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1 Introduction

The study of Sasaki-Einstein spaces plays a key role in string theory as they give the
geometry underlying one of the canonical examples of the AdS/CFT correspondence [1].
For each five-dimensional Sasaki-Einstein space M there is an equivalence between type
IIB string theory in a spacetime AdS5 ×M (where AdS5 is five-dimensional anti-de Sitter
space) and a particular four-dimensional N = 1 superconformal field theory (SCFT) [2–5].

Sasaki-Einstein spaces can be defined by the condition that the metric cone over M is
Calabi-Yau. It turns out that many of the key properties of the dual N = 1 SCFTs depend
only on holomorphic data, that is, on the complex structure on the cone. In particular,
one can consider classes of operators in the field theory that transform in “short multi-
plets” of the N = 1 superconformal symmetry and are dual to Kaluza-Klein modes on the
Sasaki-Einstein space. As shown by Eager, Schmude and Tachikawa [6], these are counted
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by the dimensions of particular cohomology groups on M . The Kohn-Rossi cohomology of
M , introduced in [7], depends only on the CR structure on M , that is, the involutive sub-
bundle T1,0 ⊂ TM ⊗ C defined by the complex structure on the cone. All Sasaki-Einstein
metrics admit a Killing vector ξ, known as the Reeb vector, that generates the dual of the
R-symmetry of the N = 1 SCFT. This can be used to refine the Kohn-Rossi cohomology
to the transverse Dolbeault cohomology groups H(p,q)

∂̄
(k) graded by their charge k under the

action of the Reeb vector; it is the dimensions of these groups that count the Kaluza-Klein
short multiplets.1

Mathematically, as discussed in [6], the dual N = 1 SCFT defines a Calabi-Yau algebra
A, first introduced by Ginzburg [8]. The archetypal construction of A is from a quiver Q,
encoding the fields of the SCFT, together with a superpotential W. The short multiplets
are then counted by the reduced cyclic homology of the algebra HCn(A, k), graded by their
R-charge R = 2

3k [6, 9–11]. Explicitly, using the notation of [6], the chiral scalar (such as
trOf ), semi-conserved scalar (trOv) and semi-conserved (0, 1/2)-spinor (such as tr W̄α̇Of )
multiplets are counted by the dimension of HCn(A, k), with n = 0, 1, 2 respectively. The
corresponding index

Is.t.(t) =
∑

0≤n≤2, k>0
(−1)nt2k dim HCn(A, k) (1.1)

is known as the single-trace superconformal index of the SCFT [12, 13]. This index is
independent of exactly marginal deformations of the field theory and can be extracted
directly from the quiver description of the theory [14].

In the special case where the SCFT is dual to AdS5 times a Sasaki-Einstein manifold
M , the Calabi-Yau algebra A has the same cyclic homology as the coordinate ring of the
cone over M . The reduced cyclic homology groups HCn(A, k) are then directly related to
the transverse Dolbeault cohomology groups H(p,q)

∂̄
(k), namely for k > 0

HCn(A, k) '
∑

p−q=n
H

(p,q)
∂̄

(k), (1.2)

demonstrating the duality between counting operators in the field theory and Kaluza-Klein
modes in the geometry [6]. The index then takes the form

Is.t.(t) =
∑
k>0

ind∂̄(k)t2k, (1.3)

where, by using vanishing properties of the H(p,q)
∂̄

(k) groups, we can write

ind∂̄(k) ≡
∑
p,q

(−1)p+q dimH
(p,q)
∂̄

(k), (1.4)

which is the analogue of the Euler index at fixed k for the transverse Dolbeault cohomology.
1Note that in [6], the groups H(p,q)

∂̄
(k) are referred to as the Kohn-Rossi cohomologies, whereas more

strictly they are the transverse cohomology groups. As we will discuss below, there is a direct relation
between the two.
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There is a much larger class of SCFTs where the dual geometry is more complicated,
involving many more of the fields in the type IIB supergravity than simply the metric
and five-form that appear in the Sasaki-Einstein solution. Of particular interest are the
theories that are exactly marginal deformations of those with Sasaki-Einstein duals, where
the quiver Q is unchanged but the superpotential W is modified. The canonical example
is the set of N = 1 deformations of N = 4 super-Yang-Mills theory [15], where the
superpotential takes the form

W = h tr
(
Φ1Φ2Φ3 − Φ3Φ2Φ1)

+ fβ tr
(
Φ1Φ2Φ3 + Φ3Φ2Φ1)+ fλ tr

(
(Φ1)3 + (Φ2)3 + (Φ3)3). (1.5)

Setting fβ = fλ = 0 gives the N = 4 theory, where A is simply the polynomial ring on C3

and the dual geometry is the five-sphere M = S5. More generally A is a non-commutative
Sklyanin algebra (see for example [16]). For fλ = 0, the dual type IIB background was
derived in [17]. For general values of fβ and fλ, although the solutions lie in the class
of backgrounds characterised in [18], finding the explicit dual geometry has remained an
open problem. Furthermore, one would expect there to be some new notion of cohomology,
generalising the H(p,q)

∂̄
(k) groups, that counts the number of short multiplets defined by

the deformed non-commutative algebra.
The author and his collaborators have very recently given a solution to the first prob-

lem [19], finding the form of the supergravity background corresponding to an arbitrary
finite exactly marginal deformation of any field theory that is dual to a Sasaki-Einstein
manifold. The analysis uses the formulation of the solution in terms of generalised geom-
etry [20]. Somewhat in analogy to the case of Calabi-Yau manifolds, one first finds an
explicit solution to a slightly weaker set of conditions (known as an “exceptional Sasaki”
space) and then argues for the existence of the exact dual geometry using continuity. Cru-
cially, there is a notion of holomorphic structure that is common to both the exceptional
Sasaki space and the exact solution. In the dual field theory, this holomorphic structure
encodes the superpotential, with the transition from the exceptional Sasaki space to the
exact solution then viewed as a flow to the conformal fixed point. More precisely, the holo-
morphic structure is given by the CR structure of the Sasaki-Einstein geometry together
with a function f that is holomorphic on the Calabi-Yau cone and has charge three under
the action of the Reeb vector. The function f is the superpotential deformation ∆W writ-
ten as an element of the coordinate ring defined by the undeformed theory. For example,
for the N = 1 deformations of N = 4 in (1.5) one has

f = 2fβ xyz + fλ(x3 + y3 + z3), (1.6)

where (x, y, z) are complex coordinates on the cone C(S5) = C3.
This paper is in part the companion to the work in the letter [21] and has two main

goals. The first is a review of Kohn-Rossi and transverse Dolbeault cohomologies in the
context of Sasaki-Einstein manifolds, including some new results, such as a new bound on
H

(p,0)
∂̄

(k). The second goal is to define new “η-cohomology” groups Hn
dη(k), where η ≡ df

is assumed to be nowhere vanishing. These are a generalisation of the transverse Dolbeault
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cohomologies to the new “exceptional Sasaki-Einstein” geometries discussed in [19]. They
depend only on the holomorphic structure of the background and count short multiplets,
hence they correspond to the reduced cyclic homology groups HCn(A, k) for the deformed
non-commutative Calabi-Yau algebras A. Specifically we show that the AdS/CFT corre-
spondence implies that (1.2) is replaced by

HCn(A, k) ' H3−n
dη (k), (1.7)

for k > 0. Furthermore, we show how to calculate the dimensions of Hn
dη(k) in

terms of the H
(p,q)
∂̄

(k) groups of the undeformed theory. In particular, we show that
Hn

dη(k) ' H4−n
dη (3− k) and, in all cases,2

dimH0
dη(k) = [k ≡3 0],

dimH1
dη(k) = 0,

dimH2
dη(k) = ind∂̄(k)− [k ≡3 0],

(1.8)

thus giving a general prediction for the dimensions of HCn(A, k). In particular, we verify
that (1.7) is satisfied in the case of S5, and use it to predict the reduced cyclic homology
groups in the case of deformations of regular Sasaki-Einstein spaces. The corresponding
Calabi-Yau algebras describe non-commutative deformations of P2, P1 × P1 and the del
Pezzo surfaces.

The paper is organised as follows. We begin in section 2 with a review of two coho-
mologies that can be defined on any Sasaki manifold, namely Kohn-Rossi and transverse
Dolbeault cohomologies. We then specialise to the case of Sasaki-Einstein manifolds and
derive a new vanishing result for transverse Dolbeault cohomologies graded by charge under
the Reeb vector. In section 3 we define a new set of cohomology groups, η-cohomologies,
that arise naturally in the context of deformations of Sasaki-Einstein solutions of type IIB
string theory, and compute them in terms of the transverse Dolbeault cohomology of the
undeformed Sasaki-Einstein manifold. In section 4, we review how certain cyclic homol-
ogy groups of Calabi-Yau algebras that appear in N = 1 SCFTs are related to counting
Kaluza-Klein modes in the dual AdS5 supergravity background. We then describe how
the η-cohomologies count these modes in the deformed Sasaki-Einstein solutions and use
this to compute the corresponding cyclic homologies. We finish in section 5 with some ex-
amples where one can explicitly compute the η-cohomologies and compare to known field
theory results.

Note added. Edward Lødøen Tasker passed away in January 2020. He obtained the re-
sults in this work and wrote a draft of this paper during his PhD studies at Imperial College
London. The paper has been edited for publication by A. Ashmore and D. Waldram.

Ed was a much-loved colleague and friend, and a gifted physicist and mathematician
with a seemingly endless supply of puns and a knack for solving problems in unexpected
ways. We miss him greatly. We hope sharing his work with others will add to his memory.
(AA and DW.)

2We use “Iverson bracket” notation [S] that evaluates to 1 if the contained statement S is true, and 0 if
S is false. In addition, ≡3 denotes equality modulo 3.

– 4 –



J
H
E
P
0
4
(
2
0
2
2
)
0
7
5

2 Kohn-Rossi and transverse cohomologies

In this section we take M to be a compact (2n + 1)-dimensional manifold with Sasaki
structure (g, I, σ, ξ) [22].3 Here σ is the contact one-form, ξ denotes the Reeb vector, g is the
Riemannian metric, and I is the endomorphism that serves as an almost complex structure
transverse to the orbits of ξ. In our conventions these satisfy the algebraic identities

ıξσ = 1, ıξω = 0, I2 = − id +ξ ⊗ σ, (2.1)
ω(IX, IY ) = ω(X,Y ), g(X,Y ) = ω(X, IY ) + σ(X)σ(Y ), (2.2)

where ω ≡ 1
2dσ is the transverse Kähler form. The +i eigenbundle T1,0 ⊂ TM ⊗ C of I

acting on the complexified tangent space defines a CR structure [26–28]. By definition, this
means T1,0∩T1,0 = {0} and T1,0 is involutive under the Lie bracket, that is [W,Z] ∈ Γ(T1,0)
for all W,Z ∈ Γ(T1,0). In addition, the Reeb vector and the transverse almost complex
structure satisfy the “K-contact” condition LξI = 0, where Lξ is the Lie derivative. We fix
an orientation on M by choosing vol = −σ ∧ωn/n! and denote the usual inner product on
complex p-forms by

〈α, β〉 ≡
∫
α ∧ ?β =

∫
β̄]yα vol, (2.3)

where a superscript ] denotes raising the indices of a form using the metric g and ? is the
Hodge star.

