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1 Introduction

The observation of neutrino oscillations has established active neutrinos as massive parti-
cles [1], inconsistent with the prediction of the Standard Model (SM) of particle physics.
The SU(2)L × U(1)Y gauge invariance and the absence of right-handed neutrinos forbid
a renormalizable neutrino mass term. Thus, new physics (NP) is required to explain the
neutrino masses. A minimal solution is to add right-handed gauge-singlet sterile neutri-
nos to the SM [2–6], which can interact with the SM particles via Yukawa interactions,
generating Dirac neutrino masses after electroweak (EW) symmetry breaking. Without
violating Lorentz symmetry or SM gauge symmetries, the sterile neutrinos can also have a
Majorana mass term, which violates lepton number by two units and can result in lepton-
number-violating processes such as neutrinoless double beta decay [7]. With a so-called
seesaw mechanism, tiny active neutrino masses, in agreement with observations [1, 8, 9],
arise from O(1) Yukawa couplings and sterile neutrino masses of GUT (Grand Unified
Theory) scale ∼ 1015 GeV. But much smaller sterile masses are equally fine, just requiring
smaller Yukawa couplings.
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Besides being a minimal solution, sterile neutrinos are also predicted in a wide range of
beyond-the-Standard-Model (BSM) models, such as GUTs [10], Z ′ models [11, 12], left-right
symmetric models [13–16], and leptoquark models [17]. Beyond the sterile neutrinos, these
models predict new particles that are often heavy compared to the EW scale. One useful
and systematic way to describe such new physics is to apply effective field theory (EFT),
where the heavy degrees of freedom are integrated out, leading to non-renormalizable
operators in the Lagrangian. These are gauge invariant and consist of light fields only.
The EFT that describes the interaction of the sterile neutrinos with SM particles is known
as νSMEFT [18–23], which we apply in this work.

If the sterile neutrinos are light, e.g. at the GeV scale, and their mixings with the
active neutrinos are tiny and/or the NP scale is heavy, their decay rates are suppressed
and the sterile neutrinos become long-lived. If such a neutrino is produced at an exper-
iment it can travel a macroscopic distance, before decaying into, hopefully, visible final
states. Searches for such sterile neutrinos have been both performed and proposed at vari-
ous experimental facilities. Past experiments including Belle [24], PS191 [25, 26], L3 [27],
T2K [28], CHARM [29, 30], NuTeV [31], NA3 [32], BEBC [33], and DELPHI [34] have attained con-
straints for sterile neutrino masses below the W -boson mass. More recently, LHCb [35, 36],
and CMS [37, 38] have also searched for such exotics. In addition, ATLAS at the LHC has
searched for sterile neutrinos which mix with either νe or νµ [39, 40]. Furthermore, a
number of far-detector experiments such as FASER [41] and MATHUSLA [42] have been pro-
posed to be operated in the vicinity of various LHC interaction points (IPs). These are
planned as dedicated detectors to hunt for long-lived particles (LLPs) in general,1 and their
sensitivities to long-lived sterile neutrinos have been studied extensively [11, 46–51]. Be-
sides, excellent sensitivities to such scenarios are also expected at future electron-positron
and electron-proton colliders such as the CEPC, FCC-ee, LHeC, and FCC-he [52–58]. Fi-
nally, B-factories such as the ongoing Belle II experiment, colliding electron and positron
beams at relatively low center-of-mass (CM) energies, could also look for sterile neutrinos
lighter than B-mesons [24, 59–61].

In this work, we focus on the B-factory experiment Belle II, which is in operation
in Japan. At Belle II, an electron beam of energy 7GeV collides with a positron beam
of energy 4GeV, reaching the CM energy 10.58GeV, i.e. at the Υ(4S) resonance. With
a projected integrated luminosity of 50 ab−1, this results in a very large number of BB̄
events. Besides, Belle II is estimated to generate a large number of τ -pair production
events, allowing for the study of rare τ decays to an unprecedented precision. This includes
studying lepton flavor violation [62–66] and LLPs [61, 64, 67–76]. In particular, ref. [61] has
studied the Belle II exclusion limits for long-lived sterile neutrinos which mix dominantly
with ντ , by considering τ decays. Here, we propose a displaced-vertex search strategy
similar to that discussed in ref. [61], reproducing the minimal-scenario results, as well as
extending the physics coverage to several scenarios in the νSMEFT, where one single EFT
operator can lead to both production and decay of the sterile neutrinos.

1See refs. [42–45] for recent reviews of LLP models and searches.
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The paper is organized as follows. We first introduce the νSMEFT theoretical frame-
work in section 2. We discuss both the minimal scenario and a series of EFT scenarios
in section 3, for all of which we perform numerical studies. The Belle II experiment is
detailed in section 4 together with a description of our search strategy. The numerical
results are presented in section 5, and we conclude the paper in section 6. Appendices A
and B detail the computation of two- and three-body decay rates of the sterile neutrinos.

