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1 Introduction

Begining with the classic paper of Coleman and De Lucia [1] there have been many studies
of thin gravitating domain walls between vacua with different values of the cosmological
constant. Such walls figure in models of localized gravity [2–4], in holographic duals of con-
formal interfaces [5–7], in efforts to embed inflation in string theory by studying dynamical
bubbles [8–11], and more recently, following the ideas in refs. [12–14], in toy models of
black hole evaporation [15–23]. Besides being a simple form of matter coupled to gravity,
domain walls are also a key ingredient [24] in effective descriptions of the string-theory
landscape — see [25–27] for some recent discussions of domain walls in this context.1

In this paper we study a thin static domain wall between Anti-de Sitter (AdS) vacua,
anchored at the conformal boundary of spacetime. If a dual holographic setup were to exist,
it would have two conformal field theories, CFT1 and CFT2, separated by a conformal
interface [5–7]. We will calculate the phase diagram of the system as function of the AdS
radii, the tension of the wall and the boundary data. Several parts of this analysis have
appeared before (see below) but the complete phase diagram has not, to the best of our
knowledge, been worked out. We will be interested in phenomena that are hard to see
at weak CFT coupling. A broader motivation, as in much of the AdS/CFT literature, is
understanding how the interior geometry is encoded on the boundary and vice versa, but
we will only briefly allude to this question in the present work.

Our analysis is classical in gravity. Different phases are distinguished by the pres-
ence/absence of a black hole and by the fate of inertial observers, either those moving
freely in the bulk or those bound to the wall. Inertial observers are a guiding fixture of
the analysis, not emphasized in earlier works. In the high-temperature or ‘hot’ phase all
inertial observers eventually cross the black-hole horizon. In intermediate or ‘warm’ phases
the wall avoids the horizon, and may also shield bulk observers from falling inside. Such
two-center warm solutions are gravitational avatars of the Faraday cage. Finally what
differentiates ‘cold’ horizonless phases is whether all timelike geodesics intersect inevitably
the wall, or not.

Besides the domain wall and the black hole, the third actor in the problem is the
center of global AdS where an inertial observer may rest. The rich phase diagram is the
result of several competing forces: the attraction of the AdS trap, with or without a black
hole in its center, the tension of the wall, and the repulsion between the domain wall and
massive particles. In addition to the first-order Hawking-Page transition [28] that signals
the formation of a black hole, new phase transitions occur when the wall sweeps an AdS
rest point or when part of it enters the horizon, see figure 1. One of our conclusions is that
the latter transition is always first-order.

We work in 2+1 dimensions because calculations can be performed in closed form.
We expect, however, qualitative features of the phase diagram to carry over to higher
dimensions. For simplicity we consider a single type of non-intersecting wall, and only
comment briefly on extended models that allow junctions of different types of wall.

1The above list of references is nowhere nearly complete. It is only meant as an entry to the vast and
growing literature in these subjects.
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Figure 1. A domain wall sweeping the center of the ‘false AdS vacuum’ where an inertial observer
could rest (left), or entering the horizon of a black hole (right).

The capture of the wall by the black hole is related to a transition analyzed in a very
interesting recent paper by Simidzija and Van Raamsdonk [29], see also [30, 31]. These
authors consider time-dependent spherically-symmetric walls whose intersections with the
conformal boundary describe Hamiltonian quenches in the dual field theory. In this setting
the boundary is the infinite cylinder, with a stripe describing the evolution of the dual CFT
between the quench and ‘unquench’ times. By contrast, we are interested in equilibrium
configurations. This means that the domain-wall geometry is static, and the stripes on
the conformal boundary point in the time direction. Furthermore, the boundary is not the
cylinder but an orthogonal torus, adding an extra parameter to the problem.

Although the interpretation is different, many of our formulae are nevertheless related
to those of refs. [29–31] by swapping the roles of boundary space and time (thereby also
swapping the BTZ geometry with thermal AdS3, see section 2). This is fortuitous to 2+1
dimensions and does not carry over to higher dimensions.

The gravitational action of the thin-wall model reads

Igr = −1
2

∫
S1
d3x
√
g1

(
R1 + 2

`21

)
− 1

2

∫
S2
d3x
√
g2

(
R2 + 2

`22

)
+ λ

∫
W
d2s
√
ĝw + GHY terms + ct. , (1.1)

where Rj (gj) are the Ricci scalars of the spacetime slices Sj on either side of the wall, and
ĝw is the induced metric on the wall’s worldvolume. The Gibbons-Hawking-York terms
and counterterms are given in appendix A. The action Igr depends on three parameters:
the two AdS radii `1, `2 and the wall tension λ. The radii are related to the central charges
of the dual CFTs [32], and the tension to the entropy [29, 33] and to the energy-transport
coefficient [34] of the dual interface. Static solutions exist for

λmin < λ < λmax , with λmax = 1
`1

+ 1
`2

; λmin =
∣∣ 1
`1
− 1
`2

∣∣ . (1.2)

The classical phase diagram depends on two dimensionless ratios of the above (e.g. `2/`1 := b

and λ`2 := κ) and on the two parameters that determine the conformal class of the striped
boundary torus, e.g. τ1 := TL1 and τ2 := TL2, see figure 2. Without loss of generality we
assume henceforth that `2 ≥ `1, i.e. that S1 is the true-vacuum slice.
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An important question is how much of this analysis has a chance to carry over to top-
down holographic models, where back-reacting domain walls are not thin.2 The size of the
horizon and the number of stable rest points are order parameters that can be also defined
for thick walls, but a sharp criterion, that decides whether a thick domain wall enters or
avoids the horizon is hard to imagine. Nevertheless, the field-theory interpretation of the
transition suggests that such an order parameter may exist, as we will explain in section 7.1.

It is worth stressing that the thin-wall model is a minimal gravity dual of I(nterface)
CFT in the same way that pure Einstein theory is a minimal dual for homogeneous CFT.
The model captures the two universal boundary operators — the energy-momentum tensors
on either side of the interface, as well as their combination refered to as the displacement
operator [54]. Top-down models have many more operators, some of which correspond to
internal excitations of the domain wall.

Note also that boundaries, or end-of-the-world branes (EWBs), can be considered as
a limit of domain walls when one side becomes the zero-radius AdS spacetime [55]. In
this sense holographic B(oundary)CFT [56, 57] can be recovered from holographic ICFT,
though the limit is subtle and should be handled with care.

A last remark concerns the Ryu-Takayanagi surfaces [58, 59] that delimit the entan-
glement wedges of boundary subregions [60–62].3 It is clearly of interest to study if these
surfaces intersect the domain wall, as is done for BCFT in refs. [21, 22]. We hope to return
to this question elsewhere.

The plan of the paper and a summary of our results follows. In section 2 we review
some standard facts about AdS3/CFT2 at finite temperature. The wall separates space
in two slices that we color green (true-vacuum side) and pink (false-vacuum side). Each
of these comes in one of four topological types described in section 3. In section 4 we
solve the matching equations obeyed by a thin static domain wall, which we parametrize
conveniently by the blueshift metric factor gtt. This section overlaps substantially with
ref. [29] via double Wick rotation — a trick specific to 2+1 dimensions as earlier noted.

In section 5 we start analyzing the solutions. By studying the turning point of the
wall we classify the possible phases, i.e. the topologically distinct solutions. We rule out
in particular centerless geometries, in which no inertial observer can avoid the wall, and
solutions with two black holes whose merging is prevented by the wall.

In section 6 we write down the equations of state that characterize these phases.
They relate the canonical variables τ1, τ2 to microcanonical variables that are natural for
describing the interior geometry. We also point out the relevance of a critical tension
λ0 =

√
λmaxλmin below which the hot solution disappears from a region of parameter space.

In section 7 we compute the critical lines for sweeping transitions in both the cold and
the warm phases, and we show that the warm-to-hot transition is always first-order — the
domain wall cannot be lowered continuously to the black horizon. The proof requires a
detailed analysis of the region µ ≈ 1 with λ ≤ λ0, where the hot and a warm solution

2Many examples of supergravity domain walls have been worked out in the literature, a representative
sample is [35–53]. None of these solutions depends, however, on non-trivial (non-Lagrangian) boundary
data, indeed all but one are scale-invariant AdSn fibrations.

3See e.g. [63, 64] for reviews.
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come arbitrarily close. We also point out some puzzles regarding the ICFT interpretation
of these phase transitions.

Section 8 presents a striking phenomenon: bubbles of the true vacuum suspended
from a point on the conformal boundary of the false vacuum. This is surprising from the
perspective of ICFT, since it implies that the fusion of an interface and anti-interface does
not produce the trivial (identity) defect, as expected from free-field calculations [65], but
an exotic defect that generates spontaneously a new scale.

In section 9 we present numerical plots of the complete phase diagram in the canonical
ensemble, for different values of the Lagrangian parameters λ, `j . These plots confirm our
earlier conclusions. We point out a critical threshold b = `2/`1 = 3, probably an artifact
of the thin-wall approximation, above which black-hole solutions on the false-vacuum side
of the wall cease to exist. We also exhibit coexisting black-hole solutions, including black
holes with negative specific heat. This parallels the discussion of black holes in deformed
JT gravity in ref. [66].

Section 10 contains concluding remarks. In order not to interrupt the flow of the
arguments we relegate some detailed calculations to four appendices.

2 Finite-temperature AdS/CFT

For completeness we recall here some standard facts about AdS/CFT at finite temperature
in three spacetime dimensions. While doing this we will be also setting notation and
conventions.

2.1 Coordinates for the AdS3 black string

The metric of the static AdS3 black string in 2+1 dimensions is

ds2
BS = `2dr2

r2 −M`2
− (r2 −M`2) dt2 + r2dx2 , (2.1)

where M > 0, ` is the radius of AdS3 and the horizon at rH = `
√
M has temperature

T =
√
M/2π. Length units on the gravity side are such that 8πG = 1. The dual CFT lives

on the AdS3 boundary, at r = 1/ε→∞, with conformal coordinates x± ≡ x± t ∈ R2. Its
central charge is c = 12π` [32].

The holographic dictionary becomes transparent in Fefferman-Graham coordinates, in
which any asymptotically-Poincaré AdS3 solution takes the following form [67, 68]

ds2 = `2dz2

z2 + 1
z2

(
dx+ + `z2h−dx

−
)(
dx− + `z2h+dx

+
)
. (2.2)

Here h± = 〈T±±〉 are the expectation values of the canonically-normalized energy-
momentum tensor of the CFT. Note that it is a special feature of 2+1 dimensions
that the Fefferman-Graham expansion stops at order z2. For the static black string,
h+ = h− = M`/4 giving 〈Ttt〉 = M`/2 = (c/6)πT 2. This is indeed the energy density
of finite-temperature CFT in two dimensions. The relation between z and r is

r = 1
z

+ M`2z

4 ⇐⇒ z = 2
M`2

(
r −

√
r2 −M`2

)
, (2.3)
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and the black-string metric in the (z, t, x) coordinates reads

ds2
BS = `2

dz2

z2 −
(

1
z
− M`2z

4

)2

dt2 +
(

1
z

+ M`2z

4

)2

dx2 . (2.4)

Note that z covers only the region outside the horizon (r > rH) and that near the conformal
boundary z ≈ r−1.

A last change of coordinates worth recording, even though we will not use it in this
paper, is the one that maps (z, t, x) to the standard Poincaré parametrization of AdS3. Such
a map is guaranteed to exist because all constant-negative-curvature Einstein manifolds in
three dimensions can be obtained from AdS3 by identifications and excisions. For the case
at hand4 the transformation reads

w± = ζ±
(

4−M`2z2

4 +M`2z2

)
, y = 4z(Mζ+ζ−)1/2

4 +M`2z2 with ζ± = e
√
M(x±t) . (2.5)

The reader can check that in these coordinates the metric (2.4) becomes

ds2
BS = `2dy2 + dw+dw−

y2 , (2.6)

i.e. the standard Poincaré form of AdS3 as advertized. Outside the black horizon (M`2z2 <

4) the coordinates x± ≡ x± t cover only a Rindler wedge of the w± plane.
Since we will be refering to this later, let us verify the well-known fact that no in-

ertial observer can avoid crossing the horizon. In the proper-time parametrization of the
trajectory a simple calculation gives

`2
r̈

r
= −1−M`2ẋ2 (2.7)

where dots denote derivatives with respect to proper time. Since M is positive there is no
centrifugal acceleration QED. Note that this is a property of the asymptotically AdS black
hole, not shared by asymptotically flat black holes in higher dimension.