In the language of CR structures,4 T1,0 is of hypersurface type, meaning, given a point
x ∈M , the spaces

Ux ≡
{
γ ∈ T ∗xM

∣∣∣ ıXγ = 0, ∀X ∈ (T1,0 ⊕ T1,0)x
}

(2.4)

define a (real) line bundle U → M . If M is orientable, U is trivial and admits global
nowhere-vanishing sections. If there is some such section σ, such that the corresponding
Levi form

Lσ(Z,W ) ≡ −1
2 i dσ(Z,W ), W,Z ∈ Γ(T1,0) (2.5)

is positive definite, the CR structure is said to be strictly pseudo-convex. In this case, σ
defines a unique vector ξ satisfying ıξσ = 1, ıξdσ = 0. Finally, if there is a σ such that the
associated ξ is holomorphic, that is [ξ, Z] ∈ Γ(T1,0), ∀Z ∈ Γ(T1,0), the pair (T1,0, ξ) defines
a normal strictly pseudo-convex CR structure [30], or equivalently a Sasaki structure [31,
Corollary 2.10].

2.1 Transverse Dolbeault cohomology

We say that a complex p-form α is transverse if ıξα = 0 and denote the space of transverse
complex forms by ΛT . Using I we can decompose further by type to give

ΛT ≡ {α ∈ Γ(Λ•T ∗M ⊗ C) | ıξα = 0}, (2.6)

Λ(p,q) ≡ {α ∈ ΛT | I · α = −i(p− q)α}. (2.7)
3For a review of Sasaki structures, we refer the reader to [23–25].
4For a review see [29].
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As these spaces are mutually orthogonal with respect to 〈·, ·〉, we can restrict the inner
product to these spaces. Since Lξ is anti-Hermitian with respect to the above inner product,
and by virtue of the K-contact condition, we can consider fixed-charge refinements of the
above spaces which are in the kernel of (Lξ − ik) for k ∈ R. We use the notation ΛT (k)
and Λ(p,q)(k) respectively for these spaces:

ΛT (k) ≡ {α ∈ ΛT | Lξα = ikα}, (2.8)

Λ(p,q)(k) ≡
{
α ∈ Λ(p,q)

∣∣∣ Lξα = ikα
}
. (2.9)

Following [32], for a transverse form α one can define a transverse exterior derivative dT

dTα ≡ dα− σ ∧ Lξα, (2.10)

which decomposes as dT = ∂ + ∂̄ by virtue of the Sasaki conditions, where the transverse
Dolbeault operators are

∂ : Λ(p,q) → Λ(p+1,q), ∂̄ : Λ(p,q) → Λ(p,q+1). (2.11)

Note that these operators are well defined only when acting on transverse forms. They
satisfy the identities

∂2 = 0 = ∂̄2, {∂, ∂̄} = −2ω ∧ Lξ, (2.12)

and they distribute over wedge products as the usual exterior derivative does. In contrast
with the Kohn-Rossi operators, which will be introduced in section 2.3, these operators are
genuinely complex conjugates of one another, (∂̄α)∗ = ∂α.

The main objects of interest in the following subsection will be the transverse Dolbeault
cohomology groups H(p,q)

∂̄
(k) (with C coefficients) of the complex

· · · ∂̄−→ Λ(p,q−1)(k) ∂̄−→ Λ(p,q)(k) ∂̄−→ Λ(p,q+1)(k) ∂̄−→ · · · (2.13)

As we will show below, these are finite dimensional, admit Hodge decompositions, and
obey Serre dualities; similar statements will also hold for the Kohn-Rossi cohomologies
of section 2.3. In addition to the work of [32], these cohomology groups were studied in
the (equivalent) context of normal strictly pseudo-convex CR structures by Tanaka in [30,
section 3]. For k = 0 they correspond to the more familiar basic Dolbeault cohomology
groups (reviewed for example in [24]).

2.2 Transverse Laplacians, Hodge theory, and Serre duality

We now use Hodge theory to analyse the groups H(p,q)
∂̄

(k), reproducing results of [30].
Using the inner product (2.3) to define the adjoint and the Lefschetz operator L ≡ ω ∧ ,
one can show that

d†Lβ − Ld†β = d(I · β)− I · (dβ) + 2(n− r)σ ∧ β (2.14)

for an arbitrary r-form β (where I· is the standard endomorphism action on forms), which
implies the transverse Kähler identities of [32] (see also [33, 34]). Using these identities,
the three transverse Laplacians

∆T ≡ dTd†T + d†TdT , ∆∂ ≡ ∂∂† + ∂†∂, ∆∂̄ ≡ ∂̄∂̄
† + ∂̄†∂̄, (2.15)

– 6 –
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can be related via5

∆Tα = ∆∂̄α+ ∆∂α = 2∆∂̄α− 2i(n− r)Lξα (2.16)

for a transverse r-form α. The action of the de Rham Laplacian ∆ on a transverse form
can be expressed as

∆α = ∆Tα− L2
ξα+ 4LL†α+ 2σ ∧ (L†dTα− dTL†α). (2.17)

Since ∆∂̄ commutes with both I and Lξ, we can define the spaces of ∆∂̄-harmonics
with (p, q) type and fixed Reeb charge:

H(p,q)
∆∂̄

(k) ≡
{
α ∈ Λ(p,q)(k)

∣∣∣ ∆∂̄α = 0
}
. (2.18)

As noted in [32], whilst ∆∂̄ is not elliptic on ΛT , the operator 2∆∂̄ − L2
ξ is elliptic. The

Hermitian operator
Dk ≡ ∆∂̄ −

1
2(Lξ − ik)2 (2.19)

will thus be elliptic on ΛT for all k ∈ R, as its principal symbol is fixed and invertible.
Consequently, we have the orthogonal decomposition

ΛT (k) = kerDk ⊕ imDk, (2.20)

and kerDk is finite dimensional. Following the argument presented in [32], which considers
the k = 0 case, if α ∈ kerDk it follows that ∆∂̄α = 0 and (Lξ − ik)α = 0, and thus, since
∆∂̄ preserves type and charge,

H(p,q)
∆∂̄

(k) = kerDk

∣∣
Λ(p,q) . (2.21)

Since kerDk is finite dimensional, the spaces of ∆∂̄-harmonics are also finite dimensional.
As noted by Tanaka [30], the eigenvalues k also form a discrete subset (without accumula-
tion) of R.

Again, straightforwardly applying the argument of [32] to our case, it follows that one
has the orthogonal decomposition

ΛT (k) = ker ∆∂̄

∣∣
ΛT (k) ⊕ im ∆∂̄

∣∣
ΛT (k). (2.22)

Therefore, by the standard argument

H
(p,q)
∂̄

(k) ' H(p,q)
∆∂̄

(k), (2.23)

so that every ∂̄-closed, charge-k, type-(p, q) class admits a unique ∆∂̄-harmonic charge-k
representative of the same type.

In [32], a transverse Hodge operator is defined via ?Tα = ıξ ? α, serving as an isomor-
phism between (p, q)-forms and (n− q, n− p)-forms. In terms of this, the adjoints of ∂ and
∂̄ can be expressed as

∂† = ?T ∂̄?T , ∂̄† = ?T∂ ?T . (2.24)
5Our conventions match those of [33], differing from [32] by a factor of 2 in the last term.

– 7 –



J
H
E
P
0
4
(
2
0
2
2
)
0
7
5

Using these operators and the observation that for a charge-k, (p, q)-form α one has ?2
Tα =

(−1)p+qα, it follows that

∆∂̄α = 0 ⇐⇒ ∆∂̄?Tα = 0. (2.25)

This implies a “Serre duality” for the transverse Dolbeault cohomology:

H
(p,q)
∂̄

(k) ' H(n−p,n−q)
∂̄

(−k). (2.26)

We can also prove a simple vanishing result. Taking α ∈ H(p,q)
∆∂̄

(k) and using (2.16), one has

2k(n− p− q)〈α, α〉 = 〈α,∆Tα〉 = 〈dTα, dTα〉+ 〈d†Tα, d
†
Tα〉 ≥ 0, (2.27)

which implies the two conditions [30]

k < 0 and p+ q < n =⇒ H
(p,q)
∂̄

(k) = 0, (2.28)

k > 0 and p+ q > n =⇒ H
(p,q)
∂̄

(k) = 0, (2.29)

related by the Serre duality (2.26) we gave above.
The basic (chargeless, transverse Dolbeault) cohomology groups are given by setting

k = 0. We can easily recover two results: first, ω is ∆∂̄-harmonic so generates a non-
trivial class of H(1,1)

∂̄
(0); second, all chargeless ∆∂̄-harmonic functions are also necessarily

∆-harmonic, and so H(0,0)
∂̄

(0) counts the number of connected components of M . If we
define dB to be the restriction of dT to basic forms ΛT (0), then d2

B = 0 and one can define
the basic cohomology groups Hr

dB (M). As discussed in [32], since ∆T = 2∆∂̄ on basic
forms, one has a Hodge decomposition for basic cohomology groups

Hr
dB (M,C) '

⊕
p+q=r

H
(p,q)
∂̄

(0). (2.30)

There is also a standard relation between basic and de Rham cohomologies [35] that follows
from the short exact sequence of complexes induced by

0 −→ ΛrT (0) i−→ ΛrT ∗M
ıξ−→ Λr−1

T (0) −→ 0, (2.31)

where i is the inclusion map. By the “zig-zag” lemma, this gives a long exact sequence in
cohomology

· · · [∧ω]−−→ Hr
dB (M,C) [i]−→ Hr

d(M,C)
[ıξ]−−→ Hr−1

dB (M,C) [∧ω]−−→ Hr+1
dB (M,C) [i]−→ · · · (2.32)

where square brackets denote induced maps on cohomologies, and [∧ω] arises from the
chain map provided by wedging with ω. If H1

d(M,C) vanishes, as it does on any positive-
scalar-curvature Einstein manifold, the long exact sequence implies both H1

dB (M,C) ' 0
and the short exact sequence

0 −→ H0
dB (M,C) [∧ω]−−→ H2

dB (M,C) [i]−→ H2
d(M,C) −→ 0, (2.33)

implying
H2

d(M,C) ' H2
dB (M,C)/C[ω]. (2.34)
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2.3 Kohn-Rossi cohomology

Since Sasaki manifolds define a CR structure T1,0 ⊂ TM ⊗ C, we can also consider the
tangential Cauchy-Riemann, or Kohn-Rossi, operator ∂̄b [7]. Writing T0,1 = T1,0, involutiv-
ity of T0,1 implies that one can define an operator ∂̄b : Γ(ΛpT ∗0,1) → Γ(Λp+1T ∗0,1) satisfying
∂̄2
b = 0. More generally, defining the quotient bundle T̂ = (TM ⊗C)/T0,1, one can consider

sections of holomorphic vector bundles [30, 36]

Λ[p,q] ≡ Γ(ΛpT̂ ∗ ⊗ ΛqT ∗0,1) (2.35)

with ∂̄b : Λ[p,q] → Λ[p,q+1] and ∂̄2
b = 0 so that it defines a complex.