2 The νSMEFT model

For simplicity, we consider the SM extended by only one right-handed gauge-singlet neu-
trino νR. The SM Lagrangian is then augmented by new renormalizable terms: a Majorana
mass term and a Yukawa term

L = LSM −
[1

2 ν̄
c
RMRνR + L̄H̃YννR + h.c.

]
, (2.1)

where LSM denotes the SM Lagrangian, L = (νL, eL)T is the lepton doublet, H is the
Higgs doublet, and H̃ = iτ2H

∗. In the unitary gauge,

H = v√
2

(
0

1 + h
v

)
, (2.2)

where v = 246GeV is the Higgs vacuum expectation value and h is the SM Higgs scalar.
MR is the Majorana mass for the sterile neutrino and Yν is a 3×1 matrix of Yukawa
couplings. We work in the basis where the charged leptons eiL,R, the quarks uiL,R, and diR
( i = 1, 2, 3) are in their mass eigenstates. For diL we have diL = V ijdj,mass

L , where V is the
CKM matrix and dj,mass

L denotes the left-handed down-type quarks in the mass basis. νcR
is the charge conjugate field of νR with νcR = Cν̄TR and C = −iγ2γ0, in four-component
fermion notation.

Additional new physics at a higher energy scale can lead to higher-dimensional opera-
tors involving the νR above the electroweak scale. The possible dimension-5 operators are

L(5)
νL

= εklεmn(LTk C
(5)
L CLm)HlHn , L(5)

νR
= −ν̄cR C

(5)
R νRH

†H . (2.3)

Here, C is the charge conjugation matrix, as before. C(5)
L and C

(5)
R are arbitrary coefficients

with mass dimension -1. The first term is also known as the Weinberg operator. Both terms
contribute to the Majorana masses for the active and sterile neutrinos, respectively, after
electroweak symmetry breaking (EWSB). Thus, at low energy, these terms only lead to a
shift in the free parameter MR, and are not relevant for our analysis.

Here, we are interested in operators with just one sterile neutrino up to dimension
six [20, 77]. We list the relevant ones in table 1.2 They are organized in four classes
according to powers of the fermion (ψ) and Higgs fields (H): ψ2H3, ψ2H2D,ψ2HF, ψ4,

2In principle, there are also dimension-six operators with two or four sterile neutrinos. See ref. [20] for a
summary. In particular, operators with a pair of sterile neutrinos can enhance the production of the sterile
neutrinos, which then may dominantly decay via mixing with the SM active neutrinos. See ref. [48] for a
recent study on this scenario at the LHC.
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Class 1 ψ2H3 Class 4 ψ4

OLνH (L̄νR)H̃(H†H) Oduνe (d̄RγµuR)(ν̄Rγµe)

Class 2 ψ2H2D OQuνL (Q̄uR)(ν̄RL)

OHνe (ν̄RγµeR)(H̃†iDµH) OLνQd (L̄νR)ε(Q̄dR)

Class 3 ψ2HF OLdQν (L̄dR)ε(Q̄νR)

OνW (L̄σµννR)τ IH̃W Iµν OLνLe (L̄νR)ε(L̄eR)

OνB (L̄σµννR)H̃Bµν

Table 1. Dimension-six operators involving one sterile neutrino field νR. Each fermion field has a
generation index, except νR. When needed, we shall attach these indices to the operator symbol.
Thus, O21νR3

duνe refers to the operator (s̄γµu)(ν̄Rγµτ).

where D denotes a covariant derivative and F is a gauge field strength tensor. We use CI
to denote the Wilson coefficients of operator OI . Furthermore, each carries two or four
generation indices for the quarks and leptons.

After EWSB, the operator OLνH contributes to the Dirac mass of the neutrino. This
can be absorbed in a re-definition of Yν and will therefore not be considered for the rest of
the paper. OνW and OνB induce higher-dimensional operators with much smaller coeffi-
cients compared to the other operators [7, 51] listed in table 1 and are strictly constrained
by neutrino dipole moments [78, 79], so will not be considered further. The remaining
interactions are gauge invariant under SU(3)C ×U(1)EM and can be written as

L = LSM −
[1

2 ν̄
c
LMLνL + 1

2 ν̄
c
RMRνR + ν̄LMDνR + h.c.

]
+ L(6)

CC + L(6)
NC , (2.4)

where LSM denotes the renormalizable Lagrangian involving only light SM fields after
EWSB. ML is a 3× 3 Majorana mass matrix, MR is a Majorana mass parameter, and MD

is a 3× 1 Dirac mass matrix. L(6)
CC contains charged-current interactions and is given by

L(6)
CC = 2GF√

2

{
ūiLγ

µdjL

[
ēkLγµc

CC
VLL,ijkl ν

l
L + ēkRγµc

CC1
VLR,ijk νR

]
+ ūiRγ

µdjR ē
k
R γµc

CC
VRR,ijk νR

+ūiLd
j
R ē

k
L c

CC1
SRR,ijkνR + ūiRd

j
L ē

k
L c

CC
SLR,ijkνR + ūiLσ

µνdjR ē
k
Lσµνc

CC
T,ijk νR

+ēiLcCC2
SRR,ijkνRν̄

j
Le

k
R + ν̄iLγ

µejLē
k
Rγµc

CC2
VLR,ijkνR

}
+ h.c.− 4GF√

2
ν̄iLγ

µeiLē
j
Lγµν

j
L ,

(2.5)

where we include terms involving only active neutrinos νL from the SM weak interaction
and i, j, k, l are the flavor indices of the quarks and leptons, and a summation over them
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is implied. Similarly, for the neutral-current interactions L(6)
NC , we have

