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1 Introduction

The cosmological constant problem has been a topic of heated debate for decades. In fact,
it is difficult to find two theoretical physicists who agree on what exactly the problem is,
how to phrase it, how to quantify it, or how many problems there are. Some maintain that
there is no problem at all. (We realize that some of our colleagues will take issue with this
paragraph as well.)

We do not intend to enter the debate ourselves, nor to review the extensive literature
on the subject.! Our aim with this paper is, instead, to describe a system that exhibits a
technically similar problem, and to show in detail how that problem is “solved” there. The
quotes are in order: from a low-energy effective field theory viewpoint, the problem is solved
by apparently miraculous cancellations. However, there is a more fundamental viewpoint,
according to which those cancellations have to happen. Needless to say, it is a symmetry
that ultimately enforces those cancellations, but a symmetry that is spontaneously broken.

Tt is impossible for us to do justice to all the attempts that have been made at tackling the cosmological
constant problem. For an overview, we refer the reader to [1-5] and references therein. In particular, ref. [5]
reviews recent attempts based on relaxation mechanisms.



In particular, that symmetry does not enforce the cancellations through standard selection
rules — the ground state is not invariant under the symmetry — but only in a round-
about way, which is utterly obscure in the low-energy effective theory computation we will
perform.

The system we have in mind is the so-called framid [6]. It is a hypothetical state of
relativistic matter that spontaneously breaks Lorentz boosts but no other symmetry. The
low-energy effective field theory involves three gapless Goldstone bosons 7j(z) that, like the
broken boost generators they are associated with, transform as a vector under rotations.
Their low-energy effective action can be written down systematically, in a derivative expan-
sion, using for instance the coset construction for spacetime symmetries. From this, one
can derive the stress energy tensor of the theory, which displays a very peculiar property:
if evaluated on the 7j(x) = 0 background, it is Lorentz invariant [6]:

Ty () = =An, + O(IF) - (L1)

This is surprising: the ground state of the system spontaneously breaks boosts, so there
is no obvious reason why it should have a Lorentz-invariant stress tensor. Certainly, all
familiar condensed matter systems in the lab, such as solids, fluids, superfluids, which also
spontaneously break Lorentz, have stress-energy tensors in their ground (or equilibrium)
states that are mot Lorentz invariant. In particular, in ¢ = 1 units, they typically have
mass densities much bigger than their pressures or internal stresses.

So, what enforces the structure in (1.1) for the framid? Unclear. It can be argued
that it is the underlying Lorentz invariance of the theory, but only in the sense that if one
writes down the most general framid effective action compatible with spontaneously broken
Lorentz boosts, and then derives the corresponding stress-energy tensor, one ends up with
eq. (1.1). A more direct argument based on symmetry considerations directly for the expec-
tation value of T),,, is not available at the moment. In fact, there exists a completely different
system that features precisely the same symmetry breaking pattern as the framid, but satu-
rates the associated Goldstone theorem in a radically different way, and that most definitely
does not have a Lorentz-invariant stress-energy tensor in its ground state. Such a system is
the familiar Fermi liquid, and we refer the reader to [7] for details about its relationship with
spontaneously broken boosts. So, apparently, symmetries cannot be the end of the story.

It could be that the structure in (1.1) is only a tree-level statement, and gets modified
upon taking into account quantum corrections. Concretely, this would mean that the
expectation value of the stress-energy tensor on the framid’s ground state is not Lorentz-
invariant,

<TMV('T)> 7& —AUW, (1.2)

for any A. This, however, does not seem to be consistent with renormalization theory
and, more in general, renormalization group ideas. The reason is that we can think of our
framid effective theory as a theory for physics below a certain energy scale M, with all the
physics above M having been integrated out. If we integrate out some more physics, say
down to a scale M’ < M, the coefficients in the framid low-energy effective action change,
but the set of allowed terms in such an action remains the same. So, what was a “quantum



correction” in the energy window between M’ and M, now becomes a new contribution to
a tree-level coupling in the low-energy theory. But at tree-level the effective theory yields

<THV(x)> - _A77,u1/ . (1.3)

This suggests that the same should hold at the quantum level, up to a renormalization of A.

This is our technical analog of the cosmological constant problem. There, one has that
the expectation value of the real world’s stress-energy tensor that couples to gravity is zero
(or fantastically smaller than the “natural” value it should have), without any manifest
symmetry reasons for why it should be so. In our case, we have that the Lorentz-violating
components of the expectation value of the framid’s stress-energy tensor are exactly zero,
without any manifest symmetry reasons for why it should be so.

Our paper is devoted to explicitly verifying eq. (1.3) for a framid to one-loop order.
As one might expect, the computation will involve UV-divergent loop integrals, and we
will have to pay particular attention to how we regulate such integrals. The reason is that
our question has to do with Lorentz invariance, and so we need to make sure that our
regulator respects it. However, since Lorentz invariance is spontaneously broken, it is not
manifest in the effective theory or, more importantly, in our loop integrals. And so, for
instance, cutting off our integrals in (Euclidean) momentum space in a manifestly Lorentz
invariant fashion makes no sense: the framids’ Goldstones already have propagation speeds
different from unity, and from one another, and so why should their loops be cutoff in a
Lorentz-invariant fashion?

To address this problem, we use two regulators that can be made straightforwardly
compatible with our spontaneously broken Lorentz invariance. The first is a generalization
of Pauli-Villars. The second is dimensional regularization. Notice that, for the latter,
since the Goldstone’s effective theory has no mass parameters, the relevant integrals for
our one-loop computation will all be trivially zero, which would make our check moot. To
circumvent this, we couple the framid to a massive scalar particle, in all ways allowed by
symmetry, and run our check in that case.

With both regulators, we find that, indeed, eq. (1.3) is obeyed at one-loop order.
However, the cancellations involved in making the Lorentz-violating components vanish
are absolutely nontrivial, and we were not able to find a clear structure in the actual
computation that would ensure, or even suggest, those cancellations. As a further check of
our techniques and of the non-triviality of the cancellations, we run the same computation
in the case of a superfluid, where we don’t expect analogous cancellations — a superfluid
certainly does not respect (1.3). Indeed, in that case we find deviations from (1.3), and
our result matches precisely that of an independent computation carried out elsewhere [8].

Notation and conventions. We use natural units (A = ¢ = 1) and the mostly-plus

metric signature throughout the paper.

2 Warm-up: the free relativistic scalar

Before attempting to compute the expectation value of T#¥ for our framid, it is instruc-
tive to review how things work out for a free relativistic scalar field, even if we perform

computations in a way that is not manifestly Lorentz covariant.



