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between both. Given that this source term does not involve processes with unstable par-
ticles in the initial or final states, neither does it require to calculate number densities of
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source term is null, as demanded by unitarity and CPT invariance, due to a cancellation
between the terms coming from CP violation in mixing and oscillations. The calculations
are done in a simple scalar toy model, and the resummed propagator is diagonalized at
first order in the decay widths over the mass difference. We also comment on the effect
of the interference term, which is mild at the order we work, but seems to become more
important with increasing degeneracy.
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1 Introduction

Among models of baryogenesis involving new physics around or below the TeV scale, those
with two or more exotic particles nearly degenerate in mass are an interesting option.
Notably, in the type I seesaw model it is possible to have low scale leptogenesis, either in
the freeze-out of Majorana neutrinos with O (1 TeV) masses, i.e. via the so-called resonant
leptogenesis mechanism [1], or in the freeze-in of much lighter neutrinos, i.e. baryogenesis
via neutrino oscillations, also called ARS leptogenesis [2, 3]. Resonant leptogenesis has
been studied carefully with different formalisms (see [4] for a comprehensive review). More
recently ARS leptogenesis has received a lot of attention, in part because it has been
discovered that it can be probed and even tested in some regions of parameter space in
planned experiments (we refer the reader to the review [5] for explanations and references).
Some research efforts in the last few years have been in understanding the more complex
region of parameter space involving neutrinos with masses in the intermediate mass range
of several tens to hundreds of GeV, which requires a proper understanding of the role of
the helicity [6–13].

In all these models involving quasi-degenerate particles, the CP even phase required
to have CP violating processes comes from the absorptive part of loop amplitudes or from
oscillating phases due to the coherent propagation of different mass eigenstates. The inter-
play of these sources of CP violation has been analyzed in detail under different formalisms
and approximations in [14–17] (see also [18–21]). Following a semi-classical approach, a
fully flavour-covariant set of transport equations involving a matrix of number densities was
derived in [14, 15]. In that formalism it is necessary to subtract the real intermediate state
contributions to some scattering processes to avoid violation of unitarity, and this issue
seems even more subtle than with classical Boltzmann equations (BE), as it is necessary to
account for thermal corrections when considering off-diagonal flavour correlations. Instead,
the analysis in [16] and [17] is based on the Kadanoff-Baym formalism of non-equilibrium
thermal field theory. Although several of the conclusions in these works are compatible,
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including that the oscillation and mixing sources can contribute additively to the final
asymmetry, an interference term between mixing and oscillations was found in [17] while
not in [14–16] (to understand this issue it might be important to note that these works
make different approximations according to the washout regime they focus on).

It seems clear that the treatment of CP violation for leptogenesis models with quasi-
degenerate neutrinos is not a trivial subject and has actually been discussed over some
decades now. Therefore different looks at this problem can be useful. In this regard, the
effective Hamiltonian formalism is a simple approach that has been applied successfully to
the phenomenology of CP violation in meson decays [22]. This method was used in [23, 24]
to calculate the CP asymmetry in the decay of heavy particles with arbitrary mass splittings
that mix, which elucidated various issues. Still, some points remained open for a complete
implementation of the method to baryogenesis. Namely, how do the time dependent or
time integrated asymmetries enter in transport equations?, and related to this point, which
initial state(s) should be considered in the CP asymmetries calculated in [23, 24]? It is
also key to determine the relevant conditions imposed by unitarity, which might not be
trivial given the non-Hermiticity of the effective Hamiltonian. The purpose of this work
is to address these questions. We will follow a quantum field theory approach that, up to
some point and under certain approximations, can be matched to the effective Hamiltonian
formalism.

