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1 Introduction

The analytic conformal bootstrap is a powerful tool that has seen significant progress in
recent years. The basic proposal made in the original papers [1, 2], is that singular terms in
a CFT correlator imply the existence of families of operators at large spin. This observation
was later systematized and allowed the calculation of CFT data as a series expansion in
inverse powers of the spin variable [3]. This line of thinking led to the Lorentzian inversion
formula, that neatly captures the dependence of the CFT data as an analytic function of
the spin variable [4]. This formula is a fully non-perturbative result valid for any CFT in
any dimension.

Apart from giving us an improved understanding of the structure of CFT, the inver-
sion formula is also a powerful calculational tool. Its power lies on the fact that correlators
can be reconstructed from a certain discontinuity, which is in general a simpler object.
Inversion formula technology is particularly useful for planar theories at strong coupling,
where the discontinuity is captured by only a finite number of conformal blocks, simplify-
ing computations considerably. This approach was carried out successfully for four-point
functions of half-BPS operators in N = 4 SYM [5, 6], and confirmed a previous conjecture
made in Mellin space [7, 8].

Because the presence of a defect does not change the local physics, the main properties
that enable the bootstrap for strong coupling correlators are still present if we add a line
defect to the configuration. More precisely, in this paper we consider correlators between
single trace half-BPS operators and a supersymmetric Wilson line. These are canonical
examples of local and non-local operators in N = 4 SYM. One point-function of half-BPS
operators in the presence of a line are fixed by kinematics and the overall coefficient can be
calculated exactly using matrix-model techniques [9–12]. Less work has been done on two-
point correlators in the presence of a line. This is the first case in which correlators depend
non-trivially on conformal invariants and therefore capture an infinite amount of CFT data.
The only results on the literature so far are an explicit weak-coupling calculation [13], the
extreme strong coupling limit where the correlator becomes the square of a one-point
function [14, 15], and special kinematical points where the correlator does not depend on
invariants and can be calculated using localization [14, 16]. The goal of this paper is to
calculate the full two-point correlator as a function of its cross-ratios, to the first non-trivial
order at strong coupling, relying only on analytical bootstrap techniques.

The outline of the paper is as follows. In section 2 we review the basic kinematics
of our two-point functions, including an interpretation of our bootstrap problem in terms
of Witten diagrams. In section 3 we compute the two-point function for the stress-tensor
multiplet, which is the half-BPS operator of weight J = 2, using Lorentzian inversion
technology, and present an elegant closed-form expression for the full correlator. In section 4
we generalize the analysis for operators of higher weight and present explicit solutions
for the cases J = 3, 4 as a demonstration of our method. Possible future directions are
discussed in section 5, while in appendixes B and A we give the bulk and defect conformal
blocks needed for the computations.
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2 Preliminaries

In this section we review the basic properties of the setup under study, before jumping into
the technicalities of the computation in section 3.

2.1 Setup

Consider N = 4 SYM theory with gauge group U(N) in the planar N → ∞ limit. The
most important local operators in our discussion are single-trace chiral-primary operators:

OJ(x, u) := (2π)J 2J/2√
JλJ

tr
(
u · φ(x)

)J
. (2.1)

Here u is a six-component null polarization vector u · u = 0, such that OJ(x, u) transforms
in a symmetric-traceless representation of the R-symmetry group. These are protected op-
erators that preserve half of the supercharges of the theory. The other important observable
in our analysis is the supersymmetric Wilson line (sometimes called the Maldacena-Wilson
line):

W` := 1
N

tr P exp
∫ ∞
−∞

dτ
(
iẋµAµ + |ẋ|θ · φ

)
. (2.2)

This extended operator also preserves half of the supercharges, and has been studied ex-
tensively in the literature. Here θ is a unit-normalized six-component vector θ · θ = 1 that
parametrizes a direction in R-symmetry space.

In this work we study correlators of local operators in the presence of the supersym-
metric Wilson line:1

〈〈OJ1(x1, u1)OJ2(x2, u2) . . . 〉〉 := 1
〈W` 〉

〈W`OJ1(x1, u1)OJ2(x2, u2) . . . 〉 . (2.3)

Even though our configuration breaks some of the PSU(2, 2|4) symmetry of N = 4 SYM,
these correlation functions are still restricted by the remaining defect (super)conformal
symmetry. It is well understood that in defect CFT one-point functions are kinematically
fixed, see for example [17]. The simplest observables in which the coordinate dependence is
dynamical and not fixed by symmetry are two-point functions of bulk operators. The case
J1 = J2 = 2 was studied recently at weak ’t Hooft coupling [13] using standard Feynman
diagrams. Here we consider instead a perturbative expansion at large ’t Hooft coupling:

〈〈OJ(x1, u1)OJ(x2, u2) 〉〉 as N →∞, λ = g2N � 1 . (2.4)

To be more precise, our correlator admits a double expansion in powers of λ
N2 and 1√

λ
of

the form

〈〈OJOJ 〉〉 = 〈〈OJOJ 〉〉(0) + λ

N2

(
〈〈OJOJ 〉〉(1) + 1√

λ
〈〈OJOJ 〉〉(2) +O(λ−1)

)
+ . . . , (2.5)

where . . . stands for terms starting at λ2

N4 . As we will discuss shortly, the first two terms in
the expansion are somewhat trivial. Our goal then is to use modern bootstrap methods to
calculate the 〈〈OJOJ 〉〉(2) contribution. The above perturbative expansion has a natural
interpretation in terms of the holographic dual of N = 4 SYM, to which we now turn.

1The overall normalization is redundant in the present case because 〈W` 〉 = 1, but it would be important
for circular Wilson loops.
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2.2 Supergravity interpretation

Thanks to the AdS/CFT correspondence [18–20], the strong coupling limit of N = 4 SYM
admits a description in terms of classical IIB supergravity on AdS5 × S5. Although we
do not use this description to carry out our calculations, it is useful to understand the
structure of perturbation theory.2

The dual of a supersymmetric Wilson loop is a string worldsheet extending inside
AdS5, whose boundary corresponds to the path of the loop [21, 22]. Graphically

= 〈W` 〉 = 1 . (2.6)

Here the black circle is the boundary of AdS5, where the CFT lives, and the blue line
corresponds to the string worldsheet. The expectation value of the Wilson loop has been
the subject of intense study [23–25], but here we concentrate on the straight geometry.

We are interested on the interplay between the supersymmetric Wilson line and half-
BPS single-trace operators OJ . In the holographic description, OJ are dual to certain KK
modes arising from the compactification of the IIB action on S5. One of these modes can
be sourced at the boundary of AdS5, propagate through the bulk and be absorbed by the
string worldsheet. This process is dual to the one-point function of OJ in the presence of
the Wilson line. Graphically

= 〈〈OJ(x, u) 〉〉 = aJ
(u · θ)J

(x⊥)J . (2.7)

The precise constant aJ has been determined at strong ’t Hooft coupling using hologra-
phy [11, 26], and is consistent with the exact result coming from the matrix-model descrip-
tion. The result is of order aJ ∼ O(

√
λ
N ), as can also be seen by simple power counting

arguments.
The focus of the present work is on two-point functions at strong coupling. The leading

order contribution corresponds to a disconnected diagram, where the two operators in the
boundary of AdS5 interact through the bulk “ignoring” the string worldsheet:

= 〈〈OJ(x1, u1)OJ(x2, u2) 〉〉disc. = (u1 · u2)J

(x2
12)J

. (2.8)

Following the usual convention in CFT, we normalize this diagram to unity. This corre-
sponds to 〈〈OJOJ 〉〉(0) in equation (2.5). The next contribution at strong coupling corre-
sponds to a factorized diagram, where the operators do not interact in the bulk:

= 〈〈OJ(x1, u1) 〉〉〈〈OJ(x2, u2) 〉〉 = a2
J

(u1 · θ)J(u2 · θ)J

(x⊥1 x⊥2 )J
. (2.9)

2We thank S. Giombi for useful correspondence regarding the holographic calculation.
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From the scaling of the one-point coefficients aJ , it is clear this diagram contributes at
order λ

N2 , so it corresponds to the term 〈〈OJOJ 〉〉(1). The first non-trivial correction to the
two-point function contains an interaction vertex in the bulk [14]. In the exchanged line
one sums over all KK modes that can couple to two OJ ’s. Schematically we have

. (2.10)

This is the diagram we calculate in the present work.3

Instead of an explicit calculation using the effective action in AdS5×S5, we will boot-
strap the result using the bulk-to-defect inversion formula obtained in [27]. The inversion
formula reconstructs a correlator from its singular part, which is mathematically captured
by a discontinuity:

∼
∫

Disc . (2.11)

The crucial property of holographic CFT’s is that the discontinuity is dramatically simpler
than the correlator. In particular, we show below that the discontinuity receives corrections
only from a finite number of single-trace operators exchanged in the bulk. Each of these
contributions is schematically a product of a tree-level one-point function and a three-point
function:

∼
∑

single
traces

∫
× . (2.12)

The one- and three-point functions are known from localization, so all is left is to compute
a certain integral and sum over finitely many single-trace contributions. In the rest of the
paper, we translate this pictorial representation into a concrete bootstrap algorithm, that
fully fixes two-point correlators with minimal external input.