2.2 Hawking-Page transition

From the perspective of the CFT, the temperature T is the only dimensionful parameter
of the infinite-black-string solution. By a scale transformation we can always set it to
one. Things get more interesting if the black string is compactified, x ∼ x + L, thereby
converting the solution (2.1) to the non-spinning BTZ black hole [72, 73]. In addition to
the central charge c, there is now a new dimensionless parameter LT . In the Euclidean
geometry τ = i LT is the complex-structure modulus of the boundary torus.

At the critical temperature THP = 1/L the theory undergoes a Hawking-Page phase
transition [28, 74]. This is seen by comparing the action of the two competing saddle points

4The general transformation, for an arbitrary (conformally-flat) boundary metric and vacuum expecta-
tion value 〈Tab〉, is given in refs. [69–71].
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for the interior geometry:5 (i) the Euclidean BTZ black hole, and (ii) thermal AdS3, whose
metric is the same as (2.1) but with M replaced by M̃ = −(2π/L)2. The difference of free
energies of these two saddle points reads

FBTZ − FTAdS = −2π2`

(
LT 2 − 1

L

)
. (2.8)

Thus thermal AdS3 is the dominant solution when LT < 1, while the BTZ black hole
dominates when LT > 1.

Thermal AdS3 and the Euclidean BTZ black hole differ in the choice of boundary cycle
that becomes contractible in the interior geometry. The periodicity conditions, respectively
x ∼ x+ 2π/|M̃ |1/2 and tE ∼ tE + 2π/M1/2, ensure regularity when this contractible cycle
degenerates. Below we will encounter situations in which either the center of AdS or the
BTZ horizon are excised. In such cases the regularity conditions can be relaxed.

One other comment in order here concerns the difference of free energies, eq. (2.8).
The renormalized gravitational action Igr (where Igr = F/T ) is calculated for the general
interface model in appendix A. In the case of a homogeneous CFT one can, however, obtain
the answer faster. Indeed, from the Fefferman-Graham form of the metric, eq. (2.2), one
reads the energy of the CFT state,

E = L〈Ttt〉 = 1
2`ML . (2.9)

For M = (2πT )2 this is the internal energy of the high-temperature state, as previously
noted, and for M = −(2π/L)2 it is the Casimir energy of the vacuum. The corresponding
free energies obey the thermodynamic identity

E = −T 2 ∂

∂T

(
F

T

)
. (2.10)

Eqs. (2.9) and (2.10) determine F up to a term linear in T . This can be argued to vanish
both at low T , since the ground state has no entropy, and at large L since F must be
extensive. The final result is eq. (2.8).

Let us finally note that since in empty AdS the massM is negative, there is a centrifugal
contribution in eq. (2.7). An inertial observer may thus either rest at, or orbit around the
center r = 0. But in the centerless slices that we are about to discuss, all inertial observers
hit the wall.

3 Topology of slices

Consider now two conformal field theories, CFT1 and CFT2, coexisting at thermal equlib-
rium on a circle. This is illustrated in figure 2. The horizontal and vertical axes parametrize
space and Euclidean time. In addition to the central charges c1, c2, and to the properties of
the interfaces between the two CFTs, there are three more parameters in this system: the

5Thermal AdS3 and Euclidean BTZ are part of an infinite SL(2,Z) orbit of gravitational instantons, [74,
75] but they are the only dominant ones for an orthogonal torus. Their regularized Euclidean actions are
ITAdS = −2π2`/|τ | and IBTZ = −2π2`|τ |, see below.
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T −1
1CFTCFT2 2CFT

L1

L1 + L2

Figure 2. The finite-temperature interface CFT at the AdS boundary. Both space and Euclidean
time are compact, so the depicted surface is an orthogonal torus.

sizes L1, L2 of the regions in which each CFT lives, and the equilibrium temperature T .
This gives two dimensionless parameters, which we can choose for instance to be τ1 := TL1
and τ2 := TL2.

The gravity dual of this ICFT features domain walls, i.e. strings in 2+1 dimensions,6
anchored at the interfaces on the conformal boundary. We will make the simplifying as-
sumption that the two domain walls differ only in orientation, and can join smoothly in
the interior of spacetime. Extended models allowing junctions of different domain walls
are very interesting but they are beyond our present scope. We will comment briefly on
them in a later section.

The green and pink boundary regions of figure 2, in which CFT1 and CFT2 live, extend
in the interior to slices of gravitational solutions that belong to one of several topological
types. These are illustrated for the green slice in figure 3. Each slice is either part of
thermal AdS3 with the center, marked by a grey flag, included (E1) or excised (E2), or
part of the BTZ geometry with the horizon excised (E2′), included (H1) or intersecting the
domain wall (H2). The same options are available for the pink spacetime slice.7

As was explained in section 2, we may adopt the unified parametrization (2.1) for all
types of slice, withM negative for the slices of type E1 and E2 of global AdS3, and positive
for the slices of type E2′, H1 and H2 of the BTZ spacetime. We are interested in static
configurations which are dual to equilibrium CFT states, so time is globally defined and
has fixed imaginary period tE ∼ tE + 1/T . The coordinates (x, r) on the other hand need
not be continuous across the wall. We therefore write the spacetime metric in terms of two
coordinate charts,

ds2 =
`2jdr

2
j

r2
j −Mj`2j

− (r2
j −Mj`

2
j ) dt2 + r2

jdx
2
j with (xj , rj) ∈ Ωj , (3.1)

6We reserve the word “interface” for the CFT, and “domain wall” or “string” for gravity. Interfaces are
anchor points of domain walls on the AdS boundary. The string of our bottom-up model should not be
confused with the black string responsible for the interior horizon. In top-down supergravity embeddings
the two types of string may be however interchangeable.

7The Euclidean manifold is a (thermal) circle fibration over the fixed-time slice drawn in our figures.
The fiber degenerates at the horizon, when one exists.
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E1 E2 E2′ 

H1 H2

Figure 3. The different types of space-time slice described in the main text. The actual slice is
colored in green, the complementary region is excised. The letters ‘E’ and ‘H’ stand for ‘empty’
and ‘horizon’, and the grey flag denotes the rest point of an inertial observer. Note that since this
is excised in E2, a conical singularity in its place is permitted. The centerful slice E1 can act as a
gravitational Faraday cage.

where Ω1 is the range of coordinates for the green slice and Ω2 the range of coordinates for
the pink slice. These ranges are delimited as follows:

• by the embeddings of the static wall in the two coordinate systems, {xj(σ), rj(σ)},
where σ parametrizes the wall ;

• by the horizon whenever the slice contains one, i.e. in cases H1 and H2 ;

• by the cutoff surface rj ≈ 1/ε→∞ .

The mass parameters of the slices, M1 and M2, are in general different. Regularity
requires however that

Mj = (2πT )2 for slices H1, H2 (3.2)

that include a horizon, whereasMj is unconstrained for the other slice types. Furthermore,
for a slice of type E1 in which the spatial circle is contractible, interior regularity fixes the
periodicity of x,

xj ∼ xj + 2π/
√
−Mj in case E1 . (3.3)

For E2, E2′ and H2 the coordinate xj is not periodic, while for H1 its period, proportional
to the horizon size, is unconstrained.

Since the horizon is a closed surface, a green slice of type H2 can only be paired with a
pink slice of the same type. This is the topology that dominates at very high temperature
when the black hole eats up most of the bulk spacetime. As the temperature is lowered

– 8 –
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different pairs of the remaining slice types dominate. The pairs that correspond to actual
solutions of the domain-wall equations will be determined in section 5.

For the time being let us comment on the differences between the horizonless slices in
the top row of figure 3. What distinguishes E1 from the other two is the existence of the
AdS center (or ‘refuge’) where an inertial observer may sit at rest. By contrast, in the slices
of type E2 and E2′ all inertial observers will inevitably hit the domain wall as explained
in the previous subsection. This discontinuous behavior differentiates the phases on either
side of a sweeping transition.

Note that there is no topological difference between the slices of type E2 and E2′, which
is why we distinguish them only by a prime. These slices differ only in the sign of Mj , or
equivalently the energy density per degree of freedom in the boundary theory. Together
E2 and E2′ describe a continuum (−∞ < Mj <∞) of horizonless slices with no rest point.

4 Solving the wall equations

In this section we find the general solution of the domain wall equations in terms of the
mass parameters M1,M2, the AdS radii `1, `2, and the tension of the wall λ. That a
solution always exists for any bulk geometries is a special feature of 2+1 dimensions, as is
the double Wick rotation that relates this part of our analysis to ref. [29].

4.1 Matching conditions

The matching conditions at a thin domain wall have appeared in numerous studies of
cosmology and AdS/CFT. They are especially simple in the case at hand, where the
wall/string is static and is characterized only by its tension. Matching the induced world-
sheet metric of the two charts (3.1) gives one algebraic and one first-order differential
equation for the embedding functions x1(σ), r1(σ), x2(σ) and r2(σ):

r2
1 −M1`

2
1 = r2

2 −M2`
2
2 ≡ f(σ) (4.1)

and f−1`21 r
′ 2
1 + r2

1 x
′ 2
1 = f−1`22 r

′ 2
2 + r2

2 x
′ 2
2 ≡ g(σ), (4.2)

where the prime denotes a derivative with respect to σ. We have defined the aux-
iliary functions f and g in terms of which the induced worldsheet metric reads
dŝ2|W = −f(σ)dt2 + g(σ)dσ2. A third matching equation8 expresses the discontinuity of
the extrinsic curvature in terms of the tension, λ, of the wall [76, 77]. It can be written
as follows :

r2
1x
′
1

`1
+ r2

2x
′
2

`2
= −λ

√
fg . (4.3)

Our convention is that σ increases as one circles Ωj in the (xj , rj) plane clockwise. Other
conventions introduce signs in front of the two terms on the left-hand side of this equation.

8The Israel-Lanczos matching conditions are matrix equations, [Kαβ ] − [trK]ĝαβ = λ ĝαβ , where Kαβ

is the extrinsic curvature, ĝαβ the induced metric, and brackets denote the discontinuity across the wall.
Only the trace part of this equation is non-trivial. The traceless part of K is automatically continuous by
virtue of the momentum constraints DαKαβ−DβK = 0 , where Dα is the covariant derivative with respect
to the induced metric. Equation (4.3) is the tt component of the matrix equation.

– 9 –
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ℓ1/r1

θ1

x1
Figure 4. Near the AdS boundary in the (xj , `j/rj) plane the string is a straight line subtending
an angle θj with the normal.

Eqs. (4.1)–(4.3) are three equations for four unknown functions, but one of these
functions can be specified at will using the string-reparametrization freedom. Furthermore
the equations only involve first derivatives of xj , so the integration constants are irrelevant
choices of the origin of the xj axes. For given `1, `2 and λ, the wall embedding functions
xj(rj), are thus uniquely determined by the parameteres M1 and M2. Different choices of
(M1,M2) may correspond, however, to the same boundary data (L1, L2, T ). These are the
competing phases of the system.

