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Abstract: We consider the backreaction of the winding condensate on the cigar back-
ground. We focus on the case of the SL(2,R)k/U(1) cigar associated with, e.g., the near-
horizon limit of k NS5 black-branes. We solve the equations of motion numerically in the
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critical solution is a cigar with a puncture at its tip; consequently, the black-hole entropy
is carried entirely by the winding condensate. We argue that, in the Lorentzian case, the
information escapes the black hole through this puncture.
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1 Introduction

The cigar geometry, which is the analytic continuation of the eternal black-hole solution,
was proved to be a useful tool for the study of black-hole physics. For example, Gibbons
and Hawking calculated [1] thermodynamical properties of black holes from the Euclidean
action, an approach that is useful also in determining the quantum state associated with
eternal black holes [2]. More recently, a similar method to the Gibbons-Hawking one was
used in [3, 4] to reveal the origin of the derivation in [5, 6] of the Page curve [7] (for a
review, see [8]).

In string theory, the cigar geometry is accompanied by a winding mode — a string
condensate that wraps the cigar. At least far from the tip, the wave function of such a
string is expected to take the form

χ(ρ) ∝ e−SNG(ρ) , (1.1)

where SNG(ρ) is the Nambu-Goto (NG) action for the worldsheet of a string that wraps
the cigar from its tip at the origin to a radial distance ρ (see figure 1).
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Figure 1. A string worldsheet wraps the cigar from the tip to some radial distance ρ.

It is widely accepted that χ plays a key role for small black holes near the Hage-
dorn temperature (see, e.g., [9–14]). It was also claimed that this stringy mode is crucial
for a microscopic understanding of large black holes (see, e.g., [15–20]). To explore this
systematically, one needs to know the details of χ(ρ) and its coupling to the background.
Unfortunately, this is far from being the case for general cigar geometries and, in particular,
to the Schwarzschild cigar.

The exact CFT description of the SL(2,R)k/U(1) cigar, appearing in, e.g., the near-
horizon limit of k near-extremal NS5-branes in type II string theory [21], is extremely
useful in this regard. In particular, the Fateev, Zamolodchikov and Zamolodchikov (FZZ)
duality [22] makes (1.1) precise [23]. Our goal here is to take advantage of this and to
attempt to calculate the backreaction of χ on the SL(2,R)k/U(1) cigar geometry.

In the next section, we start with the Horowitz-Polchinski (HP) equations of mo-
tion, [24], associated with the SL(2,R)k/U(1) cigar, and show that the order of the equa-
tions can be reduced to accommodate the FZZ duality. We argue that this order reduction
is crucial for the validity of the equations of motion at large k (when the black hole is
large compared to the string scale). In section 3, we solve the reduced equations of mo-
tion numerically at parametrically large k as a function of the boundary condition of χ
at infinity. We find that a critical solution appears precisely at the value determined by
the boundary condition that is fixed in string theory via the FZZ correspondence [22, 23].
The critical solution involves a cigar with a puncture at its tip. In section 4, we argue
that the puncture at the tip removes the index obstruction, discussed recently in [14], to
smoothly connecting an HP classical solution with a black hole. In section 5, we show
that exactly at the critical value of the amplitude, the classical entropy carried by χ is
the Bekenstein-Hawking entropy; the appearance of the puncture justifies it. Section 6 is
devoted to discussions, and in a couple of appendices, we present some technical details
and derivations.

2 From HP to FZZ

In this section, we start with the HP action [24] for the type II string on the SL(2,R)k/U(1)
cigar and make contact with the FZZ correspondence [22, 23].

In this case, the HP effective action takes the form

I =
∫
d2x
√
ge−2Φ

(
− 1

2κ2 (R− 2Λ + 4∂µΦ∂µΦ) + ∂µχ∂µχ
∗ + β2gττ − β2

H

4π2 χχ∗
)
, (2.1)
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where κ2 = 8πGN , Φ is the dilaton, gµν is the metric and χ, χ∗ are the ±1 winding modes.
We use units in which α′ = 1, and so β = 2π

√
k, βH = 2π

√
2, Λ = − 2

k , and discuss the
parametrically small curvature case, k � 1.1

Our main goal is to explore solutions to the equations of motion such that the 2D
geometry is given by

ds2 = h2(ρ)dτ2 + dρ2 , (2.2)

where ρ is the radial direction, τ is the thermal circle, τ ∼ τ + β, and the dilaton and
winding mode are functions of the radial coordinate, Φ(ρ) and χ(ρ), respectively.