While the corresponding Kohn-Rossi cohomology groups H [p,q]
∂̄b

can be defined for any
CR structure [7], if we have a strictly pseudo-convex CR structure (or more generally a
non-degenerate CR structure) one can use harmonic theory to derive a Serre-type duality
and bounds. These are the cohomologies discussed for example in [37], giving an n+ 1 by
n Hodge diamond. An important bound [7, 30], is that

H
[p,q]
∂̄b

is finite dimensional for any q with 1 ≤ q ≤ n− 1. (2.36)

One can also use the Levi form to decompose the cotangent space as TM ⊗ C =
Cξ ⊕ T1,0 ⊕ T0,1 and hence identify T̂ ∗ ' Cσ ⊕ T ∗1,0. This in turn means we can identify
Λ[p,q] with the spaces of transverse forms

Λ[p,q] ' Λ(p,q) ⊕ σΛ(p−1,q),

where elements of σΛ(p−1,q) are given by σ∧α with α ∈ Λ(p−1,q). We denote elements of this
space using square brackets as “[p, q]-forms”. Note that type [0, q] is equivalent to type (0, q).
The Kohn-Rossi types provide a decomposition of the entire exterior algebra as follows.
The exterior derivative can be decomposed by projecting appropriately, d = ∂̄b +∂b, where

∂b : Λ[p,q] → Λ[p+1,q], ∂̄b : Λ[p,q] → Λ[p,q+1], (2.37)

are the Kohn-Rossi operators. These behave like conventional Dolbeault operators in that

∂̄2
b = 0 = ∂2

b , {∂̄b, ∂b} = 0, (2.38)

but despite the notation they are not complex conjugates of one another.6 They can
be characterised entirely in terms of the transverse Dolbeault operators ∂ and ∂̄: if α is
transverse, one has

∂bα = σ ∧ Lξα+ ∂α, ∂̄bα = ∂̄α, ∂bσ = 0, ∂̄bσ = 2ω. (2.39)

6One can construct a fixed-charge lift that identifies the fixed-charge exterior differential algebra of M
with the exterior differential algebra of a certain bundle on the cone R+ ×M , the kernel of the antiholomor-
phic part of the homothetic vector field. The operators that give rise to ∂b and ∂̄b are then the Dolbeault
operators of the cone.
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We will primarily be interested in the Kohn-Rossi cohomology groups H [p,q]
∂̄b

(k) graded

by ξ-charge. Denoting by Λ[p,q](k) the fixed charge type-[p, q] space, one defines H [p,q]
∂̄b

(k)
as the cohomologies of the complex

. . .
∂̄b−−→ Λ[p,q−1](k) ∂̄b−−→ Λ[p,q](k) ∂̄b−−→ Λ[p,q+1](k) ∂̄b−−→ . . . (2.40)

To relate the Kohn-Rossi and transverse Dolbeault cohomologies, consider the commutative
diagram

...
...

...

0 Λ(p,q−1)(k) Λ[p,q−1](k) Λ(p−1,q−1)(k) 0

0 Λ(p,q)(k) Λ[p,q](k) Λ(p−1,q)(k) 0

...
...

...

∂̄ ∂̄b ∂̄

i

∂̄

(−1)q−1ıξ

∂̄b ∂̄

i

∂̄

(−1)qıξ

∂̄b ∂̄

(2.41)

where i is the inclusion map, the rows are all short exact sequences, and the columns are all
chain complexes. From the “zig-zag” lemma, it follows that there is a long exact sequence
in cohomology, in particular for each [p, q] there is an exact sequence

H
(p−1,q−1)
∂̄

(k) [∧ω]−−→ H
(p,q)
∂̄

(k) [i]−→ H
[p,q]
∂̄b

(k)
[ıξ]−−→ H

(p−1,q)
∂̄

(k) [∧ω]−−→ H
(p,q+1)
∂̄

(k), (2.42)

where square brackets denote induced maps on cohomologies, and [∧ω] arises from the
chain map provided by wedging with ω. This implies the short exact sequence

0 −→ coker[∧ω]
∣∣
H

(p−1,q−1)
∂̄

(k) −→ H
[p,q]
∂̄b

(k) −→ ker[∧ω]
∣∣
H

(p−1,q)
∂̄

(k) −→ 0 (2.43)

of C-modules, which must split; there must be an isomorphism

H
[p,q]
∂̄b

(k) ' coker[∧ω]
∣∣
H

(p−1,q−1)
∂̄

(k) ⊕ ker[∧ω]
∣∣
H

(p−1,q)
∂̄

(k). (2.44)

Thus we confirm that the Kohn-Rossi cohomologies are also finite dimensional.
The above expression simplifies for k 6= 0: as observed in [38], if a transverse charge-k

form α is ∂̄-closed then α ∧ ω = i∂̄∂α/(2k) is ∂̄-exact, or equivalently im[∧ω] ' 0. Thus,
for k 6= 0 we have

k 6= 0 =⇒ H
[p,q]
∂̄b

(k) ' H(p,q)
∂̄

(k)⊕H(p−1,q)
∂̄

(k). (2.45)

With more knowledge about im[∧ω] for basic cohomologies (k = 0) we can obtain similar
expressions. For instance, in the case of a connected manifold, H(0,0)

∂̄
(0) is one dimensional
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(generated by 1) and the image of [∧ω] acting on it is also one dimensional, generated by
ω (which will be non-trivial). Thus, for connected M ,

H
[1,0]
∂̄b

(k) '

H
(1,0)
∂̄

(k)⊕H(0,0)
∂̄

(k) k 6= 0,

H
(1,0)
∂̄

(0) k = 0,
(2.46)

H
[1,1]
∂̄b

(k) '

H
(1,1)
∂̄

(k)⊕H(0,1)
∂̄

(k) k 6= 0,

H
(1,1)
∂̄

(0)/C[ω]⊕H(0,1)
∂̄

(0) k = 0.
(2.47)

From Serre duality of the transverse Dolbeault cohomologies (2.26), it follows that
there is also a Serre-type duality of the Kohn-Rossi cohomologies [39]:

H
[p,q]
∂̄b

(k) ' H [n+1−p,n−q]
∂̄b

(−k). (2.48)

This is straightforward to show for k 6= 0. For k = 0 it follows from Lefschetz decomposi-
tion, which in the chargeless case is compatible with ∆∂̄-harmonicity.

2.4 Transverse Dolbeault cohomology of Sasaki-Einstein manifolds

From here on, we specialise to the case where M is a Sasaki-Einstein manifold, so that
there exists a nowhere-vanishing (n, 0)-form Ω satisfying [24, 40, 41]

dΩ = i(n+ 1)σ ∧ Ω. (2.49)

The chain map provided by wedging with Ω,

Λ(0,q−1)(k) Λ(0,q)(k) Λ(0,q+1)(k)

Λ(n,q−1)(k + n+ 1) Λ(n,q)(k + n+ 1) Λ(n,q+1)(k + n+ 1)

∂̄

∧Ω

∂̄

∧Ω ∧Ω

∂̄ ∂̄

(2.50)

has an inverse, and thus the induced map on cohomologies, denoted by [∧Ω], is an
isomorphism:

[∧Ω]: H(0,q)
∂̄

(k) ∼−−→ H
(n,q)
∂̄

(k + n+ 1). (2.51)

This relates a pair of opposite edges of the Hodge diamond for different charges. Combining
this with Serre duality in (2.26), it follows that

H
(0,q)
∂̄

(k) ' H(0,n−q)
∂̄

(−n− 1− k). (2.52)

Note however that for 0 < q < n the right-hand side of this is trivial for −n− 1 < k, as is
the left-hand side for k < 0. Thus one obtains the vanishing result

0 < q < n =⇒ H
(0,q)
∂̄

(k) ' 0. (2.53)
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In section 2.6, we will put further bounds on H
(p,0)
∂̄

(k) when M is Sasaki-Einstein.
In particular we show H

(p,0)
∂̄

(0) ' 0 for p > 0. From the Hodge decomposition on basic
cohomology (2.30) together with (2.34), we hence find the general relation

H2
d(M,C) ' H(1,1)

∂̄
(0)/C[ω], (2.54)

where H2
d(M,C) is the usual second de Rham cohomology group.

In what follows, we will primarily be interested in five-dimensional Sasaki-Einstein
spaces. The non-zero cohomology groups in this case are

H
(0,0)
∂̄

(k) ' H(2,0)
∂̄

(k + 3) ' H(2,2)
∂̄

(−k) ' H(0,2)
∂̄

(−k − 3),

H
(1,0)
∂̄

(k) ' H(1,2)
∂̄

(−k),

H
(1,1)
∂̄

(k) ' H(1,1)
∂̄

(−k),

(2.55)

where H(0,0)
∂̄

(k) and H(1,0)
∂̄

(k) vanish for k < 0. As we will see in the next section, we can
actually derive a stronger constraint that H(1,0)

∂̄
(k) vanishes for k ≤ 3/2. Using (2.44), the

corresponding non-zero Kohn-Rossi groups are given by

H
[0,0]
∂̄b

(k) ' H [3,0]
∂̄b

(k + 3) ' H [3,2]
∂̄b

(−k) ' H [0,2]
∂̄b

(−k − 3),

H
[1,0]
∂̄b

(k) ' H [2,2]
∂̄b

(−k),

H
[2,0]
∂̄b

(k) ' H [1,2]
∂̄b

(−k),

H
[1,1]
∂̄b

(k) ' H [2,1]
∂̄b

(−k),

(2.56)

where
H

[0,0]
∂̄b

(k) ' H(0,0)
∂̄

(k),

H
[1,0]
∂̄b

(k) '

H
(1,0)
∂̄

(k)⊕H(0,0)
∂̄

(k) k 6= 0,
0 k = 0,

H
[2,0]
∂̄b

(k) ' H(2,0)
∂̄

(k)⊕H(1,0)
∂̄

(k),

H
[1,1]
∂̄b

(k) '

H
(1,1)
∂̄

(k) k 6= 0,
H

(1,1)
∂̄

(0)/C[ω] ' H2
d(M,C) k = 0.

(2.57)

2.5 An index on the transverse Dolbeault cohomology

In comparing with the single-trace superconformal index of the dual field theory, as we will
see, a particular combination of transverse Dolbeault cohomology groups appears, namely

ind∂̄(k) =
∑
p,q

(−1)p−q dimH
(p,q)
∂̄

(k). (2.58)

If the transverse Dolbeault complex were elliptic then this would correspond to the index
of the complex

. . .
∂̄−→

⊕
p+q=1

Λ(p,q)(k) ∂̄−→
⊕
p+q=2

Λ(p,q)(k) ∂̄−→
⊕
p+q=3

Λ(p,q)(k) ∂̄−→ . . . (2.59)
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where the charge is fixed to k. Instead, we can just view it as defined by

ind∂̄(k) = ker(Dk,Λeven(k))− ker(Dk,Λodd(k)), (2.60)

where Λeven(k) =
⊕

p+q=even Λ(p,q)(k) and Λodd(k) =
⊕

p+q=odd Λ(p,q)(k), and Dk is the
generalised Laplacian defined in (2.19).

From Serre duality (2.26), we note that

ind∂̄(−k) = ind∂̄(k), (2.61)

and on a five-dimensional Sasaki-Einstein space

ind∂̄(k) = dimH
(0,0)
∂̄

(k) + dimH
(1,1)
∂̄

(k) + dimH
(2,0)
∂̄

(k)− dimH
(1,0)
∂̄

(k), (2.62)

when k > 0.

2.6 New bounds on H(p,0)
∂̄

(k)

In the following, we will need a sharp bound on when H(1,0)
∂̄

(k) can be non-trivial. In this
section, we will derive a set of new bounds on the charge k for which H(p,0)

∂̄
(k) with p > 0

is non-trivial. In particular, for n = 2 and p = 1 it will imply

n = 2 and k ≤ 3
2 =⇒ H

(1,0)
∂̄

(k) ' 0. (2.63)

We can find such a bound by extending a standard technique for Einstein manifolds
of positive scalar curvature, where one uses a Böchner identity to obtain a lower bound on
the eigenvalues of the de Rham Laplacian [42]. Much of this follows Perrone [43] and builds
on the work of Gallot-Meyer [44]. Taking M to be a d-dimensional, compact Riemannian
manifold without boundary, we define the Riemann curvature R and the Ricci curvature
Ric as

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z

= ∇2
X,Y Z −∇2

Y,XZ +∇T (X,Y )Z,

(R(X,Y )Z)a = RabcdZ
bXcY d ≡ R(X,Y )abZb,

Ricab = Rcacb,

(2.64)

where T is the torsion of the connection ∇, and X, Y and Z are vector fields. Specialising
to the case where ∇ is the Levi-Civita connection (and so is torsion-free), for a r-form α

one has

∇[a∇b]αc1...cr = −1
2r R

d
[c1|abαd|c2...cr],

(d†α)a2...ar = −∇bαba2...ar ,

(dα)a0...ar = (r + 1)∇[a0αa1...ar] = ∇a0αa1...ar − r∇[a1α|a0|a2...ar].

