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1 Introduction & summary

One of the fundamental pillars in physics is equivalence between microcanonical and canon-
ical ensemble of systems with large degrees of freedom. In AdS-CFT, the incarnation of
such equivalence is embodied in the thermal physics of black hole microstates, implying
that a highly excited state in CFT should behave as if it is a thermal state. In particular,
we expect there is a notion of “chaotic” CFT which can capture the “chaotic” and thermal
features of black holes, for example, one should be able to see the ramp and plateau [1]
in the spectral form factor of such chaotic CFTs. While the lore in this context is that
a generic CFT with a twist gap (i.e. without any symmetry beyond Virasoro), and c > 1
is “chaotic”, there is no such known unitary modular invariant CFT partition function
with a discrete spectrum. In spite of absence of an example, significant progress has been
made in understanding the heavy excited states in generic CFTs, with/without imposing
the twist gap condition. A partial list of examples are Cardy formula [2–8], understanding
physics related to ETH/black hole thermality [9–22], chaos at large central charge CFTs
with sparse low lying spectrum [23], identifying the irrational behavior in large m minimal
models [24].

A general theme of the above genre of work is to capture the high energy physics in a
channel via vacuum block dominance in the dual channel. This is achieved by the virtue
of crossing/modular symmetry and using some sort of gap condition (for example, in 2D
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lightcone modular bootstrap [25, 26], one assumes twist gap, in higher D, twsit gap follows
from unitarity and exploited in [27, 28]). Although, the details might appear very different,
in spirit, these methods mimic the derivation of Cardy formula. For example, in analyzing
2 point correlator of light operators in heavy states in the large c CFTs, one applies the
monodromy method to obtain the vacuum block and then in a certain kinemetical config-
uration it is argued that the vacuum block dominates. Now to contrast this with the naive
Cardy analysis, we note that the asymptotic density of states is similarly captured by the
vacuum contribution in the dual channel. While in Cardy analysis, we obtain the vacuum
contribution in the dual channel using modular invariance, in the study of correlators, this
is achieved by modular covariance/crossing symmetry. Once we appreciate the concep-
tual parallelism between these two scenarios, we can use our recently understood refined
knowledge about Cardy formula to understand the subtle features of general asymptotics
in 2D CFT. Recently, we have obtained a rigorous formulation of Cardy formula, where
a smearing over an order one window is needed to make sense of the formula [4, 6]. The
basic thing we learnt was that the heavy states in the dual channel can actually have a
cumulative hurdles, thereby can control the averaging window [4]. This statement remains
true even if there is a twist gap in the spectrum [6]. Concretely, in context of asymptotic
density of states in unitary modular invariant 2D CFT, we have in ∆→∞ limit [4, 5, 7],

(2δ − 1)ρ0(∆) ≤
∫
d∆′Θ(∆−δ,∆+δ)ρ(∆′) ≤

∫
Θ[∆−δ,∆+δ]ρ(∆′) ≤ (2δ + 1)ρ0(∆) (1.1)

where
∫
d∆′Θ(∆−δ,∆+δ)ρ(∆′) counts the states in the interval centered at ∆ with width

2δ excluding the end points and
∫
d∆′Θ[∆−δ,∆+δ]ρ(∆′) counts the states in the interval

centered at ∆ with width 2δ including the end points. Here ρ0(∆) = (c/48∆3)3/4e2π
√

c∆
3

is the usual Cardy formula. This inequality is saturated by CFTs with spectral gap of 1.
While the inequality is true for any unitary modular invariant CFTs, the rational CFTs
almost saturate the inequality. Note the difference between the upper bound and the lower
bound. Intuitively this comes about because a large ρ0(∆) number of states can accumulate
at the end of the interval. This accounts for the 2ρ0(∆) difference between the upper and
the lower bound. In a chaotic CFT, the difference between the upper and the lower bound
is expected to be of the order of the spectral gap times ρ0(∆); thus, we expect (for a
non-degenerate primary spectrum) the spectral gap is of the order of ρ−1

0 .
The purpose of the present work is to point out explicitly that the above features

are universal, present in any asymptotic quantities in CFTs, not just restricted to the
asymptotic density of states. While this is expected, there are technical hurdles (which
we will shed light on at the end of this section and throughout the paper) in proving
so explicitly. In particular, we will be focussing on two point correlator in heavy states
and light-light-heavy three point coefficients (often we will refine these asymptotics by
restricting to primaries or primaries with fixed spin). The basic strategy is to derive an
inequality of the following form

φ̂−(0)a0(∆) ≤
∫
d∆′Θ(∆−δ,∆+δ)a(∆′) ≤

∫
d∆′Θ[∆−δ,∆+δ]a(∆′) ≤ φ̂+(0)a0(∆) ,
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where a(∆) is the proxy for the quantity whose asymptotics we are trying to find and a0(∆)
is a continuous approximation of the same. The functions φ̂± has bounded support and
their Fourier transform majorize and minorize Θ[∆−δ,∆+δ] and Θ(∆−δ,∆+δ) respectively.
The problem of finding the optimal value of φ̂±(0) can be mapped to Beurling-Selberg
problem and we can borrow results from [7]. To emphasize more on the universality of
these qualitative features, let us point out one important feature in large central charge
analysis in this genre. In context of Cardy formula at large central charge, [3] pointed
out the presence of an enigmatic regime i.e ∆ ∈ (c/12, c/6). The AdS3 thermal partition
function is dominated by states below c/12 while the BTZ black hole is dominated by states
above c/6. The states in the enigmatic regime never dominate the canonical ensemble.
The similar feature is present in any large central charge asymptotics. For example, in
calculation of two or n point correlator in heavy state, the physics is captured by the vacuum
block in dual channel [29]. A natural way to calculate the vacuum block is monodromy
method. The block being a continuous function of ∆ can be calculated in one regime (say
∆ < c/12) and can be analytically continued to the other regime ∆ > c/12. This has been
repeatedly used in the literature [18–22]. The analogous statement in Cardy context is the
fact the characters are smooth function of h, h̄ and heavy density of states is captured by
vacuum block. Thus we realize that the presence of the enigmatic regime is hidden in the
assumption of domeffectinance of vacuum block. Another unifying feature that we point
out here is the commutativity of the limit ∆→∞ (with c fixed) followed by c→∞ limit
with the c → ∞ (with ∆/c fixed) followed by ∆/c → ∞ limit, present in the analysis of
two point correlator, in the light-light-heavy three point coefficients and the asymptotic
density of states.1

One of the results sheds light on a puzzle mentioned in [21].The puzzle is the fact
how at large central charge the microcanonical answer for two point correlator in a heavy
state (∆/c fixed and c→∞) of a CFT on a finite spatial length matches with the canon-
ical answer for CFT on infinite line. Keeping in mind the analogy with Cardy formula
just mentioned, a quick reader will observe a similar phenomenon happens at large cen-
tral charge when one compares the microcanonical entropy of a CFT on a finite length
with a canonical entropy of a CFT on infinite length. The key point is that the slogan
“microcanonical=canonical” needs to be modified in this context as given in (1.4) and not
to be taken as granted. In particular as long the Euclidean time separation between two
operators are less than the length of the spatial circle, microcanonical answer can not see
the finite spatial length and we obtain canonical answer for CFT on infinite line. To be
precise given a pure state with energy ∆, the correlator can not see the finite length of
spatial circle as long as t/L < 1/2[3(∆/c−1/12)]−1/2, thus as we let ∆/c larger, the validity
regime decreases, the less time survives the illusion of having a CFT on infinite length. If
we could have let ∆/c → 1/12,the illusion would have remained forever. Nonetheless, we
show that we need ∆/c > 1/6 for the result to be true, which means t can not be bigger
than L i.e the illusion of being CFT on infinite length stays at most till t = L.

1There can be subtlety when we refine these asymptotics only to heavy primaries.
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Our results naturally fall into the scope of conformal bootstrap program [25, 30–44].
We hope the techniques/functions used here would be useful in the broader context of
this program, especially for the studies related to extremal functionals and dispersive sum
rules [45–49] and its connection to analyticity in replica correlator [50].

Concretely, our findings are summarized below (we have not assumed presence of twist
gap in CFT spectra anywhere in the paper and the asymptotic analysis specific to primaries
are only valid for c > 1 and the CFT is assumed to be unitary and compact).

1. We analyze the fixed spin weighted asymptotics of light-light-heavy three point co-
efficients (refined to heavy primaries, with finite c > 1). We define (where the ±
signifies whether the end points of the interval are included or not)

Aj± ≡
∫ ∆+δ

∆−δ
d∆′ |fOO∆′(j)|2

and we find that in ∆→∞ limit

2(δ − 2)
1 + δj,0

1
H2A0(∆) ≤ Aj− ≤ Aj+ ≤

2(δ + 2)
1 + δj,0

1
H2A0(∆) , (1.2)

where we have

A0(∆) ≡

1
4

(
c− 1

24

)1/4−ν/2 (∆
2

)ν/2−5/4
e
π

√
(c−1)∆

3


is the naive formula obtained by assuming dominance of vacuum block. The quantity
ν = 8∆O−c/2 is determined by the dimension of external operators (∆O) and central
charge c. The quantitiy, H is an order one number that depends on c and ∆O. Here
|fOO∆′ |2 includes the factor of 16∆ in its definition, coming from the normalization
condition and operator insertion point.

