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1 Introduction

The free energy F (b,m) for a quantum field theory placed on the d dimensional squashed
sphere Sdb and deformed by a mass m is one of the few quantities that can be computed
exactly in interacting theories. For a rank N supersymmetric gauge theory, supersymmetric
localization has been used to compute F (b,m) in terms of an N dimensional matrix model
integral for 2d N = (2, 2) [1], 3d N = 2 [2, 3], 4d N = 2 [4, 5], and 5d N = 1 [6, 7] theories.
The massless theory on the round sphere, i.e. m = 0, b = 1, typically flows in the IR to a
conformal field theory. At large N the CFT is often1 dual to weakly coupled supergravity
on AdSd+1 [9], while turning on mass and squashing in the CFT corresponds to suitably
deforming the bulk away from AdSd+1. One can then study the weakly coupled gravity
theory using the large N CFT either by directly comparing the deformed theories at finite
m, b, or by using the small m, b expansion in the CFT to constrain correlation functions on
flat space, which are then holographically dual to scattering in undeformed AdSd+1. For
either method, it is crucial to know the explicit large N expansion of F (b,m), not just the
matrix model integral given by localization.

This work will focus on F (b;mI) for the 3d N ≥ 6 ABJ(M) CFTs [10, 11] with gauge
group U(N)k × U(N + M)−k and Chern-Simons level k. Like any 3d N = 6 SCFT,
ABJ(M) has an SO(6)R symmetry and a U(1) global symmetry [12], so that from the
N = 2 perspective the theory has an SO(4) × U(1) flavor symmetry. The theory can
then be deformed by three real masses mI , where m2,m3 correspond to Cartans of the
SO(4) and m1 to the Cartan of the U(1). The free energy F (b;mI) on the squashed

1This is generically the case for supersymmetric gauge theories with matrix degrees of freedom. For
theories with vector degrees of freedom, the large N limit is holographically dual to weakly coupled higher
spin theory on AdSd+1, see [8] for a review.
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sphere in the presence of these masses was computed using localization in terms of an
N dimensional matrix model integral in [3]. For the massless round sphere F (1; 0), [13]
showed that this matrix model could be understood as a free Fermi gas with a nontrivial
potential, which allowed F (1; 0) to be explicitly computed to all orders in 1/N . This
Fermi gas method was then extended to F (1;m1,m2, 0) (or F (1;m1, 0,m3)) [14], and to
F (
√

3; 0) (or F (1/
√

3; 0)) [15]. For more general b,mI , however, the matrix model takes a
more complicated form that is not amenable to this technique. In this work, we will use
methods inspired from the Fermi gas approach to derive the exact relation

F

(
b;m1,m2, i

b− b−1

2

)

= F

(
1; b
−1(m1 +m2) + b(m1 −m2)

2 ,
b−1(m1 +m2)− b(m1 −m2)

2 , 0
)
,

(1.1)

where the r.h.s. is now related to the round sphere expression F (1;m1,m2, 0) that was
computed to all orders in 1/N . We can then expand both sides around the massless round
sphere to derive infinite constraints between mI , b derivatives at each order. For instance,
we find that all combinations of 4 derivatives of mI , b can be written in terms of the
quantities

∂4
m±F , ∂2

m+∂
2
m−F , ∂2

m±F , ∂2
m2∂

2
m3F , ∂3

m±∂m∓F , ∂m+∂m−F , (1.2)

all evaluated at mI = 0 and b = 1, where m± ≡ m2±m1 (or m± ≡ m3±m1).2 The quan-
tities in red have an odd number of m± derivatives and are pure imaginary, the quantity
∂2
m2∂

2
m3F in green is generically complex, while the remaining quantities in black are always

real. For parity preserving ABJ(M) theories, which includes all N = 8 theories, ∂3
m±∂m∓F

in fact vanishes, while ∂m+∂m−F vanishes for ABJM theory.3 The ABJ(M) theories have
N = 8 supersymmetry when k = 1, 2, in which case the SO(6)R × U(1) global symmetry
is promoted to SO(8)R. As a result ∂2

m2∂
2
m3F is related to the other real non-vanishing

quantities, which are all written as derivatives of m±, or equivalently as derivatives of
F (1;m1,m2, 0). Since F (1;m1,m2, 0) was computed to all orders in 1/N in [14], we thus
have all orders in 1/N expressions for all combinations of 4 derivatives of mI , b in N = 8
ABJ(M) theories. We can similarly relate certain higher order derivatives such as ∂5

bF in
terms of m± derivatives, so that they too can be computed to all orders in 1/N .

We can then compare these all orders in 1/N results for F (b,mI) to the holographic
dual of U(N)k × U(N + M)−k ABJ(M) theory, which for large N and fixed M,k is dual
to weakly coupled M-theory on AdS4 × S7/Zk, while for large N, k and fixed M,λ ≡ N/k
and then large λ is dual to weakly coupled Type IIA string theory on AdS4 × CP3.4 The
first way we do this is to directly compare F (b,mI) to the renormalized on-shell action in

2All mI , b derivatives of F that are considered in this work are assumed to be evaluated at mI = 0 and
b = 1.

3For ABJ theory with unequal rank, generically ∂m+ ∂m− F is nonzero, and is related to a choice of
background Chern-Simons level [16, 17].

4Note that the finite value of M does not appear to any perturbative order in these holographic descrip-
tions.
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the AdS4 theory dual to these deformations. The leading large N term corresponds to the
action of N = 8 gauged supergravity on AdS4 [18] evaluated on solutions to the equations
of motion that preserve the suitable symmetry group of the CFT deformation, which for
m 6= 0 or b 6= 1 breaks the amount of supersymmetry to N = 2 while preserving certain
abelian flavor groups. These solutions were matched to F (b,mI) at leading order in large N
for nonzero mI in [19] and nonzero b in [20]. The sub-leading 1/N corrections to F (b,mI)
correspond to higher derivative corrections to supergravity evaluated on the corresponding
solution. The first higher derivative corrections, i.e. the four derivative terms, were recently
derived in [21] for any minimal N = 2 gauged supergravity on AdS4 in terms of two theory
dependent coefficients. These coefficients were then fixed for the ABJ(M) M-theory dual
at finite k using the large N results for F (1, 0) and the coefficient cT of the stress tensor
two-point function, which was computed using ∂2

m±F in [22]. The free energy could then
be computed on any asymptotically AdS4 solution to sub-leading order in 1/N , which for
the case of squashing gave [21]:

F (b; 0) = π
√

2k
12

[(
b+ 1

b

)2 (
N

3
2 +

(1
k
− k

16

)
N

1
2

)
− 6
k
N

1
2

]
+O(N0) . (1.3)

We will match this gravity prediction for the sub-leading N
1
2 terms to our all orders in

1/N expression for ∂4
bF and ∂5

bF in N = 8 ABJ(M) theory, i.e. for k = 1, 2. The fur-
ther sub-leading powers of 1/N in our result will allow the coefficients of future higher
derivative corrections to supergravity to be similarly fixed. Note that once these higher
derivative terms are known, they can be used to compute gravity quantities on any asymp-
totically AdS4 solution, not just that corresponding to squashing, and can even be used to
compute thermodynamic quantities like higher derivative corrections to the the black hole
entropy [21], which are much more difficult to compute directly from CFT using holography.

