells us that this indeed corresponds to a shock wave solution of massive Yang-Mills
with a source Jµ = Qδ(u)δ(~x−~x0)δµv . One should note that this double copy relation holds
for all d ≥ 4. This simple relation might be a hint that the loop level massive double copy
holds at 4-points for massive gravity.

5 Discussion

We have analyzed the high-energy limit of topologically massive theories from two different
perspectives. First, by looking at the scattering amplitudes in the eikonal limit; and second,
by looking at the shock wave solutions for both a spinless and a spinning source. In the
former analysis, we found that to construct the double copy of the eikonal amplitudes, we
need information outside of the eikonal limit at tree-level. This is in stark difference with
the massless d ≥ 4 case where a simpler double copy relation arises. In the latter, we
obtained a double copy relation which is only manifest for a specific choice of boundary
conditions. Along the way, we showed how the eikonal amplitude is related to the classical
shockwave solutions and how the choice of iε prescription required to regulate the phase
shift corresponds to the choice of boundary conditions of the topologically massive field.
This allowed us to choose the appropriate prescriptions to make the coordinate space double
copy clear on the non-trivial (where the curvature and field strength are non-zero) side of
the shockwave. This suggests that a cleaner double copy relation might arise when looking
at the curvature and field strength, as in the 4d Weyl double copy, instead of looking
directly at the fields, as in the Kerr-Schild double copy case. An immediate roadblock for
finding an analogue of the Weyl double copy for topologically massive theories is the fact
that the Weyl tensor vanishes in 3d. Instead, one can look at the Cotton tensor which has
similar properties to the Weyl tensor. This will be explored in [93].

Several open questions remain when it comes to fully understanding the massive double
copy. Regarding scattering amplitudes, it has not been shown if the double copy relation
holds for six and higher-point amplitudes or for loop corrections. In the special case of
topologically massive theories, a complete understanding of the situation when including
couplings to generic matter is lacking. Some progress has been made in [59–61] and we have
contributed to clarifying the situation in the high-energy limit in this paper. Nevertheless,
a broader exploration for more generic sources for both classical solutions and scattering
amplitudes is still missing.
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Figure 1. Example of a box diagram that appears within the ladder diagrams contributing in the
eikonal limit. Here, the gravitons correspond to the rungs of the ladder.
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A Derivation of Eikonal resummation

Here we will show that (3.6) and (3.7) are valid in topological massive gravity by following
the same steps as in [79]. Assuming that only ladder diagrams contribute, the n− 1 loop
integrands are obtained by multiplying n factors of two graviton-scalar-scalar vertices,
contracted with a graviton propagator, together with scalar propagators, see figure 1.

Two scalar-scalar-graviton vertices contracted with a graviton propagator of momen-
tum qµ = (qu, qv, qy) in the eikonal limit give

− s2

4
F (q)

q4(q2 +m2) , (A.1)

where m is graviton mass and

F (q) = κ2
(
−i(quqv)2 + 2quqvqym− 2(qy)2(qy − im)m

)
. (A.2)

Assuming that the momentum in the scalar propagators can be approximated as (p+k)2 →
2p · k, where p is p1 or p2 and k is any loop momentum, the sum of n − 1 loop diagrams
gives the following:

iMn−1 =
∫ n∏

i=1

(
d3qi

(2π)3
−s2F (qi)

4q4
i (q2

i +m2)

)
(2π)3δ3

(
p3 + p1 +

n∑
i=i

qi

)

× −i
2p1 · q1 − iε

−i
2p1 · (q1 + q2)− iε · · ·

−i
2p1 · (q1 + q2 + · · ·+ qn−1)− iε

×
∑
σ∈Sn

−i
−2p2 · qσ(1) − iε

−i
−2p2 · (qσ(1) + qσ(2))− iε

· · ·

× −i
−2p2 · (qσ(1) + qσ(2) + · · ·+ qσ(n−1))− iε

. (A.3)
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Using light-cone coordinates and taking the eikonal approximation we can write p1 · q =
−pvqu and p2 · q = −puqv; hence

iMn−1 = 1
(4pvpu)n−1

∫ n∏
i=1

(
dqvi dq

u
i dq

y
i

(2π)3
−s2F (qi)

4q4
i (q2

i +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ
(

n∑
i=i

qui

)
−i

−qu1 − iε
−i

−(qu1 + qu2 )− iε · · ·
−i

−(qu1 + qu2 + · · ·+ qun−1)− iε

× δ
(

n∑
i=i

qvi

) ∑
σ∈Sn

−i
qvσ(1) − iε

−i
(qvσ(1) + qvσ(2))− iε

· · ·

× −i
(qvσ(1) + qvσ(2) + · · ·+ qvσ(n−1))− iε

. (A.4)

We now make use of the following identity,

lim
ε→0

δ(x1 + x2 + · · ·+ xn)