2.3 Superconformal kinematics

The defect CFT associated with the Wilson line (2.2) preserves an OSp(4∗|4) subgroup of
the full PSU(2, 2|4) symmetry. From the spacetime perspective, the defect preserves an
SO(2, 1) ⊂ SO(4, 2) subgroup of the full conformal algebra. Furthermore, the presence of a
preferred direction θ preserves only SO(5)R ⊂ SO(6)R of the R-symmetry. The kinematics
of non-supersymmetric defects have been thoroughly studied in [17]. Below we only give a
brief review, highlighting the new features due to supersymmetry, such as superconformal
Ward identities and superconformal blocks.

3In the case of holographic four-point functions, there exist contact Witten diagrams which are correctly
reconstructed from the inversion formula [5, 6]. If such diagrams are present in the defect case, our bootstrap
result should capture them. We defer a more detailed study of the explicit holographic calculation for future
work.
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2.3.1 Two-point function and cross-ratios

A two-point function in a defect CFT depends on two spacetime cross-ratios, while in our
setup there is an extra R-symmetry cross-ratio σ:

〈〈OJ(x1, u1)OJ(x2, u2) 〉〉 = (u1 · θ)J(u2 · θ)J

|x⊥1 |J |x⊥2 |J
F (J)(z, z̄, σ) . (2.13)

For the spacetime part, we use the cross-ratios z, z̄ defined in [27]

z + z̄

2
√
zz̄

= x⊥1 · x⊥2
|x⊥1 ||x⊥2 |

,
(1− z)(1− z̄)√

zz̄
= x2

12
|x⊥1 ||x⊥2 |

. (2.14)

Geometrically z, z̄ are coordinates in a plane orthogonal to the defect. Indeed, placing the
first operator at x1 = (1, 0, 0, 0) and the second one in a xy-plane x2 = (x, y, 0, 0), then
z = x + iy and z̄ = x − iy. In Lorentzian signature, one would instead find that z and z̄
are real and independent. On the other hand, the R-symmetry cross-ratio is defined as

σ := (u1 · u2)
(u1 · θ)(u2 · θ)

. (2.15)

The correlator F (J)(z, z̄, σ) is a polynomial of order J in the σ cross-ratio. This reflects the
number of different ways to contract u1, u2 with each other and with θ, the polarization
of the Wilson-line defect. Before moving on, let us point out that one can also consider
operators restricted to the line and study the corresponding 1d CFT, this configuration
has been studied recently by a variety of means [28–33].4 In this work we consider bulk
operators outside the line, which probes the interplay between local physics and the defect.

2.3.2 Structure of the correlator

As discussed above, the leading contributions at strong coupling to 〈〈OJOJ 〉〉 take the
simple form (2.8) and (2.9). Comparing with the form of the two-point function (2.13)
we find

F (J)(z, z̄, σ) =
(

σ
√
zz̄

(1− z)(1− z̄)

)J
+ a2

J +O

(√
λ

N2

)
. (2.16)

Our goal is to compute the correlation function at the next order O(
√
λ

N2 ). For simplicity
we decompose the correlator at this order in powers of the R-symmetry cross-ratio σ:5

F (J)(z, z̄, σ)
∣∣
O(
√
λ

N2 ) =
J∑
j=0

σjF
(J)
J−j(z, z̄) . (2.17)

Below we use bootstrap methods to reconstruct the functions F (J)
j (z, z̄), leading to the

final results in equations (3.33), (4.16) and (4.20).
4Similar setups have also been considered for 3d ABJM theories [34–36].
5Note that the definition of F (J)

j in this decomposition is slightly different to the one used in [13]: here
the terms are ordered in terms of powers of σ and not Ω. Furthermore, here we keep outside the definition
the two leading contributions which are trivial.
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2.3.3 Superconformal Ward identities

An important property of our correlator is that it satisfies superconformal Ward identities.
These were studied in detail for half-BPS boundaries in [37], where it was observed that
with a suitable identification of the cross-ratios, they also apply to the half-BPS line defect.6

In our conventions the Ward identities read(
∂z + 1

2∂ω
)
F (J)(z, z̄, σ)

∣∣∣∣
z=ω

= 0 ,
(
∂z̄ + 1

2∂ω
)
F (J)(z, z̄, σ)

∣∣∣∣
z̄=ω

= 0 , (2.18)

where the natural variable to use is ω, defined by

σ = −(1− ω)2

2ω . (2.19)

It is not hard to check that the two leading terms (2.16) satisfy these equations. Note that
the above Ward identities take a form very similar to other setups in the literature [38–40].
In the case of N = 4 SYM without defects, the Ward identities admit a simple closed-form
solution in which the different R-symmetry channels are related by algebraic relations.
This drastically simplifies the analysis because in the end one can just work with the
independent channels. Sadly, the defect setup of this paper is closer to the Ward identities
in three dimensions, where such an algebraic relation does no exist [38]. It is possible
however to relate the different R-symmetry channels by the action of a non-local operator.
This is obviously more cumbersome, but one can still implement it in order to focus only
on the independent portions of the correlator [41]. In this paper we work explicitly with all
the R-symmetry channels, however finding a better parameterization for our correlators is
an interesting problem that should be studied in more detail.

2.3.4 Crossing equation

The last important ingredient for our calculation are the defect CFT crossing equations.
Here we only summarize them, and refer the reader to [17] for further details. In any
CFT it is possible to fuse two bulk local operators as a sum of bulk operators. This bulk
OPE is denoted schematically as OJOJ ∼

∑
O λJJOO. On the other hand, the defect OPE

expands a bulk operator as a sum of defect operators OJ ∼
∑
Ô bJÔÔ. Note that for a bulk

one-point function 〈〈O 〉〉 ∼ aO, the defect OPE implies aO = bO1̂ where 1̂ is the defect
identity operator. These two expansions can be inserted in a two-point function, resulting
in a crossing equation:

F (J)(z, z̄, σ) =
( √

zz̄ σ

(1− z)(1− z̄)

)J∑
O
λJJOaOG(J)

O (z, z̄, σ) =
∑
Ô

b2
JÔĜ

(J)
Ô (z, z̄, σ) . (2.20)

It is important to keep in mind that operators in superconformal theories belong to super-
conformal multiplets. For example, in the crossing equation, O refers to the superconformal
primary operator of a PSU(2, 2|4) representation, which is labeled by the dimension ∆, the

6To be precise, z, z̄ are mapped to the boundary R-symmetry cross-ratios w1, w2, while σ is mapped to
the boundary spacetime cross-ratio −2ξ (this factor −2 ensures the correctness of this map).
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spin `, and an SO(6)R label K. Similarly, Ô is the superconformal primary of an OSp(4∗|4)
representation labeled by the defect dimension ∆̂, the transverse-spin s, and an SO(5)R
label K̂.7 Supersymmetry fixes the contributions of superdescendant operators, so the
expansion (2.20) is organized in superconformal blocks. These are linear combination of
non-supersymmetric conformal blocks:

G(J)
O (z, z̄, σ) =

∑
∆,`,K

c
(J)
∆,`,KhK(σ)f∆,`(z, z̄) ,

Ĝ(J)
Ô (z, z̄, σ) =

∑
∆̂,s,K̂

c
(J)
∆̂,s,K̂

ĥK̂(σ)f̂∆̂,s(z, z̄) .
(2.21)

The sums range over all operators in the supermultiplets of O/Ô that can appear in
the bulk/defect OPE of OJ . The function f∆,`(z, z̄) is a bulk-channel conformal block,
see (A.1) for a useful series representation. Similarly, f̂∆̂,s(z, z̄) is a defect-channel con-
formal block given in (B.2). Finally, hK(σ) and ĥK̂(σ) are bulk and defect R-symmetry
blocks respectively. They are polynomials in σ with a simple hypergeometric closed form
expression (B.3). The precise relative coefficients c(J)

∆,`,K and c(J)
∆̂,s,K̂

have been presented in
the appendix of [13].

2.4 Topological subsector

An important property of our correlators is that they contain a topological subsector. In
terms of the cross-ratios, the topological subsector can be obtained by setting z = z̄ = ω.
This projects out all the non-protected operators from the bulk and defect OPE and only
half-BPS protected operators remain. This topological subsector goes beyond our two-
point correlators, and it actually describes a closed-subsector of the operator spectrum
of the theory. The CFT data of the topological subsector can be obtained by solving
Gaussian multi-matrix models [11, 14, 29, 45]. Some of the explicit results that we present
below are necessary to fix overall coefficients in our bootstrap analysis, while others provide
non-trivial consistency checks of our calculation.