(2.65)

With these definitions, it is simple to show

∆α ≡ (dd† + d†d)α = − divα−Qα,
(divα)a1...ar = ∇b∇bαa1...ar ,

(Qα)a1...ar = −rRicb[a1 α
b
a2...ar] + 1

2r(r − 1)Rb1b2[a1a2α
b1b2

a3...ar].

(2.66)
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Note that the operator Q is real and self-adjoint with respect to the standard inner product
on r-forms (2.3). For a function h, one has∫

M
vol div h = −

∫
M

vol d†dh ∝
∫
M

d ? dh = 0, (2.67)

where we have used that M is compact and without boundary. For an Einstein manifold
with Ric = κg, this implies

0 =
∫
M

vol div(ᾱ]yα) = 2〈α, divα〉+ 2
∫
M

vol |∇α|2

⇒ 〈α,∆α〉 =
∫
M

vol |∇α|2 + κr〈α, α〉+ τ(α), (2.68)

where we have introduced

|∇α|2 = 1
r!∇

cᾱa1...ar∇cαa1...ar ,

τ(α) ≡ − 1
2(r − 2)!

∫
M

volRb1b2a1a2α
b1b2

a3...ar ᾱ
a1...ar .

(2.69)

Note that τ(α) = 0 for r < 2. Now we need a lemma7 of Gallot-Meyer [44] in the form∫
M

vol |∇α|2 ≥ 1
r + 1〈dα, dα〉+ 1

d− r + 1〈d
†α, d†α〉. (2.70)

Specialising to d ≥ 2r, one can write this in terms of the de Rham Laplacian as∫
M

vol |∇α|2 ≥ d− 2r
(r + 1)(d− r + 1)〈dα, dα〉+ 1

d− r + 1〈α,∆α〉. (2.71)

Using the expression for
∫
M vol |∇α|2 from (2.68), we can rearrange this to give a bound

on the first non-zero eigenvalue of ∆

〈α,∆α〉 ≥ d− r + 1
d− r

(
κr 〈α, α〉+ τ(α)

)
+ d− 2r

(r + 1)(d− r)〈dα, dα〉. (2.72)

Taking d = 2n + 1 and κ = 2n, for a general r-form α on a (2n + 1)-dimensional
Sasaki-Einstein manifold, where Ric = 2ng [24], the above bound is

〈α,∆α〉 ≥ 2n+ 2− r
2n+ 1− r

(
2nr 〈α, α〉+ τ(α)

)
+ 2n+ 1− 2r

(r + 1)(2n+ 1− r)〈dα, dα〉. (2.73)

Taking r = 1, which implies τ(α) = 0, and dropping the 〈dα, dα〉 term, we recover the
standard lower bound for the Laplacian eigenvalue of a one-form, which implies in par-
ticular that the first de Rham cohomology is trivial for positive-scalar-curvature Einstein
manifolds [42].

Now suppose α to be a ∆∂̄-harmonic (p, 0)-form of charge k ≥ 0 for 0 < p ≤ n.
Stromenger [33] shows that the curvature of a Sasaki-Einstein metric satisfies

R(U, V )Z = g(U,Z)V − g(V,Z)U (2.74)
7There is a proof of this lemma in English in [45].
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for all U, V ∈ Γ(T1,0) and Z ∈ Γ(TM). This implies for a (p, 0)-form α

τ(α) = −p(p− 1)〈α, α〉. (2.75)

We also have

〈dα, dα〉 = k2〈σ ∧ α, σ ∧ α〉+ 〈dTα, dTα〉 ≥ k2〈α, α〉, (2.76)
〈α,∆α〉 = (k2 + 4nk)〈α, α〉. (2.77)

If 〈α, α〉 6= 0, it follows that

k2 + 2k (n− p)(p+ 1)(2n− p+ 1)
p(2n− p+ 2) − (p+ 1)(2n− p+ 1) ≥ 0. (2.78)

This means that α can be non-trivial only for k ≥ k+, where

k+ = (n− p)(p+ 1)(2n− p+ 1)
p(2n− p+ 2)

[√
p2(2n− p+ 2)2

(n− p)2(p+ 1)(2n− p+ 1) + 1− 1
]

(2.79)

is the positive root in the quadratic inequality (2.78). Hence, given H(p,0)
∂̄

(k) ' 0 for k < 0,
we have

k < k+ =⇒ H
(p,0)
∂̄

(k) ' 0. (2.80)

Note that k+ > 0 and so in particular we have H(p,0)
∂̄

(0) ' 0. For p = n we have k+ = n+1.
Given the isomorphism (2.51) and the facts that H(0,0)

∂̄
(k) ' 0 for k < 0 and H(0,0)

∂̄
(0) ' C,

we see that in this case the bound is saturated.
Of particular interest for us is the case n= 2, so that M is five dimensional. Taking

p= 1, we have k+ = (2
√

66−8)/5≈ 1.6496 and so, in conclusion, we have the triviality result

n = 2 and k ≤ 3
2 =⇒ H

(1,0)
∂̄

(k) ' 0. (2.81)

3 The η-complex

As discussed in the introduction, there is a natural string theory extension of a five-
dimensional Sasaki-Einstein manifold that describes a generic supersymmetric type IIB
background of the form AdS5 ×M [18]. Using generalised geometry, one can identify a
structure, known as the H-structure, that encodes the holomorphic information about the
dual field theory [20]. In particular, as shown in the companion letter [21] to this paper,
for backgrounds that correspond in the field theory to marginal deformations of a SCFT
dual to a Sasaki-Einstein geometry, the holomorphic structure is determined by the CR
structure of the Sasaki-Einstein geometry and a holomorphic function f . In this section,
we define a natural set of cohomology groups Hs

dη(k) defined by this generalised holomor-
phic structure and show how these are determined in terms of the transverse Dolbeault
cohomology groups of the underlying Sasaki-Einstein manifold. In the following sections,
we will show how they are related to the reduced cyclic homology groups HCn(A, k) of the
Calabi-Yau algebras A that describe the dual SCFTs and give some examples.
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The complex that defines the Hs
dη(k) cohomology is defined using the exact one-form

η ≡ df = ∂bf, (3.1)

where ∂b is a Kohn-Rossi differential, and where the holomorphicity condition on the func-
tion f is

∂̄f ≡ ∂̄bf = 0. (3.2)

We will make the additional assumption that η is nowhere vanishing,8 which means that
we also have a complex vector field n that satisfies

ınη = 1. (3.3)

Given some real metric on the underlying manifold, such a vector field can always be
constructed from η as n = (η̄]y η)−1η̄], where ] indicates raising an index with the metric.

Since it is non-vanishing, η defines a subbundle of the tangent bundle Fη ↪→ TM⊗C as

Fη = ker η = {v ∈ Γ(TM ⊗ C) | ıvη = 0}. (3.4)

Since η is closed by definition, the subbundle Fη is closed under the Lie bracket, that is
[v, w] ∈ Fη for all v, w ∈ Fη. As such it defines a complex Lie algebroid, and hence there is
an associated differential dη acting on sections of ∧sF∗η , with the corresponding cohomology
groupsHs

dη . It is not difficult to check that sections of ∧sF∗η can be viewed as an equivalence
class of complex s-forms: given an s-form α and β any (s− 1)-form, we identify

α ∼ α+ η ∧ β. (3.5)

Equivalently, we can identify the class of α with the (s + 1)-form η ∧ α, that is, we have
an isomorphism

Λsη ≡ Γ(η ∧ (∧sT ∗M ⊗ C)) ' Γ(∧sF∗η ), (3.6)

such that, given α in the equivalence class (3.5),

dηα 7→ d(η ∧ α) = −η ∧ dα. (3.7)

Thus, for example, α is dη-closed if and only if η ∧ α is d-closed.
With this in mind, consider the complex

· · · −→ Λs−1
η

d−→ Λsη
d−→ Λs+1

η −→ · · · (3.8)

Given the identifications (3.6) and (3.7), one can compute the Lie algebroid cohomologies
using the above complex. We will refer to these as “η-cohomologies”, given by

Hs
dη =

ker d|Λsη
im d|Λs−1

η

. =
{d-closed η ∧ α(s)}
{η ∧ dα(s−1)}

=
ker dη|∧sF∗η

im dη|∧s−1F∗η
. (3.9)

8The condition that η is nowhere vanishing is somewhat restrictive. Recall that Sasaki-Einstein spaces
can be quasi-regular or irregular, depending on whether the orbits of the Reeb vector field ξ are compact
(and hence define a locally free U(1) action onM) or are non-compact. Our expectation is that the existence
of a nowhere-vanishing η implies that the undeformed Sasaki-Einstein is quasi-regular, though we have not
been able to prove this.
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Recall that we are actually interested in the case where η encodes a deformation of the
holomorphic structure of a five-dimensional compact Sasaki-Einstein space. In this case η
has charge +3 under the action of the Reeb vector

Lξη = 3iη. (3.10)

One can then grade the complex (3.8) by charge under the Reeb vector action. The
differential dη (or d) commutes with Lξ so we can restrict (3.8) to fixed charge k. In
particular, we can define

Λsη(k) ≡
{
η ∧ α ∈ Λsη

∣∣∣ Lξ(η ∧ α) = ik(η ∧ α)
}
, (3.11)

implying α has charge k − 3. With this assignment, the charge-k complex is given by

. . . −→ Λs−1
η (k) d−→ Λsη(k) d−→ Λs+1

η (k) −→ . . . (3.12)

with the corresponding graded η-cohomology groups Hs
dη(k).

In the rest of this section, we will first show that there is a natural pairing that relates
Hs

dη(k) ' H4−s
dη (−k) and then calculate H2

dη(k) in terms of the Kohn-Rossi (or equivalently
transverse Dolbeault) cohomology groups of the underlying Sasaki-Einstein manifold. We
then extend this result to H0

dη(k) and H1
dη(k).

3.1 Duality for Hs
dη

(k)

We now want to introduce a pairing on the η-cohomology and prove a simple duality for
the cohomology groups. Consider a pairing

〈η ∧ α, η ∧ β〉η ≡
∫
η ∧ α ∧ β =

∫
(η ∧ α) ∧ ın(η ∧ β), (3.13)

where η is again exact, nowhere vanishing and charge +3, and α and β are two-forms.
Taking η ∧ α and η ∧ β to have fixed charges kα and kβ under the action of ξ, the pairing
vanishes trivially if kα + kβ 6= 3. Thus, we can take kα = k and kβ = 3 − k to focus on
non-vanishing pairings.