Normally, the HP action is used near the Hagedorn transition,

β − βH
βH

� 1 , (2.3)

in which case χ is light everywhere. Here, however, we are interested in the large k limit.
In this case,

β � βH , (2.4)

and condition (2.3) is not satisfied. This leads to the following apparent problems. The
reason to focus on χ, χ∗ and ignore higher winding modes when (2.3) is satisfied is that in
this case the w = ±1 modes are light, while modes with |w| > 1 have mass at least of order
of the string mass scale. But, in the regime (2.4), the local mass of the w = ±1 modes is
large at infinity. In such a situation, one would expect, naively, higher winding modes and
higher derivative terms to be important.

At least in the case of the SL(2,R)k/U(1) cigar, we have a reason to expect that the
situation is, in fact, much better: the FZZ correspondence [22, 23], which implies that the
winding condensate χ(ρ) is not independent of the metric. In fact, it is correlated with the
zero mode of the metric that shifts the location of the tip of the cigar. We can think of the
winding mode and the graviton-dilaton zero mode as two semi-classical tails corresponding
to the same state in the CFT. One way to see this is to note [25] that, regardless of k,
in the father AdS3 CFT they amount to isomorphic representations of affine SL(2,R) [26].
So, also for k � 1, the zero modes of the graviton, that are states with w = 0, are identical
to states with w = ±1 (and not to states with |w| > 1). This explains why even when k is
large, states with w = ±1 should be included in the low-energy effective action, despite the
fact that the mass of χ is large at infinity — it is the |w| = 1 zero mode that accompanies
the w = 0 zero mode associated with shifting the tip of the cigar.

What this does not explain is why higher derivatives can be neglected. A partial
explanation for this is the following. The HP action does not reflect these FZZ features
explicitly, however, the order of the HP equations of motion can be reduced to account
for (most of) the FZZ correspondence input. In particular, the fact that χ(ρ) is not
independent of the metric implies that it should not have an independent kinetic term.
The way that we address this issue is the following: as expected, the equation of motion
for χ(ρ) is second order. However, there is a subset of solutions that satisfy first order

1Note that the kinetic term of χ is naive since it includes ∂τχ while χ is non-local in τ . However, this
plays no role below since we consider solutions that are constant in τ .
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equations for χ, which fit neatly with expectations from the FZZ correspondence. In fact,
as we shall see, all the equations of motion can be reduced to first order. We view this as
an indication that higher derivatives can be neglected.

To recapitulate, while the use of the HP equations of motion is not a priori valid for
k � 1, the use of their reduction, that takes account of the FZZ duality, is a justified
starting point.

We thus begin with the equations of motion resulting from the HP action (2.1). After
the rescaling

h→
√
kh , χ→ κχ , (2.5)

and straightforward calculations (see appendix A), the equations of motion take the form:

h

(Φ′

h

)′
= (χ′)2 + h2χ2 ,

hχ′′ + h′χ′ − 2hχ′Φ′ = (h2 − 2)hχ , (2.6)

2
k

+ 2Φ′′ − 2(Φ′)2 = (χ′)2 + (3h2 − 2)χ2 .

Ultimately, we wish to study solutions to the equations in (2.6), including the full backre-
action of χ on the dilaton and metric. But, before we do that, let us recall some known
properties of these equations when χ is treated as a small perturbation.

Setting χ = 0, we find the cigar geometry,

h(ρ) =
√
k tanh

(
ρ√
k

)
, e2Φ = e2Φ0

cosh2
(
ρ√
k

) . (2.7)

Treating χ as a perturbation, without including its backreaction on the geometry, the
equation of motion for χ implies [27] that

χ(ρ) = A

coshk
(
ρ√
k

) , (2.8)

which interestingly enough exactly agrees with (1.1) for any ρ [28]. This can be viewed as
a first indication that things work better than naively expected, as we shall see in the rest
of this section.

For ρ�
√
k, we have

χ = 2kAe−
√
kρ ,

h(ρ)√
k

= 1− 2e−2 ρ√
k , Φ(ρ) = Φ0 −

ρ√
k
. (2.9)

For k � 1, we can also consider ρ�
√
k, in which case

χ = Ae−
ρ2
2 , (2.10)

and the background is R2 with a constant dilaton,

h(ρ) = ρ , Φ(ρ) = Φ0 . (2.11)

These simple observations [16, 27] will play an important role in what follows.
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Next, we turn to discuss solutions for which the backreaction of the winding modes on
the geometry is taken into account. As discussed above, the FZZ duality implies that the
second order equation of χ should be replaced by a first order equation. Since the equations
in (2.6) are non-linear coupled equations, it is hard to imagine that a replacement of this
kind is possible. But it is. One can show (see appendix A) that any solution of the following
set of equations,

h′ = hΦ′ + 1 ,

Φ′ = −h
(
χ2 + 1

k

)
, (2.12)

χ′ = −hχ ,

also solves the equations in (2.6). In complete accord with the FZZ duality, χ is not a
dynamical field in the equations in (2.12); rather, it is fixed by the metric. Furthermore, the
last equation of (2.12) implies that (1.1) holds everywhere also when the full backreaction
of the winding mode is included. Note that the equations of motion for h and Φ are first
order too. This reflects the fact that there are no propagating modes in the 2D gravity-
dilaton system.