The second way to constrain the dual AdS4 theory using F (b,m) is using the relation
between the small m, b expansion of F (b,m) and integrated correlators of the stress tensor
multiplet correlator, which is dual to scattering of gravitons on AdS4. In particular, since
both mI and b couple to operators in the stress tensor multiplet for 3d N = 6 SCFTs,
it should be possible to relate n derivatives of F (b;mI) evaluated at m = 0, b = 1 to
correlators of n stress tensor multiplet operators integrated on S3 [17]. These integrated
constraints were derived for ∂4

m±F , ∂
2
m+∂

2
m−F , and ∂2

m±F for N = 8 SCFTs in [22, 23]
and for N = 6 SCFTs in [24]. The stress tensor multiplet four point function in ABJ(M)
can then be constrained in the large N limit using analyticity, crossing symmetry, and the
superconformal ward identities in terms of just a few terms at each order [25, 26], whose
coefficients can then be fixed using the integrated constraints and the large N expressions
for derivatives of F (b;mI). One can then take the flat space limit of this holographic
correlator as in [27] and compare to the dual quantum gravity S-matrix in flat space,
where 1/N corrections correspond to higher derivative corrections to supergravity. This
program was carried out to sub-leading order in 1/N for the M-theory limit in [23, 26],
and the Type IIA limit in [24]. To go to further orders, one needs to both derive the
integrated constraints for the remaining mass and squashing derivatives, as well as the
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field U(N)×U(N +M) SU(2)× SU(2) U(1)
ZA (N,N) (2,1) 1
WA (N,N) (1,2) −1

Table 1. Matter content of ABJM theory and their transformations under gauge and flavor sym-
metries in N = 2 language.

large N expansions of the localization expressions. This paper completes the latter task
for all such fourth order derivatives for N = 8 ABJ(M), while for N = 6 ABJ(M) a large
N expansion is still needed for ∂2

m2∂
2
m3F .

The rest of this paper is organized as follows. In section 2, we review the matrix model
expression of F (b,m) for U(N)k×U(N+M)−k ABJ(M) theory, as well as previous all orders
in 1/N results from the Fermi Gas method. In section 3, we derive the exact relation (1.1)
between mass and squashing, and use it to show that all derivatives up to fourth order
as well as ∂5

bF can be written in terms of the invariants shown in (1.2). In section 4
we use these relations as well as the previously derived all orders in 1/N expressions for
F (1;m1,m2, 0) to derive all orders in 1/N expressions for ∂4

bF and ∂5
bF , which we will

match to the gravity prediction in (1.3). We end with a discussion of our results and future
directions in section 5. Details of our calculations are given in various appendices, and an
attached Mathematica notebook includes our result for cT in the large k weak coupling
expansion to O(k−14).

2 The ABJ(M) matrix model

We begin by reviewing ABJ(M) theory and localization results for F (b;mI), including the
all orders in 1/N results from the Fermi Gas method for the round sphere with only m±
turned on.

In N = 2 language, ABJM theory consists of vector multiplets for each U(N)k×U(N+
M)−k gauge group, as well as four chiral multiplets ZA,WA for A = 1, 2 which transform
under the gauge groups and the SU(2)R × SU(2)R × U(1) flavor symmetry as shown in
table 1. Seiberg duality relates different ABJ(M) theories as

U(N)k ×U(N +M)−k ←→ U(N)−k ×U(N + |k| −M)k , (2.1)

which implies that M ≤ |k|. Parity then sends k → −k, so the M = 0 theories can be
seen to be parity invariant from the Lagrangian, while Seiberg duality implies that the
k = M, 2M theories must be parity invariant on the quantum level.

The partition function Z(b;mI) = e−F (b;mI) on a squashed sphere with squashing
parameter b and deformed by masses mI for the chiral fields can then be computed by
assembling the standard N = 2 ingredients, as reviewed in [28], to get up to an overall

– 4 –
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mI , b independent constant:

Z(b;mI) = e
iπ

12k (b−b−1)2M(M2−1)
∫
dN+MµdNν

N !(N +M)!e
iπk[
∑

i
ν2
i −
∑

a
µ2
a]

×
∏
a>b

4 sinh [πb(µa − µb)] sinh
[
πb−1(µa − µb)

]
×
∏
i>j

4 sinh [πb(νi − νj)] sinh
[
πb−1(νi − νj)

]
×
∏
i,a

[
sb

(
iQ

4 −
(
µa − νi + m1 +m2 +m3

2

))

× sb
(
iQ

4 −
(
µa − νi + m1 −m2 −m3

2

))
× sb

(
iQ

4 −
(
−µa + νi + −m1 −m2 +m3

2

))
× sb

(
iQ

4 −
(
−µa + νi + −m1 +m2 −m3

2

))]
,

(2.2)

where Q = b + 1
b , the µa, νi correspond to the Cartans of the two gauge fields with a =

1, . . . , N + M and i = 1, . . . , N , and each chiral field contributes a factor with masses
mI determined by the charge assignments in table 1, so that m1 corresponds to U(1) and
m2 +m3,m2−m3 correspond to the Cartans of each factor in SU(2)×SU(2), respectively.
The functions sb(x) are reviewed in appendix A. The phase factor was computed for generic
N = 2 supersymmetric gauge theories in [29] in terms of the topological anomaly, which
was given for ABJ(M) theory in [16, 30]. If we restrict to the round sphere with b = 1, and
set m3 (or m2) zero, then the partition function can be simplified using identities in A and
written in terms of m± = m2 ±m1 (or m± = m3 ±m1) as

Z(m+,m−) =
∫

dN+MµdNν

N !(N +M)!e
iπk[
∑

i
ν2
i −
∑

a
µ2
a]

×
∏
a<b

(
4 sinh2 [π(µa − µb)]

)∏
i<j

(
4 sinh2 [π(νi − νj)]

)
∏
i,a (4 cosh [π(µa − νi +m+/2)] cosh [π(νi − µa +m−/2)]) .