Consider what happens when both α and β are dη-closed, so that η ∧ α and η ∧ β are
d-closed. It is then simple to show that the pairing does not depend on the representative
of the η-cohomology classes. Taking α = dγ, we have

〈η ∧ dγ, η ∧ β〉η =
∫
η ∧ dγ ∧ β

= −
∫

d(η ∧ γ ∧ β)−
∫
γ ∧ d(η ∧ β) = 0,

(3.14)

where we have used compactness and Stokes’ theorem. From this we see that the pairing is
well defined on the classes. We can go further and prove that the pairing is actually non-
degenerate on the cohomology. Non-degeneracy is the statement that if 〈η ∧α, η ∧ β〉η = 0
for all d-closed η ∧ β of charge 3 − k, then there exists a charge-(k − 3) one-form γ such
that η ∧ α = η ∧ dγ.
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Let us take η∧α to be d-closed and of charge k (so that α is charge k−3), and consider
an “action”

S[η ∧ β] = 〈η ∧ α, η ∧ β〉η, (3.15)

where η ∧ β is d-closed and charge 3 − k. Suppose that η ∧ β∗ extremises this action so
that its first-order variation vanishes:

0 = S[η ∧ (β∗ + δβ)]− S[η ∧ β∗] = 〈η ∧ α, η ∧ δβ〉η, (3.16)

where again η ∧ δβ is d-closed and charge 3 − k. This means that at the extrema of S,
〈η∧α, η∧δβ〉η vanishes for all δβ. We would now like to prove that at these extrema, there
must exist a one-form γ with the properties mentioned above. Consider a related action
where γ is thought of as a Lagrange multiplier that imposes the constraint d(η ∧ β) = 0:

S′[η ∧ β, γ] = S[η ∧ β]−
∫
γ ∧ d(η ∧ β), (3.17)

where γ and β are unconstrained other than having fixed charge. The extrema of S′ should
match the extrema of S under the constrained variations. Varying S′ around η ∧ β∗ and
γ∗ to first order, we have

0 = S′[η ∧ (β∗ + δβ), γ∗ + δγ]− S′[η ∧ β∗, γ∗]

=
∫
η ∧ α ∧ δβ −

∫
γ∗ ∧ d(η ∧ δβ)−

∫
δγ ∧ d(η ∧ β∗)

=
∫
η ∧ (α− dγ∗) ∧ δβ −

∫
δγ ∧ d(η ∧ β∗).

(3.18)

For this to vanish for all δβ and δγ, we must have

η ∧ α = η ∧ dγ∗, d(η ∧ β∗) = 0. (3.19)

We see that at the extremum, η ∧ β∗ is d-closed and there exists a one-form γ∗ such that
η ∧ α = η ∧ dγ∗, implying the pairing is non-degenerate.

As the pairing is non-degenerate on the η-cohomology and pairs charge-k with charge-
(3 − k) elements, the corresponding cohomologies at charge-k and charge-(3 − k) are iso-
morphic. This is simply the statement that

Hs
dη(k) ' H4−s

dη (3− k). (3.20)

This follows from repeating the previous calculation for charge-k forms of different rank:
for example, if α is a s-form, β would be a (4− s)-form.

3.2 Calculating H2
dη

(k)

We now want to relate the charge-k η-cohomologies Hs
dη(k) to the Kohn-Rossi (or equiva-

lently transverse Dolbeault) cohomologies of the underlying Sasaki-Einstein manifold and
the properties of η = df . We start with s = 2, as it is the most involved, and then turn to
the other cases.
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Thanks to the observation in (3.20), we can restrict our attention to k ≥ 3/2. Recall
that the relevant complex is (3.12). The charge-k, s = 2 cohomology is then the cohomology
of

Λ1
η(k) d−→ Λ2

η(k) d−→ 0, (3.21)

that is we want to count the number of d-closed forms in Λ2
η(k) modulo d-exact ones. We

will denote elements of these spaces by

η ∧ λ ∈ Λ1
η(k), η ∧ b ∈ Λ2

η(k). (3.22)

The key to computing the cohomology is to split the exterior derivative into the Kohn-Rossi
operators d = ∂b+ ∂̄b, with a corresponding decomposition of forms into [p, q] types. Under
these conventions, η = df = ∂bf is type [1, 0]. The complex (3.21) then splits into

η ∧ λ[0,1] η ∧ λ[1,0]

η ∧ b[0,2] η ∧ b[1,1] η ∧ b[2,0]

0 0 0 0

∂b∂̄b ∂b∂̄b

∂b∂̄b ∂b∂̄b ∂b∂̄b

(3.23)

where we have denoted the [p, q] type of each component with subscripts. Our plan is to
proceed from left to right, imposing that the relevant forms are ∂b- or ∂̄b-closed and then
quotienting by exact forms.

We begin by noting that for any d-closed η ∧ b, the component due to b[0,2] is trivially
∂̄b-closed (or equivalently ∂̄-closed as it is type (0, 2)). By the lower bound on the charge of
non-zero ∂̄b-closed functions and the various dualities we have already mentioned, H [0,2]

∂̄b
(k′)

is trivial for k′ > −3. Since b[0,2] has charge k − 3 and we are restricting to k ≥ 3/2, b[0,2]
has charge greater than or equal to −3/2 and so can always be written as b[0,2] = ∂̄bµ[0,1].
This can always be shifted away using the freedom in λ[0,1] and so without loss of generality
we can pick a representative with b[0,2] = 0.

Note that we have not used up all of the freedom in λ[0,1] — we can still shift by
η ∧ dλ[0,1] provided η ∧ ∂̄λ[0,1] = 0, or equivalently ∂̄λ[0,1] = 0 (since ınη = 1 and ın

annihilates Λ[0,•]). Given that H(0,1)
∂̄

(k) is trivial on a compact connected five-dimensional
Sasaki-Einstein manifold (see (2.53)) and Λ[0,•] = Λ(0,•), a ∂̄-closed λ[0,1] must be ∂̄b-exact
and so can be written as λ[0,1] = ∂̄bα[0,0]. Using {∂b, ∂̄b} = 0, we then have

η ∧ dλ[0,1] = η ∧ ∂b∂̄bα[0,0] = η ∧ d(−∂bα[0,0]), (3.24)

implying that modding out by η ∧ dλ[0,1] with ∂̄λ[0,1] = 0 is equivalent to modding out
by some η ∧ dλ[1,0]. Said differently, modding out by η ∧ dλ[1,0] alone is sufficient since
this includes all possible η ∧ dλ[0,1] for ∂̄-closed λ[0,1]. This is already taken care of by the
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right-most part of the double complex (3.23), so we can instead focus on

η ∧ λ[1,0]

η ∧ b[1,1] η ∧ b[2,0]

0 0 0

∂b∂̄b

∂b∂̄b ∂b∂̄b

(3.25)

To tackle this, we note first that since η is nowhere vanishing and type [1, 0], we can
write η ∧ b[2,0] = ρ[3,0]. The strategy is then to parametrise the most general ∂̄b-closed
η ∧ b[1,1] and then mod out by η ∧ ∂̄bλ[1,0]. The remaining freedom is shifts by ∂̄b-closed
η ∧ λ[1,0]. We then check if this parametrisation is constrained further by the condition

η ∧ ∂bb[1,1] = ∂̄bρ[3,0], (3.26)

which restricts to those η ∧ b[1,1] for which a potential ρ[3,0] exists. Given such a ρ[3,0],
the most general ρ[3,0] is a sum of these contributions plus a ∂̄b-closed component, up to
modding out by η ∧ ∂bλ[1,0], where η ∧ ∂̄bλ[1,0] = 0.

Let us begin. First note that any ∂̄b-closed element η ∧ b[1,1] will actually satisfy
η ∧ ∂̄bb[1,1] = 0 (since dη = 0). As η is nowhere vanishing, this can be the case only if

∂̄bb[1,1] = η ∧ µ[0,2] (3.27)

for some µ[0,2]. As b[1,1] is charge k−3, µ[0,2] is charge k−6. As mentioned above, H [0,2]
∂̄b

(k′)
is trivial for k′ > −3. As we are assuming k ≥ 3/2, there are values of the charge that
have non-trivial [0, 2] classes, in particular they can be present for 3/2 ≤ k ≤ 3. Let us
denote a basis for H [0,2]

∂̄b
(k − 6) as ha[0,2] — recall from section 2.2 that this basis is finite

dimensional. One then has

∂̄bb[1,1] = η ∧ (caha[0,2] + ∂̄bµ[0,1])

⇒ ∂̄b
(
b[1,1] + η ∧ µ[0,1]

)
= η ∧ caha[0,2],

(3.28)

where ca ∈ C and the right-hand side is manifestly ∂̄b-closed, charge-(k−3) and type-[1, 2].
The relevant cohomology for these objects is H [1,2]

∂̄b
(k − 3), which by the relations (2.56)

and (2.57) is given by

H
[1,2]
∂̄b

(k − 3) ' H [2,0]
∂̄b

(3− k) ' H(2,0)
∂̄

(3− k)⊕H(1,0)
∂̄

(3− k), (3.29)

and hence by (2.55) vanishes for k ≥ 3/2. Thus for each η ∧ ha[0,2] we can choose a ∂̄b-
potential γa[1,1] such that η ∧ ha[0,2] = ∂̄bγ

a
[1,1], allowing us to rewrite (3.28) as

0 = ∂̄b
(
b[1,1] + η ∧ µ[0,1] − caγa[1,1]

)
. (3.30)
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Since H [1,1]
∂̄b

(k− 3) can be non-trivial in general, we introduce a basis of forms hi[1,1] (which
is again finite dimensional) with coefficients ci ∈ C. Integrating the previous relation then
gives

cih
i
[1,1] + ∂̄bµ[1,0] = b[1,1] + η ∧ µ[0,1] − caγa[1,1], (3.31)

where µ[1,0] accounts for any ∂̄b-exact components. The most general solution to η∧ ∂̄bb[1,1]
is thus

η ∧ b[1,1] = ca η ∧ γa[1,1] + ci η ∧ hi[1,1] + η ∧ ∂̄bµ[1,0], (3.32)

where one can show that the terms on the right-hand side are linearly independent (so we
are not over counting).

We now check to see if (3.26) further constrains our parametrisation of b[1,1]. Taking
∂b of η ∧ b[1,1], we find

η ∧ ∂bb[1,1] = ca η ∧ ∂bγa[1,1] + ci η ∧ ∂bhi[1,1] + η ∧ ∂b∂̄bµ[1,0]

= ∂̄b
(
caγ

a
[3,0] + ciγ

i
[3,0] + η ∧ ∂bµ[1,0]

)
,

(3.33)

where, since η ∧ γa[1,1] and η ∧ hi[1,1] are both ∂̄b-closed and H
[3,1]
∂̄b

(k) is trivial (as it is

isomorphic to H(0,1)
∂̄

(k)), we have used

η ∧ ∂bγa[1,1] = ∂̄bγ
a
[3,0], η ∧ ∂bhi[1,1] = ∂̄bγ

i
[3,0], (3.34)

for some γa[3,0] and γi[3,0]. These degrees of freedom can always be used to solve (3.26)
without imposing any further conditions on b[1,1], leaving only modding out with respect
to ∂̄b-closed η ∧ λ[1,0].

In summary, at this point we have that for k ≥ 3/2

H2
dη(k) ' H [0,2]

∂̄b
(k − 6)⊕H [1,1]

∂̄b
(k − 3)⊕ Σ, (3.35)

where Σ is the cohomology of the complex

η ∧ λ[1,0]

0 ρ[3,0]

0 0

∂b∂̄b

∂b∂̄b

(3.36)

Note that ρ[3,0] is automatically ∂b-closed (since it is type [3, 0]) and so we need only
constrain ρ[3,0] to be a ∂̄b-closed charge-k [3, 0]-form. The choices of ρ[3,0] are thus counted
by the dimension of H [3,0]

∂̄b
(k).