The work is organized as follows: in section 2 we calculate the renormalized propa-
gator in a scalar toy model, diagonalize it under certain approximations and verify the
relevant unitarity conditions. The corresponding amplitudes for the lepton number violat-
ing processes are used in a quantum field theory model of oscillations in section 3, where
we also verify that unitarity is satisfied for the probabilities obtained in this way. From
those probabilities we derive, in section 4, a source term which only involves stable parti-
cles as asymptotic states and discuss the different contributions. Finally, in section 5 we
summarize the main results and comment on possible directions for future work.

2 Renormalized propagator and unitarity

The issues we want to study in this work can be captured in a simple scalar toy model
commonly used for this type of purposes in several of the references given above (in par-
ticular in [17]). It consists of one complex and two real scalar fields, denoted by b and ψi
(i = 1, 2), respectively. In a basis where the mass matrix of the real scalars is diagonal,
the Lagrangian is given by

L = 1
2∂

µψi ∂µψi −
1
2ψiM

2
i ψi + ∂µb̄ ∂µb−m2 b̄b− hi

2 ψi bb−
h∗i
2 ψi b̄b̄−

λ

2 · 2(b̄b)2 . (2.1)

The b-particles will subsequently be called “leptons”, since they play in this toy model
the analogous role that leptons play in standard leptogenesis, and for simplicity their mass
m will be neglected. The lepton charge is broken by the cubic Yukawa interaction terms
involving the ψi, to be called “neutrinos” in what follows. The last term is a quartic
interaction which does not change lepton number but might be used as a way to localize
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the leptons and satisfy the conditions to have oscillations [25], but we will not make explicit
use of it.

The one-loop renormalized inverse propagator matrix G−1 is given by

iG−1(p2) = p21−M2(p2), (2.2)

with

M2(p2) =
(
M2

1 + Σ11(p2) Σ12(p2)
Σ21(p2) M2

2 + Σ22(p2)

)
, (2.3)

and

Σii(p2) = |hi|2

(4π)2

[
1 + ln p2

M2
i

− p2

M2
i

− iπθ(p2)
]
, (2.4)

Σ12(p2) = Σ21(p2) = Re [h∗1h2]
(4π)2

M2
2 ln p2

M2
1
−M2

1 ln p2

M2
2
− p2 ln M2

2
M2

1

M2
2 −M2

1
− iπθ(p2)

 . (2.5)

Here θ is the step function, which will be omitted in the following calculations given that we
will always evaluate these expressions for p2 > 0 (the symbol θ will be used in the rest of the
paper to denote the quantity defined below). We have used the following renormalization
conditions:

Re
[
Σii(M2

i )
]

= 0, for i = 1, 2 , (2.6)

Re
[
Σ12(M2

i )
]

= 0, for i = 1, 2 , (2.7)
dΣii

dp2

∣∣∣
p2=M2

i

= 0, for i = 1, 2 . (2.8)

In order to use a quantum field theory model for oscillations in the next section, we
proceed to diagonalize the propagator matrix. To simplify the analysis we will perform the
diagonalization at first order in the quantities

ηij ≡
|hihj | /(4π)2

M2
2 −M2

1
. (2.9)

Doing so, we will not be able to study the highly degenerate case M2 −M1 ∼ Γ1,2, which
is left for future work (note that e.g. in [26] a similar expansion is performed to make a
careful comparison of different procedures to obtain the CP-asymmetry in the decays of
quasi-degenerate Majorana neutrinos). At first order in ηij , G = G(1) +O

(
η2
ij

)
, with

G(1)(p2) = i

(
1 θ

−θ 1

)(
(p2 −M2

1 − Σ11)−1 0
0 (p2 −M2

2 − Σ22)−1

)(
1 −θ
θ 1

)
, (2.10)

and
θ ≡ Σ12

M2
2 −M2

1
. (2.11)
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The polesM2
a,b of the diagonal propagator matrix are given by the solutions to

M2
a −M2

1 − Σ11(M2
a) = 0 =⇒ M2

a = M2
1 − iM1Γ1 +O

(
h4

1

)
, (2.12)