• Two features are worth to be pointed out. The number H depends on how close
the external operators O is to c−1

32 or c+5
32 . In particular, if the difference is an

order one number, then in the c → ∞ limit (note that this limit is different
from the limit where ∆/c is finite and c → ∞, here we first take ∆ → ∞,
keeping c fixed and then take c→∞), H becomes 1 and we recover the results
obtained earlier in the literature. For a finite but large c, the value of H stays
close to 1, but not quite 1. A good approximation can be obtained from the
formula [51](further studied by [52])

H(h, q) = 1− (c+ 1− 32hO) (c+ 5− 32hO)
4(c− 1) +O(1/c2) , where hO−c/32 ' O(1).

(1.3)
When the difference hO−c/32 is large (or in fact proportional to c), numerically
we have observed H saturates to a value farther away from 1. Unfortunately,
we don’t have any analytical control in this regime. The most conservative
statement that we can make is the leading exponential in A0(∆) stays same.
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A braver statement (once again, on numerical back up) would be that it would
saturate to a finite value (may be far from 1), and such a saturation indicates that
we can trust the polynomial suppression in the above expression for A0(∆) as
well. The analytical results of this sections are made based on some assumptions
which we back up by numerical study in section 3.

• The bound on the spectral gap for fixed spin primary operators appearing in
the OPE of two identical scalar operators is 4. To prove the optimality, consider
3 copies of Ising model, organize the operators with respect to the diagonal
Virasoro, since c > 1, we have infinite number of primaries. Now consider the
operator O = ε ⊗ ε ⊗ ε and 4 point correlator of them. The primary operators
with fixed spin (primary under the diagonal Virasoro) appearing in the OPE has
a spectral gap of 4 (here the gap in h is 2, the gap in h̄ is 2, thus in the fixed spin
the gap in ∆ is 4). Another possible optimal construction is to consider tensoring
chiral Monster with its antichiral avatar and consider 4 point function of a scalar
operator. Also, given a fixed spin spectrum of gap 4, the inequalities (1.2) are
saturated asymptotically in exactly same manner as in [7]. And all the rational
CFTs come close to saturation because they have a regularly spaced spectra.
Further statements about spectral gap in OPE channel can be found in [2–5, 7].
The above set of analysis involving 4 point correlator is explored in section 2.
The analysis for all the operators (not specific to three point coefficient for
primary operators) is worked out in (2.20). The analysis for all the operators
are done with respect to a single parameter ∆ → ∞. One can generalize this
to an refined counting with respect to h, h̄ → ∞. While doing this, it is more
convenient to distill the counting further and restrict to primaries (for c > 1
CFTs, we have inifnite number of primaries). This is done in (2.39). Finally, we
have the most refined count i.e. primaries at fixed spin.

2. The n point correlator in heavy state in large c CFT behaves like a thermal
state [21, 22]. In large central charge the distinction between heavy primary and
heavy descendants are not important, so we focus on analysis for all the operators.
We point out and stress the presence of an enigmatic regime ∆ ∈ (c/12, c/6). In
particular, we show that these genre of statements are true for ∆ > c/6 only. We
analyze the 2 point correlator in some detail. Similar ideas can be extended to higher
point correlators. This is explored in section 4.
If we parametrize ∆ = c

(
1
12 + ε

)
, then in c → ∞ limit, for t ≤ β = π√

3ε (where t is
the Euclidean time) and ∆ ≥ c/6 we have2δ −

(
1− β2

4π2

)−1/2

+ `

 e−βδρ0(∆)
(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O

≤ B− ≤ B+

≤

2δ +
(

1− β2

4π2

)−1/2

+ `

 eβδρ0(∆)
(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O

(1.4)
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where

ρ0(∆) =
(

c

48(∆− c/12)3

)3/4
exp

2π

√
c(∆− c/12)

3


and

B± ≡
∫ ∆+δ

∆−δ
d∆′〈∆′|O(t, 0)O(0, 0)|∆′〉 ,

here ± signifies whether we are including or excluding the end points of the interval,
centered at ∆ and ` is an order one positive number coming from the contribution of
sparse low lying states. If one assumes that the identity is the only state below the
c−1
12 threshold, then ` = 0. Loosely speaking, we prove that the average behaviour
of two point correlator in heavy state in large central charge CFT on a finite spatial
length (2π) mimics that of a thermal CFT on infinite line. Note the result is valid as
long as t ≤ β and the maximum allowed value of β is 2π since ε > 1/12. Restoring
the length of the spatial circle L, we find the result is valid as long as t < L i.e
as long as the Euclidean time separation is less than spatial length, microcanonical
answer sees the canonical answer for CFT on infinite line. We note the presenece
of enigmatic regime ∆ ∈ (c/12, c/6), this never dominates the canonical ensemble.
This is reminiscent of Cardy formula for large central charge as done in HKS. The
presence of enigmatic regime is in fact the reason for having t < L bound.

• For finite c, ∆→∞ the above inequality becomes

(2δ − 1) ρ0(∆)
(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O

≤ B− ≤ B+

≤ (2δ + 1) ρ0(∆)
(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O
.

(1.5)

It is to be understood as ∆ → ∞ limit result such that β = π
√

c
3∆ goes to 0

and t→ 0 with t/β fixed at some finite number.
• Commutativity of the limit: we remark that starting from (1.4), if one takes
ε→∞ limit such that β → 0 and t/β is kept fixed (i.e t→ 0 as well), one arrives
at (1.5). In β → 0 limit, the contribution from low lying states other than the
vacuum gets suppressed, hence `→ 0. This indicates the commutativity of the
following two limits

lim
κ→∞

lim
c→∞

∆
c =κ fixed

[· · · ] = lim
c→∞

lim
∆→∞
c=fixed

[· · · ] . (1.6)

This feature is present in analysis of asymptotic density of states in 2D CFT.

As a prerequisite for the analysis of light-light-heavy three point coefficients, we stud-
ied asymptotics of Virasoro block and provide numerical results. These are described in
section 3 and can be read independently of the rest of the sections.
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At this point, an inquisitve reader might wonder about the absence of large c analysis in
the light-light-heavy case and absence of primary specific analysis for the 2 point correlator
in finite c. The light-light-heavy case can easily be done for large c, we write down here
the analogue of (2.20) for future referenceδ − (1− β2

4π2

)−1/2
[16−c/12

]
e−βδ/2

(
c

12

) 1
4−

ν
2

(∆/c− 1/12)
ν
2−

3
4 e

π

√
c(∆−c/12)

3

≤
∫ ∞

0
d∆′ Θ ((∆− δ,∆ + δ)) a(∆′)σ(∆′)

≤
∫ ∞

0
d∆′ Θ ([∆− δ,∆ + δ]) a(∆′)σ(∆′)

≤

δ +
(

1− β2

4π2

)−1/2
[16−c/12

]
eβδ/2

(
c

12

) 1
4−

ν
2

(∆/c− 1/12)
ν
2−

3
4 e

π

√
c(∆−c/12)

3 ,

(1.7)

where ∆ = c (1/12 + ε) and we let c→∞, keeping β = π√
3ε fixed. The qualitative features

including the presence of enigmatic regime are universal as advertised. The primary specific
analysis for the 2 point correlator in finite c is tricky because what we need is an analog of
half of a torus 2 point block, whose analytic form is not known. Also it is unclear whether
universal results can be expected beyond the t→ 0 limit. The intuition partly comes from
the result that primary states are atypical in a thermal ensemble for finite c [53, 54]. We
leave it for future exploration.

Technical remarks: the pivotal technical tool that we use is Tauberian tehniques cou-
pled with some numerical studies of Virasoro block. In context of CFT, Tauberian formal-
ism was first introduced in [55, 56], generalized in [57], mentioned in appendix C of [11],
culminating to refined understanding of Cardy formula in [4–7, 58]. The main technical
obstacle behind generalization to OPE coefficients at finite central charge is that the con-
formal blocks are not known in a closed form unlike the Virasoro characters in context
of Cardy formula. While in the analysis of Cardy formula, the presence of closed form of
characters and nice modular property of Dedekind eta helped us to write the asymptotic
density of primaries as an inverse Laplace of reduced partition function in β → 0 limit,
making the Tauberian analysis possible [7]. Thus while dealing with correlators, one needs
further assumptions to proceed. This is the route we take by backing up the assumptions
with numerical estimations. Similarly for the analysis of two point function, we focus on
large central charge analysis, to get control over the correlator. At large central charge
the distinction between primaries and all the operators are not that important. Thus we
also restrict our analysis to all operators. Nonetheless, a further complication arises due
to the fact that the under modular transformation, operator insertion points transform,
so one needs to take that into account as well. For finite c, it is much more challenging
to restrict the analysis to primaries and we have not attempted to do so in this paper.
Nonetheless we believe that qualitative features/moral lessons stay same. We further re-
mark that unlike heavy-light-heavy case, here we do not have the issue of negative terms
in q expansion of relevant quantities. So the results proven here do not require stringent
conditions appearing in [58].
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Finally, it is tempting to suspect that some of the analysis especially the light-light-
heavy OPE asymptotics might be obtained in higher dimensional CFT using crossing sym-
metry and similar Tauberian analysis. Again the main technical obstacle is the presence
of conformal blocks. Even if we know the blocks explicitly, there is no clean way of writing
a reduced partition function as a Laplace transformation of weighted OPE coefficients.
Nonetheless, it is tempting to conjecture that the such bounds can be obtained and OPE
of generalized free fields would saturate it [59] including the bound on the spectral gap.