×
∑
σ∈Sn

1
xσ(1) ± iε

1
xσ(1) + xσ(2) ± iε

· · · 1
xσ(1) + xσ(2) + · · ·xσ(n−1) ± iε

= (∓2πi)n−1δ(x1)δ(x2) · · · δ(xn) ,

(A.5)

on the last line of (A.4) to get

iMn−1 =
( 2πi

4pvpu
)n−1 ∫ n∏

i=1

(
dqvi dq

u
i dq

y
i

(2π)3
−s2F (qi)

4q4
i (q2

i +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ
(

n∑
i=i

qui

)
1

qu1 + iε

1
(qu1 + qu2 ) + iε

· · · 1
(qu1 + qu2 + · · ·+ qun−1) + iε

×
n∏
i=1

δ (qvi ) . (A.6)

Performing all qvi integrals sets all qvi to zero, so q2
i = −2qvi qui + (qyi )2 → (qyi )2, and we get

iMn−1 =
( 2πi

4pvpu
)n−1 ∫ n∏

i=1

(
dqui dq

y
i

(2π)3
−s2F ({qui , 0, q

y
i })

4(qyi )4((qyi )2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ
(

n∑
i=i

qui

)
1

qu1 + iε

1
(qu1 + qu2 ) + iε

· · · 1
(qu1 + qu2 + · · ·+ qun−1) + iε

. (A.7)

We can symmetrize the second line by summing over all permutations of labels and dividing
by n! to get

iMn−1 = 1
n!

( 2πi
4pvpu

)n−1 ∫ n∏
i=1

(
dqui dq

y
i

(2π)3
−s2F ({qui , 0, q

y
i })

4(qyi )4((qyi )2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ
(

n∑
i=i

qui

) ∑
σ∈Sn

1
qu1 + iε

1
(qu1 + qu2 ) + iε

· · · 1
(qu1 + qu2 + · · ·+ qun−1) + iε

. (A.8)
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Then applying the identity (A.5) on the last line we get

iMn−1 = 1
n!

( 2πi
4pvpu

)n−1 ∫ n∏
i=1

(
dqui dq

y
i

(2π)3
−s2F ({qui , 0, q

y
i })

4(qyi )4((qyi )2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× (−2πi)n−1
n∏
i=1

δ (qui ) . (A.9)

Now performing qui integrals gives

iMn−1 = 1
n!

(
(2π)2

4pvpu

)n−1 ∫ n∏
i=1

(
dqyi

(2π)3
−s2F ({0, 0, qyi })

4(qyi )4((qyi )2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)
.

(A.10)
From (A.2) we get F ({0, 0, qyi }) = −2κ2(qy)2(qy − im)m, and we can write

δ

(
q +

n∑
i=i

qyi

)
=
∫
db

2πe
−ib(q+

∑n

i=i q
y
i ) (A.11)

so finally we get

iMn−1 = 1
n!

( 1
2s

)n−1 ∫
dbe−ibq

(∫
dqy

2π
κ2s2m

2(qy)2(qy + im)e
−ibqy

)n
, (A.12)

where we used the fact that s = 2pvpu in the eikonal limit. The term in the second integral
can be written as

κ2s2m

2(qy)2(qy + im) = iMtree(s, t = −(qy)2), (A.13)

whereMtree is the eikonal limit of tree level 2-2 scalar scattering amplitude. Then summing
all loop diagrams gives the full eikonal amplitude:

iMeik = 2s
∫
dbe−ibq

∞∑
n=1

1
n!

(
i

2s

∫
dqy

2π Mtree(s, t = −(qy)2)e−ibqy
)n

= 2s
∫
dbe−ibq

(
eiδ − 1

)
, (A.14)

where
δ = 1

2s

∫
dqy

2π Mtree(s, t = −(qy)2)e−ibqy . (A.15)

is commonly referred to as the phase shift. Therefore, we have proved that the TMG
amplitudes exponentiate in the eikonal limit, which to the best of our knowledge has not
been proven before.

The calculation of the eikonal amplitude in TME is almost identical to that of TMG
but now two scalar-scalar-photon vertices contracted with photon propagator gives

sF (q)
q2(q2 +m2) , (A.16)

where
F (q) = 2g2Q2(−iquqv + qy(iqy +m)) (A.17)
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instead of (A.1) and (A.2). Now, repeating the same steps as before we get

iAn−1 = 1
n!

(
(2π)2

4pvpu

)n−1 ∫ n∏
i=1

(
dqyi

(2π)3
sF ({0, 0, qyi })

(qyi )2((qyi )2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)
. (A.18)

Using F ({0, 0, qyi }) = i2g2Q2qy(qy − im) and the expression for the tree-level scattering
amplitude in the eikonal limit,

2isg2Q2

qy(qy + im) = iAtree(s, t = −(qy)2) , (A.19)

we get the same expression as in TMG case

iAeik = 2s
∫
dbe−ibq

(
eiδ − 1

)
, (A.20)

where the phase shift reads

δ = 1
2s

∫
dqy

2π Atree(s, t = −(qy)2)e−ibqy . (A.21)
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