4.2 Solution near the boundary

Near the conformal boundary, rj → ∞, the parameters Mj can be neglected and the
worldsheet metric asymptotes to AdS2 by virtue of scale invariance. Explicitly the solution
reads [78]

r1 ≈ r2 , xj ≈ `j (tan θj) r−1
j , (4.4)

where θj is the angle in the (xj , `j/rj) plane between the normal to the boundary and the
wall, see figure 4. The matching eqs. (4.2) and (4.3) relate these angles to the bulk radii
`j and to the string tension λ:

`1
cos θ1

= `2
cos θ2

≡ `w and tan θ1 + tan θ2 = λ `w , (4.5)

where `w is the radius of the AdS2 worldsheet, and −π/2 < θj < π/2 .
Without loss of generality we assume that `1 ≤ `2, so that CFT1 has the smaller of the

two central charges. Its gravity dual has the lower vacuum energy, i.e. the green slice is the
‘true vacuum’ side of the domain wall and the pink slice is the ‘false-vacuum’ side. The first
eq. (4.5) then implies that | tan θ1| ≥ | tan θ2| and, provided that the tension is positive,
the second eq. (4.5) implies that θ1 > 0. The sign of θ2, on the other hand, depends on the
precise value of λ. Expressing the tangents in terms of cosines brings indeed this equation
to the form ( 1

` 2
1
− 1
` 2
w

)1/2
+ ε

√
1
` 2
2
− 1
` 2
w

= λ with ε = sign(θ2) . (4.6)
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Since λ is real we must have `2 < `w < ∞. Furthermore to each value of the worldsheet
radius `w there correspond two values of the tension λ, depending on sign(θ2). Explicitly,9

λmin < λ < λ0 for ε = − and λ0 < λ < λmax for ε = + , (4.7)

where the three critical tensions read

λmin = 1
`1
− 1
`2
, λmax = 1

`1
+ 1
`2
, λ0 =

√
λmaxλmin . (4.8)

Let us pause here to discuss the significance of these critical tensions.

4.3 Critical tensions

The meaning of the critical tensions λmin and λmax has been understood in the work of
Coleman-De Lucia [1] and Randall-Sundrum [2]. Below λmin the false vacuum is unstable
to nucleation of true-vacuum bubbles, so the two phases cannot coexist in equilibrium.10

The holographic description of such nucleating bubbles raises fascinating questions in its
own right, see e.g. refs. [8–10]. It has been also advocated that expanding true-vacuum
bubbles could realize accelerating cosmologies in string theory [11]. Since our focus here is
on equilibrium configurations, we will not discuss these interesting issues any further.

The maximal tension λmax is a stability bound of a different kind.11 For λ > λmax the
two phases can coexist, but the large tension of the wall forces this latter to inflate [4]. The
phenomenon is familiar for gravitating domain walls in asymptotically-flat spacetime [83],
i.e. in the limit `1, `2 →∞.

The meaning of λ0 is less clear, its role will emerge later. For now note that it is the
turning point at which the worldsheet radius `w(λ) reaches its minimal value `2. Note also
that the range λmin < λ < λ0 only exists for non-degenerate AdS vacua, that is when `1 is
strictly smaller than `2.

Since the wall in this minimal model is described by a single parameter, its tension λ,
all properties of the dual interface depend on it. These include the interface entropy, and
the energy-transport coefficients. The entropy or g-factor, computed in [29, 33], reads12

log gI = 2π`1`2
[
λmax tanh−1

(
λ

λmax

)
− λmin tanh−1

(
λmin
λ

)]
. (4.9)

It varies monotonically between −∞ and ∞ as λ varies inside its allowed range (4.7).
9It was argued in ref. [79] that the walls in the λ < λ0 range are unstable. But the radius instability

in this reference reduces the action by an amount proportional to the infinite volume of AdS2 and does
not correspond to a normalizable mode. The only normalizable mode of the wall in the thin-brane model
corresponds to the displacement operator which is an irrelevant (dimension = 2) operator [34].

10Ref. [1] actually computes the critical tension for a domain wall separating Minkowski from AdS space-
time. Their result can be compared to λmin in the limit `2 →∞.

11Both the λ = λmax and the λ = λmin walls can arise as flat BPS walls in supergravity theories coupled
to scalars [80, 81]. These two extreme types of flat wall, called type II and type III in [81], differ by the
fact that the superpotential avoids, respectively passes through zero as fields extrapolate between the AdS
vacua [82].

12There are many calculations of the boundary, defect, and interface entropy in a variety of holographic
models — a partial list is [56, 57, 84–87]. The formula for arbitrary left and right central charges, which
we rederive below, was found in ref. [29].
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The fraction of transmitted energy for waves incident on the interface from the CFT1
side, respectively CFT2 side, was computed in [34] with the result (reexpressed here in
terms of critical tensions)

T1→2 = λmax + λmin
λmax + λ

, T2→1 = λmax − λmin
λmax + λ

. (4.10)

Note that using λmax + λmin = 2/`1 and λmax − λmin = 2/`2, one can check that these
coefficients obey the detailed-balance condition c1T1→2 = c2T2→1. The larger of the two
transmission coefficients reaches the unitarity bound when λ = λmin, and both coefficients
attain their minimum when λ = λmax. Total reflection (from the false-vacuum to the true-
vacuum side) is only possible if `1/`2 → 0, i.e. when the “true-vacuum” CFT1 is almost
entirely depleted of degrees of freedom relative to CFT2.

Using eqs. (4.8) and the Brown-Henneaux formula one can express the central charges
c1,2 in terms of the critical tensions λmin and λmax. As we just saw, λ parametrizes two key
properties of the interface. The triplet (λmin, λmax, λ) of parameters in the gravitational
action defines therefore the basic data of the putative dual ICFT.

4.4 Turning point and horizon

We will now derive the general solution of the equations (4.1)–(4.3), and then relate the
geometric parameters Mj to the data (T, Lj) of the boundary torus shown in figure 2.

A convenient parametrization of the string outside any black horizons is in terms of
the blueshift factor of the worldsheet metric, eq. (4.1),

f(σ) = σ =⇒ rj =
√
σ +Mj` 2

j . (4.11)

In this parametrization dŝ2|W = −σ dt2 +g(σ)dσ2. Let σ+ correspond to the minimal value
of the blueshift, this is either zero or positive. If σ+ = 0 the string enters the horizon. If
on the other hand σ+ > 0 then, as we will confirm in a minute, this is the turning point of
rj(σ) where both x′1 and x′2 diverge.

A static string has (at most) one turning point, and is symmetric under reflection in
the axis that passes through the centers of the boundary arcs,13 as illustrated in figure 5.
It follows that the parametrization is one-to-two. Henceforth we focus on the half string
with positive xj (at least near the conformal boundary). The other half string is obtained
by xj → −xj .

Eqs. (4.11) imply that 2rjr′j = 1. Inserting in eq. (4.2) gives

(x′j)2 = r−2
j

(
g(σ)−

`2j
4σr2

j

)
. (4.12)

Squaring now twice eq. (4.3) and replacing (x′j)2 from the above expressions leads to a
quadratic equation for g(σ), the σσ component of the worldsheet metric. This equation
has a singular solution g = 0, and a non-trivial one

g(σ) = λ2

(2r1r2
`1`2

)2
−
(
r2

1
` 2
1

+ r2
2
` 2
2
− λ2σ

)2
−1

= λ2

Aσ2 + 2Bσ + C
, (4.13)

13In ref. [29] this corresponds to the time-reflection symmetry of the instanton solutions.
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[E1,E2] [H2,H2]

L1 L1L2 L2

Figure 5. Schematic drawing of a low-temperature and a high-temperature solution, corresponding
to pairs of type [E1,E2] and [H2,H2]. The broken line is the axis of reflection symmetry. The
blueshift parameter |σ| decreases monotonically until the string reaches either the turning point or
the black-hole horizon.

where in the second equality we used eqs. (4.11), and

A = (λ2
max − λ2)(λ2 − λ2

min) ;
B = λ2(M1 +M2)− λ2

0(M1 −M2) ; C = −(M1 −M2)2 . (4.14)

We expressed the quadratic polynomial appearing in the denominator of (4.13) in
terms of Mj , λ and the critical tensions, eqs. (4.8), in order to render manifest the fact
that for λ in the allowed range, λmin < λ < λmax, the coefficient A is positive. This is
required for g(σ) to be positive near the boundary where σ → ∞. In addition, AC ≤ 0
which ensures that the two roots of the denominator in eq. (4.13)

σ± = −B ± (B2 −AC)1/2

A
(4.15)

are real, and that the larger root σ+ is non-negative. Inserting eq. (4.13) in eq. (4.12) and
fixing the sign of the square root near the conformal boundary gives after a little algebra

x′1
`1

= − σ (λ2 + λ2
0) +M1 −M2

2(σ +M1` 2
1 )
√
Aσ(σ − σ+)(σ − σ−)

, (4.16a)

x′2
`2

= − σ (λ2 − λ2
0) +M2 −M1

2(σ +M2` 2
2 )
√
Aσ(σ − σ+)(σ − σ−)

. (4.16b)

We may now confirm our earlier claim that if σ+ > 0 then both x′1 ∝ dx1/dr1 and x′2 ∝
dx2/dr2 diverge at this point. Furthermore, since σ + Mj`

2
j = r2

j is positive,14 the x′j are
finite at all σ > σ+. Thus σ+ is the unique turning point of the string, as advertized.

Eqs. (4.11) and (4.16) give the general solution of the string equations for arbitrary
mass parameters M1,M2 of the green and pink slices. These must be determined by

14Except for the measure-zero set of solutions in which the string passes through the center of global AdS3.
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interior regularity, and by the Dirichlet conditions at the conformal boundary. Explicitly,
the boundary conditions for the different slice types of figure 3 read:

Lj = 2
∫ ∞
σ+
dσ x′j for E2, E2′ ; (4.17a)

Lj = nPj + 2
∫ ∞
σ+
dσ x′j for E1, H1 ; (4.17b)

Lj = ∆xj
∣∣
Hor+2

∫ ∞
σ+
dσ x′j for H2 . (4.17c)

The integrals in these equations are the opening arcs, ∆xj , between the two endpoints of
a half string. They can be expressed as complete elliptic integrals of the first, second and
third kind, see appendix B. For the slices E1, H1 where xj is a periodic coordinate, we have
denoted by Pj > 0 its period, and by n the string winding number. Finally for strings
entering the horizon we denote by ∆xj |Hor the opening arc between the two horizon-entry
points in the jth coordinate chart.

Possible phases of the ICFT for given torus parameters T, Lj must be solutions to one
pair of conditions (4.17). Apart from interior regularity, we will also require that the string
does not self-intersect. In principle, two string bits intersecting at an angle 6= π could
join into another string. Such string junctions would be the gravitational counterparts of
interface fusion [65], and allowing them would make the holographic model much richer.15

To keep, however, our discussion simple we will only allow a single type of domain wall in
this work.

The reader can easily convince herself that to avoid string intersections we must have
Pj > Lj and n = 1 in (4.17b), and ∆xj

∣∣
Hor> 0 in (4.17c).

5 Phases: cold, hot & warm

Among the five slice types of figure 3, H2 stands apart because it can only pair with itself.
This is because a horizon is a closed surface, so it cannot end on the domain wall.16 We
will now show that the matching equations actually rule out several other pairs among the
remaining slice types.

One pair that is easy to exclude is [H1,H1], i.e. solutions that describe two black holes
sitting on either side of the wall. Interior regularity would require in this case M1 = M2 =
(2πT )2. But eqs. (4.14) and (4.15) then imply that σ+ = 0, so the wall cannot avoid the
horizon leading to a contradiction.

This gives our first no-go lemma:

Two black holes on either side of a static domain wall are ruled out.

Note by contrast that superheavy domain walls (λ > λmax) inflate and could thus prevent
the black holes from coalescing.17

15Generically the intersection point in one slice will correspond to two points that must be identified in
the other slice; this may impose further conditions.