2 Tauberian theorem(s) for asymptotics of light-light-heavy

We start with the four point function of identical scalar primaries on the sphere,
F(z, z̄) = 〈O(0)O(z, z̄)O(1)O(∞) 〉, which has a standard decomposition into Virasoro con-
formal blocks on the sphere and satisfies the crossing equation non-trivially (the individual
blocks are not crossing symmetric):

F(z, z̄) = F(1− z, 1− z̄). (2.1)

There is no closed form known for the Virasoro blocks, however each term in the cross-ratio
expansion can be determined using conformal Ward identities. A better expansion than
the expansion in z turns out to be an expansion in q = eπiτ , where τ = iK(1 − z)/K(z),
and K(z) being the elliptic integral of the first kind. Such an expansion originates from
the elliptic representation of the conformal blocks, in the pillow geometry [60] which is
P1 ≡ T2/Z2 which is conformally equivalent to the sphere. Crucially, on the pillow the
symmetry of the correlator under z → 1− z, (2.1) becomes, τ → −1/τ .

2.1 Analysis for all the operators

For pillow, we will be working with following function g

g(q, q̄) = F(z, z̄)Λ(z)−1Λ(z̄)−1 . (2.2)

Here Λ(z) ≡ ϑ3(q) c2−8∆O(z(1−z)) c
24−∆O , which contains contributions from the conformal

factors at the operator insertions and the Weyl anomaly factor arising due to change of
conformal frame. g(q, q̄) is the regularized correlator on the pillow which is defined as

g(q, q̄) ≡ 〈O(0)O(π)O(π(τ + 1))O(πτ) 〉P1

= 〈ψ|qL0−c/24q̄L̄0−c/24|ψ 〉, (2.3)

with |ψ〉 =| O(π)O(0)〉P1 . The decomposition of the pillow correlator takes the following
form (with τ = iβ

2π ) in terms of the elliptic conformal blocks:

g(β) =
∑
h,h̄

f2
OOOh,h̄Vh(q)Ṽh̄(q̄) , (2.4)

where,

Vh(q) = G(h, q)H(h, q),

G(h, q) ≡ (16q)h−
c
24

∞∏
k=1

(1− q2k)−
1
2
(
= (16q)h−

c−1
24 θ3(q)−

1
2 (z(1− z))−

1
24
)
.

(2.5)
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Note that the relation to the usual convention for the conformal block F(h|z) with its
internal dimension h is given by

F(h|z) = Λ(z)Vh(q). (2.6)

In the above expression H(h, q) = ∑
n cnq

n is the Zamolodchikov block, for which a recur-
sion formula exists [61]. For a unitary theory it is guaranteed that the above q expansion
is a one with positive coefficients, hence we can expand:

g(β) =
∑
∆
a(∆)e−

β
2 (∆− c

12 ) . (2.7)

In the above we have the sum over all operators (including the descendents exchanged
in the correlator channel). The coefficients, a(∆) ≥ 0 due to unitarity [60]. The exact
consequence of (2.1) in the β variable for the pillow correlator, is given by,

g(β) =
(2π
β

)− c2 +8∆O
g

(
4π2

β

)
. (2.8)

This modular property has already been utilized in [12, 62] to bootstrap f2
OOOh,h̄

in the
asymptotic heavy channel limit, which has also been reproduced through the Virasoro
fusion kernel as carried out in [63].

Next we define a discrete distribution of operators,

σ(∆′) =
∑
∆
δ
(
∆−∆′

)
, (2.9)

and we will be estimating the following weighted spectral density:

A ≡
∫ ∆+δ

∆−δ
d∆′a(∆′)σ(∆′). (2.10)

This can be interpreted to be proportional to the number of states that is being exchanged
in the q-channel of the pillow correlator, with L0+L̄0 eigenvalue within the window specified
by, ∆ − δ to ∆ + δ. Depending on whether we include the end points while counting the
number of operators, we should define A+ and A−, where ± means inclusion and exclusion
respectively. Thus the lower bound that follows is actually a lower bound on A− and the
upper bound is an upper bound on A+. Furthermore, by definition, we have A+ ≥ A−.
We will mostly suppress the ± index in A± for brevity in what follows.

We start with band-limited functions Φ± such that it bounds the indicator function:

Φ−(∆′) ≤ Θ(∆′ ∈ [∆− δ,∆ + δ]) ≤ Φ+(∆′). (2.11)

From the above it naturally follows (after multiplying throughout by a(∆′) and integrating
over the all ∆′) that,

e
β
2 (∆−δ)

∫
d∆′a(∆′)σ(∆′)Φ−(∆′)e−

β
2 ∆′ ≤A≤ e

β
2 (∆+δ)

∫
d∆′a(∆′)σ(∆′)Φ+(∆′)e−

β
2 ∆′ .

(2.12)
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Next we use the Fourier transformation of the band-limited functions,
Φ±(∆) =

∫∞
−∞ dte

−i∆tφ̂±(t) to write the above inequality as,

e
β
2 (∆−δ)

∫
dt φ̂−(t)e−

(β+2it)c
24 g(β+2it)≤A≤ e

β
2 (∆+δ)

∫
dt φ̂+(t)e−

(β+2it)c
24 g(β+2it). (2.13)

Thus we need to evaluate the integrals of the form

I± ≡
∫
dt φ̂±(t)e−

(β+2it)c
24 g(β + 2it) .

Using the property (2.8) we arrive at,

I± =
∫
dt φ̂±(t)

( 2π
β + 2it

)8∆O− c2
e−

(β+2it)c
24 g

(
4π2

β + 2it

)
. (2.14)

We separate the g into light and heavy contributions as follows:

gL(β) =
∑

∆<c/12
a(∆)e−β(∆−c/12) , gH(β) =

∑
∆>c/12

a(∆)e−β(∆−c/12) , (2.15)

leading to

e
β
2 (∆−δ)

(∫
dt φ̂−(t)e−

β(t)c
24

( 2π
β(t)

)ν
gL

(
4π2

β(t)

)
−
∫
dt

∣∣∣∣φ̂−(t)e−
β(t)c

24

( 2π
β(t)

)ν
gH

(
4π2

β(t)

)∣∣∣∣
)

≤A≤

e
β
2 (∆+δ)

(∫
dt φ̂+(t)e−

β(t)c
24

( 2π
β(t)

)ν
gL

(
4π2

β(t)

)
+
∫
dt

∣∣∣∣φ̂+(t)e−
β(t)c

24

( 2π
β(t)

)ν
gH

(
4π2

β(t)

)∣∣∣∣
)

(2.16)

where β(t) ≡ β + 2ıt and ν = 8∆O − c/2.
Now for the light part, in β → 0 limit, we have

gL

(
4π2

β(t)

)
=
β→0

[
16−c/12

]
e
π2c

6β(t) .

t = 0 is a saddle and the integral evaluates to∫
dt φ±(t)e−

β(t)c
24

( 2π
β(t)

)ν
gL

(
4π2

β(t)

)
=
β→0

[
16−c/12

]
φ̂±(0)

√
3

2πc β
3/2
(2π
β

)ν
e
π2c
6β . (2.17)

For the heavy part, we use the bandlimited nature of φ̂± to write∫ Λ

−Λ
dt

∣∣∣∣φ̂+(t)e−
β(t)c

24

( 2π
β(t)

)ν
gH

(
4π2

β(t)

)∣∣∣∣≤ ∫ Λ

−Λ
dt

∣∣∣∣φ̂+(t)
∣∣∣∣
(

2π√
β2+4t2

)ν
gH

(
4π2β

β2+4t2

)
,

and the integral on the right hand side is dominated by t = Λ (since we have

gH 3 e
− 2π2β
β2+4t2

(∆−c/12)) and we have∫ Λ

−Λ
dt

∣∣∣∣φ̂±(t)
∣∣∣∣
(

2π√
β2 + 4t2

)ν
gH

(
4π2β

β2 + 4t2

)
' O

(
e

Λ2c
6β β−ν+2

)
(2.18)
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where we have used the φ̂±(t) ∼ O(Λ − t). Combining the light part and the heavy part,
we obtain

2πφ̂−(0)
[
16−c/12

]√ 3
8π3c

β3/2
(2π
β

)ν
e
π2c
6β +β

2 ∆ +O

(
e

Λ2c
6β +β

2 ∆
β−ν+2

)
≤
∫ ∆+δ

∆−δ
d∆′a(∆′)σ(∆′) ≤

2πφ̂+(0)
[
16−c/12

]√ 3
8π3c

β3/2
(2π
β

)ν
e
π2c
6β +β

2 ∆ +O

(
e

Λ2c
6β +β

2 ∆
β−ν+2

)
.

(2.19)

Now to suppress the heavy part, the maximum value of Λ that can be chosen is Λ = π.
The Beurling-Selberg function corresponding to Λ = π yields

2πφ̂±(0) = 2(δ ± 1) ,

and minimizing the first term over β gives the thermodynamic relation between β and ∆
as β = π

√
c

3∆ . Thus we have in ∆→∞ limit

(δ − 1)
[
16−c/12

] ( c

12

) 1
4−

ν
2

∆
ν
2−

3
4 eπ
√

c∆
3

≤
∫ ∞

0
d∆′ Θ ((∆− δ,∆ + δ)) a(∆′)σ(∆′)

≤
∫ ∞

0
d∆′ Θ ([∆− δ,∆ + δ]) a(∆′)σ(∆′)

≤ (δ + 1)
[
16−c/12

] ( c

12

) 1
4−

ν
2

∆
ν
2−

3
4 eπ
√

c∆
3

(2.20)

where ν = 8∆O − c/2 and we have explicitly denoted two cases: inclusion and exclusion of
end points while counting the contribution.