M2
b −M2

2 − Σ22(M2
b) = 0 =⇒ M2

b = M2
2 − iM2Γ2 +O

(
h4

2

)
, (2.13)

with Γi ≡ |hi|2
16πMi

the total decay widths. Next, it will also be convenient to make an
expansion around the complex poles (see e.g. [27] for more details on the pole structure of
the propagator matrix). This yields G(1)(p2) = G(1,p)(p2) +O

(
(p2 −M2

a,b)0, h4
i

)
, with

G(1,p)(p2) = i

(
1 θ

−θ 1

)(
(p2 −M2

a)−1 0
0 (p2 −M2

b)−1

)(
1 −θ
θ 1

)
. (2.14)

Unitarity and CPT invariance place strong requirements for transition probabilities
|A(i→ j)|2, which are crucial for a correct implementation of baryogenesis mechanisms [28–
30] (an improper implementation may led to generation of spurious asymmetries). For the
scalar model of our study and given that we will not consider the unstable neutrinos as
initial or final states, the key relation imposed by unitarity and CPT invariance (at zeroth
order in the λ coupling and sixth order in the Yukawa couplings) is

|A(bb→ bb)|2 +
∣∣∣A(bb→ b̄b̄)

∣∣∣2 = |A(bb→ bb)|2 +
∣∣∣A(b̄b̄→ bb)

∣∣∣2 , (2.15)

and therefore
∆
∣∣∣A(b̄b̄→ bb)

∣∣∣2 ≡ ∣∣∣A(b̄b̄→ bb)
∣∣∣2 − ∣∣∣A(bb→ b̄b̄)

∣∣∣2 = 0. (2.16)

For a propagator matrix G the invariant matrix elements are given by

M(b̄b̄→ bb) = i
∑
j,k

h∗j Gjk h
∗
k , (2.17)

M(bb→ b̄b̄) = i
∑
j,k

hjGjk hk . (2.18)

It is straightforward to demonstrate that the unitarity requirement (2.16) is satisfied plug-
ging in these expressions the exact one-loop resummed propagator G or, at the correspond-
ing order, any of the approximations G(1) or G(1,p). Note that there are also one-loop vertex
contributions at the same order in the Yukawa couplings, but they cancel independently
in (2.16) (see e.g. [31]) and will not be considered in this work, since they are not enhanced
by the quasi-degeneracy of the neutrinos.

3 Oscillations and unitarity

Keeping the terms up to first order in ηij in the propagator G(1,p), the invariant matrix
elements for the lepton number violating processes become

−M(b̄b̄→ bb) =
(
h∗21 − 2h∗1h∗2θ

)
∆1 +

(
h∗22 + 2h∗1h∗2θ

)
∆2 , (3.1)

−M(bb→ b̄b̄) =
(
h2

1 − 2h1h2θ
)

∆1 +
(
h2

2 + 2h1h2θ
)

∆2 , (3.2)
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with
∆j ≡

1
p2 −M2

j + iMjΓj
.

These amplitudes can be used in a quantum field theory model of oscillations. We will
consider an external wave packet model [32, 33] following the detailed review and analysis
of [25]. In this model the initial and final states of a given process are described by
localized wave packets. Assuming that the factors related to coherence and localization
which could destroy oscillations can be neglected, the probabilities of the lepton number
violating processes are given by

|A|2 (L) = N

∣∣∣∣(h∗21 − 2h∗1h∗2θ
)
e
−i
(
M1−i

Γ1
2

)
ML
p0 +

(
h∗22 + 2h∗1h∗2θ

)
e
−i
(
M2−i

Γ2
2

)
ML
p0

∣∣∣∣2 ,∣∣∣Ā∣∣∣2 (L) = N

∣∣∣∣(h2
1 − 2h1h2θ

)
e
−i
(
M1−i

Γ1
2

)
ML
p0 +

(
h2

2 + 2h1h2θ
)
e
−i
(
M2−i

Γ2
2

)
ML
p0

∣∣∣∣2 . (3.3)