16Except possibly in the limiting case where the wall is the boundary of space.
17Asymptotically-flat domain walls, which have been studied a lot in the context of Grand Unification [83],

are automatically in this range.
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A second class of pairs one can exclude are the ‘centerless geometries’ [E2,E2], [E2,E2′],
[E2′,E2] and [E2′,E2′]. We use the word ‘centerless’ for geometries that contain neither a
center of global AdS, nor a black hole in its place (see figure 3). If such solutions existed,
all inertial observers would necessarily hit the domain wall since there would be neither a
center where to rest, nor a horizon where to escape.18

The argument excluding such solutions is based on a simple observation: what distin-
guishes the centerless slices E2 and E2′ from those with a AdS center (E1) or a black hole
(H1) is the sign of x′j at the turning point,

sign
(
x′j
∣∣
σ≈σ+

)
=

+ for E2, E2′ ,
− for E1, H1 .

(5.1)

Now from eqs. (4.16) one has

(σ +M1`
2
1 ) x

′
1
`1

+ (σ +M2`
2
2 ) x

′
2
`2

< 0 , (5.2)

so both x′j cannot be simultaneously positive. This holds for all σ, and hence also near the
turning point QED. This is our second no-go lemma:

‘Centerless’ static spacetimes in which all inertial observers would inevitably
hit the domain wall are ruled out.

We can actually exploit this argument further. As is clear from eq. (4.16a), ifM1 > M2
then x′1 is manifestly negative, i.e. the green slice is of type E1 or H1. The pairs [E2′,E1]
and [E2′,E2] for which the above inequality is automatic are thus ruled out. One can also
show that x′2|σ≈σ+ is negative if M2 > 0 > M1. This is obvious from eq. (4.16b) in the
range λ > λ0, and less obvious but also true as can be checked by explicit calculation for
λ < λ0.19 The pairs [E1,E2′] and [E2,E2′] for which the above mass inequality is automatic,
are thus also excluded.

Recall that the energy density of the jth CFT reads 〈Ttt〉 = 1
2`jMj . Ruling out all

pairs of E2′ with E1 or E2 implies therefore that in the ground state the energy density
must be everywhere negative. When one Lj is much smaller than the other, the Casimir
energy scales like E0 ∼ #/Lj . The fact that the coefficient # is negative means that the
Casimir force is attractive, in agreement with general theorems [88, 89]. This is the third
no-go lemma:

A slice of global AdS3 cannot be paired with a horizonless BTZ slice. This
implies that in the ground state of the putative dual ICFT the energy density is
everywhere negative.

18In the double-Wick rotated context of Simidzija and Van Raamsdonk the [E2,E2] geometries give
traversible wormholes [29].

19The tedious algebra is straightforward and not particularly instructive, so we chose not to present it
here. We did it with mathematica but also tested it numerically.
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H2

E1

E2

E2′ 

H1

H2

E1 E2 E2′ H1

hot

cold

warm

excluded

2 centers

Color code

Figure 6. Phases of the domain-wall spacetime. The type of the green slice labels the rows of the
table, and that of the pink slice the columns. In the hot (red) phase the wall enters the black-hole
horizon, while in the warm (yellow) phases it avoids it. The cold (blue) phases have no black hole.
Geometries in which an inertial observer is attracted to two different centers are indicated by a
different shade (light yellow or darker blue).

We have collected for convenience all these conclusions in figure 6. The table shows
the eligible slice pairs, or the allowed topologies of static-domain-wall spacetimes. It also
defines a color code for phase diagrams.

The light yellow phases that feature a wall between the black hole and an AdS restpoint
are the gravitational avatars of the Faraday cage. Such solutions are easier to construct
for larger λ. Domain walls lighter than λ0, in particular, can never shield from a black
hole in the ‘true-vacuum’ side. Indeed, as follows easily from eq. (4.16b), for λ < λ0 and
M1 > 0 > M2, the sign of x′2|σ≈σ+ is positive, so geometries of type [H1,E1] are excluded.

6 Equations of state

The different colors in figure 6 describe different phases of the system, since the corre-
sponding geometries are topologically distinct. They differ in how the wall, the horizon (if
one exists) and inertial observers intersect or avoid each other.

Let us now think thermodynamics. For fixed Lagrangian parameters λ, `j , the canoni-
cal variables that determine the state of the system are the temperature T and the volumes
L1, L2. Because of scale invariance only two dimensionless ratios matter:

τ1 := TL1 , τ2 := TL2 or γ := L1
L2

= τ1
τ2
. (6.1)

The microcanonical variables, the energy density and the entropy of each subsystem, read
(see section 2, and recall that 8πG = 1)

Ej
Lj

= `j
2 Mj and Sj =

rH
j ∆xj |Hor

4G = 2π`j
√
Mj ∆xj |Hor . (6.2)
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These are the natural parameters of the interior geometry. The entropies are scale invariant.
The other key dimensionless variable is the mass ratio, viz. the ratio of energy densities
per degree of freedom in the two CFTs

µ := M2
M1

. (6.3)

When several phases coexist the dominant one is the one with the lowest free energy
F = ∑

j(Ej − TSj). As a sanity check, we rederive F from the renormalized on-shell
gravitational action in appendix A.

The Dirichlet conditions, eqs. (4.17), give for each type of geometry two relations
among the above variables that play the role of equations of state.20 They relate the
natural interior parameters Sj and µ to the variables τj and γ of the boundary torus.
Note that in each phase of the system since for horizonless slices Sj = 0 and for slices
with horizon Mj = (2πT )2. In computing the phase diagram we will have to invert these
equations of state.

6.1 High-T phase

For fixed Lj and very high temperature the black hole grows so large that it eats away a
piece of the domain wall and the AdS rest points. The dominant solution is thus of type
[H2,H2] and regularity fixes the mass parameters in both slices, M1 = M2 = (2πT )2. The
boundary conditions (4.17c) reduce in this case to simple equations for the opening horizon
arcs ∆xj |Hor. Performing explicitly the integrals (see appendix B) gives

L1 −∆x1
∣∣
Hor = − 1

πT
tanh−1

(
`1(λ2 + λ2

0)
2λ

)
, (6.4a)

L2 −∆x2
∣∣
Hor = − 1

πT
tanh−1

(
`2(λ2 − λ2

0)
2λ

)
. (6.4b)

For consistency we must have ∆xj |Hor > 0, which is automatic if λ > λ0. If λ < λ0, on the
other hand, positivity of ∆x2|Hor puts a lower bound on τ2,

τ2 ≥
1
π

tanh−1
(
`2(λ2

0 − λ2)
2λ

)
:= τ∗2 . (6.5)

We see here a first interpretation of the critical tension λ0 encountered in section 4.3. For
walls lighter than λ0 there is a region of parameter space where the hot solution ceases to
exist, even as a metastable phase.

The total energy and entropy in the high-T phase read

E[hot] = 1
2(`1L1M1 + `2L2M2) = 2π2T 2 (`1L1 + `2L2) , (6.6)

S[hot] = 4π2T
(
`1∆x1

∣∣
Hor+`2∆x2

∣∣
Hor

)
= 4π2T 2(`1L1 + `2L2) + 2 log gI , (6.7)

20In homogeneous systems there is a single equation of state. Here we have one equation for each sub-
system.
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where log gI is given by eq. (4.9) and the rightmost expression of the entropy follows from
eqs. (6.4) and a straightforward reshuffling of the arctangent functions. This is a satisfying
result. Indeed, the first term in the right-hand side of (6.7) is the thermal entropy of the
two CFTs (being extensive these entropies cannot depend on the ratio L1/L2), while the
second term is the entropy of the two interfaces on the circle. The Bekenstein-Hawking
formula captures nicely both contributions.

Eqs. (6.4) and (6.7) show that shifting the Lj at fixed T does not change the entropy
if and only if `1 δL1 = −`2 δL2. Moving in particular a defect (for which `1 = `2) without
changing the volume L1 +L2 is an adiabatic process, while moving a more general interface
generates/absorbs entropy by modifying the density of degrees of freedom.

6.2 Low-T phase(s)

Consider next the ground state of the system, at T = 0. The dual geometry belongs to
one of the three horizonless types: the double-center geometry [E1, E1], or the single-center
ones [E1, E2] and [E2, E1] (see figure 6). Here the entropies Sj = 0, and the only relevant
dimensionless variables are the volume and energy-density ratios, γ and µ. Note that they
are both positive since Lj > 0 and Mj < 0 for both j.

The Dirichlet conditions (4.16) for horizonless geometries read√
|M1|L1 = 2π δS1,E1 − f1(µ) ,

√
|M1|L2 = 2π

√
µ
δS2,E1 − f2(µ) , (6.8)

where δSj ,E1 = 1 if the jth slice is of type E1 and δSj ,E1 = 0 otherwise, and

f1(µ) = `1√
A

∫ ∞
s+

ds
s(λ2 + λ2

0)− 1 + µ

(s− ` 2
1 )
√
s(s− s+)(s− s−)

, (6.9a)

f2(µ) = `2√
A

∫ ∞
s+

ds
s(λ2 − λ2

0) + 1− µ
(s− µ` 2

2 )
√
s(s− s+)(s− s−)

, (6.9b)

with

As± = λ2(1 + µ)− λ2
0(1− µ)± 2λ

√
1− µ
`22

+ µ2 − µ
`21

+ µλ2 . (6.10)

The dummy integration variable s is the appropriately rescaled blueshift factor of the string
worldsheet, s = σ/|M1| .

Dividing the two sides of eqs. (6.8) gives γ as a function of µ for each of the three
possible topologies.21 If the ground state of the putative dual quantum-mechanical system
was unique, we should find a single slice-pair type and value of µ for each value of γ.
Numerical plots show that this is indeed the case. Specifically, we found that γ(µ) is a
monotonically-increasing function of µ for any given slice pair, and that it changes continu-
ously from one type of pair to another. We will return to these branch-changing ‘sweeping
transitions’ in section 7. Let us stress that the uniqueness of the cold solution did not have
to be automatic in classical gravity, nor in the dual large-N quantum mechanics.

21The functions fj(µ) are combinations of complete elliptic integrals of the first, second and third kind,
see appendix B. The value µ = 1 gives γ = 1, corresponding to the scale-invariant AdS2 string worldsheet.
The known supersymmetric top-down solutions live at this special point in phase space.

– 18 –



J
H
E
P
0
4
(
2
0
2
1
)
2
6
2

For most of the (`j , λ) parameter space, as γ ranges in (0,∞) the mass ratio µ covers
also the entire range (0,∞). However, if `1 < `2 (strict inequality) and for sufficiently light
domain walls, we found that γ vanishes at some positive µ = µ0(λ, `j). Below this critical
value γ becomes negative signaling that the wall self-intersects and the solution must be
discarded. This leads to a striking phenomenon that we discuss in section 8.

6.3 Warm phases

The last set of solutions of the model are the yellow- or orange-coloured ones in figure 6.
Here the string avoids the horizon, so the slice pair is of type [H1,X] or [X,H1] with X one
of the horizonless types: E1, E2 or E2′.

Assume first that the black hole is on the green side of the wall, so that M1 = (2πT )2.
In terms of µ the Dirichlet conditions (4.17a), (4.17b) read:

2πT∆x1
∣∣
Hor−2πτ1 = f̃1(µ) , 2πτ2 = 2π√

−µ
δS2,E1 − f̃2(µ) , (6.11)

where

f̃1(µ) = `1√
A

∫ ∞
s̃+

ds
s(λ2 + λ2

0) + 1− µ
(s+ ` 2

1 )
√
s(s− s̃+)(s− s̃−)

, (6.12a)

f̃2(µ) = `2√
A

∫ ∞
s̃+

ds
s(λ2 − λ2

0)− 1 + µ

(s+ µ` 2
2 )
√
s(s− s̃+)(s− s̃−)

, (6.12b)

and the roots s̃± = σ±/M1 inside the square root are given by

A s̃± = −λ2(1 + µ) + λ2
0(1− µ)± 2λ

√
1− µ
`22

+ µ2 − µ
`21

+ µλ2 . (6.13)

In the first condition (6.11) we have used the fact that the period of the green slice that
contains the horizon is P1 = ∆x1|Hor.