Consider thus the Lagrangian

1 1
L= (09 - 5?6 (2.1)
which yields the stress-energy tensor
T =0 0" + nt"' L . (2.2)

A quadratic Lagrangian can always be rewritten as a total derivative plus a term
proportional to the equations of motion. So, since the vacuum is translationally invariant,
the second term in T"” does not contribute to our expectation value, and we simply have

(TH(2)) = (0" (2)0" d(x)) (2.3)
=~ lim D40, Gy (x — ) 2.4
_ / (g;’; Kk G (k) (2.5)

where Gy is the Wightman two-point function of ¢:

Gw (k) = 0(k°) (2m)6 (k% 4+ m?) . (2.6)
At this stage one could use Lorentz-invariance and conclude that

d'k
(2m)*

The integral is UV divergent and must be regulated. However, whatever its value, we see

) = g0 [

k2 Gy (k) . (2.7)

that (T*(z)) is proportional to n*”, as expected.
Let’s instead go back to eq. (2.5), give up manifest Lorentz invariance, and use the
delta function in Gy to perform the integral over kY. Using spatial rotational invariance,

we get
1 [ d’k

pz<T°°>=2/W,wk, Ty =0, p

1, w1 [ &k K
3<:r>_6/(27r)3wk, (2.8)

where w, = Vk? +m?2. (T"¥) is proportional to n* if and only if p + p vanishes, but now
this seems impossible: the integrals entering p and p are manifestly positive definite, so,
how can there be any cancellations? Then again, such integrals are UV divergent, so one
should regulate them properly before jumping to conclusions.

The UV regulator used should preserve Lorentz invariance. In particular, a hard
cutoff in momentum space will not do, because we have already performed the integral in
kY, and so at this point there is no way to introduce a hard cutoff compatible with Lorentz
invariance (usually this involves Wick-rotating the d*k integral to Euclidean space, and
then imposing a 4D rotationally invariant cutoff there.)

One possibility is to use dimensional regularization directly for our 3-dimensional inte-
grals. This is compatible with Lorentz invariance because it corresponds to formulating the



original theory (2.1) in d 4+ 1-dimensions, going through the manipulations (2.3)—(2.5) in
d+1 dimensions, and then performing the k° integral explicitly to be left with d-dimensional
integrals. We get:?

ddk d+1 F( — %) 2.9
d W = —m d+1 ( . )
2 2(4m) 2
2d 2(47r)L .

(notice the % — é replacement in the definition of p), in agreement with p + p = 0.
Another possibility is to use a generalization of Pauli-Villars. Recall that, in the
simplest case, Pauli-Villars amounts to regulating a log-divergent loop integral by a modi-
fication of the Feynman propagator of the form
1 1
—k2—m2+ie —k2— M?+ic’

Grk) = — GEV (k) = (2.11)

—k2 —m? + ie
with M being a very large mass scale, in particular M > m. This improves the UV
behavior of the integral without affecting the IR one:

i(M? —m?) '

GRV(k< M) ~Gp(k), GRV(k>M)~— x

(2.12)

This is manifestly a Lorentz invariant modification of the propagator. More importantly
for our applying these ideas to the framid case, such a modification corresponds to adding
certain Lorentz-invariant higher derivative terms to the Lagrangian, as clear from the exact
rewriting (up to ie’s)

GLV (k) = , 2.13
F () %§+m2 k2 1_m2'k4_M2M_2mz’m2 ( )
or, keeping only the leading order in m/M,
APV (1) i
Gy’ (k) ~ EyEy ey (2.14)

The introduction of the Pauli-Villars propagator is enough to regulate log-divergent
integrals. In our case, we have quartically divergent integrals, with subleading quadratic
and log divergences as well. It turns out that to cancel all these divergences, we need
a three-fold modifications of the Feynman propagator. That is, calling Gp(k; M) the
Feynman propagator for generic mass M, we want to perform the replacement

3
Gr(ksm) — GRY (k) = Gr(kim) + 3 ca Gr(ks aaM) | (2.15)
a=1

2Here and for the rest of the paper we avoid introducing the MS renormalization scale j, which would
be needed to make our dim-reg formulae dimensionally correct. We do so for notational simplicity, to avoid
clutter. If one wants to reinstate p in our formulae, one can do so just by dimensional analysis, interpreting
our formulae as being expressed in g = 1 units.



where the ¢’s and a’s are suitable (order-one) coefficients, and M is a common very large
mass scale, M > m.

Since we need to improve the high energy behavior of our loop integrals by four powers
of k compared to the standard Pauli-Villars case of (2.12), we want our modified propagator
to have the high energy behavior

- 1
GEV (k> M) ~ 5 (2.16)

which requires the «,’s to be all different, and the ¢;’s to be

ag - m—z
— M
a

b#a

By combining denominators as done above in (2.13), one can see that this still corresponds
to adding suitable higher-derivative Lorentz-invariant terms to the Lagrangian.

Our expressions for p and p in eq. (2.8) do not involve directly a Feynman propagator.
However, we have to remember that they came from integrating over k° an expression
involving the Wightman two-point function of ¢. In our case, we must replace this with

3
Gw(k;m) — GEY (k) = Gw (k;m) + Z ca Gy (k3 agM). (2.18)

a=1

Then, integrating again over k°, for p and p we simply get

1 [ &3k 3
= 3 e N2 ‘m § a e 2.1
p 2 / (27.‘_)3 [wkv + a:1c wk, aM} ( 9)
1 [ 43k 1 3 1
— K ——+ Y e = VK2 + M2, 2.20
p 6 / (27T)3 |:0Jk;m + azlc Wk;aaM:| ’ “hi M + ( )

As expected, but still surprisingly enough, choosing the ¢,’s as in eq. (2.17) makes both of
these integrals finite, and, in fact, opposite to each other. Namely:

p=—p=fla)M*+ gla)m>M?* + m*log(m/M) + h(a)m?* (2.21)

3272

where f, g, and h are somewhat complicated functions of the a coefficients, whose explicit
form we spare the reader. On the other hand, the coefficient of m*logm is finite (for
M — o0) and a-independent, in agreement with standard renormalization theory: like
all non-analyticities in external momenta and mass parameters, it should be finite and
calculable, that is, independent of the regulator used. In fact, if we expand the dim-reg
result (2.9) for d — 3, we get exactly the same coefficient for m*logm.

3 The framid stress-energy tensor

The low-energy effective theory for the framid, a relativistic system that spontaneously
breaks Lorentz boosts, was first developed in [6]. Here, we provide a brief description of
the theory to set the ground for our computation.



Framids are most intuitively described in terms of a vector field A, (z) with a constant
time-like expectation value:
(Au(@)) =4y - (3.1)
Such an expectation value breaks Lorentz boosts, and the corresponding Goldstone fields
(x) can be thought of as parametrizing the fluctuations of A,(x) in the directions of the
broken symmetries:

Au(w) = (1K) @ (A4()) (3.2)

where K are the boost generators. Notice that, even with Goldstone fields present, A, A* =
—1.

One can construct the Goldstone effective theory either by writing down in a deriva-
tive expansion the most general Poincaré invariant action for A,, performing the replace-
ment (3.2), and then expanding to any desired order in the 7 fields, or by using the coset
construction for spontaneously broken spacetime symmetries. These two approaches have
different advantages and disadvantages, but they yield the same result [6]. We will follow
the former.