(2.3)

As shown in [31, 32], the partition function can furthermore be simplified using the Cauchy
determinant formula to take the form

Z(m+,m−) = e−
π
2MNm−Z0

coshN πm+
2

∫
dNy

∏
a<b

sinh2 π(ya−yb)
k

cosh
[
π(ya−yb)

k + πm+
2

]
cosh

[
π(ya−yb)

k − πm+
2

]

×
N∏
a=1

 eiπyam−

2 cosh (πya)

M−1∏
l=0

sinh
[
π
(
ya+i(l+1/2)

)
k

]

cosh
[
π
(
ya+i(l+1/2)

)
k − πm+

2

]
 ,

(2.4)

where for simplicity all of the overall numerical coefficients are included in the factor Z0.
Lastly, as shown in [13, 14, 32], one can use the Cauchy determinant formula to further write

– 5 –



J
H
E
P
0
4
(
2
0
2
1
)
2
4
4

this partition function as a free Fermi gas with a single body Hamiltonian that depends on
m±. One can then use standard methods from statistical mechanics to compute Z(m+,m−)
to all orders in 1/N as

Z(m−,m+) = eAC−
1
3Ai

[
C−

1
3 (N −B)

]
+ (non-perturbative in N) ,

C = 2
π2k(1 +m2

+)(1 +m2
−)

,

B = π2C

3 − 1
6k

[
1

1 +m2
+

+ 1
1 +m2

−

]
− k

12 + k

2

(1
2 −

M

k

)2
,

A = A[k(1 + im+)] +A[k(1− im+)] +A[k(1 + im−)] +A[k(1− im−)]
4 ,

(2.5)

where the constant map function A is given by [33]

A(k) = 2ζ(3)
π2k

(
1− k3

16

)
+ k2

π2

∫ ∞
0

dx
x

ekx − 1 log
(
1− e−2x

)

= −ζ(3)
8π2 k

2 + 2ζ ′(−1) +
log

[
4π
k

]
6 +

∞∑
g=0

(2πi
k

)2g−2 4gB2gB2g−2
(4g)(2g − 2)(2g − 2)! ,

(2.6)

and in the second line we wrote A in the large k expansion [33]. Note that the all orders
in 1/N formula only depends on M via the parameter B.

A useful parameterization of ABJ(M) is given by the coefficient cT of the two-point
function of canonically normalized stress-tensors:

〈Tµν(~x)Tρσ(0)〉 = cT
64 (PµρPνσ + PνρPµσ − PµνPρσ) 1

16π2~x2 , Pµν ≡ ηµν∇2 − ∂µ∂ν . (2.7)

This quantity is related to the AdS4 Planck length, and so is a more natural expansion
parameter in the holographic large N limit than N itself. We can compute cT in terms of
Z(m−,m+) as [34]

cT =64
π2∂

2
m±F , (2.8)

so that it can be written to all orders in 1/N using (2.5). It turns out that any other
quantity computed by taking mI , b derivatives of F (b;mI), when expanded at large cT in
either the M-theory or Type IIA limits, becomes independent of M . In this sense these
limits are blind to parity, which as discussed depends on the value of M . One can also
check that only even numbers of m± derivatives are nonzero in this limit, and that these
quantities are always real.

3 Exact relation between squashing and mass

We will now derive the relation between mass and squashing shown in (1.1). We will then
use this result to show that all quartic order mI , b derivatives of F (b;mI) can be written
in terms of the invariants (1.2), and that for N = 8 ABJ(M) all of these invariants are

– 6 –
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known to all orders in 1/N from previous Fermi gas results. For N = 6 ABJ(M), no such
all orders result is known yet for ∂2

m2∂
2
m3F . We will verify all these relations at both small

finite M,N and in the large k weak coupling expansion. Note that in general all mI , b

derivatives are evaluated at mI = 0 and b = 1.
We start by setting m3 = i b−b

−1

2 in (2.2) and using properties of sb(x) given in ap-
pendix A to write the partition function purely in terms of trigonometric functions:

Z

(
b;m1,m2, i

b− b−1

2

)
= e

iπ
12k (b−b−1)2M(M2−1)

∫
dN+MµdNν

N !(N +M)!e
iπk[
∑

i
ν2
i −
∑

a
µ2
a]

×
∏
a>b

4 sinh [πb(µa − µb)] sinh
[
πb−1(µa − µb)

]
×
∏
i>j

4 sinh [πb(νi − νj)] sinh
[
πb−1(νi − νj)

]
×
∏
i,a

1
2 cosh

(
πb−1 (µa − νi + m+

2
)) 1

2 cosh
(
πb
(
νi − µa + m−

2
)) ,
(3.1)

where recall that m± = m2 ± m1. In appendix A, we then perform the standard Fermi
gas steps of writing the products of trigonometric functions as Cauchy determinants, in-
troducing auxiliary variables so that the µ, ν factorize into gaussian integrals, and finally
performing these integrals and rewriting the Cauchy determinant back into the standard
form. The result is

Z

(
b;m1,m2, i

b− b−1

2

)
= Z(b−1m+, bm−) , (3.2)

where on the r.h.s. we wrote the simplified round sphere partition function defined in (2.4),
and note that the b dependent phase that appeared in (2.2) is precisely cancelled, so that
the r.h.s. of (3.2) depends on b only through a rescaling of the masses. We can then simply
rewrite m± in terms of m1,m2 to get (1.1). This entire calculation can also be performed
with the roles of m2 and m3 switched with the same result on the r.h.s. of (3.2), which is
expected since these masses both correspond to the Cartans of the SO(4) part of the flavor
symmetry.

We can now expand both sides of (3.2) around mI = 0 and b = 1 to derive relations
between derivatives of F (b;mI). The first nonzero relation appears at quadratic order and
relates

∂2
bF = 2∂2

m±F + 2∂m+∂m−F , (3.3)

where we used the fact that various single derivatives of b and mI identically vanish. From
the explicit single variable partition function for Z(m+,m−) as given in (2.4), we see that

Z̄(m+,m−) = (−1)MNZ(−m+,m−) . (3.4)

This implies that any odd number of derivatives ofm+ is pure imaginary, such as ∂m+∂m−F .
We thus conclude that

Re ∂2
bF = 2∂2

m±F , (3.5)
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where recall that ∂2
m±F is manifestly real. This relation is expected from the general results

of [17, 35], which showed that the real part of two derivatives of any parameter that couples
to the stress tensor multiplet should be related to cT , where the precise relation in our case
was given in (2.8).

At cubic order, we similarly find the nonzero relations

i∂m1∂m2∂m3F = −4∂2
m±F , ∂3

bF = −6∂2
m±F − 6∂m+∂m−F . (3.6)

Since conformal symmetry fixes both three point and two point functions of the stress
tensor to be proportional to cT [36], we therefore expect that all three derivative terms can
be written as linear combinations of two derivative terms. The factor of i on the l.h.s. of the
first relation follows from the fact that the real cubic casimir invariant for the SO(4)×U(1)
flavor symmetry (from the N = 2 perspective) is im1m2m3.