L(6)
NC = −4GF√

2
ν̄iLγ

µνiL

{
ējLγµ

(
−1

2 + sin2 θW

)
ejL + ējRγµ(sin2 θW )ejR

+ ūjLγ
µ
(1

2 −
2
3 sin2 θW

)
ujL + ūjR γµ

(
−2

3 sin2 θW

)
ujR

+ d̄jLγ
µ
(
−1

2 + 1
3 sin2 θW

)
djL + d̄jR γµ

(1
3 sin2 θW

)
djR + 1

4(2− δij)ν̄jLγ
µνjL

}

+ 2GF√
2

{
ūiRu

j
Lν̄

k
Lc
NC
SLR,ijkνR + d̄iLd

j
Rν̄

k
Lc
NC1
SRR,ijkνR + ν̄iLc

NC2
SRR,ijkνRē

j
Le

k
R

+ d̄iLσ
µνdjRν̄

k
Lσµνc

NC
T,ijkνR + h.c.

}
,

(2.6)

where θW is the electroweak mixing angle. Here, we give the matching relations [7]. For
the mass terms we find

ML = −v2C
(5)
L , MR = MR + v2C

(5)
R , MD = v√

2

[
Yν −

v2

2 CLνH

]
. (2.7)

The matching relations for the charged-current operators are

cCCVLL,ijkl = −2Vijδkl , cCC1
VLR,ijk =

[
−v2CHνe,k

]†
Vij ,

cCC2
VLR,ijk =

[
−v2CHνe,k

]†
δij , cCCVRR,ijk = v2

(
Cduνe,jik

)†
,

cCC1
SRR,ijk = −v2CLνQd,kij + v2

2 CLdQν,kji , cCCSLR,ijk = v2
(
CQuνL,lik

)†
Vlj ,

cCCT,ijk = v2

8 CLdQν,kji , cCC2
SRR,ijk = −v2CLνLe,ijk , (2.8)

with V the CKM matrix. For the neutral-current operators we find

cNCSLR,ijk = v2
(
CQuνL,jik

)†
, cNC1

SRR,ijk = v2CLνQd,kljV
∗
li −

v2

2 CLdQν,kjlV
∗
li ,

cNC2
SRR,ijk = v2CLνLe,ijk , cNCT,ijk = −v

2

8 CLdQν,kjlV
∗
li , (2.9)

where V ∗li is the charge conjugate of Vli.
The renormalization group equations for these νSMEFT operators arising from one-

loop QCD effects have been discussed in ref. [7]. The overall effect there was found to be
minor and we neglect the effect here.

3 Theoretical scenarios

In this section, we study various possible channels for the production and decay of sterile
neutrinos at Belle II. We extend the SM by adding a Majorana sterile neutrino νR, as well
as the non-renormalizable interactions given in table 1. The sterile neutrino is produced
by the decay of τ leptons either from the mixing between active and sterile neutrinos, or
from the new higher-dimensional operators.

– 5 –
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τ−→ νR (ν̄R) +X1 & νR → X2 X1 X2

Minimal scenario π−, ρ−,K−,K∗−, (π0, ρ0, η, η′, ω, φ,

e− + ν̄e , µ
− + ν̄µ ν̄e + νe , ν̄µ + νµ , ν̄τ + ντ ,

e− + e+ , µ− + µ+) + ντ

Scenario O3νR11
LνQd π− (π0 , η , η′ ,K0) + ντ

Scenario O11νR3
QuνL π− ,K− (π0 , η , η′) + ντ

Scenario OνR1
Hνe e− + ντ (+ν̄R) ( π+, ρ+,K+,K∗+,

e+ + νe , µ
+ + νµ) + e−

Scenario O11νR3
duνe & O11νR1

duνe π− , ρ− (π+ , ρ+) + e−

Scenario O1νR31
LνLe e− + ν̄e e− + ντ + e+

Scenario O311νR
LdQν π− , ρ− (π0 , ρ0 , ω , η , η′ ,K0 ,K∗0) + ντ

Table 2. All possible production, X1, and decay, X2, modes of a sterile neutrino νR at Belle II.
The charge conjugate modes are implied.