We start by looking at bulk single-trace half-BPS operators OJ defined in (2.1). We
follow the usual normalization conventions such that their two-point function is unit nor-
malized, and the dynamical information is captured by three-point functions. In our
conventions

〈OJ(x1, u1)OJ(x2, u2) 〉 = (u1 · u2)J

(x2
12)J

,

〈OJ1(x1, u1)OJ2(x2, u2)OJ3(x3, u3) 〉 = λJ1J2J3
(u1 · u2)J123(u2 · u3)J231(u3 · u1)J312

|x12|2J123 |x23|2J231 |x31|2J312
,

(2.22)

with Jijk := (Ji+Jj−Jk)/2. The OPE coefficients λJ1J2J3 were originally computed in [46],
and they are independent of the coupling:

λJ1J2J3 =
√
J1J2J3
N

. (2.23)

7Detailed analysis of the representation theory of these supergroups can be found in the literature [42–44].
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As already discussed, one-point functions of single-trace operators in the presence of the
supersymmetric Wilson line are kinematically fixed:

〈〈OJ(x, u) 〉〉 = aJ
(u · θ)J

|x⊥|J
. (2.24)

Since the normalization of OJ is determined by the two point function, the coefficient aJ
contains dynamical information about the defect CFT.8 The precise value can be obtained
from a perturbative calculation [9] or from a matrix-model calculation [10–12]

aJ =
√
λJ

2J/2+1N

IJ(
√
λ)

I1(
√
λ)

λ�1=
√
λJ

2J/2+1N

(
1− (J + 1)(J − 1)

2
√
λ

+O(λ−1)
)
. (2.25)

Note that it is also possible to construct half-BPS multi-trace operators. For example,
the OPE between the two single-trace operators OJ×OJ must contain the following double-
trace operator:

O(J,J)(x, u) := (2π)2J 2J−1/2

JλJ
tr
(
u · φ(x)

)J tr
(
u · φ(x)

)J
. (2.26)

The prefactor is chosen to have a unit normalized two-point function. By using the lo-
calization techniques of [11, 12, 16], we derived the one-point function of O(J,J) and its
three-point function with single-trace operators. Their product reads

a(J,J)λJJ(J,J) = Jλ

2J+2N2
I2J−1(

√
λ)

I1(
√
λ)

λ�1= Jλ

2J+2N2

(
1− 2J(J − 1)√

λ
+O(λ−1)

)
. (2.27)

This is all the information we need about bulk protected operators.
The topological sector also captures information involving protected operators localized

on the defect. There is a large degeneracy of protected defect operators which has been
discussed in [45]. For our purposes, there are two defect operators that play an important
role. On the one hand, there are defect operators inserted inside the path-ordering of the
Wilson line, which we write as

ÔK̂(τ, û) =W
[(
û · φ(τ)

)K̂ ]
. (2.28)

These operators are in symmetric traceless representations of the SO(5)R symmetry pre-
served by the defect. Therefore, û is a null polarization vector orthogonal to the Wilson
line polarization û · θ = û · û = 0. On the other hand, it is possible to define a similar
operator which lives outside the path-ordering

Ô(K̂)(τ, û) =W tr
(
û · φ(τ)

)K̂
. (2.29)

For both of these operators, one should choose a normalization such that their defect two-
point functions are unit normalized. The non-trivial dynamical information is then encoded

8For the particular case J = 2 the coefficient a2 is proportional to the Bremsstrahlung function [47].

– 8 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
3

in the bulk-defect two-point function:

〈〈 ÔK̂(τ1, û1)ÔK̂(τ2, û2) 〉〉 = (û1 · û2)K̂

τ2K̂
12

,

〈〈OJ(x1, u1)ÔK̂(τ2, û2) 〉〉 = bJK̂
(u1 · û2)K̂(u1 · θ)J−K̂

((x⊥1 )2 + τ2
12)K̂ |x⊥1 |J−K̂

.

(2.30)

For operators of the first type ÔK̂ , the bulk-defect coefficient has been calculated at strong
coupling in the planar limit [45]

bJK̂ = λ
2−K̂

4

N

2
3K̂−J−2

2
√
J√

K̂!
Γ(J+K̂+1

2 )
Γ(J−K̂+1

2 )

(
1 + 4− 4J2 + 5K̂ + K̂2

8
√
λ

+O(λ−1)
)
. (2.31)

On the other hand, the coefficients bJ(K̂) have not appeared in the literature. An interesting
outcome of our analysis is a prediction for the value of bJ(Ĵ). However, let us stress that our
correlators also contain information about infinitely many non-protected operators that are
not captured by the topological subsector.

Note that the crossing equation given in (2.20) truncate on both sides in the topological
sector [37]. This is known as microbootstrap, and in some cases the system of equations
can be solved exactly [48].

3 〈〈 O2O2 〉〉 at strong coupling

In this section we compute the correlator 〈〈O2O2 〉〉 in the strong coupling limit. As ex-
plained in section 2.2, the two leading contributions are somewhat trivial and take the form
given in equations (2.8) and (2.9). As in equation (2.17), we decompose the next correction
into three R-symmetry channels:

F (2)(z, z̄, σ)
∣∣
O(
√
λ

N2 ) = σ2F0(z, z̄) + σF1(z, z̄) + F2(z, z̄) . (3.1)

For compactness, here and for the rest of this section we drop the superscripts in the
functions F (J)

j (z, z̄). In what follows we derive this correlator using the Lorentzian inversion
formula presented in [27].

3.1 Lorentzian inversion formula

The idea of the Lorentzian inversion formula is that the discontinuity of the correlator is
sufficient to extract the full defect CFT data, which in turn can be used for reconstructing
the full correlator. For now we consider general single-trace operators OJ(x, u), and later
we focus on the J = 2 case. For a codimension-three defect, such as a Wilson line in four
dimensions, the inversion formula reads

bj(∆̂, s) =
∫ 1

0

dz

2z z
−(∆̂−s)/2

∫ 1/z

1

dz̄

2πi(1− zz̄)(z̄ − z)z̄−(∆̂+s)/2−2

× 2F1

(1
2 , 1 + s,

3
2 + s; z

z̄

)
2F1

(1
2 , 1− ∆̂, 3

2 − ∆̂, zz̄
)
DiscFj(z, z̄) ,

(3.2)
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where the discontinuity is computed around the branch cut in z̄ ∈ [1,∞):

DiscFj(z, z̄) = Fj(z, z̄ + iε)− Fj(z, z̄ − iε), z̄ ≥ 1. (3.3)

The inversion formula is bosonic and thus it should be applied to each R-symmetry chan-
nel Fj(z, z̄) independently. The defect conformal dimensions are encoded in the poles of
bj(∆̂, s), while the residues are OPE coefficients:

bj(∆̂, s) = −
∑
n≥0

(b2j )n,s
∆̂− (J + s+ 2n+ γn,s)

. (3.4)

The coefficients (bj)n,s capture the normalization of the bulk-defect two-point function
〈〈OJÔn,s 〉〉, where the exchanged operators Ôn,s have dimension ∆̂n,s = J + s+ 2n+ γn,s
and transverse-spin s.9 In the case where (small) anomalous dimensions are relevant,
second-order poles are also present in the formula when Taylor expanding:

bj(∆̂, s) = −
∑
n≥0

(
(b2j )n,s

∆̂− (J + s+ 2n)
+

(b2jγj)n,s
(∆̂− (J + s+ 2n))2

+ . . .

)
. (3.5)

Once the OPE coefficients and the anomalous dimensions have been obtained, the correlator
can be expanded in defect spacetime blocks:

F̃j(z, z̄) =
∞∑
s=0

∞∑
n=0

(
(b2j )n,sf̂J+s+2n,s(z, z̄) + (b2jγj)n,s∂∆̂f̂J+s+2n,s(z, z̄)

)
. (3.6)

Note that we have introduced the notation F̃j instead of Fj , since the inversion formula
might miss contributions from low spins s < s∗ [27]. In that case, we must add extra terms
with spins s = 0, 1, . . . , s∗ to F̃j in order to recover the full correlator Fj . This procedure
will be described in detail in section 3.4. Except for these subtleties, equations (3.2)–(3.6)
reconstruct the function Fj using only information in its discontinuity DiscFj .

3.2 Computation of the discontinuity

The first step in order to apply the inversion formula (3.2) is to compute the discontinuity.
As we now show, the discontinuity can be computed even though the full correlator is
not known.

The idea is to expand the correlation functions in the bulk channel. The conformal
blocks in (A.1) can be written as f∆,`(z, z̄) = [(1 − z)(1 − z̄)](∆−`)/2f̃∆,`(z, z̄), where the
function f̃∆,`(z, z̄) has an expansion around z, z̄ = 1 in positive integer powers. As a result,
only the prefactor can have non-vanishing discontinuity. Therefore, the contribution of a
single bulk operator O to the discontinuity is

DiscFj(z, z̄)
∣∣
O ∝ (zz̄)J/2(1− z)

∆−(2J+`)
2 f̃∆,`(z, z̄) Disc

[
(1− z̄)

∆−(2J+`)
2

]
. (3.7)

There are two situations when this discontinuity does not vanish:
9In general the defect spectrum contains degeneracies, in which case the CFT data has to be understood

as a sum over degenerate operators.
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1. If ∆ is non-integer. This corresponds to O having an anomalous dimension correcting
its tree-level dimension ∆ = 2J + `+ 2n+ γ.