At quartic order, the full list of nonzero relations is

∂4
m2,3F = 2∂4

m±F + 6∂2
m+∂

2
m−F + 8∂3

m±∂m∓F ,

∂4
m1F = 2∂4

m±F + 6∂2
m+∂

2
m−F − 8∂3

m±∂m∓F ,

∂2
m1∂

2
m2,3F = 2∂4

m±F − 2∂2
m+∂

2
m−F ,

∂2
b∂

2
m2,3F = 8∂2

m±F + ∂2
m2∂

2
m3F ,

∂2
b∂

2
m1F = 8∂2

m±F + 2∂4
m±F − 2∂2

m+∂
2
m−F ,

∂4
bF = 78∂2

m±F − 2∂4
m±F − 6∂2

m+∂
2
m−F + 6∂2

m2∂
2
m3F − 8∂3

m±∂m∓F − 30∂m+∂m−F ,

(3.7)

which are all written in terms of the six invariants in (1.2). As discussed above, the two
invariants ∂m+∂m−F and ∂3

m±∂m∓F are both pure imaginary, since they involve an odd
number of derivatives of m+, and they vanish for ABJM theory with equal rank. The one
invariant that cannot generically be written as derivatives of m± is ∂2

m2∂
2
m3F . For N = 8

ABJ(M), however, the flavor group SO(4)×U(1) is enhanced to SO(6), which implies that
∂2
m2∂

2
m3F must be related to the other mass derivatives as [23]

N = 8 : ∂2
mI
∂2
mJ
F = 2∂4

m+F − 2∂2
m+∂

2
m−F for I 6= J . (3.8)

In this case, we find that ∂2
b∂

2
m2,3F = ∂2

b∂
2
m1F in (3.7) as expected.

At quintic and higher order of b,mI derivatives, the relation (3.2) is not sufficient to
write all derivatives in terms of just m± derivatives even for N = 8. For instance, at quintic
order ∂m1∂

2
m2∂

2
m3F cannot be further simplified. Nevertheless, at quintic order for N = 8

we can use (3.2) and (3.8) to write ∂5
bF as

∂5
bF = −660∂2

m±F − 100∂4
m±F + 180∂2

m+∂
2
m−F . (3.9)

At higher order a > 5, we can no longer write ∂abF in terms of just m± derivatives.
We checked all the relations discussed in this section for U(N+M)k×U(N)−k at finite

M,N, k as well as in the large k weak coupling expansion. For instance, in table 2 we show
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k ∂2
m1∂

2
m2F ∂2

m2∂
2
m3F

1 -24.3523 -24.3523
2 -29.2656 -29.2656
3 -33.3494 −32.7324 − 1.05679i
4 -36.5672 −35.4997 − 2.0899i
5 -39.0269 −37.748 − 2.83569i
6 -40.8938 −39.5664 − 3.29976i
7 -42.317 −41.0312 − 3.5507i
8 -43.4129 −42.2112 − 3.65555i
9 -44.2669 −43.1652 − 3.66535i
10 -44.9409 −43.941 − 3.61564i

Table 2. Explicit free energy derivatives for the U(1)k×U(2)−k ABJ theory for k = 1, . . . 10, where
all derivatives as usual are evaluated at mI = 0 and b = 1.

∂2
m1∂

2
m2F and ∂2

m2∂
2
m3F for the U(1)k ×U(2)−k theory for k = 1, . . . 10, as computed from

the explicit partition function in (2.2). As expected, for k = 1, 2 when the theory is N = 8,
these quantities are identical and real. For all higher k, when the theory is only N = 6,
these quantities are distinct and ∂2

m2∂
2
m3F is complex. Finally, in appendix B we show that

∂2
m1∂

2
m2F and ∂2

m2∂
2
m3F differ explicitly in the large k weak coupling expansion, which is

automatically N = 6. We also computed cT to O(k−14) using an efficient algorithm for the
weak coupling expansion, which improves the O(k−2) result of [37].

4 Large N and holography

In the previous section, we showed that for N = 8 ABJ(M) theory, we can relate ∂4
bF

and ∂5
bF to derivatives of F (m−,m+) using (3.7) and (3.8). As reviewed in section 2, this

quantity was computed to all orders in 1/N using Fermi gas methods, which implies that
we can also compute ∂4

bF and ∂5
bF to all orders in 1/N . For the U(N)k ×U(N)−k theory

with finite k = 1, 2, in which case we have N = 8 supersymmetry, we find

∂4
bF = 10

√
2kπN3/2 − 5π

(
k2 − 16

)
4
√

2
√
k

√
N + 39k2A′′(k)− 5k4A′′′′(k)− 9

+ π
(
5
(
k2 − 32

)
k2 + 704

)
384
√

2k3/2
1√
N

+O(N−1) ,

∂5
bF =− 60

√
2kπN3/2 + 15π

(
k2 − 16

)
2
√

2
√
k

√
N − 330k2A′′(k) + 50k4A′′′′(k) + 30

− 5π
(
k4 − 32k2 + 448

)
64
√

2k3/2
1√
N

+O(N−1) ,

(4.1)

while it is straightforward to compute higher orders in 1/N . The constant map A was
defined in (2.6), and its derivatives can be computed exactly for any integer value of k. In
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particular, for the k = 1, 2 values that are relevant here, we find that

A′′(1) = 1
6 + π2

32 , A′′(2) = 1
24 ,

A′′′′(1) = 1 + 4π2

5 − π4

32 , A′′′′(2) = 1
16 + π2

80 .
(4.2)

The leading and sub-leading terms in (4.1) exactly match ∂4
bF and ∂5

bF as computed from
the bulk prediction (1.3). The bulk prediction is in fact for any k, not just the k = 1, 2
with N = 8 supersymmetry that we could compute here. This implies that (4.1) must hold
for any value of k up to O(N

1
2 ). As discussed above, in the large N limit it is more natural

to expand quantities in terms of cT than N . Using the large N expansion for cT given
by (2.8) and (2.5), we find that ∂4

bF and ∂5
bF can be expanded to all orders in 1/cT as

1
c2
T

∂4
bF = 15π2

32cT
+ 24k2A′′(k)− 5k4A′′′′(k) + 6

c2
T

+ 4
(6π
k2

)2/3 1

c
7
3
T

+O(c
8
3
T ) ,

1
c2
T

∂5
bF = −45π2

16cT
+ −240k2A′′(k) + 50k4A′′′′(k)− 60

c2
T

− 40
(6π
k2

)2/3 1

c
7
3
T

+O(c
8
3
T ) .