To the second order in the derivative expansion, the most general effective Lagrangian
takes the form [6]

L= (e - 30,4 + G0,A.) + (F — 1)(4°0,4,)7] (3.3)

where M; is an overall mass scale and cy,cp represent the propagation speeds of the
longitudinal and transverse Goldstones. We want to eventually work with the Goldstone
Lagrangian expanded to quadratic order, hence, with two derivatives in each term, it
suffices to expand A, to first order in the Goldstones,
i
Ay =AY = cosh || ~ 1, A=A = % sinh 7] ~ 7’ . (3.4)
It is convenient to separate the Goldstones into their longitudinal and transverse modes,
77 = 71, + 77, where

Vxn,=0, V-ijr=0, (3.5)
and also rescale them,
- n
— — 3.6
T (3.6)
to eventually obtain a neat form of the effective Goldstone Lagrangian,
17 . ;
Lo =5 [iI” =4 (Vi) — ck ()] (3.7)

Our goal is to check whether the stress-energy tensor resulting from this
Lorentz-violating theory remains Lorentz-invariant when including quantum corrections:
(T (z)) = —Anu,. We know the off-diagonal components of the stress-energy tensor re-
spect this condition due to rotational invariance of the ground state, hence our task reduces
to proving that

(T9() + 3 (T(@)) = 0. (39)

where the spatial indices are implicitly summed over (as for the rest of the paper).



In order to compute the one-loop correction to (T*(x)), we start from the full covariant
theory (3.3) and compute the canonical (Noether) stress-energy tensor,

oL
T = — 25 A+ gL 3.9
ao, Ay Mt (3.9)
= ME[(c} — )0 AFO\AN + G0 430" AP + (cF — 1) AP0 Ay AP, A% + g™ L.

We wish to introduce the framid Goldstones as in (3.2) and expand T*” up to quadratic
order. The diagonal components of (3.9) reduce to

T = £ +77-77, (3.10)

TV = 3L + E0yif - Oiif + (2 — &)V - 7)? . (3.11)

Not surprisingly, this is the same result we would have gotten by applying Noether’s theo-

rem directly to eq. (3.7): even though boosts are spontaneously broken, spacetime transla-

tions are not, and so one can compute the associated Noether current using directly the 77

parametrization of the action and having 77 transform in the usual way under translations,
7 — 1 — €*Ou1].

We now perform manipulations similar to those of section 2. Dropping the terms

proportional to the Lagrangian for the same reason as made explicit there, the ground-
state expectation values of the expressions above can be written as

%) = lim 0,0, (7i(=) - 7(y)) (3.12)

iy _ L i (i) - 7 i
(1) = < lim [ L037(x) - (y) + (¢}~ )00} ' (0)o (9)] (3.13)
Decomposing 77 into longitudinal and transverse components, the energy density becomes
p=—lim 07 (i (x) i (y) + 7r(z) - 7r(y))

=—lim 67 (G —y) +2Gr(z —y))

3
= ;/(;l;,)(wL—FQwT), (3.14)

where G, and Gr are the (scalar) Wightman two-point functions for longitudinal and
transverse modes,

GL/T(w, k) =0(w)(2n)d(w? — wi/T) , (3.15)
and wy, and wr are the corresponding energies, wy 7 = cr/r |k|. The relative factor of two
in (3.14) comes from the fact that k- k = 1 and 3, 6% — k‘k? = 2. Similarly, the pressure

can be rewritten as 3 9 9 1.2
/ d°k (ch L oT K ) (3.16)
6 wr

These expressions for p and p are very simple generalizations of the corresponding

ones in section 2 for a generic massive scalar. However, as we did there, we first need
to regularize them before we can check whether p + p vanishes. As we emphasized in
the Introduction, the regulators used should be consistent with the spontaneously broken
Lorentz invariance.



4 Pauli-Villars regularization

Let us first consider a suitable generalization of Pauli-Villars regularization. Given the
technical similarities between the derivation we just performed and that of section 2, it’s
clear that if we are allowed to introduce independent Pauli-Villars modifications for the lon-
gitudinal and transverse phonons’ propagators, taking into account their different speeds,
then we get p + p = 0 for the framid as well.

More explicitly, consider the longitudinal phonons’ contributions to p and p,

1 [ d’k 1 [ &k 2K
=— | ——= == | ——= 4.1
with wy, = cr|k|. Apart from the integration measure, k always appears here in the

combination ¢y, |k|. The same is true for the Wightman two-point function (3.15), where
these expressions come from, and for the associated Feynman propagator,

i

Ghwk)= —F——— . 4.2
So, upon changing the integration variable, k’ = cpk, we have
1 1
L = 73pr61(0) ) L = Tprel(o) s (43)
CL CL

where pre1(m) and prei(m) are the relativistic expressions for the energy density and pressure
of a massive scalar of mass m, eq. (2.8). Then, the same Pauli-Villars regularization that
was applied in section 2 can be applied here, yielding

pr+prL=0. (4.4)

Mutatis mutandis, the same considerations can be applied to the transverse phonons’
contributions pr and pr, yielding

pr +pr=0. (4.5)

And so, combining the longitudinal and transverse sectors, p + p = 0.

Notice however that the longitudinal and transverse Goldstones have different speeds
in general, and so the Pauli-Villars regularization procedure that we are advocating has
to be different for the two sectors. Namely, referring to the explicit analysis of section 2,
whenever there is a k? in a propagator, when we deal with the longitudinal sector we have
to replace that with —w? + c%kz, and when we deal with the transverse sector we have to
replace that with —w? + c%k?

Recall that in standard relativistic cases, such as that studied in section 2, a Pauli-
Villars modification of the propagator can be thought of as coming directly from a suitable
local higher-derivative modification of the action. So, in our case the question is whether
there is a local and Lorentz-invariant higher-derivative modification of the framid’s action
that corresponds to independent Pauli-Villars modifications of the longitudinal and trans-
verse propagators of the desired type. The requirements of locality and Lorentz-invariance



are nontrivial — the former because the longitudinal/transverse splitting of 77 is non-local,
the latter because 77 transforms nonlinearly under Lorentz boosts.

Let’s start with locality. The modifications of the Feynman propagators we are after,
upon combining denominators as explained in section 2, take the form
i

— 2 2 21,2
- —k2 _ ikA B ik’G - ik‘g ) kL = —w" + ch 5 (46)
I el v L L7

Gp™Y (w,k)

and similarly for the transverse propagator. The A,’s are suitable combinations of the
Pauli-Villars pole masses. Importantly for what follows, they are the same for the longitu-
dinal and transverse propagators, as long as the pole masses are chosen to be the same for
the two sectors. This can be understood easily by thinking about the structure of the prop-
agators at k = 0, in which case the fact that the longitudinal and transverse propagation
speeds are different does not matter.
Using the canonical normalization of (3.7), up to total derivatives these propagators
correspond to the quadratic Lagrangian
1 1

1 1

£V = i |Op = i + 508 - 00|+ (L= 1), (4.7)
2 A2 A3 A$§
where [J;, denotes the differential operator
Op = -0} + V2, (4.8)

and ‘(L — T)’ stands for a similar structure involving the transverse field 7y and its
propagation speed. Our question of locality is thus reduced to the question of whether this
quadratic Lagrangian can be written as a local quadratic Lagrangian for the full 77 field.

Notice that as long as at least one spatial laplacian acts on 0y, or 5y, one can easily
perform the longitudinal /transverse decomposition in a local fashion: defining the local
differential operator matrix,

D;; = 0,0 , (4.9)
we simply have
V2%, =D-ij, V%= (V2-D)-. (4.10)
Notice also that, in the quadratic action (4.7), it is enough that the 77’s on the right — those
acted upon by derivatives — be split into longitudinal and transverse. The undifferentiated
77’s on the left can be replaced with the full 77 field, because, as usual, at quadratic order
all longitudinal-transverse mixings automatically vanish.