Here, to simplify the notation we have defined A ≡ A(b̄b̄ → bb) and Ā ≡ A(bb → b̄b̄),
L is the distance between the production and decay of the neutrinos that mediate these
processes, whileM ≡ (M1+M2)/2 and p0 are the average values of the mass and momentum
of the neutrinos, respectively. We have integrated over solid angle and the normalization
constant N is going to be determined below (see [25] for the case of stable neutrinos).
These expressions for the probabilities are valid up to first order in (M2

2 − M2
1 )/(2p2

0)
and, under the approximations we have made, can be matched to an effective Hamiltonian
approach [25]. For the following discussion it will be more convenient to change from
distance L to time t via the relation ML

p0
= t

γ , with γ ≡ E0/M the Lorentz factor and E0

the average energy (i.e. ML
p0

is the classical proper time of propagation).
Unitarity and CPT invariance imply that, for a given initial state,

∑
j |A(i→ j)|2 =∑

j

∣∣∣A(̄i→ j̄)
∣∣∣2 (with the bar denoting CP conjugate states). The unitarity condition (2.16)

that we verified in the previous section involved initial and final particles with well defined
momentum, while in eqs. (3.3) the states (particularly the final states), have been taken
as wave packets localized in space. Therefore, to verify that the probabilities in eq. (3.3)
respect unitarity, we must perform a sum over all possible final states, i.e. an integral over
L (or equivalently over t, as noted above). We will come back to this crucial point below,
but before we define some time dependent CP odd quantities to be used in the rest of
our study.

As is well known, CP violation requires both, a relative CP-even phase (given by the
factor Im [I0I

∗
1 ] below) and a relative CP-odd phase (given by the factor Im [λ0λ

∗
1] below).

Specifically, consider two contributions to a certain amplitude, with the couplings factored
into the parameters λi, so that A(i→ j) = λ0I0 + λ1I1 and A(̄i→ j̄) = λ∗0I0 + λ∗1I1. Then
one gets

∆ |A(i→ j)|2 ≡ |A(i→ j)|2 −
∣∣∣A(̄i→ j̄)

∣∣∣2 = −4Im [λ0λ
∗
1] Im [I0I

∗
1 ] . (3.4)

We apply this general expression to obtain the CP asymmetry ∆ |A|2 ≡ |A|2 −
∣∣∣Ā∣∣∣2 from

eqs. (3.3), noticing that there are two different types of CP even phases: one independent
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of L (or t) in θ, and an oscillating one in the exponentials e−iMjt/γ . Considering all the
interferences and the source of the CP even relative phases, the CP asymmetry can be
written as a sum of contributions from mixing M (involving only θ), from oscillations O
(involving only e−iMjt/γ), and interference terms I (involving both θ and e−iMjt/γ):

|A|2 (t)−
∣∣∣Ā∣∣∣2 (t)

N
= M(t) +O(t) + I(t) , (3.5)

with

M(t) = 8 Im [h1h
∗
2] θI

(
|h1|2 e−Γ1t/γ + |h2|2 e−Γ2t/γ

)
, (3.6)

O(t) = 8 Im [h1h
∗
2] Re [h1h

∗
2] Im

[
ei(M2−M1)t/γ

]
e−Γt/γ , (3.7)

I(t) = 8 Im [h1h
∗
2]
(
|h1|2 Im

[
ei(M2−M1)t/γ θ∗

]
− |h2|2 Im

[
ei(M2−M1)t/γ θ

])
e−Γt/γ ,

' −8 Im [h1h
∗
2] θI

(
|h1|2 + |h2|2

)
Re
[
ei(M2−M1)t/γ

]
e−Γt/γ , (3.8)

where we have written Γ ≡ (Γ1 + Γ2)/2 and θ = θR + iθI, so that

θI = − Re [h1h
∗
2]π

(4π)2 (M2
2 −M2

1
) . (3.9)