We then need to mod out by ∂̄b-closed η ∧ λ[1,0]. This implies that we have

∂̄bλ[1,0] = η ∧ µ[0,1] (3.37)
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for some µ[0,1], which in turn requires that µ[0,1] is ∂̄b-closed. As H
[0,1]
∂̄b

(k−6) is trivial, µ[0,1]

must be ∂̄b-exact, allowing us to write µ[0,1] = ∂̄bα[0,0] for some α[0,0]. Since η∧ ∂̄bα[0,0] is in
the kernel of η∧, without loss of generality we can take λ[1,0] to be ∂̄b-closed. Considering
the image of ∂b(η ∧ λ[1,0]) in ρ[3,0] with λ[1,0] ∂̄b-closed, one then has

Σ ' coker(η ∧ ∂b), (3.38)

where η ∧ ∂b maps from λ[1,0] ∈ H
[1,0]
∂̄b

(k − 3) to ρ[3,0] ∈ H
[3,0]
∂̄b

(k). Since these are all
finite-dimensional spaces, we can equally write this as

dim Σ = dimH
[3,0]
∂̄b

(k)− dimH
[1,0]
∂̄b

(k − 3) + dim ker(η ∧ ∂b). (3.39)

Moreover, one can show that a ∂̄b-closed, charge-(k − 3) [1, 0]-form λ[1,0] which satisfies
η ∧ ∂bλ[1,0] = 0 can always be written as

λ[1,0] = h η + ∂bh
′, (3.40)

where h and h′ are holomorphic (∂̄- or ∂̄b-closed) functions of charge k − 6 and k − 3
respectively. We can then translate the kernel of η ∧ ∂b acting on H

[0,1]
∂̄b

(k − 3) into a
statement about the image of a map κ acting on these functions:

κ : H [0,0]
∂̄b

(k − 6)⊕H [0,0]
∂̄b

(k − 3)→ H
[1,0]
∂̄b

(k − 3)

κ(h, h′) = h η + ∂bh
′ ≡ h η + dh′.

(3.41)

The result of (3.40) is that ker(η ∧ ∂b) = im κ. As the relevant spaces are again finite
dimensional, we have

dim ker(η ∧ ∂b) = dimH
[0,0]
∂̄b

(k − 6) + dimH
[0,0]
∂̄b

(k − 3)− dim kerκ. (3.42)

We are left with calculating the dimension of the kernel of κ.
We begin with an observation: taking the exterior derivative of κ(h, h′) = 0 implies we

must have d(h η) = 0. Expanding out the derivative and using that η is d-closed, one sees
that the vanishing of d(h η) also implies ∂̄bh = 0, and so h is automatically holomorphic.
Different choices of h are thus counted by the “degree-zero η-cohomology” — functions
h that satisfy η ∧ dh = 0. It is relatively simple to show that a charge-3t holomorphic
function h that satisfies this condition must take the form

h =

cf t t ∈ {0, 1, 2, . . .},
0 otherwise,

(3.43)

where c ∈ C and f is the charge-3 holomorphic function that defines η = df . Thus, the
space of d-closed h η is one dimensional whenever t is a non-negative integer, and zero
dimensional otherwise. One can then show that the kernel of κ is generated by (0, 1) for
t = −1 and ((t + 1)f t,−f t+1) for t = 0, 1, . . ., and vanishes otherwise. Given that h has
charge k − 6, we can rewrite this condition in terms of k as

dim kerκ =

1 k ≡3 0, k ≥ 3,
0 otherwise,

(3.44)

where ≡3 should be read as modulo 3.
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In summary, we have shown, under the assumption that k ≥ 3/2,

dimH2
dη(k) = h

[0,2]
k−6 + h

[1,1]
k−3 + dim Σ,

dim Σ = h
[3,0]
k − h[1,0]

k−3 + dim ker(η ∧ ∂b),

dim ker(η ∧ ∂b) = h
[0,0]
k−6 + h

[0,0]
k−3 − dim kerκ,

dim kerκ = [k ≡3 0, k ≥ 3],

(3.45)

where we are using “Iverson brackets” that evaluate to 1 if the contained statement is
true, and 0 otherwise, and we have introduced the notation h

[p,q]
k = dimH

[p,q]
∂̄b

(k) for the
dimensions of the cohomology groups.

Using the dualities (2.55), so that all terms have the same charge, we finally have

dimH2
dη(k) = h

[3,2]
k−3 + h

[3,0]
k−3 + h

[1,1]
k−3 + 2h[0,0]

k−3 − h
[1,0]
k−3 − [k ≡3 0], for k ≥ 3/2. (3.46)

Using the isomorphisms between the Kohn-Rossi and transverse Dolbeault cohomologies,
writing h(p,q)

k for dimH
(p,q)
∂̄

(k) and noting that h(0,2)
k−3 and h

(0,1)
k−3 both vanish for k ≥ 3/2

(and h(0,1)
k and h(2,1)

k vanish identically), we can rewrite this in the more symmetric form

dimH2
dη(k) =

∑
p,q=0,1,2

(−1)p+qh(p,q)
k−3 − [k ≡3 0], for k ≥ 3/2. (3.47)

In the next subsection, we will argue9 that (3.47) actually holds for all k. In this case,
the relation h(p,q)

−k = h
(2−p,2−q)
k implies that H2

dη(k + 3) ' H2
dη(3 − k) which together with

the duality H2
dη(k) = H2

dη(3−k), implies that H2
dη(k) is periodic in k: H2

dη(k) = H2
dη(k+3).

Hence, we can write

dimH2
dη(k) =

∑
p,q=0,1,2

(−1)p+qh(p,q)
k − [k ≡3 0], for all k,

= ind∂̄(k)− [k ≡3 0],
(3.48)

where in the second line ind∂̄(k) is the transverse Dolbeault cohomology index defined in
section 2.5. Note that one consequence of this relation is that it implies the index is also
periodic: ind∂̄(k + 3) = ind∂̄(k).

3.3 H0
dη

(k), H1
dη

(k) and the index of the η-complex

Since we are in five dimensions, one can define the group Hs
dη(k) for s = 0, 1, 2, 3, 4. The

duality (3.20) states Hs
dη(k) ' H4−s

dη (−k) and furthermore Hs
dη(k) = 0 for s > 4. Hence,

determiningH0
dη(k) andH1

dη(k), together with the results of the previous section, completes
the calculation of the η-cohomologies.

The degree-zero cohomology H0
dη(k) simply counts the number of d-closed one-forms

αη, where α is a function. Recall that we have actually seen precisely this problem
around (3.43). Using this previous result, we have

H0
dη(k) = [k ≡3 0, k ≥ 3]C. (3.49)

9We expect this can also be shown directly from the double complex using a ∂∂̄-type lemma for ∂b and
including representatives for the H(2,0)

∂̄
(k) and H(0,1)

∂̄
(k) groups that vanished for the case k ≥ 3/2.
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Next consider the degree-one cohomology H1
dη(k). Again we can split into [p, q] type

to give
η ∧ α[0,0]

η ∧ λ[0,1] η ∧ λ[1,0]

0 0 0

∂b∂̄b

∂b∂̄b ∂b∂̄b

(3.50)

and proceed as we did to calculate H2
dη(k). First note that ∂̄b-closure of η ∧ λ[0,1] implies

∂̄bλ[0,1] = 0. Since H [0,1]
∂̄b

(k) ' H
(0,1)
∂̄b

(k) and this is trivial (see (2.53)), we have λ[0,1] =
∂̄bα̃[0,0] for some α̃[0,0], and so λ[0,1] can always be set to zero using the freedom to shift by
∂̄b(η ∧ α[0,0]). The complex then reduces to

η ∧ α[0,0]

0 η ∧ λ[1,0]

0 0

∂b∂̄b

∂b∂̄b

(3.51)

where, as we saw around (3.37), we can restrict to ∂̄b-closed λ[1,0] and α[0,0] without loss
of generality. Using the results around (3.40), λ[1,0] can always be written as λ[1,0] =
h η+ ∂bh

′,where h and h′ are holomorphic functions of charge k− 6 and k− 3 respectively.
This means that η ∧ λ[1,0] can always be written as η ∧ λ[1,0] = η ∧ ∂bh′. However, all such
elements are in the image of ∂b acting on η ∧ α[0,0] and so λ[1,0] can also be set to zero.
This means that there are no non-trivial elements of the cohomology. This holds for all k
and so we have

H1
dη(k) = 0. (3.52)

In summary, using the dualities (3.20) we have

H0
dη(k) = [k ≡3 0, k ≥ 3]C, H1

dη(k) = 0,

H3
dη(k) = 0, H4

dη(k) = [k ≡3 0, k ≤ 0]C,
(3.53)

with H2
dη(k) given by (3.48). Although the η-complex is not elliptic, the cohomology

groups are all finite dimensional and, as for the transverse Dolbeault operator, we can
define an index

inddη(k) ≡
∑
n

(−1)n dimHn
dη(k). (3.54)

Substituting from (3.53) and (3.53), we find that the η-complex index and transverse
Dolbeault index are equal:

inddη(k) = ind∂̄(k). (3.55)
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As we will argue, in the dual field theory both expressions encode the single-trace supercon-
formal index and hence should agree, since one theory is simply a marginal deformation of
the other. This relation is true if (3.47) holds for all k — this is one motivation for making
this assumption in the previous subsection.

4 Counting field theory operators

As we discussed in the introduction, AdS/CFT relates the reduced cyclic homology groups
HCn(A, k) that count short multiplets of operators in the field theory to cohomology groups
defined onM that count certain Kaluza-Klein modes in the AdS5×M type IIB supergravity
background. In this section, we will first review how this works whenM is a Sasaki-Einstein
space, following [6]. This gives a standard relation between HCn(A, k) and H(p,q)

∂̄
(k), and

hence an expression for the superconformal index in terms of transverse cohomologies. We
then argue that the η-cohomology groups count the corresponding modes on the exceptional
Sasaki-Einstein space that is dual to a finite exactly marginal deformation of the original
theory, and hence give the cyclic homologies of the corresponding deformed Calabi-Yau
algebra. Recall that throughout we use a normalisation where the conventional R-charge
is given by R = 2

3k, meaning the superpotential has ξ-charge 3.

4.1 The undeformed theory

Let us review the results of [6]. Let M be a five-dimensional Sasaki-Einstein manifold.
By an explicit identification of the Kaluza-Klein modes, the authors of [6] show that short
supergravity multiplets are counted by the transverse cohomology groups10 H

(p,q)
∂̄

(k) and
furthermore identify the form of the operators in the SCFT to which each mode is dual.
Following their notation and taking k > 0, one has

H
(0,0)
∂̄

(k) : trOf , trWαOf , trWαW
αOf , + t2k,

H
(1,1)
∂̄

(k) : trOω, trWαOω, trWαW
αOω, + t2k,

H
(1,0)
∂̄

(k) : trOv, trWαOv, trWαW
αOv, − t2k,

H
(2,0)
∂̄

(k) : tr W̄α̇Of ′ , tr W̄α̇WαOf ′ , tr W̄α̇WαW
αOf ′ , + t2k,

(4.1)

where the labels f , v and ω are charge-k elements of H(0,0)
∂̄

(k), H(1,0)
∂̄

(k) and H
(1,1)
∂̄

(k)
respectively, while the function f ′ is a charge-(k − 3) element of H(0,0)

∂̄
(k − 3) ' H(2,0)

∂̄
(k).

The dual supergravity modes are constructed explicitly in terms of f , v, ω and f ′. The final
term in each line of (4.1) is the net contribution of the three operators to the single-trace
superconformal index Is.t.(t) of the SCFT [12, 13].