The lower bound implies that asymptotically we have a maximal gap of 2 in spectrum
of operators appearing in the OPE of identical scalars in q-channel. This is in fact the
optimal bound as can be seen from 4 point correlator of ε operator (h = h̄ = 1/2) in 2-D
Ising CFT (c = 1/2):

Fεεεε(z, z̄) =
(
1− z + z2) (1− z̄ + z̄2)

zz̄(1− z)(1− z̄) = Fεεεε(1− z, 1− z̄) ,

where z = z(τ), z̄ = z̄(τ) should be understood as a function of τ , then one transforms it
to the pillow correlator gεεεε(β) including appropriate Weyl anomaly factor following (2.2).

2.2 Analysis for primaries on (h′, h̄′) plane

In this section, we make the analysis from earlier section sensitive to primaries. We also
introduce separate left moving and right moving temperatures βL and β̄R with an aim to
make the analysis sensitive to h and h̄. On the plane we can reach asymptotic region in
various ways as explained in [6]. Here we will focus on reaching asymptotics along the line
h = h̄+ J where J is an order one number. This specific choice will simplify our life.
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We introduce the following quantity

p(βL, βR) =
√
η (βL) η (βR)g(βL, βR) (2.21)

which has following expansion:

p(βL, βR) =
∑
h′,h̄′

f2
OOO′e

−βL2 (h′− C
24)−βR2 (h̄′− C

24)H(h′, qL)H(h̄′, qR) (2.22)

where C = c− 1 and f2
OOO′ includes a factor of 16∆−c/12. We define an auxiliary function

paux(β, ω)
paux(βL, βR) =

∑
h′,h̄′

f2
OOO′e

−βL2 (h′− C
24)−βR2 (h̄′− C

24) , (2.23)

whose role will be important very shortly.
Using modular transformation, we deduce that

p(βL, βR) '
βL,R→0

(
4π2

βLβR

)ν/2+1/4

exp
[
π2(c− 1)

12βL
+ π2(c− 1)

12βR

]
. (2.24)

Our objective is to estimate the following quantity

A ≡
∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄
dh′ dh̄′ f2

OOO′ . (2.25)

The set up of this problem is analogous to the one presented in [6]. We introduce φ±
which bound the indicator function of the rectangular region on (h, h̄) plane from above
and below. For simplicity, we will proceed with the upper bound (the argument for the
lower bound is similar)

A ≤ e
βL
2 (h−δ)+βR

2 (h̄−δ̄)
∫
dh′ dh̄′ f2

OOO′ φ+(h′, h̄′)e−
βL
2 h′−βR2 h̄′ . (2.26)

We use the Fourier transform of φ+(h′, h̄′) its bandlimited nature to recast the above
in following form

A ≤ e
βL
2 (h−δ)+βR

2 (h̄−δ̄)
∫ Λ

−Λ
dt

∫ Λ

−Λ
dt̄ e−(βL+2ıt+βR+2ıt̄)C/24paux(βL + 2ıt, βR + 2ıt̄) φ̂+(t′, t̄′).

(2.27)
We note that paux(βL + 2ıt, βR + 2ıt̄) doesn’t immediately have any modular property.

Nonetheless we can make some progress since we are only interested in a asymptotic limit.
First of all, note that in (2.27), βL,R and h, h̄, are free parameters. We use this freedom to
make the following choice (which we will motivate later)

βL = π

√
c− 1
6h , βR = π

√
c− 1
6h̄

. (2.28)

Subsequently, we let βL,R → 0 and h, h̄→∞ and we want to estimate (2.27) in this limit.
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To proceed, we need to make some assumptions about the behaviour of H(h, q), that will
allow us to replace paux with p(βL, βR).

The technical assumption that we make is following:

H(h→∞, qL → 1) = H + error terms , H > 0 & qL = e
−π
√

(c−1)
6h (2.29)

and similar statement applies for the right moving part. The value of H depends
on the parameter c, hO. We shall provide numerical justification for this in
section 3.

We elaborate further on this assumption in appendix section A.
We can now replace2 paux in (2.27) with 1

H2 p(βL + 2ıt, βR + 2ıt̄) and

A ≤ 1
H2 e

βL
2 (h−δ)+βR

2 (h̄−δ̄)
∫ Λ

−Λ
dt

∫ Λ̄

−Λ̄
dt̄ e−(βL+2ıt+βR+2ıt̄)C/24p(βL+2ıt, βR+2ıt̄) φ̂+(t′, t̄′).

(2.30)
We restrict to the scenario where h = h̄ + J and we are approaching h, h̄ → ∞, thus

we have βL,R = π
√

C
6h , note asymptotically h ' h̄, hence βL ' βR. Going to the dual

channel, we seperate the contribution into the light and the heavy part in the following
way (defining β′ = 4π2

β+2ıt)

pL(β′L, β′R) =
∑

h′,h̄′<C/24

f2
OOO′e

−
β′
L
2 (h′− C

24)−β
′
R
2 (h̄′− C

24)H(h′, q′L)H(h̄′, q′R)

pH(β′L, β′R) =
∑

h′>C/24 or h̄′>C/24

f2
OOO′e

−
β′
L
2 (h′− C

24)−β
′
R
2 (h̄′− C

24)H(h′, q′L)H(h̄′, q′R)
(2.31)

and analyze them separately.

Light part: we have to evaluate the integral of the following from
∫ Λ

−Λ
dt

∫ Λ̄

−Λ̄
dt̄

(
4π2

(βL + 2ıt)(βR + 2ıt)

)ν/2+1/4

×

exp
[

π2(c− 1)
12(βL + 2ıt) + π2(c− 1)

12(βR + 2ıt) + 2ı(t+ t̄)(c− 1)/24
]
φ̂+(t′, t̄′).

(2.32)

This integral can be evaluated by saddle point method with saddle being t = t̄ = 0 and gives

4π2φ̂+(0)
(

4π2

βLβR

)ν/2+1/4 3β3/2
L β

3/2
R

8π3(c− 1) exp
[
π2(c− 1)

12βL
+ π2(c− 1)

12βR

]
.

Using βL = βR = β, contribution to (2.30) from the light part comes out to be

4π2φ̂+(0) 1
H2

(2π
β

)ν+1/2 3β3

8π3(c− 1)e
βh+π2(c−1)

6β . (2.33)
2Technically speaking, we have also assumed that the error term does not accumulate upon summing

over h′, h̄′.
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Heavy part: to estimate the heavy part, we first bound it by its absolute value

I ≡
∫ Λ

−Λ
dt

∫ Λ̄

−Λ̄
dt̄(

2π√
β2 + 4t2

)ν+1/4 ′∑
f2
OOO′e

− 2π2β
β2+4t2 (h′− C

24)− 2π2β
β2+4t̄2 (h̄′− C

24)
H(h′, q′L)H(h̄′, q′R)|φ̂+(t′, t̄′)|

(2.34)
and then use the fact that one of h or h̄ is bigger than C/24. The prime over the sum
reminds us that we are dealing with the heavy sector. Thus (without loss of generality
assuming, h′ < C/24)

I ≤ e
2π2
β
C/24× (2.35)∫

t,t̄

(
4π2√

|βL(t)βR(t)|

)ν/4+1/2 ′∑
f2
OOO′e

− 2π2β
β2+4t2

(h′)− 2π2β
β2+4t̄2 (h̄′− C

24)
H(h′, q′L)H(h̄′, q′R)|φ̂+(t′, t̄′)|.

Now the integral in the right hand side is dominated by t ∼ t̄ ∼ O(1) number, since
increasing t maximizes the integrand in exponential manner. As a result in the β → 0
limit, the effective temperature becomes large and we approximate it by the dual channel.3
Thus we have

I ≤ O
(
β−ν−1/2e

2π2
β
c/24

∫
t,t̄
p

(
4t2
β
,

4t̄2
β

)
|(Λ− t)(Λ̄− t̄)|

)

= O

(
β−ν−1/2

∫
t,t̄
e

(π2+t2+t̄2)C
12β |(Λ− t)(Λ̄− t̄)|

)
' O

(
β−ν−1/2+4e

(π2+Λ2+Λ̄2)C
12β

)
.

(2.36)

Thus the contribution of the heavy part to (2.30) is given by

O

(
β−ν−1/2+4e

(π2+Λ2+Λ̄2)C
12β +βh

)
. (2.37)

Comparing (2.33) and (2.37) we have suppresion if we choose

Λ2 + Λ̄2 = π2 (2.38)

For a square like support, we can choose Λ = Λ̄ = π√
2 . Similar considerations would follow

for the lower bound as well. Combining everything and optimizing β as a function of ∆,
we have

4π2φ̂−(0)

 1
4H2

(
c− 1

24

)1/4−ν/2
(hh̄)ν/4−5/8e

π

√
(c−1)h

6 +π
√

(c−1)h̄
6


≤ A ≤

4π2φ̂+(0)

 1
4H2

(
c− 1

24

)1/4−ν/2
(hh̄)ν/4−5/8e

π

√
(c−1)h

6 +π
√

(c−1)h̄
6

 .
(2.39)

Modulo the order one number, the above result matches with that appearing in [17, 63].
3We assume that the error due to this approximation does not accumulate, since the integral is taken

over a finite region, we are safe to make such assumptions. Similar assumption is also present in the fixed
spin analysis in [7].
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2.3 Asymptotic spectral gap in OPE channel

The notion of spectral gap for the analysis on (h, h̄) plane requires more sophistication.
Let us go back and restate the notion of spectral gap in ∆ variable. Imagine considering
intervals of length 2δ, centered at ∆. The asymptotic spectral gap corresponds to minimum
value of δ such that the interval contains some states given any CFT. On (h, h̄) plane,
we can instead consider 2-dimensional objects centred around a point. Then the question
is how much can we shrink the object so that it still contains some operators as we move
centre point out to infinity. For example, one can consider circles or ellipses and send the
center to infinity, a measure of spectral gap would be the radius r of the circle or semi-
minor length a of the ellipse. Now each choice of φ− will provide us with some measure
of asymptotic spectral gap (or an lower bound on r and/or a), the information about the
shape of the geometric object is contained in φ−.