2. If ∆ is integer but ∆ < 2J + `. This corresponds to O being a protected single-
trace operator, whose dimension is below the double-trace threshold. Note that even
though Disc(1 − z̄)−n naively vanishes, for n > 0 the singularity at z̄ = 1 gives a
finite contribution to the inversion formula.10

In our setup the discontinuity only receives contributions of the second type. This
claim can be proved by studying the superconformal bulk OPE in detail. From now on we
focus on the J = 2 case. It was shown in [37] that in the presence of the line defect the
OPE O2 ×O2 truncates in the following way:

O2 ×O2 → 1 + B[0,2,0] + B[0,4,0] +
∑
`

C[0,2,0],` +
∑
∆,`
A∆

[0,0,0],` . (3.8)

These representations correspond to the operators acquiring a non-vanishing one-point
function in the presence of a half-BPS line defect (like the supersymmetric Wilson line we
study in this work). The operators in the B[0,2,0] multiplet have integer dimension ∆ < 4+`,
so they have non-vanishing discontinuity. The operators in the B[0,4,0], C[0,2,0],` multiplets
have integer dimension ∆ ≥ 4 + `, so they cannot contribute to the discontinuity. Only the
unprotected multiplets A∆

[0,0,0],` can have anomalous dimensions. The scaling dimensions
of these multiplets have the following schematic structure [49]

∆ = 2J + 2n+ `+ 1
N2

(
a+ b

λ3/2 + . . .

)
+O(N−4) , (3.9)

which means anomalous dimensions do not contribute at the order in perturbation theory
we are working. This implies all the operators in the bulk OPE (3.8) do not have anomalous
dimensions at this order, so the correlator must admit an expansion in integer powers in
the limit z, z̄ → 1.

The main consequence of these observations is that only the superblock G[0,2,0] corre-
sponding to B[0,2,0] has non-vanishing discontinuity:

DiscF (2)(z, z̄, σ)
∣∣∣
O(
√
λ

N2 )
= λ222a2 Disc

( √
zz̄ σ

(1− z)(1− z̄)

)2

G[0,2,0](z, z̄, σ) . (3.10)

In the rest of this section we reconstruct the full correlator from the single superblock G[0,2,0].

3.3 Inversion of B[0,2,0]

We now invert the superblock G[0,2,0] in order to extract the defect CFT data, and by re-
summing the defect expansions, we obtain the correlators given in (3.23), (3.25) and (3.26).

The superblocks G[0,K,0] are known and given in equation (4.4). For K = 2 they take
the form

G[0,2,0](z, z̄, σ) = h2(σ)f2,0(z, z̄) + 1
180h0(σ)f4,2(z, z̄) , (3.11)

10This will be proved concretely by deriving equation (3.16).
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where hK(σ) and f∆,`(z, z̄) correspond respectively to R-symmetry and spacetime confor-
mal blocks, which can be found in appendixes B and A. We see that we need to invert two
bosonic blocks, namely a scalar block f2,0 as well as the stress-tensor block f4,2. Using the
definition (B.3) for the R-symmetry blocks, we can extract the discontinuities in the three
channels:

DiscF0(z, z̄) = −λ222a2 Disc zz̄

180(1− z)2(1− z̄)2 (30f2,0(z, z̄)− f4,2(z, z̄)) ,

DiscF1(z, z̄) = λ222a2 Disc zz̄

(1− z)2(1− z̄)2 f2,0(z, z̄) ,

DiscF2(z, z̄) = 0 .

(3.12)

It is convenient to express the blocks using the following variable:

ȳ := 1− z̄√
z̄
. (3.13)

As discussed in the previous section, only negative powers of ȳ are relevant for the discon-
tinuity. Since a factor ȳ−2 comes from the prefactor in (3.12), we have to expand the bulk
blocks to order O(ȳ) as ȳ → 0. Using the methods in appendix A we find

f2,0(z, z̄) = −ȳ log z +O(ȳ3) ,

f4,2(z, z̄) = ȳ

(
90(z + 1)
z − 1 − 30

(
z2 + 4z + 1

)
log z

(z − 1)2

)
+O(ȳ3) .

(3.14)

Let us now invert an arbitrary power ȳ−p. In this section we only need the p = 1 case,
but the case p ≥ 2 is relevant for section 4. For arbitrary powers of ȳ the discontinuity (3.3)
results in:

Disc ȳ−p = 2i sin(pπ)(−ȳ)−p . (3.15)
In principle now we should compute the inversion integral (3.2). In practice this is too
hard, so we expand the integrand as z → 0.11 Each new power of z will give information
of a new defect family with higher transverse-twist ∆̂− s. In the z → 0 limit the integral
over z̄ is standard and gives the following result:

Bp(β) = 2i sin(πp)
∫ ∞

1

dz̄

2πi z̄
−β/2−1(−ȳ)−p =

Γ
(
β+p

2

)
Γ(p)Γ

(
β−p+2

2

) . (3.16)

Although for integer p > 0 the discontinuity (3.15) naively vanishes, note that the final
result is perfectly finite. This is expected, because the correlator is singular at z̄ → 1, and
the inversion formula reconstructs the CFT data from this singularity. Note that for p = 1
then B1(β) = 1, which simplifies our calculations below.

In general the integral over z has the following structure:

b(∆̂, s) =
∑
n≥0

∫ 1

0

dz

2z z
− ∆̂−(2+s+2n)

2
[
b(0,n)(∆̂, s) + b(1,n)(∆̂, s) log z

]

= −
∑
n≥0

(
b(0,n)(∆̂, s) + 2∂∆̂b

(1,n)(∆̂, s)
∆̂− (2 + s+ 2n)

+ 2b(1,n)(∆̂, s)
(∆̂− (2 + s+ 2n))2

+ . . .

)
∆̂=2+s+2n
.

(3.17)

11As a side effect, the expansion as z → 0 makes the inversion integral convergent order by order in z.
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This has to be compared to equation (3.5) in order to obtain the OPE coefficients as well
as the product of anomalous dimensions with tree-level OPE coefficients. The presence of
logs in equation (3.14) reveals that the scaling dimensions of the defect operators receive
anomalous corrections at this order.

In principle the results above are sufficient for extracting the defect CFT data in an
algorithmic way and for resumming the correlator using equation (3.6). However, for the
p = 1 case we can derive a closed-form formula for the defect CFT data corresponding
to the bosonic blocks of equation (3.11). In the following we denote by bf∆,`(∆̂, s) the
result of the inversion formula performed for individual bosonic spacetime blocks f∆,`. We
begin with the scalar block f2,0. Using the inversion formula as well as the integrals (3.16)
and (3.17) we find

bf2,0(∆̂, s) = −
∑
j,k≥0

(s+ 1)j(1/2)j
j!(s+ 3/2)j

(1− ∆̂)k(1/2)k
k!(3/2− ∆̂)k

∫ 1

0

dz

2z z
− ∆̂−s−2

2 zj+k log z

= −
∑
j,k≥0

(s+ 1)j(1/2)j
j!(s+ 3/2)j

(1− ∆̂)k(1/2)k
k!(3/2− ∆̂)k

−2
(∆̂− s− 2(j + k + 1))2

, (3.18)

where we have expanded the hypergeometric functions of equation (3.2). There are only
second-order poles present, thus only the coefficients b(1,n) are non-trivial in equation (3.17).
The infinite sum can be obtained in closed form

b
(0,n)
f2,0

(∆̂, s) = 0 ,

b
(1,n)
f2,0

(∆̂, s) = C(n)(∆̂, s) ,
(3.19)

where

C(n)(∆̂, s) = −
Γ
(
n+ 1

2

)
(∆̂− n)n

n!
√
π
(
∆̂− n− 1

2

)
n

4F3

(
1
2 ,−n, s+ 1, ∆̂− n− 1

2
1
2 − n, s+ 3

2 , ∆̂− n
; 1
)
. (3.20)

The calculation of the stress-tensor block proceeds in an analogous way. Using the integrals
given above we obtain

b
(0,n)
f4,2

(∆̂, s) = 90C(n)(∆̂, s) + 180
n∑

m=1
C(n−m)(∆̂, s) ,

b
(1,n)
f4,2

(∆̂, s) = 30C(n)(∆̂, s) + 180
n∑

m=1
m C(n−m)(∆̂, s) .