If the black hole is on the pink side of the wall, the conditions take a similar form in
terms of the inverse mass ratio µ̂ = µ−1 = M1/M2,

2πT∆x2
∣∣
Hor−2πτ2 = f̂2(µ̂) , 2πτ1 = 2π√

−µ̂
δS1,E1 − f̂1(µ̂) , (6.14)

where here

f̂1(µ̂) = `1√
A

∫ ∞
ŝ+

ds
s(λ2 + λ2

0) + µ̂− 1
(s+ µ̂` 2

1 )
√
s(s− ŝ+)(s− ŝ−)

, (6.15a)

f̂2(µ) = `2√
A

∫ ∞
ŝ+

ds
s(λ2 − λ2

0)− µ̂+ 1
(s+ ` 2

2 )
√
s(s− ŝ+)(s− ŝ−)

. (6.15b)

and the roots ŝ± = σ±/M2 inside the square root are given by

A ŝ± = −λ2(µ̂+ 1) + λ2
0(µ̂− 1)± 2λ

√
µ̂2 − µ̂
`22

+ 1− µ̂
`21

+ µ̂λ2 . (6.16)

– 19 –



J
H
E
P
0
4
(
2
0
2
1
)
2
6
2

The functions f̃j and f̂j , as well as the fj of the cold phase, derive from the same
basic formulae (4.16a), (4.16b) and differ only by a few signs. We chose to write them out
separately because these signs are important. Note also that while in cold solutions µ is
always positive, here µ and its inverse µ̂ can have either sign.

All the values of µ and µ̂ do not, however, correspond to admissible solutions. For a
pair of type [H1,X] we must demand (i) that the right-hand sides in (6.11) be positive —
the non-intersection requirement, and (ii) that x′1|σ≈σ+ be negative — the turning point
condition (5.1). Likewise for solutions of type [X, H1] we must demand that the right-hand
sides in (6.14) be positive and that x′2|σ≈σ+ be negative.

The turning-point requirement is easy to implement. In the [H1,X] case, x′1|σ≈σ+ is
negative when the numerator of the integrand in (6.12a), evaluated at s = s̃+, is positive.
Likewise for the [X,H1] pairs, x′2|σ≈σ+ is negative when the numerator of the integrand
in (6.15b), evaluated at s = ŝ+, is positive. After a little algebra these conditions take a
simple form

for [H1,X] µ ∈ (−∞, 1] ; for [X,H1] µ̂ = µ−1 ∈ (−∞, 1] . (6.17)

Recalling that µ = µ̂−1 = M2/M1, we conclude that in all the cases the energy density per
degree of freedom in the horizonless slice is lower than the corresponding density in the
black hole slice.

This agrees with physical intuition: the energy density per degree of freedom in the
cooler CFT is less than the thermal density πT 2/6 — the interfaces did not let the the-
ory thermalize. When µ → 1 or µ̂ → 1, the wall enters the horizon and the energy is
equipartitioned.

This completes our discussion of the equations of state. To summarize, these equations
relate the parameters of the interior geometry (µ, Sj) to those of the conformal boundary
(γ, τj). The relation involves elementary functions in the hot phase, and was reduced to a
single function γ(µ), that can be readily plotted, in the cold phases. Furthermore at any
given point in parameter space the hot and cold solutions, when they exist, are unique. The
excluded regions are τ2 < τ∗2 (λ, `j) for the hot solutions, and µ > µ0(λ, `j) for the cold
solution with µ0 the point where γ = 0.

In warm phases the story is richer since more than one solutions typically coexist at
any given value of (γ, τj). Some solutions have negative specific heat, as we will discuss
later. To find the parameter regions where different solutions exist requires inverting the
relation between (γ, τj) and (µ, Sj). We will do this analytically in some limiting cases,
and numerically to compute the full phase diagram in section 9.

7 Phase transitions

The transitions between different phases are of three kinds:

• Hawking-Page transitions describing the formation of a black hole. These transitions
from the cold to the hot or warm phases of figure 6 are always first order;
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Figure 7. Curves of the blueshift factor gtt as one traverses space along the Z2 symmetry axis.
The color code is the same as in figure 6. The wall is located at the turning point gtt = σ+ where
the curve is discontinuous. The grey arrows indicate possible transitions. The blackened parts of
the curves are regions behind the horizon.

• Warm-to-hot transitions during which part of the wall is captured by the horizon.
We will show that these transitions are also first-order;

• Sweeping transitions where the wall sweeps away a center of global AdS, i.e. a rest
point for inertial observers. These are continuous transitions between the one- and
two-center phases of figure 6.

It is instructive to picture these transitions by plotting the metric factor gtt while
traversing space along the axis of reflection symmetry. The curve changes qualitatively as
shown in figure 7, illustrating the topological nature of the transitions on the gravity side.

Before embarking in numerical plots, we will first do the following things: (i) Comment
on the ICFT interpretation of these transitions; (ii) Compute the sweeping transitions
analytically; and (iii) Prove that the warm-to-hot transitions are first order, i.e. that one
cannot lower the wall to the horizon continuously by varying the boundary data.

7.1 ICFT interpretation

When a holographic dual exists, Witten has argued that the appearance of a black hole
at the Hawking-Page (HP) transition signals deconfinement in the gauge theory [90]. As-
suming this interpretation22 leads to the conclusion that in warm phases a confined theory
coexists with a deconfined one. We will see below that such coexistence is easier when the
confined theory is CFT2, i.e. the theory with the larger central charge.23 This is natural

22There is an extensive literature on the subject including [91, 92], studies specific to two dimensions [93,
94], and recent discussions in relation with the superconformal index in N = 4 super Yang Mills [95–98].
For an introductory review see [99].

23Even though for homogeneous 2-dimensional CFTs the critical temperature, τHP = 1, does not depend
on the central charge by virtue of modular invariance.
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from the gravitational perspective. Solutions of type [H1, X] are more likely than solutions
of type [X, H1] because a black hole forms more readily on the ‘true-vacuum’ side of the
wall. We will actually provide some evidence later that if c2 > 3c1 there are no equilibrium
phases at all in which CFT2 is deconfined while CFT1 stays confined.

The question that jumps to one’s mind is what happens for thick walls, where one
expects a warm-to-hot crossover rather than a sharp transition. One possibility is that
the coexistence of confined and deconfined phases is impossible in microscopic holographic
models. Alternatively, an appropriately defined Polyakov loop [90] could provide a sharp
order parameter for this transition.

For sweeping transitions the puzzle is the other way around. Here a sharp order
parameter exists in classical gravity — it is the number of rest points for inertial observers.
This can be defined both for thin- and for thick-wall geometriess. The interpretation on
the field theory side is however unclear. The transitions could be related to properties of
the low-lying spectrum at infinite N , or to the entanglement structure of the ground state.

We leave these questions open for future work.

7.2 Sweeping transitions

Sweeping transitions are continuous transitions that happen at fixed values of the mass
ratio µ. We will prove these statements here.

Assume for now continuity, and let the jth slice go from type E1 to type E2. The
transition occurs when the string turning point and the center of the jth AdS slice coincide,
i.e. when

rj(σ+) =
√
σ+ +Mj`2j = 0 . (7.1)

Clearly this has a solution only if Mj < 0. Inserting in (7.1) the expressions (4.15)–(4.14)
for σ+ gives two equations for the critical values of µ with the following solutions

µ∗1 = 1− ` 2
2 λ

2

`22/`
2
1

and µ∗2 = `21/`
2
2

1− ` 2
1 λ

2 . (7.2)

In the low-T phases both Mj are negative and µ is positive. Furthermore, a little
algebra shows that for all λ ∈ (λmin, λmax) the following is true

x′1
∣∣
σ≈σ+

< 0 at µ� 1 and x′2
∣∣
σ≈σ+

< 0 at µ� 1 . (7.3)

This means that for µ� 1 the green slice is of type E1, and for µ� 1 the pink slice is of
type E1. A sweeping transition can occur if the critical mass ratios (7.2) are in the allowed
range. We distinguish three regimes of λ:

• Heavy (λ > 1/`1): none of the µ∗j is positive, so the solution is of type [E1,E1] for all
µ, i.e. cold solutions are always double-center ;

• Intermediate (1/`1 > λ > 1/`2): only µ∗2 is positive. If this is inside the range of
non-intersecting walls, the solution goes from [E1,E2] at large µ, to [E1,E1] at small
µ. Otherwise the geometry is always of the single-center type [E1,E2] ;
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• Light (λ < 1/`2): both µ∗1 and µ∗2 are positive, so there is the possibility of two
sweeping transitions: from [E2,E1] at small µ to [E1,E2] at large µ passing through
the double-center type [E1,E1] . Note that since λmin = 1/`1 − 1/`2, this range of λ
only exists if `2 < 2`1, i.e. when CFT2 has no more than twice the number of degrees
of freedom of the more depleted CFT1.

We can now confirm that sweeping transitions are continuous, not only in terms of the mass
ratio µ but also in terms of the ratio of volumes γ. To this end we expand the relations (6.8)
around the above critical points and show that the Lj vary indeed continuously across the
transition. The calculations can be found in appendix C .

For the warm phases we proceed along similar lines. One of the two Mj is now equal
to (2πT )2 > 0, so sweeping transitions may only occur for negative µ. Consider first warm
solutions of type [H1,X] with the black hole in the ‘true vacuum’ side. A little calculation
shows that x′2|σ≈σ+ is negative, i.e. X=E1, if and only if

λ >
1
`1

and µ < µ∗2 < 0 . (7.4)

Recall that when X=E1 some inertial observers can be shielded from the black hole by taking
refuge at the restpoint of the pink slice. We see that this is only possible for heavy walls
(λ > 1/`1) and for µ < µ∗2. A sweeping transition [H1,E1] → [H1,E2] takes place at µ = µ∗2.

Consider finally a black hole in the ‘false vacuum’ side, namely warm solutions of
type [X,H1]. Here x′1|σ≈σ+ is negative, i.e. X has a rest point, if and only if the following
conditions are satisfied

λ >
1
`2

and µ̂ := µ−1 < (µ∗1)−1 < 0 . (7.5)

Shielding from the black hole looks here easier, both heavy and intermediate-tension walls
can do it. In reality, however, we have found that solutions with the black hole in the ‘false
vacuum’ side are rare, and that the above inequality pushes µ̂ outside the admissible range.

The general trend emerging from the analysis is that the heavier the wall the more
likely are the two-center geometries. A suggestive calculation actually shows that

∂σ+
∂λ

∣∣∣
Mj fixed

is

 positive for two-center solutions
negative for single-center solutions

(7.6)

where the word ‘center’ here includes both an AdS restpoint and a black hole. At fixed
energy densities a single center is therefore pulled closer to a heavier wall, while two centers
are instead pushed away. It might be interesting to also compute ∂σ+/∂λ and ∂V/∂λ at
Lj fixed, where V is the regularized volume of the interior space. In the special case of the
vacuum solution with an AdS2 wall, the volume (and the associated complexity [100]) can
be seen to grow with the tension λ.

7.3 Warm-to-hot transitions

In warm-to-hot transitions the thin domain wall enters the black-hole horizon. One may
have expected this to happen continuously, i.e. to be able to lower the wall to the horizon
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smoothly, by slowly varying the boundary data Lj , T . We will now show that, if the tension
λ is fixed, the transition is actually always first order.

Note first that in warm solutions the slice that contains the black hole hasMj = (2πT )2.
If the string turning point approaches continuously the horizon, then σ+ → 0. From
eqs. (4.14), (4.15) we see that this can happen if and only if (M1−M2)→ 0, which implies
in passing that the solution must necessarily be of type [H1,E2′] or [E2′,H1]. Expanding
around this putative point where the wall touches the horizon we set

M1 −M2
M1 +M2

:= δ with |δ| � 1 =⇒ σ+ ≈
(2πT

λ

)2
δ2 . (7.7)

Recalling that the horizonless slice has the smaller Mj we see that for positive δ the black
hole must be in the green slice and µ = 1− 2δ+O(δ2), while for negative δ the black hole
is in the pink slice and µ̂ = 1 + 2δ +O(δ2).