(4.3)

Here, the 1/cT corresponds to the tree level supergravity correction, the 1/c2
T corresponds

to the 1-loop supergravity correction, and the 1/c
7
3
T term corresponds to the tree level D6R4

correction. Curiously, the 1/c
5
3
T correction, which would correspond to the R4 correction,

vanishes.
Finally, we can also consider the limit of large N, k at fixed λ ≡ N/k and then large λ,

which is dual to weakly coupled Type IIA string theory on AdS4×CP3. Using the large k
expansion of A(k) given on the second line of (2.6), we find that

1
c2
T

∂4
bF = 1

cT

[
15π2

32 − 9ζ(3)
32
√

2πλ
3
2

+O(λ−3)
]

+ 1
c2
T

[
5 + 9ζ(3)

π2λ
− 15ζ(3)

2
√

2π3λ
3
2

+O(λ−3)
]

+O(c−3
T ) ,

1
c2
T

∂5
bF = 1

cT

[
−45π2

16 + 45ζ(3)
16
√

2πλ
3
2

+O(λ−3)
]

+ 1
c2
T

[
−50− 90ζ(3)

π2λ
+ 75ζ(3)
√

2π3λ
3
2

+O(λ−3)
]

+O(c−3
T ) .

(4.4)

Here, the c−1
T term corresponds to the tree level supergravity correction, the c−1

T λ−
3
2 term

corresponds to tree level R4, while the various c−2
T terms correspond to 1-loop corrections.

Unlike the M-theory expansion in (4.3), we find that the R4 correction no longer vanishes.
This result can also be compared to future bulk calculations in this background.
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5 Conclusion

The main result of this work is the exact relation between the mass and squashing deformed
sphere free energy F (b;mI) given in (1.1) for all N = 6 ABJ(M) theories. This relation
implies infinite relations between derivatives of F (b;mI) evaluated at m = 0, b = 1, such as
the fact that all four derivatives can be written in terms of the six quantities listed in (1.2).
For the N = 8 ABJ(M) theories, these relations allowed us to compute ∂4

bF (b;mI) and
∂5
bF (b;mI) to all orders in 1/N , which at sub-leading order match the prediction given

in (1.3) from M-theory compactified on AdS4 × S7/Zk and expanded to leading order
beyond the supergravity limit [21]. Our results provide constraints at further orders in 1/N
that will allow more higher derivative corrections to supergravity to be derived following
the program outlined in [21].

It is instructive to compare the results of this work for F (b;mI) in ABJ(M) to similar
results in 4d N = 4 SYM. The free energy F (b;m; τ) in this theory was computed using
localization in [4, 5] in terms of an N dimensional matrix model integral that depends
on the complexified gauge coupling τ , a single mass m, and the squashing b, all of which
couple to operators in the N = 4 stress tensor multiplet. In [38], it was found that all four
derivatives of these three parameters can be written in terms of the three invariants

∂4
mF (b;m; τ) , ∂2

m∂
2
bF (b;m; τ) , c , (5.1)

where c is the conformal anomaly and the coefficient of the canonically normalized stress
tensor two-point function. Recall that for N = 8 ABJ(M) theory, we also found that
all four derivatives of F (b;mI) could be written in terms of the three quantities shown
in black in (1.2), where the similarity to 4d becomes even tighter once we use table 3.7
to exchange ∂2

m+∂
2
m−F for ∂2

m±∂
2
bF , and we note that the 3d analog of c is cT , which is

proportional to the third invariant ∂2
m±F . The fact that there are just three independent

quartic derivatives for maximally supersymmetric theories in both 3d and 4d is in some
sense expected, as in both cases the unprotected D8R4 term in the large N expansion of the
stress tensor correlator can be fixed in terms of four coefficients [26, 39], so if there were four
independent quartic derivatives then one could have derived an unprotected quantity from
protected localization constraints. Another similarity between 3d and 4d is that in [40] it
was shown that for a special value of the mass F (b;m; τ) obeys

F

(
b; ib− b

−1

2 ; τ
)

= F (1; 0; τ) , (5.2)

i.e. it becomes independent of the squashing and mass, just as in (1.1) we showed that
the exact same relation between m3 and b made F (b;mI) equivalent to the round sphere
free energy with m3 = 0, although in 3d the dependence on m3 and b is now captured
by m1 and m2. It would be interesting to find a deeper geometric explanation for this
simplification in all theories where m, b both couple to the stress tensor multiplet.

One application of our results that we did not explore in this work is the relation
between n derivatives of mI , b of F (b;mI) and correlators of n stress tensor multiplets. For
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N = 8 ABJM theory, ∂4
m±F and ∂2

m+∂
2
m−F were related in [23] to integrated constraints

on the stress tensor four point function, which were used to derive the large N expansion
up to order D4R4 in the bulk language. One further constraint is needed to fix the D6R4

term,5 which is the highest order protected term, and it is possible that the integrated
constraint from ∂2

b∂
2
mF will be sufficient to fix this term.

For N = 6 ABJ(M), from the list of independent quartic derivatives in (1.2), we
expect that there will now be six total independent constraints. Recall that ∂m+∂m−F

and ∂3
m±∂m∓F are known to vanish in the Fermi gas expression that describes both the

M-theory and Type IIA string theory limits, so we expect just four constraints in these
cases. The integrated constraints for ∂4

m±F and ∂2
m+∂

2
m−F were derived in [24] and used

to fix the stress tensor correlator in both the M-theory and Type IIA limit to order R4.
To fix the correlator to order D4R4 just from CFT results, one would need six constraints,
which is probably more than are even in principle independent. On the other hand, if one
uses the known Type IIA amplitude in the flat space limit to fix two of these constraints,
then just four more constraints are required, which matches the four invariants we found
in this work. To complete this program, one would need to derive the large N expansion of
∂2
m2∂

2
m3F , which remains unknown for N = 6 ABJ(M).6 It would be nice if the Fermi gas

method for n-body operators as initiated in [41] could be used to compute this quantity. At
strong coupling, one could also try to compute them at large N and finite λ ≡ N/k using
topological recursion as was done for Wilson loops and the free energy in [42]. Topological
recursion for the ABJM matrix model is quite complicated, however, especially for the
multi-body operators we consider, so one could instead try to guess the large N and finite
λ result from the small λ, i.e. large k, weak coupling expansion, which can be computed
to very large order using the algorithm introduced in appendix B of this work. A first
step would be guessing the finite λ resummation for cT , which we computed to O(k−14)
in this work.