(3.21)

Putting everything together, with the relative coefficients given by equation (3.12), the
bosonic CFT data for F̃0(z, z̄) reads

(b20)n,s = 1
180λ222a2

(
b
(0,n)
f4,2

(∆̂, s)− 60 ∂∆̂b
(1,n)
f2,0

(∆̂, s) + 2∂∆̂b
(1,n)
f4,2

(∆̂, s)
)

∆̂=J+s+2n
,

(b20γ0)n,s = − 1
90λ222a2

(
30 b(1,n)

f2,0
(∆̂, s)− b(1,n)

f4,2
(∆̂, s)

)
∆̂=J+s+2n

. (3.22)
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This can be used for resumming the correlator as in equation (3.6). The result takes a very
simple form:

F̃0(z, z̄) = −λ222a2
zz̄

2(1− z)(1− z̄)

[ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
. (3.23)

The same analysis can be performed for F̃1(z, z̄), for which we find the following bosonic
CFT data

(b21)n,s = 2λ222a2 ∂∆̂b
(1,n)
f2,0

(∆̂, s) ,

(b21γ1)n,s = 2λ222a2 b
(1,n)
f2,0

(∆̂, s) ,
(3.24)

and the resummation gives a compact expression:

F̃1(z, z̄) = −λ222a2
zz̄ log zz̄

(1− z)(1− z̄)(1− zz̄) . (3.25)

Finally, since the discontinuity of F2(z, z̄) vanishes (3.12), we simply find

F̃2(z, z̄) = 0 . (3.26)

3.4 Supersymmetrization of the correlator

The correlation function obtained in the previous section is not supersymmetric, i.e. the
three R-symmetry channels given in (3.23), (3.25) and (3.26) do not respect the Ward
identities given in (2.18). This happens because the inversion formula misses contributions
from low-lying spins s ≤ s∗ as anticipated in section 3.1.12 The value of s∗ is related to the
behavior of the two-point function in the Regge limit z/z̄ → 0 [27], and in principle s∗ can
be determined by careful analysis of the corresponding Witten diagrams. Instead, in the
present work we use the heuristic that s∗ should take the minimal value that generates a
supersymmetric correlator. As we show below, the resulting correlators make predictions
which are in perfect agreement with the expectations from the topological sector.

As we just argued, in order to obtain a supersymmetric correlator, we add defect fami-
lies with operators of dimensions ∆̂ = 0, 1, 2, . . . and low spin s ≤ s∗. The OPE coefficients
of these operators are unknowns that we fix by imposing the Ward identities (2.18). We
have found experimentally that the minimal ansatz consists on taking s∗ = 0 for F̃1(z, z̄)
and s∗ = 1 for F̃2(z, z̄). To be precise, we define the final correlators Fj(z, z̄) as

F0(z, z̄) = F̃0(z, z̄) ,

F1(z, z̄) = F̃1(z, z̄) +
∞∑
n=0

(
knf̂n,0(z, z̄) + pn∂∆̂f̂n,0(z, z̄)

)
,

F2(z, z̄) = F̃2(z, z̄) +
∑
s=0,1

∞∑
n=0

(
qn,sf̂n+s,s(z, z̄) + rn,s∂∆̂f̂n+s,s(z, z̄)

)
.

(3.27)

12Such a phenomenon has already been observed for bulk correlators. For example, in the bootstrap of the
Wilson-Fisher fixed point there is an ambiguity captured by a single ` = 0 block [50, 51]. In supersymmetric
theories, one expects the inversion formula to converge better than in non-supersymmetric ones, see [52]
for a recent discussion.

– 14 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
3

As mentioned before, the free coefficients kn, pn, qn,s and rn,s, can be fixed by requiring
that the Ward identities are satisfied. In fact this fixes all the coefficients in terms of q0,0
and k1. Note that q0,0 corresponds to the ambiguity f0,0(z, z̄) = 1, i.e. the defect identity.
However, we know from the Witten diagrams analysis of section 2.2 that the defect identity
is given by the constant contribution a2

2, and thus

q0,0 = a2
2

∣∣∣
O(
√
λ

N2 )
. (3.28)

On the other hand, the unknown k1 can be determined by demanding a bulk expansion
that is consistent with the observations made in section 3.2, i.e. there should not appear
anomalous dimensions for bulk operators. This means that the expansion of (3.27) in the
limit z, z̄ → 1 should take the form of a power series, without spurious log(1 − z̄) terms.
Since the defect expansion (3.27) is natural around z, z̄ ∼ 0, this is only possible after
fixing the free coefficients and resumming the correlator. We were able to do so, and the
remaining spurious term reads:

F1(z, z̄) ∼ 1
2 (λ222a2 − k1) log(1− z̄) + . . . (3.29)

This fixes the coefficient k1 to be:
k1 = λ222a2 . (3.30)

3.5 Final result and comparison to localization

We will now present the final result for the correlator 〈〈O2O2 〉〉 using the input of local-
ization for the two remaining free coefficients, namely a2

2 and λ222a2. We can then obtain
OPE coefficients of other protected operators which in turn can be checked against the
localization data.

The constant contribution a2
2 from the defect identity can be fixed using equa-

tion (2.25):

a2
2 = λ

N2

(1
8 −

3
8
√
λ

+ . . .

)
(3.31)

while for the OPE coefficient λ222a2 we use the localization results given in equation (2.23)
and (2.25):

λ222a2 = λ

N2

( 1√
λ

+ . . .

)
. (3.32)

We thus obtain a correlator without any free coefficient left:

F0(z, z̄) = −
√
λ

2N2
zz̄

(1− z)(1− z̄)

[ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
,

F1(z, z̄) =
√
λ

N2

[
log(1 +

√
zz̄) + zz̄

(1− zz̄)2

+
zz̄
(
5zz̄ − 2z2z̄2 + z3z̄3 − (z + z̄)(2− zz̄ + z2z̄2)

)
log zz̄

2(1− z)(1− z̄)(1− zz̄)3

]
,
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F2(z, z̄) =
√
λ

8N2

[
− 3− 2(z + z̄)√

zz̄
+ (z + z̄)(1 + zz̄)− 4zz̄

(1− zz̄)2

+
2
(
(z + z̄)(1 + zz̄)− 4zz̄

)
log(1 +

√
zz̄)

zz̄

+
zz̄
(
(z + z̄)(3− 2zz̄ + z2z̄2)− 6 + 6zz̄ − 4z2z̄2) log zz̄

(1− zz̄)3

]
. (3.33)

Comparing to (B.6), this correlator predicts the OPE coefficient of the double-trace oper-
ator O(2,2)

λ22(2,2)a(2,2) = λ

N2

(1
8 −

1
2
√
λ

+ . . .

)
, (3.34)

which matches the localization results given in equation (2.27). We can also extract the
defect CFT data for the protected operators:

b221 = λ

N2

( 1√
λ

+ . . .

)
,

b22(2) = 1 + λ

N2

(
− 1

2
√
λ

+ . . .

)
.

(3.35)

The OPE coefficient b221 can be compared to the direct computation (see equation (2.31)),
and we find a perfect match. The OPE coefficient b22(2) corresponds to the operator Ô(2)
introduced in equation (2.29) and is a prediction from our result.13

Moreover, using the superblocks described in [13, 37], the correlator above can also be
used for extracting the supersymmetric CFT data for unprotected operators. The resulting
CFT data has to be interpreted as a sum over degenerate operators, and one would need
to solve a mixing problem similar to the case of N = 4 SYM without defects [6, 53–55].
Below we provide a few examples, while we postpone the full analysis of the CFT data and
the mixing problem to future work. In particular, the product of tree-level coefficients and
anomalous dimensions for the unprotected operators at lowest twist ∆̂ = s+ 2 reads

F̂s+2,sγs+2,s
∣∣∣
O(
√
λ

N2 )
= − 3 + 2s

2(1 + s)

√
λ

N2 . (3.36)

Note that here we use the notation of [13]. It is also possible to obtain a closed form for
the OPE coefficients of the semishort operators (B, 1)[1,s]:

Ês
∣∣∣
O(
√
λ

N2 )
= − 1 + s

2(1 + 2s)

√
λ

N2 . (3.37)

The Mathematica notebook provided as supplementary material extracts the CFT data in
the bulk and defect channel.

13The observation that Ô(2) should appear in this type of correlator was first discussed in appendix A
of [45]. In principle the operator Ô2 should also appear, but it can be seen from equation (2.31) that it is
not relevant at the present order.
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4 General identical operators

In this section we extend the analysis of the previous section for general identical operators
〈〈OJOJ 〉〉. The calculation of 〈〈O2O2 〉〉 carries through almost unchanged, as will be
described shortly. As a concrete application we obtain closed-form expressions for the
J = 3, 4 correlators, which can also be found in the Mathematica notebook provided as
supplementary material.