In the rest of the paper, we will use the FZZ reduced-order equations of motion (2.12)
rather than the HP ones (2.6).

In string theory, the value of the amplitude, A, is fixed. This is correct for any cigar
geometry. However, since the calculation of A involves non-perturbative corrections in α′,
it can be calculated only when there is an exact CFT description of the relevant cigar. This
is the case in the SL(2,R)k/U(1) cigar. The way this comes about is that the properties
of the coset CFT relate χ with the cigar background. In particular, A is entangled with
the asymptotic behavior of h and Φ in (2.9), [23]. In appendix B, we review this and show
that for large k,

As = e−γ/2 = 0.749306001 . . . , (2.13)

where γ is the Euler-Mascheroni constant.
However, (2.12) does not fix the amplitude A in (2.8), (2.10). Our approach in the

next section is to solve the equations in (2.12) numerically for various values of A. We find
that, within the numerical accuracy of our analysis, exactly at Ac = As, a critical behavior
appears — there is a puncture at the tip of the cigar.

It should be emphasised that what we do here is the following. To leading order in
α′ and gs, the effective theory required to find black-hole solutions is dilaton-gravity. We
know however that the physics near the horizon is influenced unambiguously by a (non-
perturbative in α′) stringy effect: there is a winding string condensate in the cigar CFT,
and we are thus led to inspect its consequences. A starting point is the minimal extension
of dilaton-gravity that captures aspects of such a winding mode. Although corrections that
are needed for determining definite properties are ignored, our results suggest that (with
some reasonable assumptions) the minimal theory supports thought-provoking outcomes
of black holes in string theory.
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3 The puncture

In this section, we present some properties of the solutions of (2.12). First, by discussing
the numerical solutions of the equations in (2.12), and then by considering an analytical
solution that is valid near the puncture of the cigar.

3.1 Numerical solutions

Here, we describe the numerical solutions of (2.12) for k → ∞. The boundary conditions
are fixed at ρ = ρ̃, with 1� ρ̃�

√
k , in the following way:

χ(ρ̃) = Ae−
1
2 ρ̃

2
, h(ρ̃) = ρ̃ , Φ′(ρ̃) = 0 . (3.1)

In the numerical analysis, we have often set the boundary conditions at ρ̃ = 5. This
boundary condition neglects backreaction of the winding mode and so it induces some
uncertainty of the order of

χ(ρ̃)2 ∼ A2 × exp(−52) ∼ A2 × 10−11 . (3.2)

As we shall see, Ac ∼ 1, so there is a built-in uncertainty of the order of 10−11 in our
numerical solutions.

Depending on the value of A, we find that there are two classes of solutions. In one
class, h(ρ) vanishes at some ρ0 and h′(ρ0) = 1, namely, the geometry has a tip. As the
amplitude approaches, from below, a critical amplitude, Ac, we find that ρ0 becomes more
and more negative, and a narrow neck develops. In the second class, h′(ρ0) vanishes while
h(ρ0) > 0, that is, in this class, the geometry has a hole. As we approach Ac from above,
the size of the hole becomes smaller and smaller. Moreover, in the second class, h, Φ and χ
diverge at some ρ < ρ0, which is not far (in string units) from ρ0. Examples of numerical
solutions of h(ρ), for several values of A, appear in figure 2. An example of the numerical
solutions of h, Φ′ and χ for a value of A which is slightly below Ac is presented in figure 3.

There are various critical exponents that appear in the transition between the two
classes; we describe some of them in appendix C. Here, we focus on the critical solution.
At the critical value Ac, that separates the two classes, the size of the hole vanishes and we
expect, based on the asymptotic analytic solution described in the next subsection, that
ρ0 → −∞ (see figure 2). Namely, there is a puncture at the tip of the cigar. The value
of Ac is

Ac = e−γ/2, (3.3)

within the numerical accuracy of our analysis.
The reason we focus only on Ac is that this is the case that is relevant in string theory,

since Ac = As (see appendix B). Near the puncture, the critical solution can be described
analytically. This is done in the next subsection.
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A=0

A<Ac

A>Ac

Asymptotic A=Ac

-6 -4 -2 0 2
ρ

0.5

1.0

1.5

2.0

2.5
h[ρ]

Figure 2. Shown are numerical solutions of h(ρ), in the k → ∞ limit, for different values of A
(solid) and the analytical asymptotic solution from (3.4) (dashed). The black curve is the plot
of a solution for A slightly below Ac. The red curve is a solution for A slightly above Ac; it is
shifted up a bit to make it visible. Below Ac, the geometry has a tip. Above Ac, it has a hole
followed by a divergence. The critical solution, for A = Ac, when both curves coincide and which
connects smoothly to the asymptotic solution, is the punctured Euclidean black hole. In the plot,
both curves have an amplitude A that deviates from e−γ/2 in (2.13) only in the 11th digit after the
decimal point.