One final interesting limit of N = 6 ABJ(M) that we have not yet considered is the
large M,k limit at fixed λ̃ = M/k and N , which is holographically dual to weakly coupled
N = 6 higher spin theory [43]. Unlike the M-theory and string theory limits, this limit
is sensitive to the value of M , and thus to parity. The parity violating quartic invariants
shown in red in (1.2) can also be computed in this limit following [44], and could potentially
be used to constrain the correlator. This limit was recently considered in the context of
the 3d N = 6 numerical bootstrap in [32], and will be further discussed in upcoming work.
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A Details of squashed sphere calculation

Let us start by reviewing the properties of the double sine function sb(x) (for reviews see
for instance [15, 45]). This function is defined as

sb(x) = exp
[
− iπ2 x

2 − iπ

24
(
b2 + b−2

)
+
∫
R+i0

dt

4t
e−2itx

sinh (bt) sinh (t/b)

]
, (A.1)

where the integration contour evades the the pole at t = 0 by going into the upper half-
plane. This function obeys several identities:

1. s−1
b (x) = sb(−x).

2. sb−1(x) = sb(x).

3. sb
(
ib
2 − σ

)
sb
(
ib
2 + σ

)
= 1

2 cosh(πbσ) .

The last identity is what we used to get (2.3) and (3.1).
Next, we will show how (3.1) is related to (2.3) as in (3.2), by adapting the usual

Fermi gas steps for ABJ as discussed in [30, 46]. We start from a slightly modified version
of (3.1):

Z ≡ Z
(
b; b m+ − b−1m−

2 ,
b m+ + b−1m−

2 ,
i
(
b− b−1)

2

)

= N1

∫
dM+Nµ dNν e

iπ
12k (b−b−1)2M(M2−1)

e
− ik

4π

(∑
j
µ2
j−
∑

l
ν2
l

)
×

∏
j<l

2 sinh
(
b

(
µj − µl

2

))
2 sinh

(
b−1

(
µj − µl

2

))
×

∏
h<g

2 sinh
(
b

(
νh − νg

2

))

2 sinh
(
b−1

(
νh − νg

2

)))

×
∏
r,s

 1
2 cosh

(
b
(
µr−νs

2

)
− πm−

2

) 1
2 cosh

(
b−1

(
µr−νs

2

)
+ πm+

2

)
 , (A.2)

where for convenience we changed variables (µ, ν) → (µ, ν) / (2π) relative to (3.1), and
defined the numerical constant

N1 = 1
(2π)M+2N (M +N)! N !

. (A.3)
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Our goal is to show that Z is independent of b. Once this is done, plugging in the right
values of m± will give (3.2). Our first step will be to use the Cauchy determinant for-
mula [14, 46] to turn the integrand into a product of two determinants. From here, a
clever change of integration variables will let us replace one of the determinants with the
product of the diagonal elements of the corresponding matrix. We will then express the
integrand as a Fourier transform; as is routinely done in Fermi gas derivations. This allows
us do the µ, ν integrals (these are simple Gaussian integrals at this stage), which gives a
simple b-dependent phase factor that exactly cancels a similar factor (A.2), thus making
Z independent of b. Since the object of our derivation is to exhibit the b-independence
of (A.2), we do not need to keep track of any b-independent factors that are produced along
the way. Hence, we will employ a series of normalization factors Ni that soak up all such
b-independent factors.

We now begin the calculation by using the Cauchy determinant formula as given
in [14, 46] to turn (A.2) into

Z = N1

∫
dM+NµdNν e

− ik
4π

(∑
j
µ2
j−
∑

l
ν2
l

)
−M

2

∑
r

(Qµr+πm+−πm−)+M
2

∑
s
Qνs+ iπ

12k (b−b−1)2M(M2−1)

[
det
(

ΘN,l
1

2 cosh b
−1(µj−νl)+πm+

2

+ Θl,N+1e
(M+N−l+ 1

2 )(b−1µj+πm+)
)]

[
det
(

ΘN,s
1

2 cosh b(µr−νs)−πm−
2

+ Θs,N+1e
(M+N−s+ 1

2 )(bµr−πm−)

)]
, (A.4)

where Θr,s = Θ (r − s) is the step function, and the indices (j, l, r, s) run from 1 to N +M .
Now we use the following identity (similar to the one in appendix A of [47]):

∫
dM+Nµ dNν det (f ((µj , νl))× det (f ((µj , νl))

= (M +N)!
∫
dM+Nµ dNν

M+N∏
j=1

f ((µj , νj)

× det (f ((µr, νs)) (A.5)

to get:

Z = N2
∑

σ∈SM+N

(−1)σ
∫
dM+NµdNν

× e
− ik

4π

(∑
j
µ2
j−
∑

l
ν2
l

)
−M2

∑
r
(Qµr+πm+−πm−)+M

2
∑

s
Qνs+ iπ

12k (b−b−1)2M(M2−1) N∏
j=1

1
2 cosh b

−1(µj−νj)+πm+
2

M+N∏
l=N+1

e(M+N−l+ 1
2 )(b−1µl+πm+)


 N∏
r=1

1

2 cosh b(µσ(r)−νr)−πm−
2

 M+N∏
s=N+1

e(M+N−s+ 1
2 )(bµσ(s)−πm−)

 , (A.6)
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where we’ve also expanded the remaining determinant term. We now rewrite the integrals
as Fourier transforms:

Z = N3

∫
dM+Nµ dNν dNp dM+Nq

× e
− ik

4π

(∑
j
µ2
j−
∑

l
ν2
l

)
−M2

∑
r
(Qµr+πm+−πm−)+M

2
∑

s
Qνs+ iπ

12k (b−b−1)2M(M2−1) N∏
j=1

ei
pj(b−1(µj−νj)+πm+)

2π

2 cosh pj
2


M+N∏
l=N+1

e(M+N−l+ 1
2 )(b−1µl+πm+)


 M+N∏
r=N+1

δ

(
2πi

(
M +N − r + 1

2

)
+ qr

)
e−i

qrm−π
2π

 N∏
s=1

e−i
qs(πm−+bνs)

2π

2 cosh qs
2


 ∑
σ∈SM+N

(−1)σ
M+N∏
t=1

ei
qt(bµσ(t))

2π

 . (A.7)

The µ, ν integrals are now easy to do and generate some mass-dependent phases, which
are absorbed into the definition of N4. The resulting expression may be massaged into the
following form:

Z =

 M+N∏
j=N+1

e
i

4πk (−2πi(M+N−j+1/2)b−1+iπMQ)2

 e iπ
12k (b−b−1)2M(M2−1)

×N4
∑

σ∈SM+N

(−1)σ
∫
dM+Nq dNp

M+N∏
l=N+1

e
i

4πk (−4iπqσ(l)(M+N−l+1/2)+q2
l b

2+2iπMQbql)