3.1 The minimal scenario

We first consider the minimal model, where a sterile neutrino interacts with SM particles
only through the mixing between the active tau-neutrino ντ and the sterile neutrino. The
Lagrangian is obtained by setting all the Wilson coefficients cCC and cNC except cCCVLL in
eqs. (2.5) and (2.6) to zero. The active neutrinos να can be expressed in terms of neutrino
mass eigenstates νi

να = Uαiνi , (3.1)

where α = e, µ, τ and i = 1, 2, 3, 4. We only consider the mixing between ντ and the sterile
neutrino proportional to Uτ4 as the mixing matrix elements Ue4 and Uµ4 are severely
constrained from other observables, see e.g. refs. [51, 80]. We neglect the masses of the
active neutrinos. As a result of the small mixing Uτ4, νR is approximately equivalent to ν4,
and we hence refer to both of them as the sterile neutrino. The production and decay rates
depend on two independent parameters, the mixing matrix element Uτ4 and the mass of
the sterile neutrino mN . We list all the possible resulting production and decay channels
in the minimal scenario in the second row of table 2. For instance, with X1 = K− and
X2 = e− + e+ + ντ , we have the decay chain,

τ− → νR +K−, followed by, νR → e− + e+ + ντ . (3.2)

The branching ratios of the production and decay channels are displayed in figure 1
and figure 2, as functions of mN . As explained in section 4, we do not consider all the decay
channels of νR as visible. Therefore, in figure 2 only the visible channels are shown. The
resulting proper decay length of the sterile neutrino times |Uτ4|2 is presented in figure 3. For
a discussion of the explicit expression of the decay rates, we refer to the appendices A and B.
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0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

mN [GeV]

10−3

10−2

10−1

100

|U
τ
4
|−

2
×

B
R

(τ
−
→

X
1

+
ν R

) τ− → π− + νR

τ− → ρ− + νR

τ− → K− + νR

τ− → K∗− + νR

τ− → µ− + ν̄µ + νR

τ− → e− + ν̄e + νR

Figure 1. Tau decay branching ratios into a sterile neutrino in the minimal scenario.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

mN [GeV]

10−5

10−4

10−3

10−2

10−1

100

B
R

(ν
R
→

si
gn

at
u

re
)

νR → ρ0 + ντ
νR → ω + ντ
νR → η + ντ

νR → η′ + ντ
νR → φ+ ντ

νR → l+ + l− + ντ

Figure 2. Branching ratios of visible decay modes in the minimal scenario.

3.2 Scenarios from higher-dimensional operators

We now discuss scenarios with the SM extended by one of the operators listed in table 1,
possibly with more than one index structure. Here, we assume the type-I seesaw relation,
so that the effects from the active-sterile neutrino mixing are negligible,3 We consider the
following operators in turn: OQuνL, OLνQd, OLνLe, OHνe andOLdQν . While we refrain from
specifying a UV-complete model, which is not necessary for the low-energy phenomenology
we are after, it is worthwhile to mention that these operators can easily be obtained in
leptoquark models (OLdQν), models with Z ′ bosons (OQuνL, OLνQd, OLνLe), and left-right
symmetric models (OHνe). We refer to ref. [51] for a more detailed discussion.

3That is, here we practically neglect the interactions of the minimal model discussed in the previous
subsection.
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10−4

10−3

10−2

10−1

100
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102

|U
τ
4
|2 c
τ N

[m
]

Figure 3. Proper decay length of the sterile neutrino times |Uτ4|2 in the minimal scenario.

The above operators are special in the sense that each of them can induce both the
production and decay of sterile neutrinos by turning on only one flavor configuration. For
example, with O11νR3

QuνL , we can have the decay chains,

τ− → νR + (π−,K−), νR → ντ + (π0 , η , η′) , (3.3)

where the production of the sterile neutrino from τ− decays can be associated with a K−,
because the left-handed down-type quarks dL are not in their mass eigenstates. In choosing
the flavor combinations, we focus exclusively on first-generation quarks.

For the operator Oduνe, one single flavor setting cannot account for the production and
decay of the sterile neutrino simultaneously. Hence, we choose O11νR3

duνe for the production
and O11νR1

duνe for the decay, and assume that C11νR3
duνe = C11νR1

duνe . All the possible modes are
listed in table 2.

For each dimension-six operator in table 1, we suppose their Wilson coefficients are
given by 1/Λ2. The production and decay rates are thus proportional to 1/Λ4 and are
functions of both mN and Λ. In figure 4 and figure 5, we present respectively the τ decay
branching ratios into a sterile neutrino plus anything and the proper decay lengths, cτN ,
of the sterile neutrino, as functions of mN , for a fixed value of Λ = 1TeV. All the EFT
scenarios summarized in table 2 are included. Further, we show the branching ratios of the
visible decay modes of the sterile neutrino in figure 6. The branching ratio of the signature
decay mode in the scenario with the operator O1νR31

LνLe is not included here, as it is 100%.
We note that in a recent paper [81], a phenomenological study on the EFT scenarios

with the higher-dimensional operators listed in table 2, except OHνe, has been performed
for the LHC with a search strategy based on a displaced vertex, for mN & 5GeV. In
contrast, in this paper we focus on mN below the τ -lepton mass.
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τ− → π− + νR, LdQν

τ− → ρ− + νR, LdQν

τ− → e− + ν̄e + νR, LνLe

τ− → π− + νR, LνQd

τ− → π− + νR, QuνL

τ− → K− + νR, QuνL

Figure 4. Tau decay branching ratios into a sterile neutrino for Λ = 1TeV.
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Figure 5. Proper decay lengths of the sterile neutrino in various EFT scenarios for Λ = 1TeV.