3.2 Analytical description

For −ρ� 1, the critical numerical solution is well approximated by

h(ρ) = −1
ρ
− 1
ρ2 + · · · , (3.4)

Φ′(ρ) = ρ− 1 + · · · , (3.5)

χ(ρ) = −ρ+ 1 + · · · . (3.6)

Indeed, one can verify that (3.4)–(3.6) solve (2.12) in the limit ρ→ −∞.
From (3.4), whose plot is shown in figure 2, it is clearly seen that the asymptotic

behavior of h(ρ) at large negative ρ is compatible with the numerical solutions. It is
also obvious from (3.4) that both h and h′ vanish when ρ → −∞. The dilaton grows
quadratically there, so formally it is a strong-coupling region, where quantum corrections
are important. However, the apparent need for adding more terms to the action is perhaps
less pressing than it might appear to be: taking Φ0 → −∞, the region where strong coupling
appears is pushed to infinity, and as we demonstrate in section 5, the entropy associated
with the winding mode comes from the region where the string coupling constant is small.

Since both h and h′ vanish when ρ→ −∞, this solution describes a tip with a puncture.
Near the puncture it is natural to apply a T-duality (in the angular direction). The duality
takes h → 1/h, and so we get back R2, albeit with a non-trivial dilaton and an angular
momentum mode that is the T-dual of χ.

Note that around ρ = 0, the critical solution has a curvature of order 1 in string units.
The facts that Ac = As and that, as discussed in the next section, SBH = SW , suggest that
the α′ corrections do not enter in these calculations. This is in accord with our argument
in the previous section that higher derivatives can be ignored.

– 7 –



J
H
E
P
0
4
(
2
0
2
2
)
0
2
1

h[ρ]

|ϕ'[ρ]|

χ[ρ]

-4 -2 2
ρ

-2

2

4

6

8

Figure 3. Solutions of h(ρ),−Φ′(ρ) and χ(ρ), for the A < Ac solution shown in figure 2.

4 Witten index and the elliptic genus

We argued that for large k, a puncture appears at the tip of the cigar in string theory. If
this is the case for any k, then the Witten index obstruction to smoothly connecting an
HP solution with a black hole in type II string theory, discussed recently in [14], is evaded
in our case. Concretely, in the SL(2,R)k/U(1) cigar, k is the parameter that connects the
HP solution with the black hole solution. For large k, we have the Euclidean black hole
with Witten index 1, and for small k, we have a cylinder associated with the HP solution
with Witten index 0. The transition takes place at k = 1 [12].

We argued that for large k there is a puncture at the tip, so the topology is of a cylinder,
just like the HP solution. This implies that there is no index obstruction in connecting
smoothly HP with the black hole solution.2 Moreover, this suggests that even for large k
the black hole should be described at the microscopic level by the Wick rotation of the
winding modes; more on that in the discussion section.

At first, the statement that the Witten index vanishes in the SL(2,R)k/U(1) CFT
seems to be in contradiction with known results. In a beautiful work, [29], Troost calculated
the elliptic genus associated with the SL(2,R)k/U(1) CFT and, in particular, showed that
the Witten index is 1, in agreement with semi-classical expectations.

The curious sum rule of [30] (see also [31]), however, seems to support a puncture at
the tip. Namely, a cylinder topology. The sum rule states that the sum of the following
three elliptic genera vanishes. The first is the SL(2,R)k/U(1) cigar CFT geometry. The
second is the analytic continuation of the region between the horizon and the singularity,
which gives an SU(2)−k/U(1) coset CFT (whose geometry is the bell). The third is the
region beyond the singularity, which gives a Zk orbifold of the SL(2,R)k/U(1) CFT (the
T-dual of the trumpet).

The fact that their sum vanishes suggests that there is a sense in which the three
regions, which semi-classically are distinct, are secretly glued to form a background with
the topology of a cylinder. From this point of view, the results presented here imply that
the glue that connects the three regions is the winding condensate.