The operators in the first two lines of (4.1) are of the same type: scalar chiral, spinor
chiral and scalar chiral as one reads across. In the field theory their contribution to the
index is collectively counted by HC 0(A, k). The contribution of the operators in the third

10Recall that [6] refers to H(p,q)
∂̄

(k) (rather than H [p,q]
∂̄b

(k)) as the “Kohn-Rossi cohomology groups”.
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and fourth lines on the other hand are counted by HC 1(A, k) and HC 2(A, k) respectively.
We see that the AdS/CFT correspondence hence predicts the relation

HCn(A, k) '
⊕

p−q=n
H

(p,q)
∂̄

(k) [k > 0] (4.2)

where we have used the fact that H(2,2)
∂̄

(k) and H(2,1)
∂̄

(k) vanish for k > 0. For a Sasaki-
Einstein manifold M , the algebra A has the same cyclic homology as the coordinate ring
of the cone over M , and one can show directly that the relation (4.2) indeed holds [6].
Calculating the single-trace superconformal index gives

Is.t.(t) =
∑

0≤n≤2, k>0
(−1)nt2k dim HCn(A, k)

=
∑

0≤p,q≤2, k>0
(−1)p−qt2k dimH

(p,q)
∂̄

(k) =
∑
k>0

t2kind∂̄(k).
(4.3)

Rather than performing a full Kaluza-Klein analysis, one can also count multiplets
by considering supersymmetric perturbations of the background following [46]. Solving
for a linear deformation of the geometry that preserves part of the integrability of the
hypermultiplet structure (H-structure) defined in [20, 47], modulo diffeomorphisms and
gauge transformations, identifies the perturbation with elements of H(0,0)

∂̄
(k) and H(1,1)

∂̄
(k).

Such deformations are dual to a scalar chiral primary operator. In particular, they either
correspond to perturbing the SCFT by the F -term of a scalar chiral operator C = A +
θψ+ θ2F or to giving a vacuum expectation value (vev) to the lowest component A∗ of the
anti-chiral operator C̄ = A∗ + θ̄ψ̄ + θ̄2F ∗. Focussing on the former, if nk(C) is the number
of F -term deformations of charge k, one finds

nk(trO) = n̄0
k, nk(trWαW

αO) = n̄0
k−3 + (b2 + 1)[k = 3], (4.4)

where O is Of or Ow and we have defined

n̄0
k ≡ dim HC 0(A, k) = (h(0,0)

k + h
(1,1)
k )[k > 0], (4.5)

and b2 ≡ dimH2
d(M) = h

(1,1)
0 − 1 is the second Betti number. Note that for charge-zero f

or w, there is no corresponding F -term deformation of the form trOf and trOw. This is
because the bulk supergravity modes are dual to SU(N) rather than U(N) quiver gauge
theories and so there are no operators of the form “tr1”. However, the corresponding terms
are present for the trWαW

αOf and trWαW
αOw operators at k = 3. They give marginal

perturbations of the overall and relative coupling constants associated to different gauge
groups in the quiver respectively. We will write these operators heuristically as trWαW

α

and trWαW
α − trW ′αW ′α. They are dual respectively to constant perturbations of the

axion-dilaton and to turning on a non-trivial complex two-form potential (with vanishing
flux) in the type IIB supergravity, and hence are counted by b2 + 1. In the notation of [46],
the Of and trWαW

αOf F -terms are dual to the modes labelled by f with k > 0 and f̄
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with k ≥ 0 respectively,11 while the Ow and trWαW
αOw F -terms are dual to the modes

labelled by δ′ with k > 0 and δ with k ≥ 0 respectively.
Writing nk(C) for the number of supersymmetric vevs with charge k, one also finds

nk(trO) = n̄0
3−k, nk(trWαWαO) = n̄0

−k + (b2 + 1)[k = 0], (4.6)

where again O is Of or Ow. In the notation of [46], the trOf and trWαWαOf vevs are
dual to the modes labelled by (f ′)∗ with k < 0 and (f̄ ′)∗ with k ≤ 0 respectively (where
here the star denotes complex conjugation), while the trOw and trWαWαOw vevs are dual
to the modes labelled by δ with k < 0 and δ′ with k ≤ 0 respectively.

Putting everything together, we can write an expression for the total number mk of
supersymmetric perturbations of charge k, dual to both deformations and vevs as

mk = q0
k + q0

3−k, (4.7)

where
q0
k = n̄0

k + n̄0
−k + (b2 + 1)[k = 0], (4.8)

so that q0
−k = q0

k.

4.2 The deformed theory: chiral multiplets and H2
dη

(k)

We now turn to the counting of short operators for the marginally deformed theories.
As we have discussed in section 3, in this case the H-structure is (partly) determined
by the CR structure of the original Sasaki-Einstein manifold together with a one-form
η of charge three. Furthermore, the supersymmetric deformations are counted by the
η-cohomology [21].

Explicitly one finds that the total number of scalar chiral perturbations, including by
deformations and vevs, is given by

mk = 2 dimH2
dη(k)− [k = 0]− [k = 3]

=
(
dimH2

dη(k)− [k = 0]
)

+
(
dimH2

dη(3− k)− [k = 3]
)
,

(4.9)

where we have used the duality H2
dη(k) ' H2

dη(3− k).
Using the relation (4.7), we would like to find q0

k and hence relate the η-cohomology
H2

dη(k) to the reduced cyclic homology HC 0(A, k) for the deformed field theory. However,
as it stands12 we cannot unambiguously read off q0

k from (4.9) unless one knows the expres-
sion for q0

k for 0 ≤ k ≤ 3
2 . However, we can use a simple physical argument to solve this

problem as follows. For 0 < k ≤ 3
2 , the parameters q0

k count F -term deformations by oper-
ators of the form trO, all of which are relevant in this range of k. For k = 0, the parameter

11There is a subtlety, relevant to the S5 theory, that the supergravity analysis excludes any k = 1 mode
for f . Thus the number of modes is not given by n̄0

1 = 3. This is however completely consistent with the
fact that tr Φi = 0 for the SU(n) theory.

12In [21], the supersymmetric deformations were counted using only a particular equivalence class of the
H-structure. Giving an explicit form for the full geometry remains an open problem. If this were known one
could, in analogy to [46], identify the representative corresponding to each mode of q0

k and q0
k−3 separately.
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q0
0 counts the vevs of the operators of the form trWαWα and trWαWα − trW ′αW ′α. As
we have discussed, the corresponding F̄ -term components give marginal deformations that
deform the coupling constants of the gauge theory. From the analysis of [15, 48, 49], all
marginal operators of this form are exactly marginal. Furthermore, the number of relevant
(or exactly marginal) operators cannot change under a finite marginal deformation of the
field theory. Thus, in this window 0 ≤ k ≤ 3

2 we expect that q0
k is the same as in the

undeformed theory.13 From (3.48) we note that, for 0 ≤ k ≤ 3
2 ,

dimH2
dη(k)− [k = 0] =

(
h

(0,0)
k + h

(1,1)
k

)
[k > 0] + (b2 + 1)[k = 0], (4.10)

where we have used the relations and bounds given in (2.55), and that h(0,0)
0 = 1 and

h
(1,1)
0 = b2 + 1. However, from (4.5) and (4.8), this is exactly equal to the undeformed q0

k

in this window. Thus comparing (4.7) and (4.9), we find

q0
k = dimH2

dη(k)− [k = 0], (4.11)

valid for all k. From (4.8) we finally have, for the deformed theory,

HC 0(A, k) ' H2
dη(k) [k > 0], (4.12)

relating the reduced cyclic homology and the η-cohomology. We can write down a Hilbert
series H̃(t) that is just the generating function for the number of (single-trace) chiral
operators of charge k. We define14

H̃(t) ≡ 1 +
∑
k>0

t2k dim HC 0(A, k). (4.13)

From (4.12) and (3.48) we see that, for all the deformed theories, the Hilbert series is
related to the single-trace superconformal index by

H̃(t) = 1 + Is.t.(t)−
t6

1− t6 , (4.14)

where the expansion of t6/(1− t6) around t = 0 gives [k ≡3, k > 0]t2k.

4.3 The deformed theory: semi-long multiplets and H0
dη

(k) and H1
dη

(k)

As we have seen, dim HC 1(A, k) and dim HC 2(A, k) count the number of operators in
the third and fourth lines of (4.1), all of which are short supersymmetric multiplets. For
example, we note that trWαOv is a spin-(1

2 , 0) semi-long multiplet, while tr W̄α̇Of ′ and
tr W̄α̇WαW

αOf ′ are spin-(0, 1
2) semi-long multiplets. They have highest components that

are vectors and two-forms respectively, and are also the only operators in the third and
13This relation should actually hold for the whole range 0 ≤ k < 3, since all the operators in 3

2 < k < 3
are relevant. We will see this is indeed so in the examples we consider below, although care must be taken
in the S5 case due to the subtlety noted in footnote 11.

14In defining H̃(t) we use the same power of twice the conformal dimension t2k that appears in the index.
As we will see in the examples, when the R-symmetry is compact, this normalisation does not necessarily
match the usual definition of the Hilbert series, where one normalises by the minimal U(1) charge.
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fourth lines of (4.1) that have bosonic highest components. Thus, one should be able
to deform the theory by turning on these vector or two-form operators and still preserve
supersymmetry, albeit while breaking the Lorentz symmetry. Without working out the
details, these are naturally related to deformations of the “V-structure” of [20] in the dual
supergravity, and should be counted by the H1

dη(k) and H0
dη(k) cohomologies respectively.

Thus, combining with (4.12), we are led to the general conjecture

HCn(A, k) ' H2−n
dη (k) [k > 0]. (4.15)

In particular, we predict

HC 1(A, k) = 0, HC 2(A, k) = [k ≡3 0, k > 0]C. (4.16)

Notably, this implies there are no operators of the form trWαOv (and hence also of the
form trOv and trWαW

αOv) in the deformed theory.
The single-trace superconformal index for the Sasaki-Einstein and the deformed theory

should of course be the same. From (4.15), we find

Is.t.(k) =
∑

0≤n≤2, k>0
(−1)nt2k dimH2−n

dη (k)

=
∑
k>0

t2kinddη(k).
(4.17)

Using (3.55), we see that this indeed agrees with the index for the undeformed theory (4.3).

5 Examples

Let us now briefly specialise our results to a few simple examples of deformed theories.
This will allow us to check the relation HCn(A, k) ' H2−n

dη (k) in some instances and in
others make some predictions about the field theory.