The second option can be immediately ruled out since it is impossible to satisfy the
boundary conditions (6.14). Indeed, f̂1(µ̂ ≈ 1) is manifetsly positive, as is clear from
eq. (6.15a), and we have assumed that S1 is of type E2′. Thus the second condition (6.14)
cannot be obeyed. By the same reasonning we see that for δ positive, and since now S2 is
of type E2′, we need that f̃2(µ ≈ 1) be negative. As is clear from the expression (6.12b)
this implies that λ < λ0.

The upshot of the discussion is that a warm solution arbitrarily close to the hot solution
may exist only if λ < λ0 and if the black hole is on the true-vacuum side.

It is easy to see that under these conditions the two branches of solution indeed meet
at µ = 1, ∆x2|Hor = 0 and hence from (6.4b)

τ2 = 1
π

tanh−1
(
`2(λ2

0 − λ2)
2λ

)
:= τ∗2 . (7.8)

Recall from section 6.1 that this is the limiting value for the existence of the hot solution
— the solution ceases to exist at τ2 < τ∗2 . The nearby warm solution could in principle
take over in this forbidden range, provided that τ2(δ) decreases as δ moves away from zero.
It actually turns out that τ2(δ) initially increases for small δ, so this last possibility for a
continuous warm-to-hot transition is also ruled out.

To see why this is so, expand (6.11) and (6.12b) around µ = 1,

s̃+ = δ2

λ2 +O(δ3) , s̃− = −4λ2

A

(
1− δ

(
1 + λ2

0
λ2

))
+O(δ2) ,

and shift the integration variable s := y + s̃+ so that (6.12b) reads

2π τ2(δ) = `2√
A

∫ ∞
0

dy

[
y(λ2

0 − λ2) + 2δ
(y + µ`22)

√
y(y + s̃+)(y − s̃−)

+O(δ2)
]
. (7.9)

We neglected in the integrand all contributions of O(δ2) except for the s̃+ in the denom-
inator that regulates the logarithmic divergence of the O(δ log δ) correction. Now use the
inequalities

y(λ2
0 − λ2) + 2δ√

(y + s̃+)(y − s̃−)
>

y(λ2
0 − λ2) + 2δ√

(y + δ2/λ2)(y + 4λ2/A)
>

√
y(λ2

0 − λ2)√
(y + 4λ2/A)

,
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Figure 8. The function τ2(µ) in the [H1,E2] and [H1,E2′] branches of solutions, for 2`2 = 3`1 and
λ = 3/5`2 < λ0 =

√
5/2`2 . The red line indicates the bound τ∗2 below which the hot solution ceases

to exist.

where the second one is equivalent to 2δ > (λ2
0/λ

2 − 1)δ2, which is true for small enough
δ. Plugging in (7.9) shows that τ2(δ) > τ2(0) at the leading order in δ, proving our claim.

A typical τ2(µ) in the [H1,E2] and [H1,E2′] branch of solutions, and for λ < λ0,
is plotted in figure 8. The function grows initially as µ moves away from 1, reaches a
maximum value and then turns around and goes to zero as µ→ −∞. The red line indicates
the limiting value τ∗2 below which there is no hot solution. For τ2 slightly above τ∗2 we see
that there are three coexisting black holes, the hot and two warm ones. For τ2 < τ∗2 , on
the other hand, only one warm solution survives, but it describes a wall at a finite distance
from the horizon. Whether this is the dominant solution or not, the transition is therefore
necessarily first order.

8 Exotic fusion and bubbles

Before proceeding to the phase diagram, we pause here to discuss the peculiar phenomenon
announced earlier, in section 6.2. This arises in the limits γ = L1/L2 → 0 or γ →∞, with
L1 + L2 and T kept fixed. In these limits the conformal boundary of one slice shrinks to
a point.

Consider for definiteness the limit L1 → 0. In the language of the dual field theory the
interface and anti-interface fuse in this limit into a defect of CFT2. The naive expectation,
based on free-field calculations [65, 101, 102], is that this is the trivial (or identity) defect.
Accordingly, the green interior slice should recede to the conformal boundary, leaving as
the only remnant a (divergent) Casimir energy.

– 25 –



J
H
E
P
0
4
(
2
0
2
1
)
2
6
2
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L1 ≈ 0
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L2 = 0

Figure 9. Left: a bubble of true vacuum that survives inside the false vacuum despite the fact that
its conformal boundary shrinks to a point. Right: a bubble of false vacuum with λ = λ0 inscribed
between the boundary and the horizon of a black hole.

We have found that this expectation is not always borne out as we will now explain.
Suppose first that the surviving CFT2 is in its ground state, and that the result of

the interface-antiinterface fusion is the expected trivial defect. The geometry should in
this case approach global AdS3 of radius `2, with M2 tending to −(2π/L2)2, see section 2.
Furthermore, σ+ should go to infinity in order for the green slice to shrink towards the
ultraviolet region. As seen from eqs. (4.15), (4.14) this requires M1 → −∞, so that µ
should vanish together with γ. This is indeed what happens in much of the (λ, `1, `2)
parameter space. One finds µ ∼ γ2 → 0, a scaling compatible with the expected Casimir
energy ∼ #/L1.

Nevertheless, sometimes γ vanishes at finite µ0. In such cases, as µ → µ0 the green
slice does not disappear even though its conformal boundary has shrunk to a point. This is
illustrated by the left figure 9, which shows a static bubble of ‘true vacuum’ suspended from
a point on the boundary of the ‘false vacuum’.24 To convince ourselves that the phenomenon
is real, we give an analytic proof in appendix D of the existence of such suspended bubbles
in at least one region of parameters (`2 > `1 and λ ≈ λmin > 0). Furthermore, since
the vacuum solution for a given γ is unique, there is no other competing solution. In the
example of appendix D, in particular, γ is finite and negative at µ = 0.

In the language of field theory this is a striking phenomenon. It implies that interface
and anti-interface do not annihilate, but fuse into an exotic defect generating spontaneously
a new scale in the process. This is the blueshift at the tip of the bubble, σ+(µ0, L2), or
better the corresponding frequency scale r2(σ+) in the D(efect)CFT.

The phenomenon is not symmetric under the exchange 1 ↔ 2. Static bubbles of the
false vacuum (pink) spacetime inside the true (green) vacuum do not seem to exist. We

24These are static solutions, not to be confused with ‘bags of gold’ which are cosmologies glued onto the
backside of a Schwarzschild-AdS spacetime, see e.g. [30, 103]. The phenomenon is reminiscent of spacetimes
that realize ‘wedge’ or codimension-2 holography, like those in refs. [104–106].
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Figure 10. Plots of the function τ2(µ) in the [H1,E2] or [H1,E2′] branch of solutions for `2/`1 = 1.5.
The critical tension is λ0`2 ≈ 1.12. The curve on the left is for λ0`2 = 1.05, and the curve on the
right for λ0`2 = 1.35.

proved this analytically for λ < λ0, and numerically for all other values of the tension. We
have also found that the suspended green bubble can be of type E1, i.e. have a center. The
redshift factor gtt inside the bubble can even be lower than in the surrounding space, so
that the bubble hosts the excitations of lowest energy. We did not show this analytically,
but the numerical evidence is compeling.

Do suspended bubbles also exist when the surrounding spacetime contains a black
hole ? The answer is affirmative as one can show semi-analytically by focussing on the
region λ ≈ λ0. We have seen in the previous section that near this critical tension there
exist warm solutions of type [H1,E2′] with the wall arbitrarily close the horizon. Let us
consider the function τ2(µ, λ) given in this branch of solutions by eqs. (6.12b) and (6.11)
(with S2 6=E1). This is a continuous function in both arguments, so as λ increases past λ0,
τ2(1) goes from positive to negative with the overall shape of the function varying smoothly.
This is illustrated in figure 10, where we plot τ2(µ) for λ slightly below and slightly above
λ0. It should be clear from these plots that for λ > λ0 (the plot on the right) τ2 vanishes
at a finite µ ≈ 1. This is a warm bubble solution, as advertized.

We have found more generally that warm bubbles can be also of type E1, thus acting as
a suspended Faraday cage that protects inertial observers from falling towards the horizon
of the black hole. Contrary, however, to what happened for the ground state, warm bubble
solutions are not unique. There is always a competing solution at µ → −∞, and it is the
dominant one by virtue of its divergent negative Casimir energy. A stability analysis would
show if warm bubble solutions can be metastable and long-lived, but this is beyond our
present scope.

As for warm bubbles of type [X, H1], that is with the black hole in the false-vacuum
slice, these also exist but only if `2 < 3`1. Indeed, as we will see in a moment, when
`2 > 3`1 the wall cannot avoid a horizon located on the false-vacuum side.

Finally simple inspection of figure 10 shows that by varying the tension, the bubble
solutions for λ > λ0 go over smoothly to the hot solution at λ = λ0. At this critical tension
the bubble is inscribed between the horizon and the conformal boundary, as in figure 9.
This gives another meaning to λ0: only walls with this tension may touch the horizon
without falling inside.
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9 Phase diagrams

In this last section of the paper we present numerical plots of the phase diagram of the
model. We work in the canonical ensemble, so the variables are the temperature and
volumes, or by scale invariance two of the dimensionless ratios defined in (6.1). We choose
these to be τ = τ1 + τ2 = T (L1 + L2) and γ = L1/L2. The color code is as in figure 6.

We plot the phase diagram for different values of the action parameters `1, `2, λ. Since
our analysis is classical in gravity, Newton’s constant G plays no role. Only two dimen-
sionless ratios matter,25 for instance

b := `2
`1

= c2
c1
≥ 1 and κ := λ`2 ∈ (b− 1, b+ 1) . (9.1)

The value b = 1 corresponds to a defect CFT, while b � 1 is the opposite “near void”
limit in which the degrees of freedom of CFT2 ovewhelm those of CFT1. The true vacuum
approaches in this limit the infinite-radius AdS, and/or the false vacuum approaches flat
spacetime. The critical tension λ0 corresponds to κ0 =

√
b2 − 1.

To plot the phase diagrams we solved numerically for µ in terms of the boundary data
(γ, τ) and for all types of slice pair, and compared their free energies when solutions of
different type coexist. As explained in the introduction, although the interpretation is
different, our diagrams are related to the ones of Simidzija and Van Raamsdonk [29] by
double-Wick rotation (special to 2+1 dimensions). Since time in this reference is non-
compact, only the boundaries of our phase diagrams, at γ = 0 or γ =∞, can be compared.
The roles of thermal AdS and BTZ are also exchanged

9.1 Defect CFT

Consider first b = 1. By symmetry, we may restrict in this case to γ ≥ 1. Figure 11
presents the phase diagram in the (γ, τ) plane for a very light (κ = 0.03) and a very heavy
(κ = 1.8) domain wall. For the light, nearly tensionless, wall the phase diagram approaches
that of a homogeneous CFT. The low-T solution is single-center, and the Hawking-Page
(HP) transition occurs at τ ≈ 1. Light domain walls follow closely geodesic curves, and
avoid the horizon in a large region of parameter space.26

Comparing the left with the right figure 11 shows that heavy walls facilitate the for-
mation of the black hole and have a harder time staying outside. Indeed, in the right figure
the HP transition occurs at lower T , and the warm phase recedes to L1 � L2. Further-
more, both the cold and the warm solutions have now an additional AdS restpoint. This
confirms the intuition that heavier walls repel probe masses more strongly, and can shield
them from falling inside the black hole.

The transition that sweeps away this AdS restpoint is shown explicitly in the phase
diagrams of figure 12. Recall from the analysis of section 7.2 that in the low-T phase
such transitions happen for λ < 1/`1 =⇒ κ < b = 1. Furthermore, the transitions take
place at the critical mass ratios µ∗j , given by eq. (7.2). Since in cold solutions the relation
between µ and γ is one-to-one, the dark-light blue critical lines are lines of constant γ.
These statements are in perfect agreement with the findings of figure 12.