4.1 General discussion

As discussed in section 2, the correlator of interest has the form

F (J)(z, z̄, σ) =
(

σ
√
zz̄

(1− z)(1− z̄)

)J
+ Jλ

2J+2N2 +
J∑
j=0

σjF
(J)
J−j(z, z̄) +O

( 1
N2

)
, (4.1)

where we used the leading-order result for the one-point function (2.25). Here we give a
general prescription to obtain the functions F (J)

j (z, z̄) that contribute at order
√
λ

N2 .
The central idea is to reconstruct these functions using the Lorentzian inversion for-

mula (3.2). It was discussed in section 3.2 that only operators with single-trace dimension
can contribute to the discontinuity of the correlator. The bulk OPE of OJ takes the
form [37]

OJ ×OJ ∼ 1 +
J∑
k=1
B[0,2k,0] + . . . , (4.2)

where . . . contains unprotected multiplets that do not contribute to the discontinuity.
Furthermore, B[0,2J,0] has double-twist dimension and does not contribute. From this it
follows that, at the order we are working, the discontinuity of the correlator reads

DiscF (J)(z, z̄, σ)
∣∣∣
O(
√
λ

N2 )
= Disc

[(
σ
√
zz̄

(1− z)(1− z̄)

)J J−1∑
k=1

λJJ2ka2kG[0,2k,0](z, z̄, σ)
]
. (4.3)

The superconformal blocks capture the information of half-BPS operators exchanged in
the bulk OPE OJ × OJ . They were obtained in [13], and we reproduce them here for
simplicity:

G[0,K,0](z, z̄, σ) = hK(σ)fK,0(z, z̄) + (K + 2)2K

128(K + 1)2(K + 3)hK−2(σ)fK+2,2(z, z̄)

+ (K − 2)(K + 2)K2

16384(K − 1)2(K + 1)(K + 3)hK−4(σ)fK+4,0(z, z̄) .
(4.4)

Using (4.3) as input to the inversion formula, it is possible to generate a series representation
of the correlators F̃ (J)

j (z, z̄). In concrete examples, these series expansions do not satisfy
the Ward identities, just as we saw for the 〈〈O2O2 〉〉 case. This is a result of the inversion
formula not converging for low values of the transverse spin s. Empirically we have found
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that the minimal set of additions is

F
(J)
j (z, z̄) = F̃

(J)
j (z, z̄) for j = 0, . . . , J − 2 ,

F
(J)
J−1(z, z̄) = F̃

(J)
J−1(z, z̄) +

∞∑
n=0

(
knf̂n,0(z, z̄) + pn∂∆̂f̂n,0(z, z̄)

)
,

F
(J)
J (z, z̄) = F̃

(J)
J (z, z̄) +

∑
s=0,1

∞∑
n=0

(
qn,sf̂n+s,s(z, z̄) + rn,s∂∆̂f̂n+s,s(z, z̄)

)
.

(4.5)

Namely, we must add s = 0 ambiguities to F (J)
J−1(z, z̄), while we must add s = 0, 1 am-

biguities to F (J)
J−1(z, z̄). Using the Ward identities (2.18), it is possible to fix all the free

coefficients kn, pn, qn,s, rn,s except for q0,0 and k1. As discussed around equation (3.28),
q0,0 can be identified with the defect identity a2

J and is therefore fixed from localization.
Furthermore, if one keeps the bulk OPE coefficients λJJKaK arbitrary, the Ward identities
also fix their relative values. For example, the Ward identities together with (4.5) imply

λJJKaK
∣∣∣
O(
√
λ

N2 )
= K

2K/2
λJJ2a2

∣∣∣
O(
√
λ

N2 )
for 2 ≤ K ≤ J − 2 . (4.6)

These results are in perfect agreement with the known values (2.25) at leading order at large
λ. This provides evidence that (4.5) is the correct prescription for the low-spin additions.

At this point, it is possible to resum the series expansion representations for F (J)
j .

These resummed correlators can be expanded in a series around z, z̄ = 1, which corresponds
to the bulk conformal block decomposition. The expansion contains spurious log(1 − z̄)
terms, which would imply that bulk operators get anomalous dimensions. These anomalous
dimensions should not be present at the order we are working, so canceling the spurious
logarithms fixes the remaining free parameter k1.

Summarizing, we need two inputs to compute 〈〈OJOJ 〉〉

Inputs: a2
J and λJJ2a2 . (4.7)

Then, the expansion of 〈〈OJOJ 〉〉 in superconformal blocks allows to extract an infinite
number of previously unknown OPE coefficients. Of these coefficients, there are 2J − 1
which are computable with localization:

Comparable predictions: λJJ2ka2k for k = 2, . . . , J and bJK̂ for K̂ = 1, . . . , J . (4.8)

For the three examples we have studied J = 2, 3, 4, all available data from localization is
in perfect agreement with our results.

4.2 Example 1: 〈〈 O3O3 〉〉

Let us turn our attention to the case of 〈〈O3O3 〉〉. The purpose of this example is to
illustrate the general formalism that we just discussed. Furthermore, we present concrete
intermediate results to help the readers interested in reproducing our results.
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4.2.1 Inversion of single traces

The first step is to obtain the discontinuity of the correlator, by combining (4.3) and (4.4)
with (A.2). For concreteness we look at the coefficient of σ3, or equivalently we focus on
the F (3)

0 (z, z̄) correlator:

DiscF (3)
0 (z, z̄) =λ332a2

z3/2 (z2 − 2z log z − 1
)

2(1− z)5 Disc 1
ȳ2

− λ334a4
z3/2(z3 + 9z2 − 9z − 1− 6z(z + 1) log z

)
4(1− z)6 Disc 1

ȳ
.

(4.9)

Similar expressions can be easily obtained for the other F (3)
j (z, z̄). The next step is to

insert the discontinuity in the inversion formula (3.2), and carry out the inversion order
by order as z → 0. Each power zp induces a defect family with blocks f̂2p+s+2n,s(z, z̄)
and OPE coefficients given by the poles of b(∆̂, s). Similarly, each power zp log z induces
defect anomalous dimensions ∂∆̂f̂2p+s+2n,s(z, z̄) given by the double poles of b(∆̂, s). All
the integrals that are needed are of the form (3.16) with p = 1, 2. The resulting defect
expansion for the lowest-lying operators is

F̃
(3)
0 (z, z̄) = 1

2(3λ332a2 − λ334a4)f̂3,0(z, z̄) + 1
2(5λ332a2 − λ334a4)f̂4,1(z, z̄)

+ 2
21(121λ332a2 − 73λ334a4)f̂5,0(z, z̄) + 2(5λ332a2 − 3λ334a4)∂∆̂f̂5,0(z, z̄)

+ 1
2(7λ332a2 − λ334a4)f̂5,2(z, z̄) + . . . (4.10)

Once again, the expansions for other F̃ (3)
j (z, z̄) are obtained in an identical manner. Unlike

in the 〈〈O2O2 〉〉 case, we were not able to express the defect CFT data in closed forms.
However, the previous calculation can be automatized with a computer, and the expansion
can be generated efficiently up to high orders.

4.2.2 Supersymmetrization of the correlator

As for the 〈〈O2O2 〉〉 case, the F̃ (3)
j (z, z̄) do not give a supersymmetric correlator because

the Lorentzian inversion formula can miss low transverse-spin contributions. In order for
F̃

(3)
j (z, z̄) to satisfy the Ward identities (2.18), we add the following s = 0, 1 contributions

to our correlators

F
(3)
0 (z, z̄) = F̃

(3)
0 (z, z̄) , F

(3)
1 (z, z̄) = F̃

(3)
1 (z, z̄) ,

F
(3)
2 (z, z̄) = F̃

(3)
2 (z, z̄) +

∞∑
n=0

(
knf̂n,0(z, z̄) + pn∂∆̂f̂n,0(z, z̄)

)
,

F
(3)
3 (z, z̄) = F̃

(3)
3 (z, z̄) +

∑
s=0,1

∞∑
n=0

(
qn,sf̂n+s,s(z, z̄) + rn,s∂∆̂f̂n+s,s(z, z̄)

)
.

(4.11)

After this addition, the functions F (3)
j (z, z̄) should satisfy the Ward identities (2.18), which

are highly constraining. In fact, the only coefficients that remain unfixed are λ332a2, k1 and
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q0,0. In particular, notice that the precise relation between single-trace OPE coefficients is
fixed:

λ334a4
∣∣∣
O(
√
λ

N2 )
= λ332a2

∣∣∣
O(
√
λ

N2 )
. (4.12)

Reassuringly, this relation is consistent with localization (2.25). Again, we believe this is
strong evidence for the ansatz (4.11) for low transverse-spin ambiguities to be correct. In
the case of 〈〈O4O4 〉〉 we find a similar result involving K = 4, 6, and for general J we
expect equation (4.6) to hold.

4.2.3 Fixing free parameters and final result

At this point, we have a supersymmetric correlator depending on three free parameters.
Using the series representation of the correlator (4.10) it is possible to find a closed form
expression in terms of rational functions and logarithms. In particular, we find

F
(3)
2 (z, z̄) = −3

8(3λ332a2 + 32k1) tanh−1√zz̄ + . . . , (4.13)

where . . . stand for terms which have an expansion around z, z̄ = 1 involving only integer
powers. On the other hand, tanh−1√zz̄ has an expansion with log(1 − z̄) terms. These
logarithms correspond to anomalous dimensions in the bulk, which should be absent by
our assumptions. We thus conclude

k1 = − 3
32λ332a2 . (4.14)

In order to fix the last two coefficients we use input from the localization results of the
topological sector. Indeed, from (2.25) we have that

λ332a2 = λ

N2

( 3
2
√
λ

+ . . .