2It should be noted that the transition in the cigar CFT happens as a function of k — a parameter
that defines the theory — while for D-dimensional black-holes, with D ≥ 4, it happens as a function of the
black-holes mass.
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5 Winding entropy and black hole entropy

In this section, we discuss the classical entropy carried by the winding mode, SW . We show
that exactly for the stringy amplitude, As in (2.13),

SW = SBH , (5.1)

where SBH = 2πe−2Φ0 is the black-hole entropy (see, e.g., [12]). Additionally, we present
some comments concerning the entropy carried by χ and its normalization.

The entropy carried by the winding condensates can be expressed in terms of the action
I in (2.1),

S = (β∂β − 1)I , (5.2)

when there is a puncture at the tip of the cigar. The calculation can proceed in two ways:
(i) Calculate the β-derivative of the integrand of I and then set the fields on-shell and (ii)
Calculate the on-shell action and then take the β-derivative; both yield the same answer.

Starting with the HP action in (d+1)-dimensions and taking a β derivative on the inte-
grand before setting the fields on-shell implies that the entropy is given by [13, 14, 19, 20]:

SW = 2β3

(2π)2

∫ √
ge−2Φgττ |χ|2ddx . (5.3)

The entropy SW is carried entirely by the winding mode χ. In our 2D case, (2.1),

SW = 4π
∫
e−2Φ(ρ)h3(ρ)χ2(ρ)dρ . (5.4)

Now, the gττ equation of motion (see appendix A),

h′′ − 2h′Φ′ = 2h3χ2 , (5.5)

allows to express the integrand in (5.4) as a total derivative: plugging (5.5) into (5.4) yields

SW = 2π
∫ (

e−2Φ(ρ)h′(ρ)
)′
dρ . (5.6)

This integral is given by the boundary terms: for ρ → ∞, the backreaction of χ vanishes
and the background takes the form (2.7), so the value of the boundary term at infinity
is 2πe−2Φ0 . At ρ → −∞, we have h′(ρ) and e−2Φ(ρ) → 0, so the boundary term there
vanishes. Therefore,

SW = 2πe−2Φ0 , (5.7)

which is exactly equal to the Bekenstein-Hawking entropy of the black hole.
As we show next, calculating the on-shell action and then taking the β-derivative yields

the same result. Since the dilaton equation is satisfied, the on-shell action can be expressed
in terms of a boundary term [14],

I = − 1
κ2

∫
∂M

dD−1y ∂n
(√

ginde
−2Φ

)
, (5.8)
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A/Ac
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0.4

0.6

0.8

1.0

SW/SBH

Figure 4. Shown is the ratio of entropy of the winding-mode condensate to the black hole entropy
for different values of A. The ratio approaches unity as A approaches Ac from below.

where ∂n denotes the normal derivative and gind denotes the induced metric on the bound-
ary. In our case, the ρ→∞ boundary term is identical to the boundary term for a black
hole with the same asymptotics. The contribution from the boundary ρ → −∞ vanishes,
due to the fact that both h and e−2Φ vanish there, as can be seen from eqs. (3.4) and (3.5).
Thus, the action of the critical punctured cigar solution is the same as the cigar action, so
their free energies are equal and so are their entropies.

Additionally, we point out that the winding modes action vanishes on-shell for the
backreacted solution: by integrating the kinetic term of χ by parts and using the χ equation
of motion, which is in the middle of (2.6), we get

IW = 2π
∫
dρ he−2Φ

[
(χ′)2 + (h2 − 2)χ2

]
= 2π

(
e−2Φhχχ′

) ∣∣∣∣ρ→+∞

ρ→−∞
= 0 , (5.9)

where the boundary terms vanish for both ρ→∞ and ρ→ −∞. We thus confirmed that
χ remains a zero mode of the effective theory also after backreaction is taken into account.

Finally, we can relate the norm of χ, defined by

N2
χ ≡ 4π

∫
dρ e−2Φ hχ2 , (5.10)

to the entropy. The relation χ′ = −hχ of (2.12) and the zero-mode action in (5.9) imply

2π
∫
dρ he−2Φ

(
2h2 − 2

)
χ2 = 0 . (5.11)

From eqs. (5.10) and (5.4), it follows that

N2
χ = SW = SBH , (5.12)

in harmony with the fact that the black-hole entropy is carried by the winding zero mode χ.
One can calculate SW also for A 6= As, using (5.4). In figure 4, we plot the ratio of

the entropy carried by the winding condensate to the black hole entropy as a function of
A/Ac ≤ 1. As can be seen from the figure, SW = SBH only for A = exp(−γ/2), implying
that the critical solution possesses the entire black hole entropy exactly when a puncture
is formed.
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A=0
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sW[ρ]/SBH

Figure 5. Shown is the ratio of the entropy density of the winding-mode condensate to the black
hole entropy for the critical solution (thick, black), and for a solution neglecting the backreaction
(thin, blue).