In the last line of eq. (3.8) we have neglected the terms proportional to θR, which are
suppressed by two powers of the Yukawa couplings compared to the O term in eq. (3.7)
and, moreover, θR vanishes exactly for p2 = M2

1,2.
As explained above, to check whether our approach respects unitarity, we must inte-

grate the probabilities over all times. Indeed, considering the basic integrals:∫ ∞
0

sin ((M2 −M1)t/γ) e−Γt/γdt = M2 −M1

(M2 −M1)2 + Γ2
γ,∫ ∞

0
cos ((M2 −M1)t/γ) e−Γt/γdt = Γ

(M2 −M1)2 + Γ2
γ,

it is immediate to see that∫ ∞
0

M(t)dt = 8 Im [h1h
∗
2] θI

(
|h1|2

Γ1
+ |h2|2

Γ2

)
γ, (3.10)∫ ∞

0
O(t)dt = 8 Im [h1h

∗
2] Re [h1h

∗
2] M2 −M1

(M2 −M1)2 + Γ2
γ, (3.11)∫ ∞

0
I(t)dt = O

(
h8
)
, (3.12)

where O (hn) represents terms that are order n in the Yukawa couplings h1,2. Hence∫ ∞
0
|A|2 (t) dt =

∫ ∞
0

∣∣∣Ā∣∣∣2 (t) dt+O
(
h8
)
, (3.13)

and therefore unitarity is verified up to the order we have been working, i.e up to O
(
h6).

Note that the interference term, although giving an O
(
h8) contribution when integrated
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over all times, gives an O
(
h6) contribution at finite times, and in fact cancels the CP

asymmetry from mixing at small times (relative to the oscillation period). Moreover, the
O
(
h8) terms in eq. (3.13) are, to be more specific, O

(
h4η2), with η representing any of

the O
(
h2) quantities introduced in eq. (2.9) which increase with decreasing ∆M2 ≡M2

2 −
M2

1 . It can be seen directly from eq. (3.11) that the oscillation term gives a contribution
O
(
h2η3), which could be the dominant one at O

(
h8), but it is actually canceled by the

interference term. Given that we have diagonalized the propagator at first order in η,
we cannot make a meaningful discussion beyond lowest non-trivial order, however the
cancellation just mentioned suggests that the interference term might have an important
role in the highly degenerate limit, as found in [17]. We will illustrate these issues related
to the interference term in the next section.

A final comment may be of interest. Defining
∣∣∣A(b̄b̄→ ψ)

∣∣∣2 (t) ≡
∫∞
t |A|

2 (t′) dt′ and

|A(bb→ ψ)|2 (t) ≡
∫∞
t

∣∣∣Ā∣∣∣2 (t′) dt′, eq. (3.13) can be written as∫ t

0
|A|2 (t′) dt′ +

∣∣∣A(b̄b̄→ ψ)
∣∣∣2 (t) =

∫ t

0

∣∣∣Ā∣∣∣2 (t′) dt′ + |A(bb→ ψ)|2 (t) +O
(
h8
)
.

In this form the unitarity condition could be interpreted as involving a sum over all pos-
sible final states at a finite time t, with

∣∣∣A(b̄b̄→ ψ)
∣∣∣2 (t) and |A(bb→ ψ)|2 (t) giving the

probability that the neutrinos mediating the corresponding processes have not yet decayed
(one could also include lepton number conserving contributions, but they cancel due to
CPT invariance).