So, the only remaining question concerning locality is whether the terms in (4.7) with
time-derivatives only can be rewritten in a local fashion. However, the coefficients of such
terms are the same for the longitudinal and transverse sectors. This, upon using again the
vanishing of longitudinal-transverse mixings, allows us to combine these terms into purely
time-derivative terms for the full 77 field:

1 1 1 1
ﬁPVDﬁL-[—aZ—84—06—8}77L+(L—>T) (4.11)
2 2 t A%t A% t Ag
14[ o 1y 1 1 4.
=—ij- | —0?— S0t — =0 — — 8|7 (4.12)
2 Y ¥

~10 -



So, in summary, a local rewriting of (4.7) involves the following building blocks:
i 07 (V2)' D - (4.13)

with different integer non-negative values for a, b, and ¢, up to a + b + ¢ = 4, and suitable
coefficients. In particular, we can restrict to ¢ = 0,1, because D is proportional to a
projector operator (its only role is to isolate the longitudinal component of 7 ):

D-D=V?*.D. (4.14)

We can now ask whether these building blocks are compatible with the spontaneously
broken Lorentz invariance. In particular, we can ask whether there exist manifestly Lorentz-
invariant combinations of A, and 9, that, when expanded to quadratic order in the 7 fields,
reduce precisely to these building blocks.

It is quite easy to convince oneself that the answer is yes. To this end, it is convenient
to integrate by parts half of the derivatives in (4.13). Then, up to a possible sign, the
building blocks are

()0, ... 0n")” (c=0) (4.15)
and

((0)%0s, ... 05, (V -71))°  (c=1) (4.16)

Recalling that, to first order in 7, A, is simply

—

Ay~1, A~ (4.17)

12

we see that two simple Lorentz-invariant generalizations of (4.15) and (4.16) that reduce
to them to quadratic order in 7j are

(@heax ..ok A,)? (c=0) (4.18)

and
(@Near ..ot 0,4M)°,  (e=1) (4.19)

where 9l and Bj are defined as
oll=-4%0,, 05 =0,+AA%0, . (4.20)

In conclusion: there exist local Lorentz-invariant higher-derivative corrections to the
framid action that modify the 77 propagator in a Pauli-Villars fashion, with suitable inde-
pendent modifications for the longitudinal and transverse modes, such that the Pauli-Villars
analysis of section 2 can be separately applied to the two sectors, yielding p + p = 0.

5 Dimensional regularization

Let’s now consider dimensional regularization. As for the relativistic case considered in
section 2, dimensional regularization of our spatial momentum integrals (3.14) and (3.16)

- 11 -



is consistent with Lorentz invariance. This is because we can think of it as correspond-
ing to formulating the original manifestly Lorentz-invariant theory for A,, eq. (3.3), in
d + 1 spacetime dimensions, and then going through all the subsequent steps that led us
to (3.14) and (3.16) keeping d generic. Were we to do so, we would end up with the same
integrals (3.14) and (3.16), but in d rather than 3 dimensions, and with a 1/2d rather than
1/6 prefactor for the pressure.

Now, since our effective theory does not feature mass parameters for the Goldstone
fields, the integrals (3.14) and (3.16) vanish in dimensional regularization. This is certainly
consistent with p +p = 0, but in a trivial way. To run a nontrivial check, we need to
deform our theory. We must do so consistently with Lorentz invariance, of course. And so,
in particular, mass parameters for the Goldstones are not allowed. A particularly physical
way to deform the theory is to couple the framid to a massive field, in all ways allowed by
symmetry. For simplicity, let’s take this to be a scalar field, ¢. If its mass is below the
cutoff of the effective theory (the Mj of section 3, up to suitable powers of cj, /T), ¢ must
be included in our computation. Assuming it has zero expectation value, for our one-loop
computation we are interested in all Lorentz-invariant combinations of A, and ¢ with up
to two derivatives and which, once expanded about the framid’s background configuration,
yield quadratic terms in the 77 and ¢ fields.

We find that there are only three interactions with these properties:

L S A0, AAPP G, A AN . (5.1)

All other possibilities are either related to these through integration by parts or, when
expanded in the Goldstone fields to the desired order, yield terms that are total derivatives
themselves, and can thus be neglected. Adding the terms above to the framid action,
and including also standard kinetic and mass terms for ¢, which are Lorentz-invariant by
themselves, our effective Lagrangian at quadratic order becomes

1r- _— 4 . -
L = i = (Vi) = G @mp) + &~ (V) - mPe?
+2b1¢ﬁ‘ﬁL+2b2$ﬁ'ﬁL+b3¢‘52}7 (5.2)

where the b,’s are generic coupling constants. Notice that the transverse components of
the Goldstone fields don’t mix with the massive scalar, since V - 7jr = 0.
The relevant components of the stress-energy tensor now read

TO =72 + by ¢V - i, + (1 + b3)d?, (5.3)
T% = E(V - i) + & Oiiir - Bifr — 1oV - i, — bad V - i1, + (V)2 (5.4)

where we have omitted terms proportional to the Lagrangian, since, as before, they do not
contribute to our expectation values.

Notice that, at this order, the transverse Goldstones 777 are completely decoupled from
¢, both at the level of the Lagrangian and as far as their contributions to the stress-energy
tensor are concerned. The systems is thus divided into two sectors: a transverse one, for
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which the presence of ¢ is irrelevant, and which thus has vanishing energy density and
pressure in dimensional regularization,

d%k 1 [ d%
PT:/WCTk|:Oa pT:d/(Qﬂ_)dCﬂk:Oa (5-5)

and a longitudinal one, consisting of 77, and ¢, for which the computation of the energy
and pressure is, as we will now see, quite involved.

From now on, we will restrict to the longitudinal sector, which amounts to setting 7
to zero in the formulae above. Also, for notational simplicity we will drop the subscript
‘L’ from 77, (but we will remember that we are dealing with a longitudinal field.)

5.1 Analysis for bs

Consider first the case in which b; and by are set to zero while bg is nonzero. In that case,
77 and ¢ are completely decoupled (at this order), and their contributions to p + p can
be analyzed separately. For 7, there isn’t much to say: the relevant integrals for p and p
vanish in dimensional regularization, because they do not involve any mass scale — that
is, they are integrals of pure powers.

The situation is more interesting for ¢. Its action is that of a massive scalar with a
propagation speed different from one,

1
1+4b3’

1. .
S = /d% 3 [¢* — 5 (Vo)* — Mj¢?] c My=cym, (5.6)
where for convenience we redefined the normalization of ¢ by ¢ — c4¢.