Figure 5 depicts the ratio of the entropy density of the winding mode to the black hole
entropy, and the corresponding quantity in the absence of backreaction; compared with the
latter case, the entropy density including backreaction is wider and overall smaller. In both
cases, the entropy density is substantial in a region for which h(ρ) is not parametrically
small. Furthermore, with an appropriate choice of Φ0, this is also a weak coupling region.

6 Discussion

We argued that the backreaction of the winding mode in the SL(2,R)k/U(1) cigar leads,
at least in the large k limit, to a puncture at its tip, and that the winding mode carries the
black hole entropy. This raises two natural questions. First, what does this imply for the
Lorentian SL(2,R)k/U(1) black hole? Second, is this special for the SL(2,R)k/U(1) cigar?
Or should we expect a similar phenomenon in, say, the Schwarzschild cigar?

We start with the first question. The analytic continuation of a cigar with a puncture
at its tip is a black hole without a future wedge. Heuristically, it is as if the singularity
got expelled to the horizon. The analytic continuation of the winding modes gives [28, 32]
(see [33] for a related discussion) an instant folded string [34] that fills the black-hole
interior. The energy-momentum tensor of an instant folded string is quite non-trivial [35]
— for example, it violates the averaged null energy condition. As a result, a sufficient
number of them render the SL(2,R)k/U(1) black hole impenetrable [36]. This, as well as
the stringy glimpse into the black-hole interior studied in [37, 38], seems to indicate that,
in a sense, the information is ejected from the black hole through the puncture. Clearly, a
more detailed study is required to make this claim precise.

Let us turn to the second question. In light of our findings here, it is tempting to
conjecture that in string theory there is always a puncture at the tip of cigars (including
the Schwarzschild cigar). Namely, that

As = Ac . (6.1)

However, without an exact worldsheet CFT description it is hard to calculate both As
and Ac.3

3Note that the exact CFT description of the SL(2,R)k/U(1) was crucial for justifying the use of (2.12)
for a large black hole, and so it entered also into the calculation of Ac.
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There is however an avenue [20] to proceed: reducing the Schwarzschild metric on the
sphere, SD−2, one gets [39] in its near horizon an SL(2,R)k/U(1) black-hole background
(times a sphere). There is a sense in which this effective description becomes an exact
worldsheet CFT of the near-horizon physics [13, 20, 39] (at least to sufficient approxima-
tion). This might thus provide a path to explore (6.1), as well as other aspects [20] of large
D-dimensional black holes in string theory.
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A Equations of motion

In this appendix, we sketch some steps leading to the complete set of three equations of
motion in (2.6), as well as the special equations in (2.12), which appear in sections 2 and 5.

A.1 HP equations of motion

The initial equations are the HP equations of motion, [24]: varying the HP action in (2.1)
w.r.t. the dilaton yields

R− 2Λ + 4∇2Φ− 4gµν∂µΦ∂νΦ = 2κ2
(
gµν∂µχ∂νχ

∗ + β2gττ − β2
H

(2π)2 χχ∗
)
. (A.1)

Combining this with the gττ metric equation of motion, it follows that

Rττ + 2∇τ∇τΦ = −2κ2β
2g2
ττ

(2π)2 χχ
∗ . (A.2)

Similarly, for the spatial metric equation of motion, one has

Rµν + 2∇µ∇νΦ = 2κ2∂µχ∂νχ
∗ . (A.3)

Finally, the χ equation of motion reads

e2Φ
√
g
∂µ
(√

ge−2Φgµν∂νχ
)

= β2gττ − β2
H

(2π)2 χ . (A.4)

In the geometry (2.2), and with Φ = Φ(ρ) and χ = χ(ρ), we obtain:

h′′(ρ)− 2
k
h(ρ)− 2h′(ρ)Φ′(ρ)− 2h(ρ)Φ′′(ρ) + 2h(ρ)(Φ′(ρ))2

= −h(ρ)
[
χ′(ρ)χ′(ρ)∗ + (h2(ρ)− 2)χ(ρ)χ∗(ρ)

]
, (A.5)

h′′(ρ)− 2h′(ρ)Φ′(ρ) = 2h3(ρ)χ(ρ)2 , (A.6)
h′′(ρ)− 2hΦ′′(ρ) = −2h(ρ)χ′(ρ)2 , (A.7)

h(ρ)χ′′(ρ) + h′(ρ)χ′(ρ)− 2h(ρ)χ′(ρ)Φ′(ρ)
= (h2(ρ)− 2)h(ρ)χ(ρ) . (A.8)
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The difference between eqs. (A.6) and (A.7) leads to:

h

(Φ′

h

)′
= (χ′)2 + h2χ2 . (A.9)