4 Source term

The time evolution of the lepton density asymmetry, nL ≡ nb − nb̄, can be obtained from
the sum of two terms,

dnL
dt = S(t)−W (t), (4.1)

where the source term S(t) is the part which may be non-null in the absence of a lepton
density asymmetry and W (t) is the so-called washout term. We want to build the source
term for a transport equation of the lepton asymmetry directly from the probabilities (3.3),
without resorting to some count of neutrino number densities. Two considerations will
be important for this purpose: (i) In a classic-like approach to transport equations we
can choose a small time window and consider the processes that produce and destroy
leptons and antileptons. Unitarity and CPT invariance imply that the total probability of
destruction processes must be the same for leptons and antileptons. Therefore the net effect
of destruction processes is non-null only if there is some lepton asymmetry, i.e. destruction
processes do not contribute to the source term (see e.g. [34] for more details and some
subtle issues on this point). Then the source term can be obtained considering only the
production processes. (ii) For the production of leptons and antileptons we must take into
account that, e.g. a pair of leptons produced at time T , might come from a process involving
the annihilation of antileptons at a previous time t. Therefore a proper integration of the
probabilities (3.3) over the whole history of the system must be considered.
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For our purposes it is enough to consider a static universe and, to keep things simple,
that all the neutrinos mediating the processes in eqs. (3.3) have the same average mo-
mentum p0, so that momentum integrals are avoided (the procedure can be generalized to
include the expansion of the universe and more realistic momentum distributions, which
is work in progress). Finite density effects will also not be included. In order to deter-
mine the normalization constant N in eqs. (3.3) and show how to integrate over time the
probabilities, we start by looking at the density rate of lepton production at time T due
to antilepton annihilations, to be denoted by γ(b̄ → b)(T ) below. At tree level, consid-
ering for the time being only the processes mediated by ψ1 and using the narrow width
approximation,

γ(b̄→ b)(T ) = 2
∫ T

0
γ(b̄b̄→ ψ1)e−Γ1(T−t)/γΓ(ψ1 → bb)/γ dt . (4.2)

Here the first factor in the integral, γ(b̄b̄ → ψ1), is the density rate of ψ1 production by
antileptons, the exponential factor takes into account the fraction of ψ1 produced at time
t that have survived at the time of interest T , and Γ(ψ1 → bb)/γ is the decay rate into
leptons divided by the Lorentz factor. The rate γ(b̄b̄ → ψ1) is given by γ(b̄b̄ → ψ1) =
neq(t) Γ(b̄b̄ → ψ1)/γ, where neq(t) is the equilibrium density of a scalar particle of mass
M . Although in realistic calculations neq(t) would be a function of the time dependent
temperature, in the examples given below for a static universe we will artificially vary
neq(t) and equilibrium will simply correspond to constancy over time. Finally the factor 2
in eq. (4.2) comes because two leptons are produced in each process. Due to CPT invariance
Γ(b̄b̄→ ψ1) = Γ(ψ1 → bb), both rates being equal to Γ1/2 at tree level. Therefore

γ(b̄→ b)(T ) = 2
∫ T

0
neq(t)

( Γ1
2 γ

)2
e−Γ1(T−t)/γ dt . (4.3)

The normalization constant N can be determined by equating the above expression to
the one obtained using the corresponding tree level term of eqs. (3.3) (i.e. the first term of
the first equation):

2
∫ T

0
neq(t)N |h1|4 e−Γ1(T−t)/γ dt = 2

∫ T

0
neq(t)

( Γ1
2 γ

)2
e−Γ1(T−t)/γ dt , (4.4)

and therefore, N = 1/(32πE0)2 (within our approximation of considering a single average
energy E0). Anyway, it should be noted that the unitarity relation (3.13) obtained from
integrating the terms in eq. (3.5) does not depend on the value of N .

Next the source term at time T can be obtained from a similar time integral of the
probabilities of lepton production minus antilepton production, including all the terms of
eqs. (3.3). In this way, using eq. (3.5), we get

S(T ) = 2
∫ T

0

neq(t)
(32πE0)2 8 Im [h1h

∗
2]
{
θI
[
|h1|2 e−Γ1(T−t)/γ + |h2|2 e−Γ2(T−t)/γ

−
(
|h1|2 + |h2|2

)
cos

(
(M2 −M1)(T − t)/γ

)
e−Γ(T−t)/γ

]
+ Re [h1h

∗
2] sin

(
(M2 −M1)(T − t)/γ

)
e−Γ(T−t)/γ

}
dt .