25Dimensionless in gravity, not in the dual ICFT.
26One can compute this phase diagram analytically by expanding in powers of λ.
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Figure 11. Phase diagrams of a very light (left) and a very heavy (right) domain wall between
degenerate vacua (b = 1). The horizontal and vertical axes are γ and τ . The broken line in the left
diagram separates solutions of type [H1, E2′] and [H1,E2] that only differ in the sign of the energy
of the horizonless slice. The color code is as in figure 6.
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Figure 12. Phase diagrams for intermediate-tension walls exhibiting sweeping transitions. On the
left a restpoint of the vacuum solution is swept away as γ increases beyond a critical value. On the
right the same happens in the warm solution but for decreasing γ. In these diagrams, the one-center
warm solution is always [H1,E2].

Warm solutions of type [H1,E1], respectively [E1,H1], exist for tensions λ > 1/`1 =⇒
κ > b, respectively λ > 1/`2 =⇒ κ > 1. In the case of a defect these two ranges coincide.
The stable black hole forms in the larger of the two slices, i.e. for γ > 1 in the j = 1
slice. The sweeping transition occurs at the critical mass ratio µ∗2 = (b2 − κ2)−1, which
through eqs. (6.11) and (6.12a) corresponds to a fixed value of τ2. Since τ = τ2(1 + γ), the
critical orange-yellow line is a straight line in the (γ, τ) plane, in accordance again with
the findings of figure 12.
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A noteworthy fact is the rapidity of these transitions as function of κ. For κ a little
below or above the critical value the single-center cold, respectively warm phases almost
disappear. Note also the cold-to-warm transitions are always near τ ≈ 1. This is the
critical value for Hawking-Page transitions in the homogeneous case, as expected at large
γ when the j = 1 slice covers most of space.

The critical curves for the cold-to-hot and warm-to-hot transitions also look linear
in the above figures, but this is an illusion. Since the transitions are first order we must
compare free energies. Equating for example the hot and cold free energies gives after some
rearrangements (and with `1 = `2 := `)

2π2τ + 2
`

log gI = 1
2τ1
|M1|L2

1

(
1 + µ

γ

)
. (9.2)

Now |M1|L2
1 can be expressed in terms of µ through eq. (6.8), (6.9a), and µ in the cold

phase is a function of γ. Furthermore log gI/` = 4πtanh−1(κ/2) is constant, see eq. (4.9),
and τ1 = τ/(1 + γ−1). Thus (9.2) can be written as a relation τ = τhc(γ), and we have
verified numerically that τhc is not a linear function of γ.

9.2 Non-degenerate vacua

Figure 13 presents the phase diagram in the case of non-degenerate AdS vacua, b = `2/`1 =
c2/c1 = 3, and for different values of the tension in the allowed range, κ ∈ (2, 4). Since
there is no γ → γ−1 symmetry, γ here varies between 0 to ∞. To avoid squeezing the
γ ∈ (0, 1) region, we use for horizontal axis α := γ−γ−1. This is almost linear in the larger
of γ or γ−1, when either of these is large, but the region γ ≈ 1 is distorted compared to
figures 11 and 12 of the previous section.

The most notable new feature in these phase diagrams is the absence of a warm phase
in the region γ < 1. This shows that it is impossible to keep the wall outside the black hole
when the latter forms on the false-vacuum side. From the perspective of the dual ICFT, see
section 7.1, the absence of [X,H1]-type solutions means that no interfaces, however heavy,
can keep CFT1 in the confined phase if CFT2 (the theory with larger central charge) has
already deconfined.

We suspect that this is a feature of the thin-brane model which does not allow interfaces
to be perfectly-reflecting [34].

Warm solutions with the horizon in the pink slice appear to altogether disappear above
the critical ratio of central charges bc = 3.27 The boundary conditions corresponding to
topologies of type [X,H1] are given by eqs. (6.14). We plotted the right-hand side of the
second condition (6.14) for different values of λ and µ in their allowed range, and found no
solution with positive τ1 for b > 3. Analytic evidence for the existence of a strict bc = 3
bound can be found by considering the limit of a maximally isolating wall, λ ≈ λmax, and

27This critical value was also noticed in ref. [29], who also note that multiple branes can evade the bound
confirming the intuition that it is a feaure specific to thin branes. As a matter of fact, although [X,H1]
solutions do exist for b < 3 as we show below, they have very large γ, outside the range of our numerical
plots, unless b is very close to 1.
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Figure 13. Phase diagrams for b = 3, and values of the tension that increase from the top-left
figure clockwise. The horizontal and vertical axes are α := γ − γ−1 and τ . The broken red curve is
the bound τ = τ∗2 (1 + γ) below which the hot solution does not exist (there is no such bound in the
lower panels in which the tension λ > λ0). Note the absence of a warm phase in the left (γ < 1)
region of the diagrams. For the heaviest wall all non-hot solutions are double-center.

of a shrinking green slice µ̂ → −∞. In this limit, the right-hand side of (6.14) can be
computed in closed form with the result

τ1(µ̂) = π√
−µ̂

(
2−

√
1 + `2

`1

)
+ subleading . (9.3)

We took X=E1 as dictated by the analysis of sweeping transitions, see section 7.2 and in
particular eq. (7.5). This limiting τ1(µ̂) is negative for b > 3, and positive for b < 3 where
warm [E1,H1] solutions do exist, as claimed.

An interesting corollary is that end-of-the-world branes cannot avoid the horizon of a
black hole, since the near-void limit, `1 � `2, is in the range that has no [X,H1] solutions.

9.3 Unstable black holes

The phase diagrams in figures 11, 12, 13 show the solution with the lowest free energy in var-
ious regions of parameter space. Typically, this dominant phase coexists with solutions that
describe unstable or metastable black-holes which are ubiquitous in the thin-wall model.28

Figure 14 shows the number of black hole solutions in the degenerate case, b = 1, for
small, intermediate and large wall tension, and in different regions of the (τ, γ) parameter

28For a similar discussion of deformed JT gravity see ref. [66]. Note that in the absence of a domain
wall, the only static black hole solution of pure Einstein gravity in 2+1 dimensions is the non-spinning BTZ
black hole.
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Figure 14. The number of independent black hole solutions in the (γ, τ) parameter space for b = 1,
and three values of the tension (κ = 0.2; 1.1; and 1.8). The darker the shade the larger the number
of black holes.

space. The axes are the same as in figures 11 and 12 but the range of γ is halved. At
sufficiently high temperature the growing horizon captures the wall, and the only solution is
the hot solution. We see however that in a large region of intermediate temperatures the hot
solution coexists with two warm solutions. Finally at very low temperature the hot solution
coexists with four other black-hole solutions, two on either side of the wall. The dominant
phase in this region is vacuum, so the black holes play no role in the canonical ensemble.

The hot solution exists almost everywhere, except when λ < λ0 and τ = τ2(1 +
γ) < τ∗2 (1 + γ) with τ∗2 given by eq. (6.5). It has positive specific heat even when it
is not the dominant phase. For warm black holes, on the other hand, the specific heat
can have either sign. One can see this semi-analytically by focussing once again on our
favourite near-critical region λ ≈ λ0. Simple inspection of figure 8 shows that in some
range τ∗2 < τ2 < τmax

2 the hot solution coexists with two nearby warm solutions. At the
maximum τmax

2 , where dτ2/dµ = 0, the warm solutions merge and then disappear. Since
the black hole is in the j = 1 slice, M1 = (2πT )2 and their energy reads

E[warm] = 1
2(`1M1L1 + `2M2L2) = 2π2T 2L2

(
`1γ + `2µ

)
. (9.4)

Taking a derivative with respect to T with L1, L2 kept fixed we obtain

d

dT
E[warm] = 2

T
E[warm] + 2π2T 2 L 2

2 `2
dµ

dτ2
. (9.5)

Near τmax
2 the dominant contribution to this expression comes from the derivative dµ/dτ2

which jumps from −∞ to +∞. It follows that the warm black hole with the higher mass
has negative specific heat, and should decay to its companion black hole either classically
or in the quantum theory.29

29We have verified numerically that the black holes with negative specific heat are never the ones with
lowest free energy, a conclusion similar to the one reached in deformed JT gravity in ref. [66].
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It would be very interesting to calculate this decay process, but we leave this for future
work.

One last comment concerns transitions from the double-center vacuum geometries, of
type [E1,E1], to warm solutions where the wall avoids the horizon. One can ask what side
of the wall does the black hole choose. A natural guess is that it forms in the deepest of the
two AdS wells. The relative depth is the ratio of blueshift factors at the two rest points,

R :=
√
gtt|r1=0
gtt|r2=0

= `2

`1
√
µ(γ)

. (9.6)

One expects the black hole to form in the j = 1 (green) slice if R < 1 and in the j = 2
(red) slice if R > 1. Our numerical plots confirmed in all cases this expectation.

10 Outlook

One urgent question, already noted in the introduction, is how much of this analysis will
survive in top-down interface models, where gravitating domain walls are typically thick.
The order parameters of the Hawking-Page and sweeping transitions — the area of the
horizon and the number of rest points for inertial observers, do not depend on the assump-
tion of a thin wall and could go through. The warm-to-hot transition, on the other hand,
may be replaced by a crossover, since there is no sharp criterion to decide if a thick wall
enters or avoids the horizon. As discussed, however, in section 7.1 a sharp order parameter,
such as a Polyakov loop, may be suggested by the field theory side of the correspondence.

One other question left open in the present work is the entanglement structure of
the equilibrium states. Indeed, a guiding thread of our paper were the intersections of the
domain wall with the black hole horizon and the trajectories of inertial observers. The Ryu-
Takayanagi (RT) surfaces [58, 59] are another natural class of curves whose intersection
with the wall should be studied along lines similar to refs. [21, 22] for BCFT.

Simple extensions of the minimal model, such as the addition of a Chern-Simons field
(see e.g. [107]) might also be worth exploring.

Last but not least, the simplicity of the model and its rich spectrum of black holes
make it a promising ground where to try to shed some more light on the recent exciting
developments related to black hole evaporation, islands and the Page curve [12–14]. We
hope to return to some of these questions in the near future.
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A Renormalized on-shell action

The Euclidean action of the holographic-interface model, in units 8πG = 1, is the sum of
bulk, brane, boundary and corner contributions, see e.g. [108]

Igr = −1
2

∫
S1
d3x
√
g1

(
R1 + 2

`21

)
− 1

2

∫
S2
d3x
√
g2

(
R2 + 2

`22

)
+ λ

∫
W
d2s
√
ĝw

+
∫
∂S1

d2s
√
ĝ1K1 +

∫
∂S2

d2s
√
ĝ2K2 +

∫
C

(θ − π)
√
ĝc + c.t. (A.1)

where the counterterms, abbreviated above by c.t., read [109]

c.t. = 1
`1

∫
B1

√
ĝ1 + 1

`2

∫
B2

√
ĝ2 −

∫
B1∩B2

(θ1 + θ2)
√
ĝc . (A.2)

Here Sj are the spacetime slices whose boundary is the sum of the cutoff surface Bj and
of the string worldsheet W, i.e. ∂Sj =Bj ∪ W . The induced metrics are denoted by
hats. The Kj are traces of the extrinsic curvatures on each slice computed with the
inward-pointing normal vector. Finally, in addition to the standard Gibbons-Hawking-York
boundary terms, one must add the Hayward term [108, 110] at corners of ∂Sj denoted by
C.30 There is at least one such corner at the cutoff surface, B1∩B2, where θ− π is the sum
of the angles θj defined in figure 4.