A substitution of (A.6) into (A.5) implies

2
k

+ 2Φ′′ − 2(Φ′)2 = (χ′)2 + (3h2 − 2)χ2 . (A.10)

Equations (A.8), (A.9) and (A.10) are the three equations in (2.6).
Next, we would like to derive (A.6) from the equations in (2.6), namely, from

eqs. (A.8), (A.9), (A.10): multiplying (A.9) by −h, and then taking a derivative, lead
to the following equation,

h′′Φ′ − hΦ′′′ = −h′(χ′)2 − 2hχ′χ′′ − 3h2h′χ2 − 2h3χχ′ . (A.11)

The derivative of (A.10) is given by

Φ′′′ − 2Φ′′Φ′ = χ′′χ′ + (3h2 − 2)χχ′ + 3hh′χ2 . (A.12)

Combining eqs. (A.11), (A.12) to eliminate Φ′′′, results in yet another equation,

h′′Φ′ − 2hΦ′′Φ′ = −h′(χ′)2 − hχ′χ′′ + h(h2 − 2)χχ′ . (A.13)

Equation (A.8) multiplied by χ′ gives:

hχ′χ′′ + h′(χ′)2 = 2h(χ′)2Φ′ + h(h2 − 2)χχ′ . (A.14)

Substituting (A.14) into (A.13), one obtains the following equation,

h′′Φ′ − 2hΦ′′Φ′ = −2h(χ′)2Φ′ . (A.15)

Dividing by Φ′ and using (A.9), we thus obtain (A.6).
To recapitulate, we verified that the three equations in (2.6) provide a complete set

of independent equations of motion for the ansatz (2.2) for the metric, with a dilaton and
winding mode Φ = Φ(ρ) and χ = χ(ρ), respectively.

A.2 Simplified (2.12)

In this subsection, it is demonstrated that any solution of the equations in (2.12),

h′ = hΦ′ + 1 , (A.16)

Φ′ = −h
(
χ2 + 1

k

)
, (A.17)

χ′ = −hχ , (A.18)

also solves (2.6).
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First, using eqs. (A.18) and (A.16), the L.H.S. of the second equation of (2.6),
namely (A.8), can be shown to be equal to its R.H.S.,

hχ′′ + h′χ′ − 2hχ′Φ′ = h(h2 − 2)χ . (A.19)

Second, the derivative of (A.17) is (Φ′

h

)′
= −2χχ′ . (A.20)

Then (A.18) implies

h

(Φ′

h

)′
= (χ′)2 + h2χ2 . (A.21)

Finally, we derive
2
k

+ 2Φ′′ − 2(Φ′)2 = (χ′)2 + (3h2 − 2)χ2 . (A.22)

Eq. (A.20) can be rewritten as:

Φ′′ − h′

h
Φ′ = 2h2χ2 . (A.23)

Eq. (A.16) implies that
Φ′′ −

(
Φ′ + 1

h

)
Φ′ = 2h2χ2 . (A.24)

Thus,

Φ′′ − (Φ′)2 = 2h2χ2 + Φ′

h
. (A.25)

Eq. (A.17) implies

1
k

+ Φ′′ − (Φ′)2 = (2h2 − 1)χ2 = 1
2(χ′)2 +

(3
2h

2 − 1
)
χ2 . (A.26)

This establishes that by solving (2.12), one obtains a solution of (2.6).

B As = exp (−γ/2)

In sections 2, 3 and 5, we showed that there is a critical value of the amplitude, A, of
the winding condensate χ (see (2.8), (2.13), (3.3)), for which its backreaction on the cigar
background, in the parametrically small curvature limit, develops a puncture at its origin,
such that, in particular, the thermal circle does not shrink at finite radial direction, and
the entropy that it then carries is precisely that of the Bekenstein-Hawking one.

In this appendix, we show that the critical value of A in sections 2 and 3, Ac in (3.3),
corresponds precisely to the coupling of the winding condensate in the large k limit of the
exact SL(2,R)k/U(1) cigar SCFT, As in (2.13). Namely, in string theory on the Euclidean
black hole, the whole entropy is carried by the winding string at the horizon.

The material used in the following relies heavily on the manipulations done long ago
and more recently in a set of papers; in particular, [32] and references therein include an
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essential piece of the required material. As discussed there, consider the worldsheet (WS)
action on the cylinder, Rρ × S1

τ , τ ∼ τ + 2π
√
k, with a linear dilaton,

S0 = 1
2π

∫
d2z

(
∂ρ∂̄ρ+ ∂τ ∂̄τ − 1√

k
R̂ρ

)
, (B.1)

where ρ and τ are canonically normalized fields.4 Since we consider the type II string
theory, the action has additional terms, which include worldsheet fermions, such that it
has an N = (2, 2) superconformal symmetry; these are not essential for us, and we thus
ignore them here and below.