Applying to the purely ¢ parts of egs. (5.3), (5.4) the same manipulations as in the
case of a relativistic scalar (see section 2), we find that the integrals we should compute are

1 [ d% 1 d?k k?
_ 21,2 2 2
p(z,—f/idq/c(bk + M2 Py = Cg X —/ y . (5.7)
2/ (2 2d ] (2 21,2 5
(2) (2m) /2K + M2

Up to a redefinition of the integration variable, k = k'/cy, these are clearly the same
integrals as those of section 2. What’s perhaps surprising is that, after such a change of
variables, the overall powers of ¢, we are left with are the same for py and for py:

1 1
po = — pret(Mg) , Py = — Pret(Myp) (5.8)
C¢ C¢

where prei(m) and pr(m) are the energy density and pressure for a relativistic scalar of
mass m, eqgs. (2.9) and (2.10). So, once again, we get

Py +p=0. (5.9)

This apparent accident is in fact a consequence of a formal (spurionic) invariance of
the action (5.6): if we rescale the spatial coordinates but not time, and compensate for
this by a rescaling of ¢, and of ¢,

T AT, chp—Acy, oA, (5.10)
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the action does not change. As usual for spurion analyses, this informs how physical
quantities can depend on cg. In particular, we are interested in

1 .
00

po=(T7) . po=(T"), (5.11)
for a state that is invariant under translations. These expectation values are thus constant
in Z, and so their transformation properties under rescalings of coordinates must be com-
pletely taken care of by explicit powers of c4. T 00 is a spatial density of energy. Since
energy ~ time™! does not change under a rescaling of spatial coordinates, we must have

1 1
=T = (1)« — . (5.12)
A %

7%

T% is not the density of a conserved quantity. However, it is related to the momentum
density T% by the conservation equation

oTY + ;T =0 . (5.13)
The momentum density rescales as
, 1 A
T — WTOJ , (5.14)

because momentum itself is the inverse of a length, and so it must rescale as P — 15/ A
Using (5.13) and (5.14), we thus have

| 1 .. . 1
7 — WTU = (TY) x % (5.15)

We thus see that both pg and py depend on ¢y exactly in the same way, in agreement
with our explicit result in (5.8).

In more intuitive terms, all of the above stems from the statement that, even if we
abandon natural units and we give independent units to mass (m), length (¢), and time
(t), energy density and pressure still have the same units:3

[energy] _ Em (5.16)

force m
volume 27 -

[pressure] = [ =i

surface

Their ratio is thus dimensionless, and must be the same in all unit systems. In particular
if it is —1 in units such that ¢, = 1, then it must be —1 even when cy # 1.

The arguments above show that, as far as our check is concerned, we can consistently
set b3 to zero, even when we turn b; and by back on. The reason is that we can work in
units such that ¢4 = 1, which corresponds to b3 = 0, and run our check in those units.
Going from natural units (¢ = 1) to ¢, = 1 units certainly affects the values of the other
parameters of the theory: cr, ¢, My, b1, be, and m. However, since we are leaving these
generic anyway, such a change has no repercussions for our check.?

3For instance, in SI units, 1 J/m® = 1 kg/ms® = 1 Pa.

4For more general questions, say computing p and p separately rather that just checking p + p = 0, one
can still first work in ¢y = 1 units and then reinstate the dependence on c4 after the fact, by taking into
account how the other parameters change when we change units. For instance the parameter c;, in cy =1
units becomes ¢y, /cy in any other unit system.
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5.2 Analysis for b; and b2

We may then switch off b3 and perform our computation for non-zero values of the mixing
coefficients b; and bp. Combining egs. (5.3) and (5.4), switching to a generic number
of spatial dimensions, 3 — d, and dropping again terms proportional to the quadratic
Lagrangian, we obtain the following expression for p + p:

d+1

1_ . d+1 /- ; 1 1 =
P‘f‘pE(Too"‘*T“):7(U2+¢2)—gm2¢2+gbl¢v'7l+ by ¢V -if . (5.17)

d d

We can now perform the same manipulations as in section 2. We find:
L., S, -
ptp=-lim [— (d + 1)3F (i) - 7(y)) — ((d+ 1)I} +m*)(d(2)d(y))
+ (b1 — (d+ 1)badh)V - (i) d(y))]
B do% dw 2 Amm 2 2\ Add
d/ 3yt 2o (0 D& O )+ ((d 4+ 1) = m?) G, k)
+ (iby — (d+ 1)bow) [K] G (w, k)] | (5.18)

where @%} is the matrix of Wightman two-point functions for the fields ¢* = (1, ¢) and,
thanks to the longitudinality of 77, we were able to switch to a purely scalar notation,

f(w,k) = kij(w,k) . (5.19)

As usual, from the quadratic Lagrangian we can easily compute the matrix of Feynman
propagators, é“Fb(w, k). However, going from these to the Wightman two-point functions
requires some work. The general relationship, which we review in appendix A, is

Gib(w k) = / C;(:r, [w_cj%é‘%’(w’,k) - ﬁ@%’*(—w/, —k) (5.20)
= 3 (K ) (w0 — o) (2105 — wa) (5.21)

where K is the kinetic matrix appearing in the quadratic action,

d®k dw -

*a )
2 @n)p? 5 V(W k) Kap(w, k)97 (w, k) (5.22)

and the w, = wy (k) are the positive-energy poles of the Feynman propagators.
Using this in eq. (5.18) and performing the w integral leaves us with

ddk
p+p—dz/ [(d+ 1) w2 R + ((d+ 1) w2 — m?) R (k)
+ (iby = (d+ )by wy) K| RP(k)] | (5.23)
where the R’s are the residues
ab . -1 ab
Rib(k) = Tim [K~'(wk)(w—w)| " - (5.24)
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1
2-110 !

d
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6|-1]2 B—e)d+1)

2
alal2] Ba-n+Em2E+d2-))
2
2 1112 Um2(d +2) + Z2m*(d +2)
5102 B -2 d+1)
2

31012 4CL(1—CL)(d—1) — 2erm2(d+3)
102 4CL m2(d + 1)
6|-3]2 “h2d-1)
41312 —%c%de

=

Table 1. Coefficients C4 for all the values of the powers a4, 84, v4 that appear in (5.27).

The positions of the poles can be computed for generic b; and by, and so can the asso-
ciated residues. However, the resulting expressions involve somewhat complicated double
square root structures, which makes it impossible for us to perform the final integral in k
explicitly. To circumvent this problem, we can consider the small by, bo limit, and expand
to the first nontrivial order in these couplings.

The kinetic matrix for 7 and ¢ associated with the quadratic Lagrangian (5.2) is

— 3k —(b ib1) |k
P w? —cf (baw + ib1 ) K| (5.25)
—(bow —iby ) [k| w? —k? —m?

The poles of the Feynman propagators are the zeros of det K, which to quadratic order in
by, by read

k| (b7 + b3cik?)
2¢er((1 — c2)k? +m?2)’

k2(b2 +b2(k2 +m2)
wy ~ \/k?+m2 + m(( e +> ) . (5.26)

Upon inverting K, expanding the residues (5.24) also to quadratic order, and plugging

w1 ~cplk| —

these expansions into our expression for p + p, eq. (5.23), we end up with

9k k| @4
C/ VK2 +m2Pa, 5.27
120 | e 520

where the C'4’s are suitable coefficients, and a4, B4, 74 are powers that vary in combina-

tions, yielding in total eleven structurally distinct terms, as outlined in table 1.
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Notice that the first three terms in table 1 are the contributions one gets from the free
theories of the Goldstones and the massive scalar. Namely, the first term is

1 [ do% 1
== k| + —=cplk| ) = 2
p+p>D 2/(27‘r)d <0L| |+ch| |> pL + DL, (5.28)

in agreement with equations (3.14) and (3.16) and, since it involves only pure powers of
the momentum, it integrates to zero in dimensional regularization. The second and third
terms are the pressure and energy densities of the free massive scalar,