Let us break the action into an interior and a conformal boundary term, Igr = Iint +IB,
with the former including contributions from the worldsheet W. Using the field equations
Rj = −6/`2j and K1|W +K2|W = −2λ, and the volume elements that follow from eqs. (3.1)
and (4.1), (4.2),

√
gj d

3x = `jridrjdxjdt and
√
ĝw d

2s =
√
fg dσdt ,

we can write the interior on-shell action as follows :

Iint = 2
`1

∫
Ω1
r1 dr1dx1dt+ 2

`2

∫
Ω2
r2 dr2dx2dt− λ

∫
W

√
fg dσdt . (A.3)

We have been careful to distinguish the spacetime slice Sj from the coordinate chart Ωj ,
because we will now use Stoke’s theorem treating Ωj as part of flat Euclidean space,

∑
j=1,2

2
`j

∫
Ωj
rjdrjdxjdt =

∑
j=1,2

1
`j

∮
∂Ωj

r2
j (r̂j · dn̂j)dt , (A.4)

with dn̂jdt the surface element on the boundary ∂Ωj . Crucially, the boundary of Ωj may in-
clude a horizon which is a regular interior submanifold of the Euclidean spacetime and is not
therefore part of ∂Sj . In particular, there is no Gibbons-Hawking-York contribution there.

The boundary integral in eq. (A.4) receives contributions from the three pieces of ∂Ω1,2 :
the cutoff surface B1∪B2, the horizon if there is one, and the worldsheet W. Conveniently,
this last term precisely cancels the third term in (A.3) by virtue of the Israel-Lanczos
equation (4.3). Thus, after all the dust has settled, the action can be written as the sum

30These play no role here, but they can be important in the case of string junctions.
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of terms evaluated either at the black-hole horizon or at the cutoff. After integrating over
periodic time the interior part of the action, eq. (A.3) , reads

Iint = 1
`1T

[
r2

1 ∆x1
]B1

Hor
+ 1
`2T

[
r2

2 ∆x2
]B2

Hor
(A.5)

where we employ the shorthand notation [X]ba = X|b −X|a , and X|a for X evaluated at
a . If the slice Sj does not contain a horizon the corresponding contribution is absent.

We now turn to the conformal-boundary contributions from the lower line in the ac-
tion (A.1). For a fixed-rj surface, the inward-pointing unit normal expressed as a 1-form
is nj = −drj/

√
r2
j −Mj`2j . One finds after a little algebra (we here drop the index j for

simplicity)

Kxx = Ktt = −r
`

√
r2 −M`2 =⇒

√
ĝ K = −1

`
(2r2 −M`2) . (A.6)

Combining the Gibbons-Hawking-York terms and the counterterms gives

IB = 1
`1T

(
r1

√
r2

1 −M1`21 − 2r2
1 +M1`

2
1

)
∆x1

∣∣∣
B1

+(1→ 2) . (A.7)

Expanding for large cutoff radius, rj |Bj → ∞, and dropping the terms that vanish in the
limit we obtain

IB = 1
`1T

(
−r2

1 + 1
2M1`

2
1

)
∆x1

∣∣∣
B1

+(1→ 2) . (A.8)

Upon adding up (A.5) and (A.8) the leading divergent term cancels, giving the following
result for the renormalized on-shell action :

Igr = M1`1
2T

(
L1 − 2∆x1

∣∣
Hor
)

+ M2`2
2T

(
L2 − 2∆x2

∣∣
Hor
)
. (A.9)

We used here the fact that ∆xj |Bj = Lj , and that r2
j = Mj`

2
j at the horizon when one

exists. We also used implicitly the fact that for smooth strings the Hayward term receives
no contribution from the interior and is removed by the counterterm at the boundary.

As a check of this on-shell action let us compute the entropy. Using our formula for
the internal energy 〈E〉 = 1

2(M1`1L1 +M2`2L2), see section 2, and Igr = 〈E〉/T −S we find

S = 1
T

(
M1`1∆x1

∣∣
Hor+M2`2∆x2

∣∣
Hor

)
= 4π2T

(
`1∆x1

∣∣
Hor+`2∆x2

∣∣
Hor

)
= A(horizon)

4G . (A.10)

In the lower line we used the fact that Mj = (2πT )2 and rH
j = 2πT`j for slices with

horizon, plus our choice of units 8πG = 1. The calculation thus reproduces correctly the
Bekenstein-Hawking entropy.
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B Opening arcs as elliptic integrals

In this appendix we express the opening arcs, eqs. (4.17), in terms of complete elliptic
integrals of the first, second and third kind,

K(ν) =
∫ 1

0

dy√
(1− y2)(1− νy2)

(B.1)

E(ν) =
∫ 1

0

√
1− νy2 dy√

1− y2 . (B.2)

Π(u, ν) =
∫ 1

0

dy

(1− uy2)
√

(1− y2)(1− νy2)
. (B.3)

Consider the boundary conditions (4.17a). The other conditions (4.17b), (4.17c) differ only
by the constant periods or horizon arcs, Pj or ∆xj |hor. Inserting the expression (4.16) for
x′1 gives

L1 = −
∫ ∞
σ+

`1 dσ

(σ +M1`21)
(λ2 + λ2

0)σ +M1 −M2√
Aσ(σ − σ+)(σ − σ−)

, (B.4)

and likewise for L2. The roots σ± are given by eqs. (4.14), (4.15). We assume that we are
not in the case [H2, H2] where M1 = M2 > 0, nor in the fringe case σ+ = −Mj`

2
j when the

string goes through an AdS center. These cases will be treated separately.
Separating the integral in two parts, and trading the integration variable σ for y, with

y2 := σ+/σ, we obtain

L1 = − 2`1√
Aσ+

[
M1 −M2
M1`21

∫ 1

0

dy√
(1− y2)(1− νy2)

+
(

(λ2 + λ2
0)− M1 −M2

M1`21

)∫ 1

0

y2dy

(1− u1y2)
√

(1− y2)(1− νy2)

]
(B.5)

where ν = σ−/σ+ and u1 = −M1`
2
1/σ+ . Identifying the elliptic integrals finally gives

L1 = − 2`1√
Aσ+

[
M1 −M2
M1` 2

1

(
K(ν)−Π(u1, ν)

)
+ (λ2 + λ2

0) Π(u1, ν)
]
, (B.6)

and a corresponding expression for L2

L2 = − 2`2√
Aσ+

[
M2 −M1
M2` 2

2

(
K(ν)−Π(u2, ν)

)
+ (λ2 − λ2

0) Π(u2, ν)
]

(B.7)

with u2 = −M2`
2
2/σ+ . The prefactors in (B.6) diverge when M1 → 0 but the singilarity is

removed by expanding Π(u1, ν) around u1 = 0. In this limit

L1(M1 = 0) = − 2`1√
Aσ+

[
M2
σ−

(E(ν)−K(ν)) + (λ2 + λ2
0)K(ν)

]
(B.8a)

and similarly

L2(M2 = 0) = − 2`2√
Aσ+

[
M1
σ−

(E(ν)−K(ν)) + (λ2 − λ2
0)K(ν)

]
(B.8b)

with E(ν) the complete elliptic integral of the second kind.
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The M1 = M2 > 0 geometries correspond to the high-temperature phase where
Mj = (2πT )2, σ+ = 0 and σ− = −(4πTλ)2/A. The integrals (4.17c) simplify to elementary
functions in this case:

L1 −∆Hor
1 = −`1(λ2 + λ2

0)√
A |σ−|

∫ ∞
0

ds

(s+ a)
√
s+ 1︸ ︷︷ ︸

= 2√
1−aarctanh(

√
1− a)

with a = A`21/4λ2. Using the expression (4.14) for A, and going through the same steps
for j = 2, gives after a little algebra

L1 −∆Hor
1 = − 1

πT
tanh−1

(
`1(λ2 + λ2

0)
2λ

)
, (B.9a)

L2 −∆Hor
2 = − 1

πT
tanh−1

(
`2(λ2 − λ2

0)
2λ

)
. (B.9b)

Interestingly, since ∆Hor
2 must be positive, TL2 is bounded from below in the range λ < λ0

as discussed in section 6.2.
In the high-temperature phase the on-shell action, eq. (A.9), reads

I(high−T)
gr = 4π2T

[
−1

2(`1L1 + `2L2) + `1(L1 −∆Hor
1 ) + `2(L2 −∆Hor

2 )
]
. (B.10)

Using the expressions (B.9) and rearranging the arc-tangent functions gives

I(high−T)
gr := E

T
− S = −2π2T (`1L1 + `2L2)− log gI (B.11)

where the interface entropy S = log gI is given by eq. (4.9).

C Sweeping is continuous

In this appendix we show that sweeping transitions are continuous.
We focus for definiteness on the sweeping of the j = 2 AdS center at zero temperature

(all other cases work out the same). The transition takes place when µ crosses the critical
value µ∗2 given by eq. (7.2). Setting µ = µ∗2(1− δ) in expression (6.9b) gives

f2(µ) = `2√
A

∫ ∞
s+

ds
(λ2 − λ2

0)(s− µ`22) + δ

(s− µ`22)
√
As(s− s+)(s− s−)

= 2`2(λ2 − λ2
0)√

As+
K
(
s−
s+

)
+ `2 δ√

A

∫ ∞
s+

ds

(s− µ`22)
√
s(s− s+)(s− s−)︸ ︷︷ ︸
J

. (C.1)

The first term is continuous at δ = 0, but the second requires some care because the integral
J diverges. This is because for small δ

s+ − µ`22 = δ2

4λ2µ∗2
+O(δ3) , (C.2)

– 37 –



J
H
E
P
0
4
(
2
0
2
1
)
2
6
2

as one finds by explicit computation of the expression (6.10). If we set δ = 0, J diverges
near the lower integration limit. To bring the singular behavior to 0 we perform the change
of variable u2 = s− s+, so that

J =
∫ ∞

0

2du
(u2 + δ2/4λ2µ∗2)

√
(u2 + s∗+)(u2 + s∗+ − s∗−)

, (C.3)

where we kept only the leading order in δ, and s∗± are the roots at µ = µ∗2. Since s∗+
and s∗+ − s∗− are positive and finite, the small-δ behavior of the integral is (after rescaling
appropriately u)

J = 4λ|µ∗2|
|δ|
√
s∗+(s∗+ − s∗−)

∫ ∞
0

du

u2 + 1︸ ︷︷ ︸
π/2

+finite . (C.4)

Inserting in expression (C.1) and doing some tedious algebra leads finally to a discontinuity
of the function f2(µ) equal to sign(δ)π/

√
µ∗2 . This is precisely what is required for L2,

eq. (6.8), to be continuous when the red (j = 2) slice goes from type E1 at negative δ to
type E2 at positive δ.

D Bubbles exist

We show here that the bubble phenomenon of section 8 is indeed realized in a region of
the parameter space of the holographic model.

This is the region of non-degenerate gravitational vacua (`2 strictly bigger than `1) and
a sufficiently light domain wall. Specifically, we will show that for λ close to its minimal
value, λmin, the arc L1(µ = 0) is negative, so the wall self-intersects and µ0 is necessarily
finite.

Let λ = λmin(1 + δ) with δ � 1. Setting µ = 0 and expanding eqs. (6.10) for small δ
gives

A = 8λ2
min δ

`1`2
+O(δ2) , s+ = `2

4λmin
+O(δ) , s− = − `1

2λminδ
+O(1) .

Plugging into eq. (B.6) with M2 = µM1 ≈ 0 we find:√
|M1|L1 = − 2

`1
√
As+

[
K
(
s−
s+

)
+ (1− 2`1

`2
)Π

(
`21
s+
,
s−
s+

)]
(D.1)

where we have only kept leading orders in δ. Now we need the asymptotic form of the
elliptic integrals when their argument diverges

K
[
−a
δ

]
≈ Π

[
u,−a

δ

]
≈ − ln(δ)

√
δ

2
√
a

+O(
√
δ) (D.2)

for δ → 0+ with u, a fixed. Using a = 2`1/`2 finally gives√
|M1|L1 ≈

(
`2
`1
− 1

)1/2
ln(δ) + subleading . (D.3)

For δ � 1 this is negative, proving our claim. Note that we took the green slice to be of
type E2, as follows from our analysis of the sweeping transitions for light domain walls —
see section 7.2.
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