4 Experiment and simulation

Belle II is an ongoing experiment at the SuperKEKB accelerator, which is an electron-
positron collider operated at a relatively low center-of-mass energy

√
s = 10.58GeV, i.e.

at the Υ(4s) resonance. At Belle II an electron beam of energy 7GeV collides asym-
metrically with a positron beam of energy 4GeV. With a projected 50 ab−1 integrated
luminosity, besides the large number of B-mesons, Belle II is expected to produce inclu-
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Figure 6. Branching ratios of visible decay modes for the sterile neutrino in νSMEFT scenarios.

sively 4.6× 1010 tau pairs, via e−e+ → τ−τ+. These events can be easily tagged, if one of
the two τ ’s decays into one prong. Given the clean environment and the large production
rates of the τ ’s, Belle II provides an ideal avenue for studying rare τ -decays.

For the purpose of this work, we study rare τ decays into a sterile neutrino, associated
with either a charged meson or a charged lepton, plus missing energy from an escaping
active neutrino. For the minimal scenario, the sterile neutrino is considered to be mixed
with the ντ only, while for the EFT scenarios with higher-dimensional operators the sterile
neutrino is assumed to have four-fermion interactions with at least one third-generation
lepton at the low-energy scale. We focus on the case that the sterile neutrinos are long-
lived and decay to lighter mesons or leptons, disconnected from the production vertex, but
within the tracker. We propose a displaced-vertex (DV) search strategy for these reactions,
which requires at least two charged final-state particles for the signature. More concretely,
the two displaced tracks can stem either directly from the decay of the long-lived sterile
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neutrino, or from the subsequent prompt decay of a meson, such as ρ0 and η, produced
from the sterile neutrino’s decay.

We now explain the event selections we impose for this search. We define a fiducial
volume of the Belle II detector by 10 cm < r < 80 cm and −40 cm < z < 120 cm, where
r and z are the transverse and longitudinal distances to the IP, respectively. The positive
z direction is defined to be on the side of the incoming positron beam. The choice of
r > 10 cm ensures that the background events from KS decays, prompt tracks, as well as
detector material interactions are removed. The sterile neutrino is required to decay inside
the fiducial volume. Second, in general we expect the tracking efficiency to deteriorate with
increasing (transverse) distance from the IP inside the tracker. To parameterize this effect,
we apply a naive linear function to interpolate the displaced-tracking efficiency, ranging
from 100% at r = 10 cm to 0% at r = 80 cm; see also refs. [64, 73].

The efficiency to reconstruct a DV relies on the final-state tracks. For the case of two
tracks stemming from a DV, we follow ref. [69] to take this DV reconstruction efficiency to
be 12%. With any π0, K0, or photon additional to the two tracks in the sterile neutrino
decay products, the DV reconstruction efficiency is further multiplied with 70%. Similarly,
for any additional pair of charged pions, the efficiency is modified by a factor of 85%.4,5

On top of all these cuts and efficiencies, we expect that a more detailed analysis includ-
ing all detector effects can remove the remaining SM background events, while retaining
about 75% of the signal events. We therefore apply an overall efficiency of 75% on top of
the previously mentioned factors. This estimate is inspired by ref. [61], where the authors
showed that by computation with the four-momenta of the final-state particles it is possi-
ble to derive the τ energy and the LLP mass up to a two-fold ambiguity at Belle II. By
comparing their distributions it is possible to remove the entire background events while
keeping & 75% of all the signal events.

The final expected signal-event number can thus be computed as:

NS = 2 ·Nτ τ̄ · BR(τ → 1 prong) · BR(τ → νR +X1) · ε · BR(νR → visible) , (4.1)

where Nτ τ̄ = 4.6 × 1010, BR(τ →1 prong) ≈ 85%, and ε denotes the final event selection
efficiency. The factor 2 arises because in each signal event two τ ’s are produced, which can
potentially each decay into a sterile neutrino. BR(νR → visible) is the decay branching ratio
of the sterile neutrino into at least two charged particles. This excludes final states X2 (see
table 2) consisting of neutrinos only, involving π0, which decays mostly into two photons,
or involving K0 (i.e. KS or KL), which is itself also long-lived and hence predominantly
escapes the detector’s fiducial volume.

4These efficiencies are conservative estimates based on track finding efficiency investigations of the B-
factory experiment BABAR (see refs. [82, 83]). With the help of various Monte-Carlo event generators
the efficiencies of reconstructing processes such as e+e− → τ+τ−, e+e− → π+π−(π+π−)γISR, where γISR

is a high energetic photon emitted from an initial lepton, and hadronic decay modes are evaluated and
compared to data of each BABAR run.