(4.5)
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In equilibrium, i.e. when neq(t) remains constant for a time period larger than the other
time scales (the oscillation period and lifetimes of neutrinos), the unitarity condition (3.13)
ensures that S(t) becomes null.

For comparison, the standard calculation of the wave function contribution to the CP
asymmetry in the decay of ψi, for ηij � 1, yields

εi ≡
Γ(ψi → bb)− Γ(ψi → b̄b̄)
Γ(ψi → bb) + Γ(ψi → b̄b̄)

= Re [h∗ihj ] Im [h∗ihj ]
8π |hi|2

1
M2
j −M2

i

, (4.6)

where j = 2(1) for i = 1(2). In terms of εi and Γi, the source term in eq. (4.5) can be
written in a form that eases comparison with the standard source term of classical BE:

S(T ) = 2
{

[ε1Γ1nψ1(T ) + ε2Γ2nψ2(T )] /γ

−
[
ε1Γ2

1 + ε2Γ2
2
]

γ2

∫ T

0
neq(t) cos

(
(M2 −M1)(T − t)/γ

)
e−Γ(T−t)/γ dt (4.7)

+
∫ T

0

neq(t)
(32πE0)2 8 Im [h1h

∗
2] Re [h1h

∗
2] sin

(
(M2 −M1)(T − t)/γ

)
e−Γ(T−t)/γ

}
dt ,

where
nψi

(T ) ≡
∫ T

0
neq(t)Γi

γ
e−Γi(T−t)/γ dt. (4.8)

Note that nψi
(T ) is the solution to the differential equation

dnψi
(T )

dT = −Γi
γ

[nψi
(T )− neq(T )]

with the initial condition nψi
(0) = 0, and therefore nψi

(T ) corresponds to the number
density of ψi calculated with the classical BE in the absence of oscillations. In the standard
classical treatment, appropriate for large enough mass splittings, the source term can be
built considering the production of leptons by the density rates γ(ψi → bb) and γ′(b̄b̄→ bb),
where the prime in the second rate means that a real intermediate state subtraction must
be performed to be consistent with unitarity. Subtracting the corresponding production
terms for antileptons, the classical source term Scl(T ) reads

Scl(T ) = 2 ε1
Γ1
γ

[nψ1(T )− neq(T )] + 2 ε2
Γ2
γ

[nψ2(T )− neq(T )] , (4.9)

where the terms proportional to nψi
(T ) come from the production of leptons and antileptons

via ψi decays, and the ones proportional to neq(T ) come from the off-shell lepton and
antilepton annihilations. Therefore, the contribution from mixing in the source term S(T )
(first line of eq. (4.7)), exactly matches the contribution from decays to the standard
classical source Scl(T ). Both sources satisfy the unitarity requirement that their total
integral over time is zero if the population of neutrinos is null at the beginning and the
end. In S(T ) the mixing contribution is canceled by the oscillation contribution, while in
Scl(T ) the off-shell annihilations cancel the production form decays. Indeed, next we show
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Figure 1. Source term (left plots), and lepton asymmetry (right plots), as a function of time nor-
malized to γ/M , with Γ1/M = 1/100, Γ2/M = 1/120, and ∆M/M = 0.1 (10) in the top (bottom)
plots. The lepton asymmetry has been obtained integrating only the source term (washouts are not
considered). The solid red line corresponds to the source S(T ) from eq. (4.5), the dashed blue line
to the source of the classical BE in the hierarchical limit (eq. (4.9)), and the green dotted one to
the source S(t) without including the interference terms (in the bottom plots the green curves are
not shown because they are almost identical to the red ones). The scale on the vertical axis is not
relevant and we have taken, for the purpose of illustration, neq(t) = e−M t/(1000 γ) (after a change
of variables in the integration over time, the factor M/γ becomes part of the normalization chosen
for the lepton asymmetry).

with some plots that the lepton asymmetry obtained integrating S(t), tends to the one
obtained from Scl(T ), as the mass splitting ∆M/M ≡ (M2 −M1)/M increases.