The problem just described is linked with judicious choice of φ− such that

φ− ≤ Θcircle/ellipse (2.40)

where Θcircle/ellipse is the indicator function of circle/ellipse i.e. it takes value 1 for points
within the circle/ellipse and 0 otherwise. Here, φ̂− has bounded support satisfying (2.38).
The question is what is the minimum possible value of the radius of the circle or semi-minor
length of the ellipse such that φ̂ ≥ 0. This minimum possible value would be an upper
bound on the minimal value of r or a.

We can arrive at three related results (1) using the above chain of logic, followed by
appropriate choice of φ−:

1. F Given any circular region of radius r > 2, centered at (h, h̄), as the center ap-
proaches ∞, the circle always contains states appearing in the intermediate channel
upon fusing O with O. This implies roptimal ≤ 2.

2. F Given any elliptical region with semiminor axis of length a >
√

2, parallel to
h′ = 0 or h̄′ = 0 line, centered at (h, h̄); as the center approaches ∞, the ellipse
always contains states appearing in the intermediate channel upon fusing O with O.
This implies aoptimal ≤

√
2.

3. F Given any elliptical region with semiminor axis of length a >
√

2, parallel to fixed
spin line or its perpendicular, centered at (h, h̄); as the center approaches ∞, the
ellipse always contains states appearing in the intermediate channel upon fusing O
with O. This implies aoptimal ≤

√
2.

It turns out that the above bounds are not the optimal/minimal ones, since one can
construct the following situation where r < 2 and a <

√
2, and still the circle/ellipse

contains operators. Consider 3 copies of Ising model and decompose the operator content
in terms of left diagonal Virasoro and right diagonal Virasoro (rather than 3 copies of
Virasoro, which is bigger algebra). Since ceff > 1, we have infinite number of primaries
with respect to the diagonal Virasoro. Then one can consider 4 point correlator of ε⊗ ε⊗ ε,
viewing it as a primary operator with respect to the diagonal Virasoro. The primary
operators appearing in the OPE has a gap of δh = δh̄ = 2 (the primaries are of the form
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Figure 1. The figure depicts the (h′, h̄′) plane. The lines parallel to h′ = h̄′ line are fixed spin lines.
The lines perpendicular to fixed spin lines are fixed ∆ lines. Suppose, we find an example such that
all the operators appearing in the OPE of two O operators are separated by δh = δh̄ = 2. The red
dots in the figure depicts them. The Tauberian analysis tells us that the brown circle (r = 2) and
the black ellipse (semi-minor axis >

√
2) will always have some operators within it, as the center

approaches infinity. The black ellipse can be rotated by π/4, the same result holds. To obtain the
red and the blue ellipse, one has to take the black ellipse with semiminor axis of length

√
2 and

squeeze the other axis, this can only be achieved by using T invariance in the fixed spin analysis. In
the limit, the blue ellipse degenerates into a line segment of length (defined as Euclidean distance
on the (h′, h̄′) plane) 2

√
2 (or in terms of ∆, the length of the segment is δ∆ = 4). This is the bound

on the gap that we obtain from fixed spin Tauberian analysis and this also proves the optimality of
our bound, since we can not push the bound to a smaller value. An explicit example of such kind
involves 3 copies of Ising, analyzed with respect to the diagonal Virasoro.

p1 ⊗ p2 ⊗ p3 where at least one of pi is I and rest of the two has even h and even h̄, note
that they are primaries with respect to diagonal Virasoro, not with respect to the 3 copies
of Virasoro.) In this case both the holomorphic as well as the anti-holomorphic conformal
dimensions are gapped by even integers. This immediately imply aoptimal ≤ 1 <

√
2 and

roptimal ≤
√

2 ≤ 2. This shows that the bound we have achieved is not near the optimality.
Later we will show by using T invariance and doing the fixed spin analysis, that the bound
on gap is indeed δh = δh̄ = 2 (or δ∆ = 4 for fixed spin). Before delving into that let us
show how to arrive at F 1,F 2,F 3.

To obtain F1, we choose φ−(h′, h̄′) = f(h′ − h, h̄− h̄′), [59, 64] where,

f(x, y) = 1
2

(
2− x2 + y2

2

)cos
(
πx

2
√

2

)
cos

(
πy

2
√

2

)
(
1− x2

2

) (
1− y2

2

)
2

. (2.41)

The function φ−(h′, h̄′) bounds a circular region centered at (h, h̄) with a radius of 2 on
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(h′, h̄′) plane. The support of the Fourier transform of the function can be deduced using
Paley-Weiner theorem of multivariable complex analysis and comes out to be π√

2 .
To obtain F2, we generalize the above analysis by allowing Λ 6= Λ̄. One can achieve

this by scaling the x and y variable asymmetrically in (2.41), the resulting function will
bound the indicator function of an ellipse, rather a circle. We still have to satisfy

Λ2 + Λ̄2 = π2 .

We use the following function

f`(x, y) = 1
2

(
2− Λ2x2 + Λ̄2y2

π2

) cos
(

Λx
2

)
cos

(
Λy
2

)
(
1− Λ2x2

π2

) (
1− Λ̄2y2

π2

)
2

. (2.42)

The f` bound Θ(Λ2x2 + Λ̄2y2 < 2π2), an ellipse with semimajor and semi minor axis given
by a =

√
2π
Λ and b =

√
2π
Λ̄ , the constraint on Λ and Λ̄ translates into

a−2 + b−2 = 1/2 .

To arrive at F3, we further generalize to a rotated version (π/4 rotation) of the
previous ellipse. This can be achieved by working with variables

t̃ = t+ t̄√
2

& ˜̄t = t− t̄√
2
,

x̃ = x+ y√
2

& ỹ = x− y√
2

(2.43)

and now we have
Λ̃2 + ˜̄Λ2

= π2. (2.44)

This will bound an ellipse whose one axis is parallel to fixed spin lines i.e h− h̄ = constant.
Again the length of semimajor and semi minor axis will satisfy a−2 + b−2 = 1/2.

2.4 Fixed spin analysis

Fixed spin analysis is done by projecting the paux onto fixed spin sector by another finite
Fourier integral. We recall that only even spins appear in the expression for paux(β, ω). So
we introduce a new variable

j ≡ 1
2 |h− h̄| .

The spin projected partition function can be written as

pj(β) = 1
1 + δj,0

∫ 1/2

−1/2
dω

(
e2πıωj + e−2πıωj

)
paux(β, ω)

=
∫
d∆ a(∆, j)e−

β
2 (∆−C/12).

(2.45)

Now again we replace paux(β, ω) with the actual p and assume that the error term in H

does not accumulate under this projection. Rest of the calculation proceeds in exactly
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same way as in [7]. We only need to rescale β → β/2, which provides us with Λ ≤ π/2.
The zero modes of Selberg-Beurling function (for a detailed expositions to these functions,
see [7]) gives

2πφ̂±(0) = 2δ ± 2π
Λ . (2.46)

Choosing Λ = π
2 , we have

2(δ − 2)
1 + δj,0

 1
4H2

(
c− 1

24

)1/4−ν/2 (∆
2

)ν/2−5/4
e
π

√
(c−1)∆

3


≤ Aj ≤

2(δ + 2)
1 + δj,0

 1
4H2

(
c− 1

24

)1/4−ν/2 (∆
2

)ν/2−5/4
e
π

√
(c−1)∆

3

 .
(2.47)

We can arrive at the optimal asymptotic spectral gap using the lower limit:

4. F: Given a fixed spin line, the optimal asymptotic spectral gap between consecutive
primaries in ∆ variable is 4.

This precisely comes from the conjectured scenario we described before, see the degen-
erate blue ellipse in the figure 1, this would in the limit become a line segment of length 4
(i.e δ∆ = 4)

There is another slick way to see this result. Basically, while doing the fixed spin
analysis, we are effectively setting one of axis length of the ellipse to be 0. In the h′, h̄′
analysis, we can not do that, since this would violate a−2 + b−2 ≤ 1/2 bound. Using the
extra information that spins are integers (in this case even integers) we can let b→ 0 and
a→

√
2. This would correspond to the degenerate blue ellipse in the figure 1.

All the geometrical idea presented in this section naturally goes over to the discussion
of Cardy density of states on the plane and will improve some of discussion related to
optimal gap in [6]. We will report that in detail somewhere else.

3 Asymptotics and numerics of Virasoro block

The aim of this section to study the asymptotics of the q expansion coefficient of H(h, q)
defined in (2.5) in order to substantiate the assumptions used to get the Tauberian bounds.
We begin with

H(h, q) = 1 +
∑
n

cn(h)qn . (3.1)

By Zamolodchikov recursion relation, it is possible to evaluate cn numerically. Let us
briefly review it.