)
, a2

3 = λ

N2

( 3
32 −

3
4
√
λ

+ . . .

)
. (4.15)

As discussed around equation (3.28), the coefficient q0,0 has a natural interpretation as the
defect identity contribution given by a2

3. We thus conclude q0,0 = −3
√
λ

4N2 .
The final result with no free parameters takes a reasonably simple form:

F
(3)
0 (z, z̄) = −6

√
λ

8N2
(zz̄)3/2[

(1− z)(1− z̄)
]2 [ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
,

F
(3)
1 (z, z̄) = 3

√
λ

4N2
(zz̄)3/2

(1− z)(1− z̄)(1− zz̄)4

(
z2z̄2 − 38zz̄ + 1

− 2
(
(z + z̄)(zz̄ + 1)

(
z2z̄2 − 11zz̄ + 1

)
+ zz̄(zz̄ + 5)(5zz̄ + 1)

)
log zz̄

(1− z)(1− z̄)(1− zz̄)

)
,

F
(3)
2 (z, z̄) = −18

√
λ

N2
(zz̄)1/2

(1− zz̄)2

(
zz̄

(1− z)(1− z̄) −
3(1 + zz̄)

(
z2z̄2 + 6zz̄ + 1

)
32(1− zz̄)2

− 2zz̄
(
7 + 10zz̄ + 7z2z̄2) log zz̄

32(1− zz̄)3 + zz̄(1 + zz̄) log zz̄
2(1− z)(1− z̄)(1− zz̄)

)
,
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F
(3)
3 (z, z̄) = −3

√
λ

4N2

(
1− 3(zz̄)1/2 ((z + z̄)

(
z2z̄2 + 10zz̄ + 1

)
− 3(zz̄ + 1)3)

4(1− zz̄)4

+ 3(zz̄)3/2 (5z2z̄2 + 2zz̄ + 5− 3(z + z̄)(zz̄ + 1)
)

log zz̄
2(1− zz̄)5

)
. (4.16)

In principle, this correlation function contains information of infinitely many unprotected
operators, but as for the 〈〈O2O2 〉〉 case we leave a detailed analysis of the OPE for future
work. Instead, we focus on the CFT data captured by the topological sector. Comparing
the full correlator (4.1) to equation (B.6) gives the bulk data

λ334a4 = λ

N2

( 3
2
√
λ

+ . . .

)
, λ33(3,3)a(3,3) = λ

N2

( 3
32 −

9
8
√
λ

+ . . .

)
, (4.17)

while comparing to (B.8) gives the defect data

b231 = λ

N2

( 27
16
√
λ

+ . . .

)
, b232 = O

(
λ0

N2

)
, b23(3) = 1 + λ

N2

(
− 3

4
√
λ

+ . . .

)
. (4.18)

These results are in perfect agreement with the literature, see (2.25), (2.27) and (2.31).
Remember that b3(3) cannot be compared to (2.31) because the results of [45] apply to the
defect operator Ô3, while our result applies to the defect operator Ô(3), see the discussion
in footnote 13.

4.3 Example 2: 〈〈 O4O4 〉〉

Let us finally consider the 〈〈O4O4 〉〉 two-point function. Since the calculation is essentially
identical to the previous one, we skip most of the details. However, it is important to note
that the following input from localization is necessary:

λ442a2 = λ

N2

( 2√
λ

+ . . .

)
, a2

4 = λ

N2

( 1
16 −

15
16
√
λ

+ . . .

)
. (4.19)

Following all the steps, which can be automatized with the help of a computer, we obtain
the correlation function

F
(4)
0 (z, z̄) = −

√
λ

N2
(zz̄)2[

(1− z)(1− z̄)
]3 [ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
,

F
(4)
1 (z, z̄) =

√
λ

N2
(zz̄)2

(1− z)2(1− z̄)2(1− zz̄)4

(
z2z̄2 − 38zz̄ + 1

− 2
(
(z + z̄)(zz̄ + 1)

(
z2z̄2 − 11zz̄ + 1

)
+ zz̄(zz̄ + 5)(5zz̄ + 1)

)
log zz̄

(1− z)(1− z̄)(1− zz̄)

)
,

F
(4)
2 (z, z̄) = −3

√
λ

2N2
(zz̄)2

(1− z)2(1− z̄)2(1− zz̄)6

×
(

+ 2(z + z̄)(zz̄ + 1)
(
8z2z̄2 − 91zz̄ + 8

)
+ 2zz̄

(
43z2z̄2 + 214zz̄ + 43

)
+ (zz̄ + 1)(z4z̄4 + 14z3z̄3 + 270z2z̄2 + 14zz̄ + 1) log zz̄

1− zz̄

+ (z + z̄)(7z4z̄4 − 46z3z̄3 − 222z2z̄2 − 46zz̄ + 7) log zz̄
1− zz̄

)
,
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F
(4)
3 (z, z̄) = −

√
λ

2N2

( 270(zz̄)2(zz̄ + 1)
(1−z)(1−z̄)(1−zz̄)4 −

zz̄
(
2z4z̄4 + 229z3z̄3 + 438z2z̄2+ 229zz̄ + 2

)
(1− zz̄)6

+ 90(zz̄)2 (z2z̄2 + 4zz̄ + 1
)

log zz̄
(1− z)(1− z̄)(1− zz̄)5 − 4 log

(
1 +
√
zz̄
)

− (zz̄)2 (2z5z̄5 − 14z4z̄4 + 117z3z̄3 + 325z2z̄2 + 395zz̄ + 75
)

log zz̄
(1− zz̄)7

)
,

F
(4)
4 (z, z̄) =

√
λ

N2

(
− z + z̄

2
√
zz̄

+ (z + z̄)(zz̄ + 1)− 4zz̄
2zz̄ log

(
1 +
√
zz̄
)

+ 2(z + z̄)(zz̄ + 1)
(
2z4z̄4 − 11z3z̄3 + 468z2z̄2 − 11zz̄ + 2

)
16(1− zz̄)6

− 15z6z̄6 − 74z5z̄5 + 1397z4z̄4 + 924z3z̄3 + 1397z2z̄2 − 74zz̄ + 15
16(1− zz̄)6 (4.20)

+ (zz̄)2(z + z̄)
(
z5z̄5 − 6z4z̄4 + 14z3z̄3 + 56z2z̄2 + 315zz̄ + 70

)
log zz̄

4(1− zz̄)7

− (zz̄)2 (4z5z̄5 − 28z4z̄4 + 189z3z̄3 + 245z2z̄2 + 385zz̄ + 105
)

log zz̄
4(1− zz̄)7

)
.

Once again, let us compare the predictions of this correlator with the topological sector.
We find the bulk data

λ444a4 = λ

N2

( 2√
λ

+ . . .

)
, λ446a6 = λ

N2

( 3
2
√
λ

+ . . .

)
,

λ44(4,4)a(4,4) = λ

N2

( 1
16 −

3
2
√
λ

+ . . .

)
,

(4.21)

while the defect data is given by

b241 = λ

N2

( 2√
λ

+ . . .

)
, b242 = O

(
λ0

N2

)
,

b243 = O

(
λ0

N2

)
, b24(4) = 1 + λ

N2

(
− 1√

λ
+ . . .

)
.

(4.22)

These results are in perfect agreement with the literature, except for b4(4), which is a new
prediction from our calculation.

4.4 A conjecture

In the three examples considered in the present paper, the function F (J)
0 (z, z̄) is very simple:

F
(J)
0 (z, z̄) = −J

√
λ

4N2
(zz̄)J/2[

(1− z)(1− z̄)
]J−1

[ 1 + zz̄

(1− zz̄)2 + 2zz̄ log zz̄
(1− zz̄)3

]
. (4.23)

It is tempting to conjecture that this relation also holds for J > 4. From our bootstrap
calculation, (4.23) is a result of a precise combination of the spacetime bulk blocks (A.2),
the superblocks (4.4) and the OPE coefficients in the topological sector (2.25). Perhaps
from the point of view of the explicit holographic calculation the origin of (4.23) will be
more transparent.
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Let us also note the similarity between F (3)
1 (z, z̄) and F (4)

1 (z, z̄)

F
(J)
1 (z, z̄) = J

√
λ

4N2
(zz̄)J/2

(1− z)J−2(1− z̄)J−2(1− zz̄)4

(
z2z̄2 − 38zz̄ + 1

− 2
(
(z + z̄)(zz̄ + 1)

(
z2z̄2 − 11zz̄ + 1

)
+ zz̄(zz̄ + 5)(5zz̄ + 1)

)
log zz̄

(1− z)(1− z̄)(1− zz̄)

)
.

(4.24)

We do not have enough data points to propose a full analytic formula for any J , however
our current results look promising. In the discussions below we speculate on what might
be the best possible strategy for the future.

5 Conclusions

In this work we have studied the structure of two-point functions of single-trace half-
BPS operators in the presence of a supersymmetric Wilson line in N = 4 SYM the-
ory. We used analytical bootstrap techniques in order to reconstruct the correlator at
strong coupling. For operators of weight J = 2, 3, 4 we obtained fairly simple results pre-
sented in (3.33), (4.16), (4.20) which only involve logarithms and rational functions of the
cross-ratios.