To discuss the limit of large mass splittings and the effect of the interference terms, we
plot in figure 1 some variants of the source terms and the corresponding lepton asymmetries
as a function of time for two different mass splittings, ∆M/M = 0.1 (top plots) and a much
larger value, ∆M/M = 10, in the bottom plots. The decay widths have been chosen equal
to Γ1/M = 1/100 and Γ2/M = 1/120. Finally, a larger time scale is chosen for the
evolution of the number density neq, namely we take neq(t) = e−M t/(1000 γ). In this way
the time scales associated to oscillations, decays and equilibrium are well separated. The
lepton asymmetry (right plots) has been obtained by integrating the source term over time,
without considering any washouts. In this case unitarity requires that the final asymmetry
be null. Indeed, this behavior can clearly be seen in the plots for the lepton asymmetry
derived from Scl(T ) and also from S(t) within the limit of our approximations. In this
regard and according to the discussion at the end of section 3, note that the final lepton
asymmetry is much closer to zero if the full source term (4.5) is considered, than if the
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interference terms are dropped. The plots also show that, as the mass splitting increases,
the interference term becomes irrelevant and, moreover, the lepton asymmetry obtained
from S(t) tends to the one obtained from Scl(T ) at all times. Note, however, that the
probabilities obtained from the quantum field theory model of oscillations are valid up to
first order in (M2

2 −M2
1 )/(2p2

0), so they cease to be valid for large mass splittings, for which
actually oscillations are not expected to occur at all (and even within the range of validity
of eqs. (3.3), some decoherence factors we have neglected may become relevant).

5 Conclusions and outlook

We have studied the sources of CP violation in a scalar toy model for baryogenesis with
quasi-degenerate neutrinos. Our approach has been to use the renormalized propagator,
diagonalized at first order in ηij (eq. (2.9)), in a quantum field theory model of neu-
trino oscillations. The probabilities for lepton number violating processes that we obtain
(eqs. (3.3)) are valid up to first order in (M2

2−M2
1 )/(2p2

0) and are compatible with unitarity
up to sixth order in the Yukawa couplings (eq. (3.13)). From these probabilities, which only
involve the stable (anti)leptons in the initial and final states, we derived a source term for
the evolution of the lepton asymmetry via a suitable time integral over the history of the
system (eq. (4.5)), without performing any subtraction of real intermediate states. This
source term has contributions that can be identified with CP violation from mixing, oscil-
lations and interference between both. In equilibrium the terms coming from CP violation
in mixing and oscillations cancel, yielding a null source term as required by unitarity and
CPT invariance. Comparing with the standard classical approach, appropriate for non-
oscillating neutrinos, we argued for a correspondence between the contribution from real
intermediate state subtracted rates in the case of large mass splittings and the contribution
from CP violation in oscillations in eq. (4.5). The interference terms between mixing and
oscillations give sub-dominant contributions of eighth order in the Yukawa couplings when
integrated over all times. However, at small times compared to the oscillation period, the
interference terms are relevant and cancel the mixing contribution. Moreover, the effect
of the interference terms becomes more important with increasing degeneracy, suggesting
that they might have an important role in the highly degenerate limit, as found in [17].

We have performed this first study in a simple scalar toy model, within a static universe,
and for a trivial momentum distribution of the particles. However, it is possible to extend
the approach to an expanding universe and spin 1/2 neutrino fields with realistic momentum
distributions, as well as to other type of scattering processes, in order to make a closer
connection to ARS and resonant leptogenesis, including the intermediate mass regime. It
can also be interesting to address the highly degenerate case, M2 −M1 ∼ Γ1,2, with the
same point of view.
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