One efficient approach to evaluate H(h, q) (and hence the Virasoro conformal block)
is the Zamolodchikov recursion relation. This recursion relation is first derived in [61,
65], developed by [66] and recently used in the context of the bootstrap [67–70] and the
calculation of the entanglement entropy or the OTOC [71–73]. We will briefly review it.
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Let us consider the following series expansion,

H21
34 (hp|q) = 1 +

∞∑
k=1

ck(hp)qk, (3.2)

where H21
34 is the generalization of the function H in (2.5) with external conformal di-

mensions hi (i = 1, 2, 3, 4). The coefficients ck(hp) can be calculated by the following
recursion relation,

ck(hp) =
k∑
i=1

∑
m=1,n=1
mn=i

Rm,n
hp − hm,n

ck−i(hm,n +mn), (3.3)

where Rm,n is a constant in hp, which is defined by

Rm,n = 2

m−1∏
p=−m+1

p+m=1(mod 2)

n−1∏
q=−n+1

q+n=1(mod 2)

(λ2 + λ1 − λp,q) (λ2 − λ1 − λp,q) (λ3 + λ4 − λp,q) (λ3 − λ4 − λp,q)

m∏
k=−m+1

n∏
l=−n+1

(k,l) 6=(0,0),(m,n)

λk,l

. (3.4)

In the above expressions, we used the notations,

c = 1 + 6
(
b+ 1

b

)2
, hi = c− 1

24 − λ2
i ,

hm,n = 1
4

(
b+ 1

b

)2
− λ2

m,n, λm,n = 1
2

(
m

b
+ nb

)
.

(3.5)

We wil mostly restrict to the case where all the operators are same and investigate the
behavior of cn as n→∞. Even though this seems to fall naturally under the umbrella of
Tauberian formalism, the positivity of the coefficients cn is not guaranteed to begin with.
Thus we numerically probe the behavior of cn for various values of central charge.

3.1 Positivity/sign indefiniteness of cn from numerics

First of all, we can comment that the positivity of cn can be verified in the large c limit
from the following equation [74],

c2m −−−→
c→∞

1
m!

[
c

2

(
1− 16

c
∆O

)]2

m for 2m� c. (3.6)

Therefore, we will focus on the small c regime. Note that more generally, if we con-
sider a correlator 〈OA(0)OA(z, z̄)O(1)BOB(∞) 〉 with conformal dimensions hA = h̄A and
hB = h̄B, we have

c2m −−−→
c→∞

1
m!

[
c

2

(
1− 32

c
hA

)(
1− 32

c
hB

)]m
for 2m� c. (3.7)

In figure 2, we show some plots for the n-dependence of the coefficients cn with c = 30.
We find that in the region hO ∈ [ c−1

32 ,
c+5
32 ] (with 2hO = ∆O), the coefficients cn can be
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n vs. sgn(cn ) with hA=hB=
10 + 

32

Figure 2. The n-dependence of sgn(cn) for various hO = c−5
32 ,

c−1
32 ,

c+5
32 , and c+10

32 with c = 30.
One can find that the cn away from the region hO ∈ [ c−1

32 ,
c+5
32 ] is always positive, whereas the cn

in the region hO ∈ [ c−1
32 ,

c+5
32 ] can be negative.

-5 5 10
δ

500

1000

1500

n*

δ vs. n*

-5 0 5 10
δ

1492

1494

1496

1498

1500
n*

δ vs. n*

Figure 3. The blue dots show the maximal value n∗(≤ 1500) s.t. cc∗ < 0. The red lines show the
special values δ = −1, 5. Here we fix c = 30 and define c+δ

32 ≡ h. The right figure is the zoomed
version of the left figure. One can find the plateau in the region δ ∈ [−1, 5]. Note that the upper
bound n = 1500 just comes from the limitation of our machine power. We expect that one can see
the plateau in δ ∈ [−1, 5] more clearly if we take higher n terms into account.
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0.8

1.0

ρ(δ)
δ vs. ρ(δ)

Figure 4. The blue dots show the δ-dependence of the density ρ(δ) (see (3.8)). The red lines show
the special values δ = −1, 5. Here we also fix c = 30.

negative, while the coefficients cn are always positive away from the region [ c−1
32 ,

c+5
32 ]. It

means that without the large c limit (i.e when c is not the largest parameter in the problem),
there is a region where cn can be negative even if hA = hB. To see more detailed patterns,
we search for the maximal n∗ s.t. cn∗ < 0 up to n ≤ 1500. The motivation is that if n∗
is very close to n = 1500, it would imply that the negative coefficients appear many times
in the range (c2, c1500). In figure 3, we give n∗ as a function of the parameter δ, defined in
terms of conformal dimension of external operator O i.e. hO = c+δ

32 . It obviously shows
the specialty of the values hO = c−1

32 ,
c+5
32 (red lines in the figure), which are the edges of

the plateau [ c−1
32 ,

c+5
32 ]. From this observation, we can conjecture,

• if hO ∈ [ c−1
32 ,

c+5
32 ], sgn(cn) oscillates frequently,

• if hO /∈ [ c−1
32 ,

c+5
32 ], the negative coefficient does not appear so many times.

If the above conjectures are true, then we might expect that a few numbers of the negative
coefficients can have a negligible effect to the evaluation of asymptotic behaviors of the
Virasoro block. To justify our expectation, we will focus on a density of the negative
coefficients. We first define the density as

ρ(δ) ≡ # of negative coefficients in [c2, c1500]
750 . (3.8)

We show the δ-dependence of the density ρ(δ) in figure 4, which implies,

• ρ(δ) ∼ 1
2 , if δ ∈ [−1, 5]. This means that the number of the positive coefficients and

the negative coefficients are almost equal to each other.

• ρ(δ) decreases as δ is apart from [−1, 5]. The strange behavior near δ = −1, 5 might
be due to a lack of precision in n. If we increase the cut off n to higher than 1500,
one would find the plateau clearly.

• The value δ = −1 is special, which shows ρ(−1) ∼ 1. This specialty comes from the
h = c−1

32 transition [26, 62, 71, 74, 75] and can be obviously found in figure 2.
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Figure 5. Left: the n-dependence of P (n) for various δ = −2,− 9
5 ,−

8
5 ,−

7
5 ,−

6
5 , and −1 with c = 30

(see (3.9)). Right: the n-dependence of P (n) for various δ = 0, 1, 2, and 3.

To give another support on our expectation, we will show another density of negative
coefficients almost monotonically decrease as n increases. we define the density with the
window [n, n+ 100] as

P (n) ≡ # of negative coefficients in [n, n+ 100]
50 . (3.9)

The n-dependence of P (n) for various δ is shown in figure 5. One can immediately find
that the density P (n) for δ = −2,−9

5 ,−
8
5 decays and finally vanishes as n becomes large.

Moreover, the decay rate decreases as we increase δ. From this observation, we naturally
expect that the density P (n) for δ = −7

5 ,−
6
5 also decays and vanishes at a particular

value of n, even though we cannot find this vanishing of P (n) in our figure because of the
limitation of our machine power (i.e., the cut-off of n at n = 1500). On the other hand,
the n-dependence for δ = −1 is apparently different from that for other δ, that is, the P (n)
for δ = −1 shows a nearly constant value P (n) ∼ 1 for all n. For δ = 0, 1, 2, 3, one can
find P (n) ∼ 1

2 , which is consistent with our expectation that the sign of the coefficients
frequently oscillate if δ ∈ [−1, 5]. Here we exclude the point δ = −1 due to its specialty.

We summarize with the following conjectures,

• cn can be negative for all n in the region hO ∈ [ c−1
32 ,

c+5
32 ].

• It is also possible that cn becomes negative in hO /∈ [ c−1
32 ,

c+5
32 ], but the contributions

to HAA
BB(q) (with hA = hB) from the negative coefficients might be negligible in the

limit q → 1 because we have P (n) −−−→
n→∞

0.

One can observe the second conjecture explicitly in figure 6, where P (n) for
δ = −2,−9

5 ,−
8
5 < −1 vanishes in the limit n → ∞ whereas the sgn(cn) for δ = 0 os-

cillates very fast. In fact, this disappearing of the negative coefficients can be intuitively
understood from the n-dependence of cn, as shown in figure 7. This plot naturally implies
that the cn is roughly monotonically increasing in n. As a result, we find the disappearing
of the negative coefficients for δ = −2,−9

5 ,−
8
5 . On the other hand, we cannot find such a

growth for δ = 0.
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Figure 6. The n-dependence of sgn(cn) for various δ = −2,− 9
5 ,−

8
5 , and 0 with c = 30.
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Figure 7. The n-dependence of cn for various δ = −2,− 9
5 ,−

8
5 , and 0 with c = 30.
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3.2 Consequences from the positivity

It turns out that for hA, hB /∈
(
c−1
32 ,

c+5
32

)
and hA = hB, cn eventually becomes positive

as n is increased. Thus one can safely apply Tauberian theorems (similar theorem is used
in [56] in context of 0+1D CFT). The asymptotic result has already been obtained in [75].
Here we will not repeat the method but will just point out how knowing H(h, q → 1) gives
immediately the growth of cn. The numerics tells us that cn has growth eventually, in
particular we have

cn+1 − cn > 0 .

This allows us to take to consider
d

dq
H(h, q) =

∑
n

(cn − cn−1)qn .

Now one can apply Tauberian theorems of the following form.

Say, we have F (q) = ∑
anq

n with an ≥ 0, then ∑N
k=1 an ∼

∫N
0 L−1 [F (q → 1)]

where L−1 is the inverse Laplace transformation.

In our case, we have F (q) = d
dqH(h, q) and ∑N

k=1(ck − ck−1) = cN . Similar arguments
are also presented in appendix of [7].

The above argument clearly shows that

cn ∼ L−1 [H(h, q → 1)] .

Thus the naive procedure followed in [75] works. We further remark that the asymptotics
has been previously predicted numerically in [62]. Here our approach is to take some input
from the numerics and justify the rest of the analysis analytically.

3.3 Large h asymptotics of H(q)

Here, we would like to find the asymptotics,

H

(
h, e−π

√
c−1
6h

)
−−−→
h→∞

? . (3.10)

This quantity is relevant for the asymptotic estimate of the OPE coefficients. We naively
expect this limit to converge to 1 from the well-known asymptotics with q fixed,

H (h, q) −−−→
h→∞

1, q fixed , (3.11)

but it should be mentioned that we are interested in a simultaneous limit, as h → ∞, we
have q → 1. This is what makes the asymptotics nontrivial.