5To apply the analysis to reduce background events described in the following paragraph, the final state
must be reconstructed as detailed as possible. Due to the unobservable neutrino in the final state we can
not fully reconstruct it, but every other charged particle should be tracked.
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We perform Monte-Carlo simulations with Pythia8.245, in order to numerically deter-
mine the event selection efficiencies ε for each benchmark scenario. Pythia8 can generate
e−e+ → τ−τ+ events including the effects of ISR (initial state radiation) and FSR (final
state radiation). The simulated τ ’s are all exclusively set to decay to νR + X1, according
to the computed branching ratios of BR(τ → νR + X1) for different candidates of X1,
cf. table 2. With Pythia8 providing the kinematics of each simulated sterile neutrino, we
estimate its decay probability inside the fiducial volume folded with the linear displaced-
tracking efficiency. The DV reconstruction efficiencies which depend on the final state
particles are then multiplied with the cutflow efficiency, according to the various sterile
neutrino decay branching ratios. At the end, we include the final overall efficiency 75% for
removing the background events.

5 Numerical results

As discussed in section 4, with the proposed search strategy, and for 50 ab−1 integrated
luminosity, we expect vanishing background at Belle II. In our numerical results, we show
three-signal-event isocurves as the exclusion limits at 95% confidence level, and also as a
measure of sensitivity of the experiment to the νR-models.

In figure 7, we present the sensitivity limits for the minimal scenario, cf. section 3.1,
shown in the plane |Uτ4|2 vs. mN . We find general agreement with the exclusion limits
obtained in ref. [61]. We also compare our limits with existing bounds obtained by the
DELPHI [34] (marked dark gray) and CHARM [29, 30] (marked medium gray) experiments,
respectively. Moreover, recently ref. [84] has performed a re-analysis of the CHARM search
results [29, 85], obtaining updated bounds on |Uτ4|2 in the sterile neutrino mas range
290MeV < mN < 1.6GeV. We have included these exclusion limits in figure 7, shown
in light gray. We find most of the parameter space that Belle II is sensitive to has
now been excluded, except a relatively limited region at 1.2 GeV . mN . 1.7GeV for
|Uτ4|2 ∼ O(10−4). For values of |Uτ4|2 smaller than the Belle II limits, the production
rates of the sterile neutrinos become too small and the sterile neutrinos are too long-lived
to decay inside the detector fiducial volume, resulting in fewer than three signal events
predicted. The left and right ends of the exclusion limits are determined by kinematical
thresholds. At mN ∼ 1.0GeV the isocurve displays a kink. This is due to the threshold of
a τ -decay mode into a sterile neutrino and a rho-meson.

The Belle II exclusion limits for the various EFT operators listed in section 2 are
presented in figure 8, in the plane Λ vs. mN . The left plot collects results for operators that
are sensitive to neutrino masses below ∼ mη as they induce sterile neutrino decays into
pions or charged leptons. The right plot displays operators that are insensitive to sterile
neutrino masses below ∼ mη. We find the CLνQd (black) and CQuνL (yellow) sensitivi-
ties are almost identical, because the production and decay rates of the sterile neutrinos
are similar (cf. eqs. (2.6)–(2.9) and eq. (A.2)). In general, we find all the six considered
operators can be probed up to ∼1−3TeV in Λ across the sensitive mass ranges in the
long-lived regime (large Λ). For even larger Λ values, the sterile neutrino lifetime would
become so long that they decay only after traversing the detector and their production
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Figure 7. Expected sensitivity limits on the mixing matrix element squared, |Uτ4|2, as function of
the sterile neutrino mass, for the minimal scenario. The dark and medium gray areas correspond
to the parameter regions currently excluded by DELPHI [34] and CHARM [29, 30], respectively. A
recent re-interpretation [84] of the CHARM experiment results [29, 85] further excludes the light gray
parameter region. The kink at mN ∼ 1GeV is due to the ρ-threshold in the τ -decay.
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Figure 8. Sensitivity limits for the various EFT scenarios. We fix the Wilson coefficients at 1 and
show projected bounds on the new-physics scale, Λ, as functions of mN .

rates are also reduced too much, while for Λ . 100GeV they decay before reaching the
fiducial volume. For such small values of Λ the νSMEFT framework is inapplicable. For
the same reason as in the minimal scenario (see figure 7) we observe a kink at mN about
1.0GeV in the long-lived regime for the Oduνe and OLdQν operators. For LdQν the kink
is not as pronounced as in duνe or the minimal scenario. Comparing the τ → νR + (π, ρ)
branching ratios (see figure 4) for the EFT operators, we see that the rho branching ratio
of duνe quickly dominates the mN

<∼ 1GeV region over the pion branching ratio, whereas
for LdQν the rho only overtakes for mN

<∼ 0.6GeV. Thus, the kink is less pronounced in
this scenario.
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Figure 9. Sensitivity limits for the duνe scenario for a fixed neutrino mass mN = 0.8 GeV. The
respective Wilson coefficients are fixed to 1, allowing to show projected bounds on the new physics
scales ΛP and ΛD responsible for production and decay of the neutrino, respectively. Further
included are a green area marking the parameter region ΛP/D ≥ 1 TeV, for which the νSMEFT
framework is applicable, and a blue dot depicting the limit for ΛP = ΛD corresponding to the limit
of figure 8 at 0.8 GeV.