For simplicity, we will take the Sasaki-Einstein geometry M to be regular, though,
as we have noted, we believe our analysis also applies to quasi-regular geometries. In the
regular case, M is an S1 fibration over a Kähler-Einstein base B. This implies B is Fano
and is one of P2, P1×P1 or dPn for 3 ≤ n ≤ 8, where the del Pezzo surface dPn is P2 blown
up at n points [50, 51]. The Dolbeault cohomology groups can then be calculated from the
bundle-valued sheaf cohomologies on B of the S1 fibration. More precisely, one has

H
(p,q)
∂̄

(k) ' Hq
(
B,Ωp,0(B)⊗K−k/3B

)
, with 1

3kIB ∈ Z≥0, (5.1)

which are the standard Dolbeault cohomologies valued in the tensor product of a power
of the anti-canonical bundle K−1

B with the holomorphic cotangent bundle of B. Here IB
is the Fano index of B, i.e. the largest positive integer such that c1(K1/IB

B ) is an integral
class on B. Recall that the deformation is defined by the one-form η = df , where f is
holomorphic and has charge three. Reducing to the base we can hence view f as a section
s of the anti-canonical bundle K−1

B . The requirement that η is nowhere vanishing implies
that there are no points where s and ∂s both vanish. Equivalently it means that the divisor
defined by s = 0 is smooth. Except for dP8, the linear system defined by K−1

B is fixed-point
free and so, for smooth B, the divisor is indeed smooth for generic f by Bertini’s theorem.
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5.1 S5

For S5, the base is P2 and IB = 3. Using the sheaf cohomologies and the various dualities
from section 2, one finds the independent transverse cohomologies for S5 are given by

h
(0,0)
k = 1

2(k + 1)(k + 2) [k ≥ 0],

h
(1,0)
k = (k − 1)(k + 1) [k ≥ 2],

h
(1,1)
k = [k = 0],

(5.2)

and should be understood to be non-zero only for integer values of k. Since the minimal
charge is k = 1, it is natural to write the Hilbert series (4.13) as H̃(t) = H(t2), where,
from (4.2), for the undeformed theory we have the standard result

H(t) = 1 + 3t+ 6t2 + 10t3 + . . . = 1
(1− t)3 . (5.3)

We also have the single trace index

Is.t.(t) = 3t2

1− t2 . (5.4)

As discussed in the introduction, the generic deformed theory has a superpotential of
the form [15]

W = h tr
(
Φ1Φ2Φ3 − Φ3Φ2Φ1)

+ fβ tr
(
Φ1Φ2Φ3 + Φ3Φ2Φ1)+ fλ tr

(
(Φ1)3 + (Φ2)3 + (Φ3)3), (5.5)

where the undeformed theory has fβ = fλ = 0. This gives an algebra A that is just the
polynomial ring on C3 where we associate Φi with the coordinates (x, y, z). Recall that the
function f in η = df can be then be read off from the deformation part of (5.5) as

f = 2fβ xyz + fλ
(
x3 + y3 + z3), (5.6)

where we are restricting from the C3 cone to the sphere S5. Counting the chiral operators
from the dual deformed geometry, we have, from (3.48),

dimH2
dη(k) = ind∂̄(k)− [k ≡3 0] = 3[k ∈ Z]− [k ≡3 0], (5.7)

so that the Hilbert series (4.13) is given by H̃(t) = H(t2) where

H(t) = 1 + 3t+ 3t2 + 2t3 + 3t4 + 3t5 + 2t6 + . . . = (1 + t)3

1− t3 . (5.8)

In addition, we have the general result H1
dη(k) = 0 and H0

dη(k) = [k ≡3 0]C.
One can check that these predictions agree with the field theory analysis for a generic

deformed superpotential (5.5) by repeating the analysis in [9] (which was carried out for the
case of the beta deformation where fλ = 0). However, the Sklyanin-type non-commutative
algebra defined by (5.5) is one of the prototypical examples of a Calabi-Yau algebra, and
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k −4 −3 −2 −1 0 1 2 3 4 5 6 7

tr(O) 6 2 3 3 2 3
tr(W 2O) 1 3 3 2 2
tr(O) 3 2 3 3 2 6
tr(W 2O) 3 2 3 3 1

Total 6 4 6 6 3 6 6 3 6 6 4 6

Table 1. Counting of operators in the field theory dual to S5 graded by k. Note that the number
of tr(WαW

αO) operators, except for the case of k = 0, 1, 2, is the same as the number of tr(O)
operators after a shift of k by 3.

the reduced cyclic homology groups have actually already been calculated by Van den
Bergh in [16]. One finds that HCn(A, k) is indeed isomorphic to H2−n

dη (k) for k > 0. The
explicit counting of scalar chiral perturbations due to deformations and vevs is given in
table 1. Note that there is a subtlety in the counting of tr(O) for small k. As already
mentioned, there are no charge-zero operators of the form tr1 or charge-one operators of
the form tr Φi because we are in the SU(n) theory. Extremising the superpotential we get

Ci − 1
N 1 trCi = 0, (5.9)

where
C1 = (h+ fβ)Φ2Φ3 + (h− fβ)Φ3Φ2 + 3fλ(Φ1)2, etc. (5.10)

Note that the second term in (5.9) means that there is no constraint on trCi, and hence
we have six distinct operators of charge-two, just as in the undeformed theory (see [52–
54]). Thus, as expected, the counting of relevant operators is indeed unchanged under a
marginal deformation. Although this counting disagrees with HC 0(A, k), the total counting
does agree with (4.9) and (4.12). Note also that, for the U(n) theory, by contrast, there
are three operators of charge-one, and three of charge-two once the constraints Ci = 0 are
accounted for, agreeing with dim HC 0(A, k).

5.2 T1,1

For T1,1 the base is P1 × P1 and IB = 2. Using the various dualities, one finds the
independent transverse Dolbeault cohomologies are

h
(0,0)
k = (s+ 1)2 [s ≥ 0],

h
(1,0)
k = 2(s+ 1)(s− 1) [s ≥ 2],

h
(1,1)
k = 2 [s = 0],

(5.11)

where k = 3s/2 and s takes integer values. Thus it is natural to write the Hilbert series as
H̃(t) = H(t3). For the undeformed case we find the standard result

H(t) = 1 + 4t+ 9t2 + 16t3 + . . . = 1 + t

(1− t)3 , (5.12)
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and the single trace index is

Is.t.(t) = 4t3

1− t3 . (5.13)

The generic deformed theory has a superpotential of the form [55]

W = h tr
(
A1B1̇A2B2̇ −A1B2̇A2B1̇

)
+ fβ tr

(
A1B1̇A2B2̇ +A1B2̇A2B1̇

)
+ f2 tr

(
A1B1̇A1B1̇ +A2B2̇A2B2̇

)
+ f3 tr

(
A1B2̇A1B2̇ +A2B1̇A2B1̇

)
.

(5.14)

The undeformed theory has fβ = f2 = f3 and gives A as the polynomial ring algebra on
the conifold C ⊂ C4 given by z2

1 + z2
2 + z2

3 + z4
4 = 0, where one associates(

z3 + iz4 z1 − iz2
z1 + iz2 −z3 + iz4

)
↔

(
A1B1̇ A1B2̇
A2B1̇ A2B2̇

)
. (5.15)

The function f in η = df can be then be read off from the deformation part of (5.14) as

f = fβ
(
z2

1 + z2
2 − z2

3 − z2
4
)

+ 2f2
(
z2

3 − z2
4
)

+ 2f3
(
z2

1 − z2
2
)
, (5.16)

where we are restricting from the conifold cone to the T1,1 link. For the generic marginally
deformed theory counting the chiral operators gives, from (3.48),

dimH2
dη(k) = ind∂̄(k)− [k ≡3 0] = 4[2k ≡3 0]− [k ≡3 0], (5.17)

so that the Hilbert series (4.13) is given by H̃(t) = H(t3) with

H(t) = 1 + 4t+ 3t2 + 4t3 + 3t4 + 4t5 + 3t6 + . . . = 1 + 4t+ 2t2

1− t2 . (5.18)

In addition, we have again the general results H1
dη(k) = 0 and H0

dη(k) = [k ≡3 0]C.
We have checked that this result is in agreement with an explicit counting of gauge-

invariant chiral fields modulo the F -term relations of the deformed superpotential up to
k = 21/2. We could not find any direct calculation of the dimension of the cyclic homology
of the non-commutative Calabi-Yau algebra A defined by the deformed superpotential for
T1,1, and so this can be regarded as a prediction for the form of HCn(A, k). The complete
counting of scalar chiral perturbations due to deformations and vevs is given in table 2.

5.3 #6(S2 × S3)

As our final example, we consider #6(S2 × S3), which is a U(1) bundle over a dP6 surface.
In this case IB = 1. Using the various dualities, one finds the independent transverse
Dolbeault cohomologies are15

h
(0,0)
k = 1

2(3s2 + 3s+ 2) [s ≥ 0],

h
(1,0)
k = (3s2 − 7) [s ≥ 2] + [s = 2],

h
(1,1)
k = (7− 3|s|) [|s| ≤ 2],

(5.19)

15These were computed using Macaulay2 [56] by defining dP6 as a smooth cubic surface in P3.
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k −6 −9
2 −3 −3

2 0 3
2 3 9

2 6 15
2 9

tr(O) 4 3 4 3 4 3
tr(W 2O) 2 4 3 4 3
tr(O) 3 4 3 4 3 4
tr(W 2O) 3 4 3 4 2

Total 6 8 6 8 5 8 5 8 6 8 6

Table 2. Counting of operators in field theory dual to T1,1 graded by k. Note that the number of
tr(WαW

αO) operators, except for the case of k = 0, is the same as the number of tr(O) operators
after a shift of k by 3. There are two modes for tr(WαW

αO) at k = 3 since b2 + 1 = 2 for T1,1.

where 3k = s and s takes integer values. Thus it is natural to write the Hilbert series as
H̃(t) = H(t6), giving, for the undeformed case,

H(t) = 1 + 4t+ 10t2 + 19t3 + . . . = 1 + t3

(1− t)4 , (5.20)

and the single-trace index is

Is.t.(t) = 9t6

1− t6 . (5.21)

Though we will not give the details here, the field theory can be described by a
quiver [57]. There are h(0,0)

3 = 4 exactly marginal superpotential deformations of the
undeformed theory of the form trOf , which correspond to a choice of section s of K−1

B .
Recall that the divisor defined by s = 0 is a cubic in P2 fixed to pass through the six
blown-up points. Since only the relative positions of the points are fixed, this indeed leaves
four degrees of freedom in the choice of cubic. Infinitesimally, these deformations intro-
duce three-form flux to the supergravity background. There are also H(1,1)

∂̄
(3) = 4 exactly

marginal deformations of the form trOw corresponding, infinitesimally, to deformations of
the Einstein metric on dP6. Finally, there are b2 + 1 = b2(B) = 7 marginal deformations of
the form trWαWαO that deform the gauge coupling constants. For the generic marginally
deformed theory, the f in η = df is the lift of the section of K−1

B on dP6 to #6(S2 × S3),
and counting the chiral operators gives, from (3.48),

dimH2
dη(k) = ind∂̄(k)− [k ≡3 0] = 8[k ≡3 0], (5.22)

so that the Hilbert series (4.13) is given by H̃(t) = H(t6) with

H(t) = 1 + 8t+ 8t2 + 8t3 + 8t4 + . . . = 1 + 7t
1− t . (5.23)

In addition, we have again the general results H1
dη(k) = 0 and H0

dη(k) = [k ≡3 0]C.
We could not find any direct calculation of the dimension of the cyclic homology of

the non-commutative Calabi-Yau algebra A for the deformation of dP6, and so these can
be regarded as a prediction for the form of HCn(A, k). The complete counting of scalar
chiral perturbations due to deformations and vevs is given in table 3.
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k −12 −9 −6 −3 0 3 6 9 12 15

tr(O) 8 8 8 8 8
tr(W 2O) 7 8 8 8 8
tr(O) 8 8 8 8 8
tr(W 2O) 8 8 8 8 7

Total 16 16 16 16 15 15 16 16 16 16

Table 3. Counting of operators in field theory dual to #6(S2 × S3) graded by k. Note that the
number of tr(WαW

αO) operators, except for the case of k = 0, is the same as the number of tr(O)
operators after a shift of k by 3. There are seven modes for tr(WαW

αO) at k = 3 since b2 + 1 = 7
for #6(S2 × S3).

Note that for the general case of #n(S2 × S3), which are U(1) bundles over a dPn
surface, the single-trace index is [6]

Is.t.(t) = (n+ 3)t6

1− t6 , (5.24)

giving the Hilbert series for the deformed theories as H̃(t) = H(t6) with

H(t) = 1 + (n+ 2)t+ (n+ 2)t2 + (n+ 2)t3 + . . . = 1 + (n+ 1)t
1− t . (5.25)
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