The SL(2,R)k/U(1) SCFT is obtained, e.g., by turning on the graviton and N = 2
Liouville interactions,

Sint = 1
2π

∫
d2z

(
2πk2λ

WS
I ∂τ ∂̄τe−2ρ/

√
k + 2π1

2λ
WS
W

1
k

(∫
d2θe−

√
kΨ + c.c.

))
, (B.2)

respectively, where Ψ = ρ+iτ̃+ . . ., with τ̃ ≡ τL−τR being the T-dual of the thermal circle
τ ≡ τL + τR, is a chiral superfield (the dots stand for its higher components).5 Finally, the
coupling of the winding condensate, λWS

W , is related to that of the graviton, λWS
I , via [23]

λWS
W = k

π

(
2πλWS

I

k

2
Γ(1 + 1/k)
Γ(1− 1/k)

)k/2
. (B.3)

This property of the exact SCFT is an essential ingredient the discussion below.6

From [23, 43–45], we know that the stringy contribution to the reflection coefficient,
for scattering from the tip of the cigar CFT, is

Rs(j) ≡ e−iδstringy(j) = Γ(1− (2j + 1)/k)
Γ(1 + (2j + 1)/k) , (B.4)

where j is related to the radial momentum in the cigar, as described, e.g., in [45]. Hence,√
Rs(0)λST

I = 2πλWS
I

k

2 , (B.5)

where λST
I is the coefficient of e−2ρ/

√
k in the asymptotic behavior of gττ = h2 in spacetime

(ST), and consequently

λWS
W = k

π

(
λST
I

√
Γ(1 + 1/k)
Γ(1− 1/k)

)k/2
. (B.6)

The 2π in (B.5) arises when going from the WS to ST due to the 2π range of the string
parameter σ1 in the z = eσ2+iσ1 plane7 and the k/2 is due to the periodicity in the τ

4Rcall that we chose α′ = 1.
5See, e.g,. [40] and references therein for the properties of the N = 2 Liouville term in (B.2).
6The 1

2π

∫
d2z (2π . . .) in (B.2) is emphasizing the 2π factors that will appear below: the 1

2π is the factor
required in the kinetic term (B.1) for canonically normalized fields (see, e.g., section 2.1 in [41]) and the
2π in the integrand, as well as other factors, are for the λ′s in (B.2) to be normalized as those in (B.3);
concretely, in (2) of [42], there is a 1

2π

∫
2πµββ̄ . . . = 1

2π

∫
2πµ k2∂τ ∂̄τ . . ., and λ

WS
I ≡ µ (this follows from

the relation β =
√
k∂(ρ+ iτ), as can be seen in [32], following (17)–(24) in [42]).

7Technically, it is due to the 2π in the integrand of (B.2).
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Figure 6. Depicted is the logarithm of −ρtip as a function of the logarithm of the deviation from
the critical amplitude. The slope of a linear fit is found to be −0.05± 0.01.

direction, both of which are explicitly reflected in (B.2). Finally, the
√
Rs(0) on the left

hand side of (B.5) is a stringy dressing of the graviton one point function in spacetime,
required for the appropriate map from the graviton condensate8 in the exact worldsheet
CFT, to the ST geometry variables.9

The second equation in (2.9) gives

λST
I = 4 , (B.7)

and λST
W is the coefficient of e−

√
kρ in the asymptotic behavior of the winding condensate

field χ in spacetime, namely (see the first equation in (2.9)),

λST
W = 2kAs . (B.8)

The second term in (B.2) gives
λST
W = π

k
λWS
W , (B.9)

and thus, plugging (B.6) with (B.7) in (B.9), and using (B.8), in the large k limit we find

As = e−γ/2 , (B.10)

where γ is the Euler-Mascheroni constant. We have thus derived (2.13).

C Critical behavior

Here, we quantify the properties of the solutions as the amplitude approaches the critical
value from below. The solutions exhibit a universal critical behaviour (see figures 6 and
7): we find that the location of the tip ρtip and of ρmin, the location of the minimum of
h′, are pushed to negative values of ρ. To a good approximation, we find that the critical
exponents in ρtip ∝ (Ac −A)−γt , ρmin ∝ (Ac −A)−γm are γt ≈ 0.05 , γm ≈ 0.09.

8Whose imaginary radial momentum amounts to j = 0 in (B.4).
9Which are a priori blind to this non-perturbative (in α′), strictly stringy correction, in the spacetime

effective theory.
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Figure 7. Depicted is the logarithm of −ρmin as a function of the logarithm of the deviation from
the critical amplitude. The slope of a linear fit is found to be −0.09± 0.025.
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