In general UV-complete scenarios, several EFT operators can be induced simultane-
ously. In such scenarios the limits could change somewhat from our results here. While
a general scan is not very useful, we have estimated what happens in a specific scenario
where we have independent couplings for the production and decay of the sterile neutrino.
In figure 8 we show constraints as a function of mN for the choice C11νR3

duve = C11νR1
duve , where

the first (second) coupling dominates the production (decay) of the sterile neutrino. We
label the corresponding Λ′s by ΛP (for production) and ΛD (for decay). In figure 9 we
investigated what happened if we freely vary the two couplings for a fixed sterile neutrino
mass of mN = 0.8 GeV. We observe that in the window where ΛP,D ≥ 1TeV (where the
EFT is valid) the constraints on the individual couplings can be strengthened by roughly
a factor of 3, at the cost of a reduced sensitivity to the other coupling. With the expected
sensitivities we therefore do not expect a significant difference in sensitivity for scenarios
with more EFT couplings. Of course, specific UV-complete models can be studied in detail
by matching to our EFT operators.

To the best of our knowledge, no other constraints on these EFT couplings have
been established for sterile neutrino masses in this region. For sterile neutrino masses
below 100MeV, several operators considered in this work have been constrained from LHC
searches for tau production plus missing transverse energy [86]. The resulting constraints
are at the TeV level as well, but, as mentioned above, require lighter sterile neutrinos in
order for them to traverse the LHC detectors. In addition, constraints from meson de-
cays, tau decays, lepton flavor universality, CKM unitarity, β-decays, and ECνNS, have
been discussed in refs. [86–93], where either a massless sterile neutrino was assumed, or
νSMEFT operators with flavor configurations different from those we have studied here
were considered. Consequently, these constraints are not shown in figure 8.

– 14 –



J
H
E
P
0
4
(
2
0
2
2
)
0
5
7

6 Conclusions

At Belle II, 1010−1011 tau leptons are predicted to be produced with an integrated lumi-
nosity of 50 ab−1 over the whole experiment lifetime, making it possible to search for rare
τ decays. In this work, we have proposed a strategy based on displaced vertex at Belle II,
to search for long-lived sterile neutrinos produced from τ decays. The search includes a
requirement on the fiducial volume consisting of the tracker and a linear displaced-tracking
efficiency. Further, to reconstruct the displaced vertices, we apply realistic efficiency factors
depending on the final states of the sterile neutrino decays. Finally, based on existing lit-
erature [61, 69], an overall factor of 75% is imposed to account for removing the remaining
background events.

We have not only considered the minimal scenario where the sterile neutrinos are
produced and decaying via the same mixing parameter, |Uτ4|2, but also worked in the
framework of the Standard Model Effective Field Theory extended with sterile neutrinos
encoding the effects of heavy new physics into non-renormalizable operators with dimen-
sions up to six. Following the proposed search strategy, we obtained the sensitivity limits
of Belle II to these theoretical scenarios. In the minimal scenario, our results are in general
agreement with those obtained in ref. [61]. For the EFT scenarios, we switch on one EFT
operator at a time, and assume the type-I seesaw relation allowing us to disregard the weak
interactions with the mixing parameter which is too small to affect the phenomenology. We
find that with our search strategy for the various νSMEFT operators considered, Belle II
can probe the new-physics scale up to about 3TeV, assuming unity Wilson coefficients, in
the kinematically allowed mass range, proving Belle II has unique sensitivities to νSMEFT
interactions with third-generation leptons.
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A Two-body decay processes with a sterile neutrino

A.1 Charged currents

Via the charged-current interactions introduced in eq. (2.5), the τ lepton and sterile neu-
trino can undergo two-body decays into final states consisting of a lepton and a charged
pseudoscalar or vector meson. For a pseudoscalar meson Mij consisting of the valence
quarks, q̄i and qj , we define the matrix element for the axial-vector current as

〈0|q̄iγµγ5qj |Mij(q)〉 ≡ iqµfMij , (A.1)
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meson MP fM [MeV] meson MV fVM [MeV]
K± 155.6 [94] K∗± 230 [95]
π± 130.2 [94] ρ± 209 [96]

Table 3. Decay constants for charged pseudoscalar and vector mesons.

where q is the momentum of Mij and fMij is the decay constant. After applying the
equation of motion to the current, we define the decay constant for the axial current,

〈0|q̄iγ5qj |Mij(q)〉 = i
m2
Mij

mqi +mqj

fMij ≡ ifSMij
, (A.2)

where mqi and mMij are the masses of quark qi and pseudoscalar meson Mij , respectively.
The matrix elements of the vector and tensor currents with a vector meson are given as:

〈0|q̄iγµqj |M∗ij(q, ε)〉 ≡ ifVMij
mM∗

ij
εµ ,

〈0|q̄iσµνqj |M∗ij(q, ε)〉 ≡ −fTMij
(qµεν − qνεµ) ,

(A.3)

where M∗ij(q, ε) denotes a vector meson with mass mM∗
ij
, momentum q, and polarization

vector ε, and we assume fTMij
' fVMij

. We list the values of all the relevant decay constants
in table 3.