We evaluated this asymptotics by the Zamolodchikov recursion relation up to q1000. In
figure 8, we showed the h-dependence of the difference H

(
h, e−π

√
c−1
6h

)
− 1 with different

values of hO/c for example, hO = c
6 ,

c
8 ,

c
10 ,

c
12 ,

c
32 ,

c
64 . One can obviously see that the

difference does not converge to 0. Therefore, we can conclude that our simultaneous limit
has non-trivial asymptotics, unlike the h→∞ with q fixed.
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Figure 8. Colored curves show the h-dependence of H
(
h, e−π

√
c−1
6h

)
− 1 with

hO = c
6 ,

c
8 ,

c
10 ,

c
12 ,

c
32 ,

c
64 . For convenience, we introduce a normalized internal dimension η = 32

c h.
One can see that for any hO, the function H converges to some positive values, which we want
to show.

Let us read off universal properties from the figure 8. We first would like to mention
that the function H(h, q) seems to converge to a positive number for any hO. This obser-
vation justifies the technical assumption made in (2.29). We also study the hO-dependence
of the saturation value, denoted as H0. See figure 9, where we show the hO-dependence of
H

(
h, e−π

√
c−1
6h

)
− 1 at hp = 900. One finds numerically that the logarithmic saturation

value log H0 behaves like a linear function of hO, except for hO = c
32 . This implies that

the asymptotics can be expressed by

H

(
h, e−π

√
c−1
6h

)
−−−→
h→∞

e#hO . (3.12)

We do not have any analytic proof of this formula. It would be very interesting to show an
analytic proof of this formula, but we have no proof at present. We leave it as a future work.

The exception hO = c
32 can be explained from the results in [51, 52].4 According

to [51, 52], the leading and next-leading terms are written as

H(h, q) = 1− 1
16h ((c+ 1)− 32hO) ((c+ 5)− 32hO)

(
E2(q)− 1

24

)
+O(1/h2), (3.13)

where E2(q) is the Eisenstein series. This result shows that the large h limit with fixed q
leads to the well-known result by Zamolodchikov, but in the large h limit with β = π

√
c−1
6h ,

the next-leading cannot be neglected. This is consistent with our findings in figure 8,
4This special value c

32 appears many times in the context of two-dimensional conformal bootstrap, for
example, [63, 71].
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Figure 9. The hO-dependence ofH
(
h, e−π

√
c−1
6h

)
−1 at hp = 900. One can find that the saturation

value H0 shows a linear dependence on hO, except for hO = c
32 . This exception can be beautifully

explained from the results in [51, 52]. The veritcal axis is in logscale.

where we see the large correction to H = 1. Moreover, the equation (3.13) shows that the
corrections would be small if hO − c

32 � 1. This result simply explains why the saturation
value of H (i.e H0) becomes small if hO = c

32 .
It should be mentioned that if one wants to consider the large c limit, one cannot rely

on the result (3.13). One can immediately find that the large c limit with hO/c and h/c
fixed leads to a divergence of the next-leading term (E2(q) is of order 1 in this case) unless
hO ∼ c/32. It means that we cannot commute two operations, the large c limit and the
large h expansion (3.13) for this calculation. Nevertheless, in the large c limit case, we can
make use of another method. In [74], the author discusses the validity region where we can
approximate H ' 1 in the large c limit by using the monodromy method.5

1
β2 = O (h) . (3.14)

Our interest is β = π
√

c−1
6h , which satisfies the above validity condition. As a result, we

can conclude that if we first take the large c limit with h/c fixed, we obtain

H(h, e−π
√

c−1
6h ) = 1 +O(1/c). (3.15)

5Note that this is the generalization of the validity region of the original Zamolodchikov monodromy
method, hβ2 � c [74].
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4 Asymptotics of n point correlator in heavy states & ETH

The n point correlators in the heavy state are known to be very excellent proxy for the
thermal correlators. The statement is true in some averaged sense. In this section, we
revisit the statement, clarifying the notion of the averaging. Our statement is going to be
for all CFTs and the optimal window would be order one. We expect that for “chaotic”
CFTs, the window can be shrunk exponentially small in some large parameter (∼ e−#c).
The salient feature of this analysis is to show existence of an enigmatic regime where
the heavy states don’t dominate the canonical ensemble. This is similar in nature in the
enigmatic regime found in [3].

In this section, we discuss 2 point correlator and everything almost immediately gen-
eralizes to n point correlator. We mostly focus on large central charge CFTs with sparse
low lying spectrum. In large central charge limit, the universal behavior persists till t ' β,
which is finite. Here t is the Euclidean time. The mathematical analysis can be done for
finite central charge but then we have to let β → 0, as a result insertion time of n operators
has to go to 0 as well.

4.1 Tauberian theorem(s) for the infinite temperature torus correlator

We start with an un-normalized torus two point correlator 〈O(t)O(0)〉β . Here we use t to
denote the Euclidean time and β is the inverse temperature. Our objective in this section
is to have a rigorous estimate of the following quantity in the ∆→∞ limit:

B(∆) =
∫ ∆+δ

∆−δ
d∆′

 ∑
∆w=∆ph

〈w|O(t)O(0)|w〉

 δ(∆′ −∆ph)

=
∫ ∆+δ

∆−δ
d∆′ b(∆′)

(4.1)

where we have defined

b(∆′) =

 ∑
∆w=∆ph

〈w|O(t, 0)O(0)|w〉

 δ(∆′ −∆ph) . (4.2)

The rigorous estimation will provide us with a precise sense in which a two point
correlator in heavy state can mimic a thermal state. We note that b(∆′) appears in the
following expansion of unnormalized two point correlator.

〈O(t, 0)O(0)〉β =
∑
w

〈w|O(t, 0)O(0)|w〉e−β(∆−c/12) =
∫ ∞

0
d∆′b(∆′)e−β(∆−c/12) . (4.3)

Thus the idea is to extract the β → 0 limit of the torus two point correlator and deduce
the asymptotic behaviour of b(∆′).

Large central charge: in what follows, we will be considering large central charge limit
and let

∆ = c

( 1
12 + ε

)
, (4.4)
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and in this limit, we will be estimating B(∆). We start with the basic inequality:

φ−(∆′) ≤ Θ(∆′) ≤ φ+(∆′) . (4.5)

For brevity, we will write the argument for the upper bound (the lower bounds works
out in a similar manner) From the above, we write the following∫ ∆+δ

∆−δ
d∆′ b(∆′) ≤ eβ(∆+δ)

∫ ∞
0

d∆′ b(∆′)φ+(∆′)e−β∆′ , (4.6)

This leads to∫ ∆+δ

∆−δ
d∆′ b(∆′) ≤ eβ(∆+δ−c/12)

∫ Λ

−Λ
dΩ 〈O(t, φ)O(0)〉β+ıΩ φ̂+(Ω) . (4.7)

Modular covariance tells us that

〈O(t, φ)O(0)〉β =
(2π
β

)2∆O 〈
O
(2πφ

β
,
2πt
β

)
O(0)

〉
4π2
β

. (4.8)

We plug that in (4.7) to obtain∫ ∆+δ

∆−δ
d∆′ b(∆′)

≤ eβ(∆+δ−c/12)
∫ ∞
−∞

dΩ e−ıΩc/12
(2π
β

)2∆O 〈
O
(

0, 2πt
β + ıΩ

)
O(0)

〉
4π2
β+ıΩ

φ+(Ω) .
(4.9)

Now we separate out the light part and heavy part by looking at the expansion (4.3)
and defining:

〈O(t, φ)O(0)〉Lβ =
∑

w,∆w<c/12
〈w|O(t, φ)O(0)|w〉e−β(∆−c/12) (4.10)

〈O(t, φ)O(0)〉Hβ =
∑

w,∆w>c/12
〈w|O(t, φ)O(0)|w〉e−β(∆−c/12). (4.11)

Now use large c vacuum dominance( 2π
β + ıΩ

)2∆O 〈
O
(

0, 2πt
β + ıΩ

)
O(0)

〉L
4π2
β+ıΩ

= e
π2c

3(β+ıΩ)

( 2π
β + ıΩ

)2∆O [
sin
(

πt

β + ıΩ

)]−2∆O
.

(4.12)

The contribution from the light part is dominated by Ω = 0 and we have

eβ(∆+δ−c/12)
∫ ∞
−∞

dΩ e−ıΩc/12
( 2π
β(Ω)

)2∆O 〈
O
(

0, 2πt
β + ıΩ

)
O(0)

〉L
4π2
β+ıΩ

φ+(Ω)

'
c→∞

√
3
πc
β3/2e

π2c
3β +β(∆+δ−c/12)

(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O
+O(1)

(4.13)

where β(Ω) = β + ıΩ.
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Next we will show that the heavy part is suppressed compared to the light part. We
can proceed as we did for the 4 point correlator and bound the absolute value:∣∣∣∣〈O(0, 2πt

β + ıΩ

)
O(0)

〉H
4π2
β+ıΩ

∣∣∣∣ ≤∑
H

∣∣∣∣〈H|O(0, 2πt
β + ıΩ

)
O(0)|H〉

∣∣∣∣e− 4π2β
β2+Ω2 (∆H−c/12)

. (4.14)

Thus the absolute value of the Ω integral coming from the heavy part can be esti-
mated as

eβ(∆±δ−c/12)
∫ Λ

−Λ
dΩ
( 2π
β(Ω)

)2∆O
(∑

H

∣∣∣∣〈H|O(0, 2πt
β(Ω)

)
O(0)|H〉

∣∣∣∣e− 4π2β
β2+Ω2 (∆H−c/12)

)
|φ̂±(Ω)| ,

is dominated Ω ' O(1) number. Thus we go to the dual channel and estimate the contri-
bution. For suppression, one needs to choose

Λ < 2π
√

1− 1
12ε .