 N∏
r=1

e
i pr2π

(
qσ(r)−qr

k
+πm+

)
2 cosh pr

2


 N∏
s=1

e−i
qsm−

2

2 cosh qs
2

 M+N∏
t=N+1

δ

(
2πi

(
M +N − t+ 1

2

)
+ qt

) . (A.8)

We now observe that the b-dependent terms under the integral sign are functions of only
of those qj ’s with j ∈ {N + 1, . . . ,M +N}. These may be pulled out of the integral with
the help of the delta functions – leaving behind an integral that is completely independent
of b (and hence absorbed into the definition of N5):

Z=N5

 M+N∏
j=N+1

e
i

4πk

(
(−2πi(M+N−j+1/2)b−1+iπMQ)2−4π2(M+N−j+1/2)2b2+4π2MQb(M+N−j+1/2)

)
× e

iπ
12k (b−b−1)2M(M2−1)

= N6 e
− iπ
k

(
b2+ 1

b2
−2
)M(M2−1)

12 × e
iπ

12k (b−b−1)2M(M2−1)

= N6 , (A.9)

where note in the second line that the b-dependent phase in (A.2) has cancelled. We have
thus shown that Z = Z

(
b; b m+−b−1m−

2 , b m++b−1m−
2 ,

i(b−b−1)
2

)
is independent of b, so we
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are now free to plug in b = 1 to get:

Z

(
b; b m+ − b−1m−

2 ,
b m+ + b−1m−

2 ,
i
(
b− b−1)

2

)
= Z

(
1; m+ −m−

2 ,
m+ +m−

2 , 0
)

= Z (1;m1,m2, 0) . (A.10)

This result is valid for any value ofm+ andm−, so we can setm+ → b−1m+ andm− → bm−
to get (3.2).

B The large k expansion

In this appendix we compute some observables in ABJ(M) in perturbation theory in the
CS level k. The computation follows standard procedure, for a recent example see [37].

Our starting point is the partition function deformed by real masses on the squashed
sphere (2.2). Taking derivatives with respect to masses and the squashing parameter, and
setting them to zero, we can define observables in the matrix model. In general, this
procedure should lead to some expectation value in the matrix model of the form

〈O〉 =
∫

dNνdN+Mµ

N !(N +M)!e
iπk(

∑
i
ν2
i −
∑

a
µ2
a)Z1−loop(νi, µa)O(νi, µa) . (B.1)

where

Z1−loop (νi, µb) =
∏
i<j 4 sinh2 [π (νi − νj)]

∏
a<b 4 sinh2 [π (µa − µb)]∏

i,a 4 cosh (π (νi − µa)) cosh (π (νi − µa))
, (B.2)

and O(νi, µa) is some operator.
We are interested in computing such objects in perturbation theory in 1/k. To simplify

notation we first perform the change of variables

xi = π
√
kνi, ya = π

√
kµa , (B.3)

which brings our expressions to the form

〈O〉 =
∫
dXdY e

i
π (
∑

i
x2
i−
∑

a
y2
a)f(x, y)O(x, y) , (B.4)

where dX, dY are the Haar measures7 for U(N) and

f(x, y) =
∏
i<j

k sinh2
(
k−

1
2 (xi−xj)

)
(xi − xj)2

∏
a<b

k sinh2
(
k−

1
2 (ya−yb)

)
(ya − yb)2

1∏
i,a cosh2

(
k−

1
2 (xi−ya)

) .
(B.5)

We will normalize all expectation values as 〈O〉 → 〈O〉/Z0 where

Z0 =
∫
dXdY e

i
π (
∑

i
x2
i−
∑

a
y2
a) . (B.6)

Note that the expression (B.4) has the form of an expectation value of f(x, y)O(x, y) in a
matrix model which is the product of two decoupled free Gaussian matrix models.

7These include the standard Vandermonde determinant factors.
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In order to perform computations, we must start by explicitly expanding f and O in
1/k. For example:

f(x, y) = 1 + 1
k

1
3

∑
i<j

x2
ij +

∑
a<b

y2
ij

−∑
i,a

(xi − ya)2

+O(k−2) , (B.7)

And similarly for O(x, y). Plugging these expansions into (B.4), it is clear that we will
end up with the expectation value of a sum of products of the form

∑
i x

k
i and

∑
a y

l
a for

k, l ∈ N in a product of Gaussian matrix models. Since the X and Y Gaussian matrix
models are decoupled, these expectation values decouple. So it is enough to be able to
compute expectation values of the form〈(∑

i1

xi1

)ν1(∑
i2

x2
i2

)ν2(∑
i3

x3
i3

)ν3

. . .

〉
= 〈(trX)ν1(trX2)ν2(trX3)ν3 . . .〉 (B.8)

in a free Gaussian matrix model, for some integers νi, i = 1, 2, . . . (and similarly for ya).
Here we have used the fact that the xi’s are the eigenvalues of X.

We have thus reduced the problem to that of computing expectation values of multi-
trace operators in a free Gaussian matrix model. These expectation values have closed
form expressions [48], which we now review. Focus on the X matrix model, and consider
the computation of the expectation value of the operator

tν̄ = (trX)ν1(trX2)ν2(trX3)ν3 . . . (B.9)

where νi ∈ N. The expectation value we are computing is explicitly

〈tν̄〉 =
∫
dXtν̄(X)e−

1
2κ trX2∫

dXe−
1

2κ trX2 . (B.10)

for κ = iπ
2 .

We begin by defining 2n =
∑
j∈N jνj (note that for odd

∑
j∈N jνj this correlator

vanishes). We can think of ν̄ as a partition of 2n, ν̄ = [1ν1 . . . (2n)ν2n ]. Since partitions
of 2n are in one-to-one correspondence with classes of the permutation group S2n, we will
use the same notation for both. Thus, for example, the correlator (trX)m corresponds to
the identity element 1 ∈ Sm, while the correlator trXm corresponds to the longest cycle
(12 . . .m) ∈ Sm.

Denoting by χY the irreducible characters of S2n with Y denoting a class of S2n,8 the
authors of [48] found

〈tν̄〉 = (2n− 1)!!κn
∑
Y

χY (ν̄)χY ([2n])
χY ([12n]) chY (1) . (B.11)

8The character tables can be generated in Mathematica for small n. For example, the character table
for S4 is obtained using the command FiniteGroupData[“S4”, “CharacterTable”].
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The sum here is over all classes Y of S2n, and chY (1) is the dimension of the su(n) rep-
resentation associated with Y .9 Equation (B.11) represents a fast and efficient way of
computing many-body correlators in the free Gaussian matrix model, and thus allows us
to compute the observables discussed above to high orders.