A.2 Neutral currents

A.2.1 The two-body decay of the sterile neutrino in the minimal model

In the minimal model, the sterile neutrino can decay into a neutral pseudoscalar meson
M0
P or vector meson M0

V via the mixing with ντ . The decay width of νR → ντ + M0
P can

be written as [51]

Γ(νR → ντM
0
a,P ) = 2× G2

F f
2
am

3
N |Uτ4|2

32π

(
1− m2

a

m2
N

)2

, (A.4)

where a denotes π0, η, or η′, ma is the mass of meson M0
a,P , and we include a factor

2 explicitly to account for the charge-conjugated decay modes of the Majorana sterile
neutrino (similarly for the other decay rates expressions given below). For νR → ντ +M0

V ,
the decay rates are [51]

Γ(νR → ντM
0
a,V ) = 2× G2

F f
2
ag

2
a|Uτ4|2m3

N

32π

(
1 + 2 m

2
a

m2
N

)(
1− m2

a

m2
N

)2

, (A.5)

where a = ρ0, ω, or φ, and ma labels the mass of meson M0
a,V . In table 4, we list the values

of fa and ga we use for the numerical studies in this work.
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meson M0 fa [MeV] ga

ρ0 220.6 [97] 1− 2 sin2 θw

ω 198 [97] −2
3 sin2 θw

φ 227.4 [97]
√

2
(
−1

2 + 2
3 sin2 θw

)
η 81.7 [98]
η′ -94.7 [98] Not applicable
π0 130 [97]

Table 4. Decay constants and ga of neutral mesons.

A.2.2 The two-body decay of the sterile neutrino via higher-dimensional op-
erators

Some neutral-current interactions listed in eq. (2.6) include a sterile neutrino and two
quarks, and can hence induce decays of the sterile neutrino into a neutral pseudoscalar
meson. We reproduce them here:

LNC = 2GF√
2
(
ūRuLν̄Lc

NC
SLRνR + d̄LdRν̄Lc

NC1
SRR νR

)
+ h.c. (A.6)

To compute the decay rates of the sterile neutrino via these terms, we work in the SU(3)
chiral perturbation theory, following the calculation procedure as detailed in ref. [99]. We
first write down the leading-order chiral Lagrangian containing the Lorentz- and chiral-
invariant terms with the lowest number of derivatives,

Lπ,K = F 2

4 Tr
[
(DµU)†(DµU)

]
+ F 2

4 Tr
[
U †χ+ Uχ†

]
, (A.7)

where DµU = ∂µU − ilµU + iUrµ and χ = 2B(M + s− ip) . lµ, rµ, s, p are external sources
and M = diag(mu,md,ms) is a diagonal 3× 3 quark mass matrix. U is given by

U(x) = exp
(
i
√

2Π(x)
F

)
, Π(x) =


π0
√

2 + η8√
6 + η0√

3 π+ K+

π− − π0
√

2 + η8√
6 + η0√

3 K0

K− K̄0 −
√

2
3η8 + η0√

3

 .
(A.8)

η8 and η0 are in the singlet-octet basis and their relations with the physical states η and
η′ are (

η

η′

)
= 1
F

(
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)(
η8
η0

)
. (A.9)

The values of the relevant parameters are [99, 100]

F = 92.2MeV , F0 = 118.1MeV , F8 = 133.8MeV ,
θ0 = −11.0° , θ8 = −26.7° . (A.10)
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By using the external source field method, we find

s+ ip = −2GF√
2

{
ν̄τ c

NC
SLRνR + (ν̄τ cNC1

SRR νR)†
}
,

s− ip = (s+ ip)† . (A.11)

To obtain the decay rates of the sterile neutrino, we insert these currents into eq. (A.7)
and expand U to leading order.

The neutral tensor current in eq. (2.6) leads to the decay of the sterile neutrino into a
vector meson. We define the following matrix element:

〈0|q̄1σ
µνd|M0

V (q, ε)〉 ≡ −fTM(qµεν − qνεµ) , (A.12)

where q1 can be a down or strange quark, d is a down quark, and M0
V = ρ0 , ω ,K∗0. The

tensor decay constants fTM are related to the vector decay constants by fTρ0 = fρ±/
√

2,
fTω = fω/

√
2, and fTK∗0 = fK∗± .

B Three-body decays

In the minimal scenario, the sterile neutrino can decay into three light active neutrinos,
and the corresponding decay rates can be expressed in a closed form [80]

Γ(νR → ντνβ ν̄β) = 2× (1 + δτβ)G
2
Fm

5
N |Uτ4|2

768π3 , (B.1)

where β = e, µ, τ is the flavor of light neutrinos. However, in most cases the three-body
decay widths cannot be computed analytically. Thus, we compute these three-body phase
space integrals numerically. With the help of FeynCalc [101–103] and the method explained
in appendix B of ref. [51], we automatize the calculation procedure in Mathematica.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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