This requires ε > 1/12 and ∆ > c/6. Combining everything and setting β = π
√

1
3ε , we have

log
[ ∫ ∆+δ

∆−δ
d∆′

 ∑
∆w=∆ph

〈w|O(t, 0)O(0)|w〉

]δ(∆′ −∆ph)

=
c→∞

2πc
√
ε

3 + 1
2 log(c)− 2∆O log

[
sin
(
t
√

3ε
)]

+O(1) .

(4.15)

One can keep track of the order one number as in [4] and arrive at following bounds:(
φ̂−(0) + `

)
e−βδρ0(∆)

(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O

≤ B− ≤ B+

≤
(
φ̂−(0) + `

)
eβδρ0(∆)

(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O
.

(4.16)

The quantity ` signifies the positive contribution coming from the sparse low lying states.
Now we need to use Beurling-Selberg functions [7] maintaining the constraint
Λ < 2π

√
1− 1

12ε = 2π
√

1− β2

4π2 . This leads to

φ̂±(0) =
(

2δ ± 2π
Λ

)
=

2δ ±
(

1− β2

4π2

)−1/2
 . (4.17)

Now the number of states within the bin in large c limit is given by

log
[ ∫ ∆+δ

∆−δ
d∆′ρ(∆′)

]
=

c→∞
2πc

√
ε

3 + 1
2 log(c) +O(1) . (4.18)

This implies the average value of two point correlator in heavy state is given by thermal
correlator at βbh = π

√
c

3(∆−c/12)

〈H|O(t, 0)O(0)|H〉average =
c→∞

[
sin
(
t
√

3ε
)]−2∆O = 〈O(t, 0)O(0)〉βbh . (4.19)
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Another way of phrasing the result is following:

〈H|O(t, 0)O(0)|H〉average ' Tr
(
e−βHO(t, 0)O(0)

)
+O(1) . (4.20)

In fact, by similar arguments one can show that

〈H|O(t1,0)O(t2,0) · · ·O(tn,0)|H〉average'Tr
(
e−βHO(t1,0)O(t2,0) · · ·O(tn,0)

)
+O(1)

(4.21)
as long as n is finite and ∆H > c/6. The statement we have just proved is true for Euclidean
time separated correlators. There are technical subtleties in analytically continuing the
result in Lorentzian time and make more direct connection with the results of [22]. This
happens precisely because of the presence of averaging window. Recall the size of averaging
window is controlled by the heavy states in the dual channel. In particular, we need the
tail to be suppressed. Analytically continuing to the Lorentzian time might spoil this
suppression. It is worth investigating how to make the continuation very precise. Something
along the line of proposal made in [76] might be useful in this regard. We conclude this
section by making brief remarks on how our results relates to ETH as well as the analysis
for the finite central charge case.

Connection to ETH: the eigenstate thermalization hypothesis (ETH) [77] adapted to
CFTs [14–16], states that the off diagonal OPE coefficients CH′LH′′ are suppressed by
e−S(∆av)/2, where H ′ and H ′′ are two heavy states with scaling dimensions ∆H′ and ∆H′′ ,
both � 1. As both are heavy primaries, the average ∆av = 1

2(∆H′ + ∆H′′) is also centered
at some high energy and the difference ω ≡ ∆H′ −∆H′′ cannot be arbitrarily large. Our
result (4.20) encodes information about |CH′LH′′ |2, once we insert complete set of states
in between O(t) and O(0) (we remind the readers that t is Euclidean time here, the light
operator is O):

〈H ′|O(t, 0)O(0)|H ′〉 =
∑
ω

|〈H ′|O|H ′′〉|2eωt . (4.22)

It is hard to extract the average behavior of |CH′LH′′ |2 directly from (4.20) using (4.22)
without doing a smearing for the variable ω to begin with. One way is to do the analytical
continuation of our result (4.20) to Lorentzian time, the sin becomes sinh, then upon doing
an inverse Fourier transformation, one obtains CH′LH′′ for all ω and ∆av, which indeed
reduces to CH′LH′′ ' e−S(∆av)/2f(ω) for small ω and reproduces the results of [14–16].
However, such analytical continuation is not justified a priori and hence the expression
before taking the small ω limit is not apriori justified or correct. Nonethess, the intu-
itive observation here is that the e−S(∆H)/2 suppression is responsible for producing an
order one t independent number in (4.20) while f(ω) is responsible for producing t depen-
dence modulo the technical subtlety involving analytic continuation. Broadly speaking,
the suppression by e−S(∆H)/2 is consistent with our result (4.20), and a proper smearing
in ω variable is expected to reproduce f(ω) for small enough ω. The precise window of
ω would be explicit in the smearing process itself. Recently, [78] has conjectured random
matrix statistics for chaotic CFT-OPE coefficients. It will be interesting to check how their
conjecture fits with the details of smearing, which we leave for the future.
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Finite central charge: for finite central charge, one can repeat the above analysis. Now
we have

β = π

√
c

3∆ → 0 , t

β
= constant . (4.23)

Effectively, we are looking at the correlator in t→ 0 limit while keeping t/β finite.
In this limit, we obtain

2πφ̂−(0)
(

c

48∆3

)1/4
exp

2π

√
c∆
3

(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O

≤
∫ ∆+δ

∆−δ
d∆′ 〈H|O(t, 0)O(0)|H〉 ≤

2πφ̂+(0)
(

c

48∆3

)1/4
exp

2π

√
c∆
3

(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O
.

(4.24)

Using Beurling-Selberg functions, we obtain 2πφ̂± = 2δ ± 1. Thus the average two

point function ÔO ≡
∫ ∆+δ

∆−δ d∆′ 〈H|O(t,0)O(0)|H〉∫ ∆+δ
∆−δ d∆′ ρ(∆′)

will be given by

2δ − 1
2δ + 1

(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O
≤ ÔO ≤ 2δ + 1

2δ − 1

(2π
β

)2∆O [
sin
(
πt

β

)]−2∆O
, (4.25)

where it is to be understood that β is a function of ∆. As ∆ → ∞, β → 0 and we are
keeping t/β fixed.

The notion of optimal asymptotic spectral gap is bit trivial in this context if we allow
for any operator O. Then one can choose O to be identity, and then the analysis precisely
become the analysis for density of states. This why we arrive at same bound of asymptotic
spectral gap as we have obtained in Cardy analysis [4, 5, 7].
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A Simultaneous limit for H(h, q): motivating the technical assumption

We will motivate the assumption (2.29) in two steps. In order to do that, we need to
understand why the simultaneous limit (βL,R → 0, where βL = π

√
c−1
6h and βR = π

√
c−1
6h̄ )

is important. This will also set the stage for motivating our assumption on H(h, q). Until
now, we have set the length of the spatial circle of the torus to be L = 2π and let βL,R → 0.
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In CFT, using scale invariance, this is same as fixing βL,R and letting L→∞. So we restore
L for now and rewrite (2.22) as

p(βL/L, β′R/L) =
∑
h′,h̄′

f2
OOO′e

− 2πβL
2L (h′− c−1

24 )− 2πβR
2L (h̄′− c−1

24 )H(h′, qL)H(h̄′, qR) . (A.1)

We define EL = 2π
L (h−C/24) and ER = 2π

L (h̄−C/24), where C = c− 1. In L→∞ limit,
the variable EL,R become continuous. Thus we can write

p(βL/L, β′R/L) =
∫
dEL dER a(EL, ER) e−

βLEL+βRER
2 H(EL, qL)H(ER, qR) , (A.2)

and recast (2.24) as∫
dEL dER a(EL, ER) e−

βLEL+βRER
2 H(EL, qL)H(ER, qR)

=
β/L→0

(
L2

βLβR

)ν/2+1/4

exp
[
πLC

24βL
+ πLC

24βR

]
.

(A.3)

So we make the following assumption H(EL, qL), H(ER, qR) does not grow or fall exponen-
tially in EL or ER in qL,R → 1 limit (or to rephrase in the neighborhood of q = 1). Thus
we can forget about H, still determine the saddle of the integral as a function of β and L.
This automatically provides us the saddle value and leading behavior of a(EL, ER)

βL,R = 1
2

√
πCL

3EL,R∗

log a(EL∗, ER∗) '
√
πCLEL

3 +
√
πCLER

3 + Errors .
(A.4)

Finite βL,R implies that we are looking at finite energy density states. Even though this
method provides us with leading behavior of a(EL∗, ER∗), we can not immediately turn
this into a function of hL and hR, since there can be multiple states such that in L → ∞
limit, hL,RL → EL,R. In short, we do not have any control over averaging window. Neither
do we have any control over subleading corrections. Now we make the second step towards
our assumption stated earlier

lim
L→∞

H(EL∗, qL → 1) = H + error terms (A.5)

which can be equivalently written as (Recall we can exchange β and L)

H(h→∞, qL → 1) = H + error terms , H > 0 & qL = e
−π
√

(c−1)h
6 (A.6)

where H is a constant and a similar equation holds for the right movers. In fact, we will
need a slightly stronger assumption:

H(h→∞, |qL| → 1) = H + error terms , H > 0 & |qL| = e
−π
√

(c−1)h
6 . (A.7)

This is the precisely the technical assumption that we have made in eq (2.29).
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