A natural continuation of our work is the analysis of two-point functions for arbitrary
weight 〈〈OJ1OJ2 〉〉. One obvious approach is to keep pushing the algorithm presented in
this paper to higher values of J . However there might be better strategies. In N = 4 SYM
without defects, explicit closed form expressions for half-BPS operators take a particularly
simple form in Mellin space [7, 8, 56, 57]. It would be interesting to transform the explicit
formulas presented in this paper to Mellin variables. The Mellin space approach for defect
CFT was explored in [58], the hope being that this might be the natural language to write
the most general correlator 〈〈OJ1OJ2 〉〉. A better understanding of the implications of the
Ward identities (2.18) might be necessary in order to achieve this goal. For example, in
this work we considered R-symmetry channels individually, which is notably cumbersome.
By solving the WI efficiently, one could write a supersymmetric inversion formula and
significantly reduce the number of channels.

Another interesting line of research is to reproduce our results by an explicit
holographic calculation using Witten diagrams. Some observables in holographic de-
fect CFTs have been studied perturbatively at strong coupling, for example bulk one-
point functions [11, 26], bulk-defect correlators [45] and correlators localized on the de-
fect [28, 29, 36, 59, 60]. The two-point function of bulk operators was studied to order
O( λ

N2 ) in [14], and the next order will involve the calculation of the Witten diagram (2.10).
The structural understanding presented in this work might give valuable input for this type
of calculation.

The idea of reconstructing correlators starting from their discontinuity is powerful.
In defect CFT it seems to be as powerful as in the case for homogeneous CFTs. For
monodromy defects in the ε-expansion this method was already used to fully bootstrap
two-point correlators of chiral fields [61]. In this work we developed an algorithm that in

– 23 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
3

principle can be used to bootstrap an infinite family of half-BPS correlators. We expect that
the same method also works in related N = 4 SYM setups, such as the non-supersymmetric
Wilson line [59], Wilson lines in more general representations of the gauge group [60], or
even higher codimension defects. Furthermore, many half-BPS defects are known to exist
in maximally supersymmetric theories in d = 3, 4, 6, and all of them might be prime targets
for the analytical bootstrap techniques used here.
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A Singular part of bulk blocks

In this appendix, bulk blocks are studied in the limit ȳ = (1 − z̄)/
√
z̄ → 0. These results

provide the necessary input for the inversion formula in sections 3 and 4. The starting
point are the explicit formulas for bulk blocks derived in [62, 63], which we reproduce here
for convenience:

f∆,`(z, z̄) =
∞∑
m=0

∞∑
n=0

4m−n

m!n!

(
− `

2

)2

m

(
2−`−∆

2

)
m

(−`)m
(

3−`−∆
2

)
m

(
∆−1

2

)2

n

(
∆+`

2

)
n

(∆− 1)n
(

∆+`+1
2

)
n

(
∆+`

2

)
n−m(

∆+`−1
2

)
n−m

× (1− zz̄)`−2m
4F3

(
−n,−m, 1

2 ,
∆−`−2

2
2−∆−`−2n

2 , ∆+`−2m
2 , ∆−`−1

2
; 1
)

(A.1)

× [(1− z)(1− z̄)]
∆−`

2 +m+n
2F1

(
∆+`

2 −m+ n, ∆+`
2 −m+ n

∆ + `− 2(m− n)
; 1− zz̄

)
.

After changing variables from z̄ → ȳ and expanding up to order O(ȳ3), we obtain the
following formulas:

f2,0(z, z̄) ∼ −ȳ log z + ȳ3
(

z + 1
8(z − 1) −

z log z
4(z − 1)2

)
,

f4,0(z, z̄) ∼ ȳ2
(
−12 + 6(z + 1) log z

z − 1

)
,

f4,2(z, z̄) ∼ ȳ
(

90(z + 1)
z − 1 − 30

(
z2 + 4z + 1

)
log z

(z − 1)2

)

+ ȳ3
(
−15(z + 1)

(
z2 − 20z + 1

)
8(z − 1)3 − 15z

(
z2 + 7z + 1

)
log z

2(z − 1)4

)
, (A.2)
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f6,0(z, z̄) ∼ ȳ3
(

90(z + 1)
z − 1 − 30

(
z2 + 4z + 1

)
log z

(z − 1)2

)
,

f6,2(z, z̄) ∼ ȳ2
(
−140

(
11z2 + 38z + 11

)
3(z − 1)2 + 140(z + 1)

(
z2 + 8z + 1

)
log z

(z − 1)3

)
,

f8,2(z, z̄) ∼ ȳ3
(

525(z + 1)
(
5z2 + 32z + 5

)
(z − 1)3 − 630

(
z4 + 16z3 + 36z2 + 16z + 1

)
log z

(z − 1)4

)
.

The symbol ∼ is a reminder that these expressions are valid up to corrections of order
O(ȳ4). The same calculation can be carried out to higher orders in ȳ, as will be necessary
to extend the present work to correlators with J > 4.

B Conformal block normalization

In this appendix we review our normalization conventions for conformal blocks. Further-
more, we study the contribution of half-BPS operators to the bulk and defect OPEs. This
allows to extract topological subsector data from correlation functions, and compare to the
predictions from section 2.4.

The bulk-channel conformal block is given explicitly in (A.1). In the bulk OPE limit
z, z̄ → 1 it goes like

lim
z,z̄→1

f∆,`(z, z̄) = [(1− z)(1− z̄)](∆−`)/2(1− zz̄)` . (B.1)

For the defect-channel conformal block we use the same normalization as [27]

f̂∆̂,s(z, z̄) = z
∆̂−s

2 z̄
∆̂+s

2 2F1

(1
2 ,−s;

1
2 − s;

z

z̄

)
2F1

(1
2 , ∆̂; ∆̂ + 1

2; zz̄
)
. (B.2)

The asymptotics in the defect OPE limit z, z̄ → 0 can be easily extracted. Finally, we use
the following form of the R-symmetry blocks:

hK(σ) = σ−K/2 2F1

(
−K2 ,−

K

2 ;−K − 1; σ2

)
,

ĥK̂(σ) = σK̂ 2F1

(
−K̂ − 1,−K̂;−2(K̂ + 1); 2

σ

)
.

(B.3)

Using (2.13) and (2.15), it is possible to check that these blocks satisfy the appropriate
Casimir equations.

In the discussion of the main text, it is crucial to compare to the predictions in the
topological subsector of section 2.4. We start showing how to extract the topological bulk
CFT data from our correlators. The choice of normalization in (2.22) fixes uniquely the
bulk OPE

OJ(x1, u1)OJ(x2, u2)
∣∣
OK

= λJJK
(u1 · u2)J−

K
2

(x2
12)J−

K
2

(u1 ·D(6)
u )

K
2 (u2 ·D(6)

u )
K
2 OK(x2, u)

K!(K + 1)! + . . .

(B.4)

– 25 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
3

This is the contribution of a single half-BPS operator OK(x, u) to the bulk OPE, and we
suppress terms subleading as x2

12 → 0. In order to deal with the R-symmetry polarization,
we use the SO(r) Todorov operator

(D(r)
u )µ =

(
r

2 − 1 + u · ∂
∂u

)
∂

∂uµ
− 1

2uµ
∂2

∂u · ∂u
. (B.5)

One can insert the bulk OPE (B.4) combined with the one-point function (2.24) in the
two-point function. Keeping only the leading term as z, z̄ → 1 gives

F (J)(z, z̄, σ)
∣∣
OK

=
( √

zz̄ σ

(1− z)(1− z̄)

)J
λJJKaKhK(σ)

[
(1− z)(1− z̄)

]K
2 + . . . (B.6)

This is the leading contribution of a protected half-BPS operator to the bulk OPE, and it
is equally valid for single- and multi-trace operators. It is reassuring that the contribution
is proportional to the R-symmetry block (B.3). This result also justifies our choice of the
overall normalization for the bulk superblock (4.4).

The story for the defect OPE works in an identical way. The form of the correla-
tors (2.30) fixes uniquely the bulk-defect expansion

OJ(x, u)
∣∣
ÔK̂

= bJK̂
(u · θ)J−K̂

|x⊥|J−K̂
(u ·D(5)

û )K̂ÔK̂(τ, û)
K̂!(3/2)K̂

+ . . . (B.7)

As before, we focus on the contribution of a protected defect operator and keep only the
leading-order term as x⊥ → 0. Since the defect operator transforms as an SO(5) symmetric
traceless tensor, we use the r = 5 version of (B.5). Inserting the defect OPE in the two-
point function gives

F (J)(z, z̄, σ)
∣∣
ÔK̂
∼ b2

JK̂
ĥK̂(σ)(zz̄)K̂/2 + . . . (B.8)

This is the leading contribution as z, z̄ → 0 of a protected defect operator to the defect OPE.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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