17 d% (1 K
— - k2 2| = 2
"*p%/@w)d(dm” +m> Potbe (5.29)

whose sum also equals zero, as was shown in section 2.
For the rest of the terms, we switch to polar coordinates and perform the integral in the
radial k-direction; the closed-form result for this type of integrals, dropping the coefficients

Cla, is
—d—c
1—¢2 - JF d+a; T —d—oj+2v; F d+aj7_&;2+d+aj72'yj; 1

lmd+aj+ﬁr2w (1=ct) (=1 2 )2F1 (=5 2 2 1_5%)
2 L'(75)

(1fc%>_’7j]:‘(d+aj2_27j ) ( —d—a; gﬂfr?%‘ )2 Fy (v, —d—ay ;5#2%' : 2—d—02fj+2%' : 1_162 )
+ 7 L1, (5.30)

r(-%)

where oF7 is a hypergeometric function. For some structures in the integrand of equa-
tion (5.27), the integration result takes much simpler forms; for instance the term with
a=5,08=0,v=2yields

dk |k|5 7_zm1+d 2 —as . dj
/ (2m)d (1—c3)k? +m2)2 Ty (1—cp) (3+4d) ( > ) (5.31)

Other structures, particularly when § # 0, integrate to totally nontrivial combinations
of hypergeometric, Gamma, and trigonometric functions, as seen in the generalized form
in (5.30), and so displaying them here wouldn’t provide much intuition. It is miraculous to
see that all these terms, when summed, cancel exactly with each other, despite the highly
complicated structures and combinations of coefficients involved. What’s also interesting,
is that we don’t need to specify a number of spatial dimensions to obtain the final answer.
That is, for any d, we find:

p+p=0. (5.32)

6 Superfluid check

As a check of our methods and computational tools, we now look at the case of a superfluid,
for which we know that the stress-energy tensor does not have a Lorentz invariant expec-
tation value. In particular, we want to make sure that the mysterious cancellations that
yield p+p = 0 in the framid case are not a result of potential nuances of the computation.
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For a superfluid, (T),,(z)) # —A 1, already at tree level, and so an analogous computation
should yield a nonzero result.

The simplest implementation of a superfluid EF'T involves a single scalar field ¥ (x) with
a shift symmetry, 1¥» — 1 + const, and a time-dependent vev, (¢(x)) = ut [6, 9, 10], where
p is the chemical potential. The superfluid phonon field, 7(z), parametrizes fluctuations
around this background, ¢ (z) = put+7(x). To lowest order in derivatives, the most general
low-energy effective action is

S = / deP(X), X = —0,00M, (6.1)

where P(X) is a generic function, in one-to-one correspondence with the superfluid’s equa-
tion of state.® Upon expanding to quadratic order in the phonon field and choosing canon-
ical normalization, one gets

S — ;/d4m [7%2 — cg(ﬁw)z} , (6.2)

with the sound speed given in terms of derivatives of the Lagrangian,

P'(X)
=PI £ 2XPIX) (6:3)

Similarly to the framid case, in order to run a nontrivial check in dimensional regularization
we couple the superfluid to a massive scalar ¢ . We look for all possible shift-symmetric,
Lorentz-invariant couplings that, when expanded in the superfluid phonons (), yield
quadratic terms in 7 and ¢, with at most two derivatives acting on them. Since X =
p? + 2ur + i — (671)2, the couplings that produce Lorentz-violating structures are:

[1(X)o - 7

F2(X) 900" ~ &, V- Vo

[3(X)0up0, o+ 90" p — .
For simplicity, we focus only on the first type of coupling, which introduces a 7¢ term in
the quadratic Lagrangian. Moreover, we choose the simplest possible form for fi, that is
f1(X) = X. Finally, we work in the ¢? = 1 limit (which implies P”(X) = 0). These choices
give us the opportunity to compare our result directly to an independent path-integral

calculation, which will be summarized below and published elsewhere [8].

So, in summary, we start from
1 1 5.9
whose stress-energy tensor is

TH = 2P (X)9M1pd 1) + 20M1pD" b + O D" ¢, (6.5)

5Namely, the function P relates the pressure to the chemical potential: p = P(,u2).
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omitting, as before, terms proportional to the Lagrangian. Expanding to quadratic order
and canonically normalizing w, we get

Lo~ é [ — (Fm)2 + 4big + 000 — m?¢?] | (6.6)
and
TO ~ 72 4+ 2+ by, TV~ (Vr)>+ (Vo)?, (6.7)

where the spatial indices are summed over and b = p/\/2P"(1u2).% Performing manipula-
tions similar to those of the framid case, we rearrange some terms and obtain

1 .. d+1 d+1 2
TOO ity o 2 22 4 - “ )
—|—d 1 — (7?4 ¢?) — m¢+ pi b d/J, (6.8)
whose expectation value is given by
d% d ~ ~ -
p+p= <T00+7 d/ d;;[ + 1)w? (G%’(w,k)—l—G%(w,k)) —mQGﬁ‘f(a},k)
 4i(d + b R (w, k)]. (6.9)

Like before, we expand the Feynman propagators and their poles for small values of the
coupling constant b, and then construct the Wightman two-point functions. As expected,
all expressions take simpler forms in this case. Namely, the (positive-frequency) poles are

[, 20 o
w1 k2—|—m2+ﬁ k2+m2,

2b°
wo ~ k| — ]k| (6.10)

and the corresponding residues are

- 202 I . 1 (2K +m?)

1 2(2k? 2 2h2
RY (k) ~ PRI m) | R ~ 2
2V K2 + m?2 m4\/ k% + m2 m
b b
Tr¢ ~Y .7 7r¢ ~Y '7
Ri%(k) = ~i— , B3 (k) = i . (6.11)

Putting everything together, the integral in question eventually becomes
b? / d% k* —d(k* +m?)
(

dm? ) 2m)® /K2 £ m2

9 9 9\ (d—3)/2 _
___bm? (m” p<1d) , (6.13)
Ar2(d+1) \ 47 2

which is different from zero, as expected.

pt+p= (6.12)

SNotice that the expressions (6.7) can be obtained by applying Noether’s theorem directly to the
quadratic Lagrangian (6.6), but only if one takes into account that 7 transforms nonlinearly under time-
translations, since these are spontaneously broken by the background @ = ut. This is related to the
statement that the superfluid’s ground state is an eigenstate of H — u@, but not of H, with H = f d3x T
being the Hamiltonian, and Q = f d3z J° the charge.
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We now come to the result of the independent computation alluded to above. As a
possible UV completion of a superfluid EFT, one can consider a massive complex scalar
® with quartic interactions. Putting the system at finite chemical potential, one ends up
with a superfluid, with our field ¢ being associated with the phase of ®. On the other
hand, the radial mode of ® is massive, and can thus be thought of as our massive scalar
¢. For this system, one can explicitly compute first the associated P(X) at tree level,
and then the one-loop quantum corrections to it, in the form of the quantum effective
action I'[¢)] [8]. (To lowest order in derivatives, this can be done via functional methods
akin to those normally used to compute a Coleman-Weinberg effective potential [11, 12].)
Applying Noether’s theorem to I'[¢)], one obtains directly the one-loop expectation value of
T# which, for p + p, matches exactly the result above [8].