As an example, we compute cT to order k−14. We can find the operator O by using
equation (2.8):

cT = 64
π2∂

2
m+F = −64

π2

(
Z ′′

Z
−
(
Z ′

Z

)2)
, (B.12)

where primes denote derivatives by m+ = m2 +m1. The derivatives are given by

Z ′ =−
∫

dNνdN+Mµ

N !(N +M)!e
iπk(

∑
i
ν2
i −
∑

a
µ2
a)Z1−loop (νi, µa)

π

2
∑
a,i

tanh π (νi − µa) , (B.13)

Z ′′ =
∫

dNνdN+Mµ

N !(N +M)!e
iπk(

∑
i
ν2
i −
∑

a
µ2
a)Z1−loop (νi, µa)

× π2

4


∑
a,i

tanh (π (νi − µa))

2

−
∑
a,i

1
cosh2 (π (νi − µa))

 . (B.14)

Note that Z ′ vanishes since it is odd under ν, µ → −ν, µ, and so it is enough to compute
Z ′′. The corresponding operator O can be read off from (B.14):

O(ν, µ) = π2

4


∑
a,i

tanh (π (νi − µa))

2

−
∑
a,i

1
cosh2 (π (νi − µa))

 . (B.15)

Following the algorithm above, we computed cT to O(k−14). Due to the length of the
expression, we give it in an attached Mathematica file.

We will next be interested in computing ∂2
m2∂

2
m3F from equation (1.2) in perturbation

theory. Specifically, we would like to compare it to another independent quantity, ∂2
m1∂

2
m2F ,

and to show that they are not the same in perturbation theory in large k (where we have
N = 6 SUSY). Explicitly, ∂2

m2∂
2
m3F is given by

∂2
m2∂

2
m3F = −

∂2
m2∂

2
m3Z

Z
+
∂2
m2Z

Z

∂2
m3Z

Z
. (B.16)

Using the relation (1.1), we find that we can write the first term as

∂2
m2∂

2
3Z

Z
= 4

∂2
m−∂

2
bZ

Z
−

(
2∂4

m+ − 2∂2
m+∂

2
m− + 16∂2

m+

)
Z

Z
, (B.17)

while we find
∂2
m2Z

Z
=
∂2
m3Z

Z
= 2

∂2
m+

Z
+ 2

∂m+∂m−Z

Z
. (B.18)

9This can be computed by mapping the classes Y to Young tableaux. The dimension is then given by
the ratio of two numbers. To find the numerator, we start by inserting n into the box in the top-left corner,
and then filling in the rest of the boxes such that a step to the right increases the number by 1, while a
step down decreases it by 1. The numerator is then the product of these integers. The denominator is just
the usual hook length of the diagram.
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We thus have to compute the derivatives ∂2
m−∂

2
bZ, ∂4

m+Z, ∂
2
m+∂

2
m−Z, ∂

2
m+Z, ∂m+∂m−Z.

First, we write the operators O(xi, ya) corresponding to each term:

∂2
m−∂

2
bZ →

∑
a,i

1
8π

2sech2(gsrai)
(
20gsrai tanh(gsrai)− 2

(
4g2
sr

2
ai + π2 + 4

)
+ 3

(
4g2
sr

2
ai + π2

)
sech2(gsrai)

)
+ π2

4
∑
b,j

tanh (gsrbj)
∑
a,i

sech2 (gsrai)

×
(
6gsrai −

(
4g2
sr

2
ai − cosh (2gsrai) + π2 − 1

)
tanh (gsrai)

)
+ObO+(0) (B.19)

∂4
m+Z → O2

+(0)− 2∂mO+(m)π2
∑
a,i

tanh (πrai) + ∂2
mO+(m) (B.20)

∂2
m+∂

2
m−Z → O2

+(0) (B.21)

∂2
m+Z → O+(0) (B.22)

∂m+∂m−Z →−
π2

4

∑
a,i

tanh (gsrai)

2

(B.23)

where rai ≡ xa − yi. Here

O+(m) =π2

4


∑
a,i

tanh
(
gsrai + πm

2

)2

−
∑
a,i

1
cosh2 (gsrai + πm

2
)
 , (B.24)

Ob =
∑
a<b

(
2gsxab

(
coth (gsxab)− gsxabcsch2 (gsxab)

))
+ (xab ↔ yij)

− 1
2
∑
a,i

(
4g2
sr

2
ai + 2gsrai sinh(2gsrai) + π2

)
sech2(gsrai) . (B.25)

Now we can compute the expectation values. Plugging these into equation (B.16), we find

∂2
m2∂

2
3F =− 1

4N(M +N)π4 − 1
6 iN(M +N)π3

(
−28M + 4M3 + 3Mπ2

) 1
k

+ 1
24N(M +N)π3

(
−96M2π − 5π3 + 13M2π3 + 5MNπ3 + 5N2π3

) 1
k2

+ 1
36 iN(M +N)π3

(
− 232Mπ2 − 132M3π2 + 4M5π2 − 56M2Nπ2 + 8M4Nπ2

− 56MN2π2 + 8M3N2π2 + 21Mπ4 + 15M3π4 + 15M2Nπ4 + 15MN2π4
) 1
k3

+ N(M +N)π3

1440
(
15360π3 + 26880M2π3 + 2880M4π3 − 19200MNπ3

+ 1920M3Nπ3 − 19200N2π3 + 5760M2N2π3 + 7680MN3π3 + 3840N4π3

− 1644π5 − 2545M2π5 − 363M4π5 + 2680MNπ5 − 717M3Nπ5 + 2680N2π5

− 1753M2N2π5 − 2072MN3π5 − 1036N4π5
) 1
k4 . (B.26)
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We would like to compare this result to ∂2
m1∂

2
m2F . Using the definitions of m± we find

∂2
m1∂

2
m2Z = 2∂4

m+Z − 2∂2
m+∂

2
m−Z . (B.27)

Using the results above we can compute this as well:

∂2
m1∂

2
m2F =− 1

4N(M +N)π4 + 1
24N(M +N)π4

(
−5π2 +M2π2 + 5MNπ2 + 5N2π2

) 1
k2

+ N(M +N)π4

2073600
(
− 293760π4 + 396000M2π4 − 4320M4π4 + 1267200MNπ4

− 168480M3Nπ4 + 1267200N2π4 − 1141920M2N2π4 − 1946880MN3π4

− 973440N4π4
) 1
k4 . (B.28)

In general, we find that ∂2
m2∂

2
m3F 6= ∂2

m1∂
2
m2F . For example, for ABJM (where M = 0),

they agree up to order 1/k3, with the first difference appearing at order 1/k4. Specifically,
for ABJM we find

∂2
m2∂

2
m3F − ∂

2
m1∂

2
m2F = −π

6N2

12
(
3π2 − 32

) (
N4 − 5N2 + 4

) 1
k4 +O

( 1
k6

)
. (B.29)
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