7 Discussion

We close with a few remarks:

1. Our paper is about Lorentz-invariance in a system that spontaneously breaks it —
that is, in a system in which such a symmetry is not manifest. So, one must be particu-
larly careful in unveiling possible sources of Lorentz breaking coming from the way one
does computations. We already discussed at length how to address UV divergences in
a way that is compatible with Lorentz invariance. Another subtlety one needs to ad-
dress is the Lorentz invariance of the path-integral measure. Even though we did not
use path integrals for our computations, canonical quantization of the Goldstones’
effective theory is equivalent to path-integral quantization with the measure

Dij= Hd377(x) . (7.1)

This is not Lorentz invariant, because the 77 fields transform non-linearly under
boosts.” As usual, this should not matter as long as one uses dimensional regu-
larization, but with other regulators it might matter. We investigate the issue in
appendix C. The conclusion is that this subtlety does not matter: (7) for our quan-
tity ((T")), to the order we are doing computations (one loop), regardless of the
regulator used; or (ii) for any quantity, to any order, if one uses dimensional regu-
larization. We were thus justified to neglect it.

2. We have been emphasizing, puzzling over, and checking the fact that our expecta-
tion value (T"") o n*” is Lorentz-invariant. However, as we hope the discussion
in section 5.1 has made clear, such an expectation value is in fact compatible with
any Lorentz invariance, that is, it is invariant under generalized boosts with an
arbitrary speed-of-light parameter c¢. This is because (T%) (energy density) and
(T (pressure, or stresses) always have the same units, and so a statement like

"Equivalently, one can phrase the problem directly in the canonical formalism [13]. See for instance
ref. [14] for an analysis of the same issue for the chiral Lagrangian.
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(TH) < n*¥ = diag(—1,1,1,1) is independent of the units used. And so, in particu-
lar, it is independent of the value of ¢. We find this to be an interesting twist. It could
have important conceptual implications, or it could just be a technical curiosity.

3. Besides the framid, there are other cases in which the expectation value of T is more
symmetric than the ground state.® For instance, for a superfluid time-translations are
spontaneously broken, but the expectation value in question is invariant under them
(see section 6). However, in that case such a symmetry property can be explained
by standard selection rules: the ground state spontaneously breaks time translations
(H) and a U(1) symmetry (@) down to a linear combination thereof (H — u@) [10].
Expectation values and more in general correlation functions should only be invariant
under the unbroken combination. However, for operators that are neutral under the
U(1) symmetry, this automatically translates into invariance under time-translations.
TH is one such operator, and so its expectation value is invariant under time trans-
lations, even though the ground state is not. We do not see any mechanism like this
at play in the framid case.

What is the general lesson of our analysis? Are there implications for the cosmological
constant problem? In general terms, our analysis exhibits an explicit example of a quantum
system in which a certain expectation value is invariant under a symmetry even though
there are no selection rules (including those of remark 3 above) enforcing this. In order
to find a potential application of this phenomenon to the cosmological constant problem,
we think one should start by making progress in two directions. The first is to understand
how general this phenomenon is: are there other examples, and what are their common
features — for instance, do they all require a spontaneous breaking of Lorentz invariance?
The second is to find a structure, a pattern in our one-loop check: the cancellations that
lead to p + p = 0 for the framid, especially those of section 5.2, are absolutely nontrivial.
It is hard to believe that they are not enforced by a hidden structure in the computation.
Perhaps there is a better way of organizing the computation that would make such a
structure manifest. We plan to explore these questions in the near future.
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A  Wightman and Feynman

As we have seen, it is particularly helpful to rewrite the expectation value of the stress-
energy tensor in terms of derivatives acting on Wightman two-point functions. Formally,
given a set of real fields ¢* governed by a quadratic Lagrangian, in general one has

(T (0)) = lim 3™ Dl (0,) G (a) (A1)
ab

8We thank Lam Hui for bringing this up.
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where D!}(9;) is a function of derivatives, usually up to second order, and Gy represents
the matrix of Wightman two-point functions,

Gip(x) = (*(x)y"(0)) . (A2)
Notice that, for real fields, one has
Gl () = G (—a) (A.3)

However, we are more familiar with the calculation of Feynman propagators given a
certain theory, not the Wightman version. How can we relate Gy to Gg, the Feynman
propagator, in a way that is helpful to our calculations?

To begin with, notice that, by definition,

GF = (" (@)9"(0))0(t) + (4 (0)y"())0(~t) (A.4)
= Gip(2)0(t) + Gy (—2)0(—1) (A.5)
= G (2)0(t) + GIL* (2)0(—t) . (A.6)

As usual, 0(t) is the step function. This relation can be inverted to give
Gip(x) = GF(2)6(t) + GF* (z)0(—t) . (A7)

Computations are usually easier in Fourier transform. Using the Fourier representation
of the step function,

dw i

_ aw w A.

o) 27Tw+iee ’ (A-8)
we get

éab(w k) :/dw/ [iGab(w/ k) %Gab*( w/ —k) (A 9)

WA w—w +ie TV w—w —ie ’ '

ab/, /1

/ L_w HGGF(w,th.C.] , (A.10)

where the last equality follows from G (w,k) = G%(—w, —k) — a direct consequence of
the definition (A.4). We thus see that G2 is a hermitian matrix, in agreement with (A.3).

The matrix of Feynman propagators is easily computed starting from the quadratic
action written in Fourier space,

d®k dw -

2 271' (97)3 2 *‘1 W k)Kab(w7k)¢b(w7k) ’ (All)

where the kinetic matrix K is hermitian. In matrix notation, one simply has
Gr(wk) =i(K(wk)+ie) . (A.12)

Focusing on the first term in the integral (A.10), and assuming that, as usual, the
Feynman propagators decay at infinity and have (simple) poles slightly away from the real
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axis, we can close the w’ contour in the lower half plane. We thus only pick up the poles of
Gr that lie under the real axis — the positive frequency ones, for a stable theory. We get
G (w k):Z;[K_l(w’ k)W —w )rb +he (A.13)
w W, o — o + i€ ) n -C.y .
where the sum is extended over the positive frequency poles, w, = w, (k).
Using the distributional identity
1 1

i P; —amd(z) (A.14)

and the hermiticity of K, we finally get

G, k) = Y [K ) — )] (200w — ) (A.15)

As a check, for a single relativistic massive scalar the kinetic “matrix” is simply
K=uw?-k?-m?, (A.16)

the positive frequency pole is

Wg = \/k2+m2 5 (Al?)

and the Wightman two-point function thus reduces to

i (w0, k) = 2;(%)5(@0 ) (A.18)
= (2m)0(w)d (k% + m?) , (A.19)

which is the correct expression. Notice however that, in the general derivation above, we
have never used Lorentz invariance.

B Symmetric stress-energy tensors

One may consider performing our calculations starting from the more trusted symmetric
versions of the stress-energy tensor, i.e. the Hilbert and Belinfante tensors. When deriving
the Hilbert tensor for a framid, we have to keep in mind the unit-norm constraint on A*,

g'uyA,uAl/ = _17 (Bl)

which forbids varying the metric g independently of A*. One can introduce a vierbein
and vary the action with respect to it instead, yielding [6]

o — 1 (2 05 | 95 A”) , (B.2)

V=9 \ 6g9u 04,

where now the functional derivatives are unconstrained.
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The tensor above is evidently not symmetric in general. In fact, it is symmetric only
on-shell, i.e upon using the equations of motion, which, taking into account the unit-norm
constraint once more, are simply

08

5o =0 (B.3)

(77;1,1/ + A;,LAV
The end result for the (symmetric) Hilbert tensor is

TH = Lg" +201[A10,0") A% = 4,070V AY) = 0% A 01 AY) — 91 A°0") Ay + 00 AV A
+ 202 A10,0") A% — g Ao D50 A” — g 0, A0° Ag]
+2¢3 [A(“aaa"‘A”) + 0o APIYAY) — A, 00 AY) — 9% A,0H AY) — aaAWa”)Aa}
+2¢4 [AMA"aaAﬁaﬂAa +AYAFAY 90, AP — A2 A9, AP Ag — A% Apd, AP AV)

— A%AgA9P9, AY) + A ALY, AP AY) — AaAWaaAﬁaV)Aﬂ : (B.4)

where the c,’s are coefficients related to the M?, ¢7, and ¢ coefficients of section 3 [6].
Manipulating this tensor to compute our quantum corrections clearly requires considerably
more effort compared to the Noether one, eq. (3.9). The same is true for the Belinfante
tensor, which turns out to be exactly the same as the Hilbert one.

Namely, the Belinfante stress-energy tensor in general is defined as [13]

) oL oL oL
TMV:TMV_Eaﬁ w/a@b_ m/a(I)b_ n,uacpb
5 =T = 5% | g0 ) G0 T ag,en T
(B.5)
where Th” is the Noether stress-energy tensor, and the J#’s are the Lorentz generators

in the representation appropriate for the fields ®¢. For 4-vector fields,
(TP7Yox = i85 — P55 (B.6)

Writing down all terms in (B.5), the result is equal to equation (B.4) plus terms that are
proportional to the equations of motion.” We checked that upon expanding the Belinfante
and Hilbert stress-energy tensors to quadratic order in our 7j fields, we get exactly the same
expressions for (T%) and (T%) as those derived from the Noether stress-energy tensor,
egs. (3.12), (3.13).

Notice that adding terms proportional to the equations of motion is one of the am-
biguities inherent in the definition of the stress-energy tensor, or, for that matter, of any
Noether current. Consider in fact the standard Noether procedure to derive a conserved
current. It starts with inspecting how an action changes under a symmetry transformation
if the transformation parameter € of a global symmetry of the form

% 5 B + eA“[D] (B.7)

9Note that the Belinfante tensor is also non-symmetric unless one uses the equations of motion [13].
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(for some functional A®) is modulated weakly in space and time. But this prescription is
ambiguous. The standard way to implement it is

D¢ — O 4 ¢(x)AYP] (B.8)
but an equally valid one is, for example,
D — 0% + e(z)A[P] + OMe(w) F[P] (B.9)

for an arbitrary functional F'*. These two approaches both yield conserved currents, and

the two currents differ by a term proportional to the equations of motion, géf?a F a[<I>]

C The path-integral measure

In order to construct a Lorentz-invariant measure, we can start from the obvious invariant
measure for A,

DA, = [[d*A(x), (C.1)

xT

and impose an invariant constraint that removes its norm, e.g.
I(AAR +1) . (C.2)

We can then parametrize A, in terms of our Goldstone fields 7(x) and of a radial mode
p(x),

—

Ap = p cosh ||, A= p‘7_7,|smh|17\ . (C.3)
The path integral then reads
/DAM S(A AP +1) e = /DpDﬁ’ DetJ 6(p? —1)e® ... | (C.4)

where the dots denote insertions of operators, and the functional Jacobian J is

6(Ao(), A(x)) _ 9(Ao, A)
S(p(a"), (")) 9(p, 1)

Using standard functional methods [12], its determinant can be written in exponential form

4 2
DetJ = eS| ASE—(/ d’k )/d4 1o Smﬁlp‘”’, (C.6)

J(z,2') = §(x —2') . (C.5)

as

where we used that, thanks to the delta-function in (C.4), p = 1. The integral over p can
now be performed explicitly, upon which we are left with the path integral

/D* i(S+AS) | (C.7)

We thus reach the conclusion that, to preserve Lorentz invariance in our computations, we
should supplement the 7 effective action with AS.
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If we use dimensional regularization, AS vanishes, because its overall coefficient does.
This is one of the many reasons why dimensional regularization is convenient, and why
we usually don’t track functional determinants coming from field redefinitions in the path
integral.

If, on the other hand, we use other UV regulators, we should keep AS around. Notice
that, like all effects coming from functional determinants, AS is formally of one-loop order.
We should then use it consistently in perturbation theory. For instance, for one-loop
computations, we should use AS at tree-level.

AS is a (UV divergent) potential for our Goldstone fields. In particular, it includes
a mass term for them. This is inconsistent with the Goldstone theorem for spontaneously
broken boosts [7]. This means that, at one-loop, there must be other contributions that
cancel at least the effects of such a mass term. Or, conversely, if we don’t keep AS around,
at one-loop we must find nontrivial contributions to the mass of the Goldstones, in violation
of the Goldstone theorem.

We can check this explicitly. For simplicity, let’s consider the ¢;, = ¢ = 1 case, which
is particularly symmetric [6]. The two-derivative Goldstone action takes the form of a
relativistic non-linear sigma model,

M7
§ = 20 / d e f,3(7) 0 oM | (C.8)
with f;; given by
. _.  sinh?|§f .
fij<n>—aj<n>+,m2’ Py, (C.9)

where Pll and P+ are the parallel and perpendicular projectors in 77-space. We can compute
at once all one-loop contributions to the mass and to non-derivative interactions of the
Goldstone fields by computing the one-loop Coleman-Weinberg potential [11]. Following
again standard functional methods [12], we get

tr log(k? fi;(77)) (C.10)

ATy = / Az

where the trace is a simple finite-dimensional (3x3) matrix trace. We can split the matrix
inside the trace as

log(k* f:;(i7)) = log(k*)d; + log( fi; (7)) - (C.11)

The first term is field independent, and we can discard it. As to the second term, we can
evaluate its trace in a basis in which it is diagonal, such as a basis in which 7 « (1,0, 0).

We thus get
h2
AT ¢ :z(/ )/d4 SHHJ”‘ — _AS. (C.12)

Regardless of the UV regulator used, this cancels exactly all effects of AS at this order,
thus recovering agreement with the boost Goldstone theorem.

In conclusion, when using UV regulators other than dim-reg, the correction AS com-
ing from the path-integral measure should be kept, and used consistently in perturbation
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theory. In practice, for our purposes in this paper, this ends up not mattering. This is
because we computed the one-loop expectation value of the stress-energy on the framid’s
ground state. Since AS is formally already of one-loop order, its contributions to such an
expectation value should be considered only at tree level. That is,

(T )1-100p = {T")] 1oop + (AT )iree , (C.13)

where the Lh.s. stands for all one-loop contributions in the full theory (with action S+AS),
the first term on the r.h.s. stands for the one-loop contributions in the theory without AS,
and the second term on the r.h.s. stands for the correction to the stress-energy tensor
operator coming from AS, evaluated on the ground state at tree level only. But at tree-
level the ground state simply corresponds to 7 = 0, so AS vanishes there, and so does its
contribution to our expectation value.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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