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1 Introduction

Our interest is to improve fundamental understanding of defect conformal field theory
(dCFT). Such an improvement has a host of possible applications. Conformal field theories
with defects and boundaries describe physical systems at a phase transition, for example
water inside a container at the end-point of the liquid-gas critical line, or an antiferromag-
netic spin system with disorder at the Néel-dimer transition. Topological defects may exist
astrophysically, as relics from phase transitions in the early universe. Thus an improved
understanding of dCFT has experimental applications both in condensed matter and cos-
mology. There are more fundamental theoretical reasons to pursue such a study as well,
associated with D-branes in string theory and twist defects for computing entanglement
entropy in a quantum information context. In this work, we study symmetry constraints
on two-point correlation functions in dCFT.

Given substantial existing work [1–5] using conformal symmetry to constrain corre-
lation functions in dCFT, one may legitimately ask why do more? Our answer is largely
personal, that in attempting to investigate some specific examples of dCFT correlation func-
tions involving tensors with mixed symmetries, for example a Maxwell field strength and a
stress tensor, we found the embedding space formalism employed by refs. [1–5] challenging
to work with. The embedding space formalism requires an initial step of constructing a
correlation function as a polynomial in embedding space, and a second step, which is not
always necessary, of projecting the polynomial to a tensorial object in physical space.

The polynomials in embedding space are simpler objects than their tensorial physical
space counter-parts. In many situations, it may be enough to work with these polynomials,
in which case the embedding space formalism remains a superior approach to ours. An old
idea, it was originally developed in the context of CFT without boundaries or defects [6–9].
The conformal group on Rd with d > 2 is the orthogonal group O(d+ 1, 1) and its action
is not linear. However, we know that SO(d+ 1, 1) acts naturally (and linearly) on Rd+1,1.
This fact can be exploited by embedding the spacetime into Rd+1,1 and looking at the
linearised action of the conformal group on this embedding space. The uplift simplifies the
constraints on the n point correlation functions arising from conformal symmetry.

Sometimes one would like access to the physical space correlation functions as well,
however. In our case, we wanted to use Feynman diagrams to investigate the effect of
small interactions on the structure of correlation functions of free dCFT’s. As perturbation
theory in CFT is typically performed in physical space, it is often more convenient to have
a presentation of the conformal symmetry constraints on the physical space correlation
functions. (It is possible to lift the perturbative results to embedding space, contracting
the tensor structures with polarization vectors.)

To refer to “the” embedding space formalism is already inaccurate, as there are at least
two distinct variants of the formalism for mixed symmetry tensors, refs. [4] and [5]. The
ingredients that make up the polynomial are different in the two cases. Ref. [4] reproduces
the antisymmetry of the correlation function through the use of Grassman variables. This
approach has the advantage of producing simpler polynomials, but the disadvantage of
making the projection to physical space more difficult to implement. Ref. [5], in contrast,
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encodes the antisymmetry of the correlators directly into bosonic building blocks for the
polynomials. While the projection to physical space is then as straightforward as in the
fully symmetric case, the building blocks themselves are more involved. A further issue for
us in both cases was that the projection procedure depends on whether the indices in the
resultant tensors are tangent or perpendicular to the defect.

The aim of this paper is to introduce a formalism where bulk correlation functions can
be written directly in physical space in a uniform way where parallel and perpendicular in-
dices are treated on the same footing. As such, we follow in the footsteps of McAvity and Os-
born [10] who developed a similar but simpler formalism for dealing with correlation func-
tions of boundary CFT. We hope that the formalism we present may be helpful to others.

The work is organised as follows. Section 2 begins with a brief review of conformal maps
to establish notation and conventions. The second half of section 2 presents our method for
writing down dCFT correlation functions directly in physical space, extending the boundary
CFT formalism of ref. [10]. Section 3 uses the formalism to present several specific examples
of two-point correlation functions involving a scalar operator O, a conserved current Jµ,
a stress tensor Tµν , and a Maxwell field (in four dimensions) Fµν . These tensorial objects
are specified by symmetry constraints typically up to several functions of two invariant
cross ratios. In section 4, we investigate the limit where one of the operators in these
bulk two-point functions approaches the defect and hence derive the independent tensor
structures required for writing any bulk-to-defect two point correlation function. These
are specified up to a handful of constants and we also present several examples. Sections 5
looks at two specific examples of dCFT, a free scalar on Rp × (Rq/Z2), a free Maxwell
field on R2 × (R2/ZN ) for N = 2 and 4 and also a free Maxwell field on R× (R3/Z2). As
supplemental material, we have provided a Mathematica notebook [11] that defines some of
the tensor structures we introduce and computes the 〈Fµν(x)Fλρ(x′)〉 correlation function.

2 Conformal field theory with a flat defect

Our principal interest is in formulating the conformal symmetry constraints on the corre-
lation functions of local operators in defect conformal field theory. We begin with a brief
review of conformal maps preserving the defect and their action on the local operators.

In the presence of a flat p-dimensional defect on a d-dimensional spacetime [1], the
conformal symmetry is broken to a subgroup, SO(p+ 1, 1)× SO(q), where q = d− p is the
codimension. Splitting spacetime into Rd = Rp × Rq, the defect is given by D = {(x, 0) ∈
M|x ∈ Rp}. Any points away from the defect (where y 6= 0 with (x, y) ∈ Rd) we call the
bulk space B. Likewise, it is also convenient to split the index notation. We use Greek
indices which run from 1, . . . , d, Latin indices a, b, c which run from 1, . . . , p, and Latin
indices i, j, k which run from p+ 1, . . . , d or from 1, . . . , q.

Now, we look at the conformal maps that preserve the defect. A conformal map φ

preserves the defect if φ(p) ∈ D for all p ∈ D. In the case of a flat defect defined above, the
connected component of the conformal transformations on Rd which preserves the defect
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is given by,

t(x, y) = (x + a, y),
rp(x, y) = (Rp · x, y),

rq(x, y) = (x, Rq · y),
σ(x, y) = (σx, σy),

b(x, y) =
(
x + bx2

Ω(x) ,
y

Ω(x)

)
. (2.1)

where x = (x, y), a ∈ Rp, Rp ∈ SO(p), Rq ∈ SO(q), σ ∈ R 6=0, b ∈ Rp and Ω(x) =
1+2b ·x+b2x2. The full symmetry group is SO(p+1, 1)×SO(q) and we will call a theory
respecting this symmetry a defect CFT.

With a single bulk point, we are not able to form any conformal invariants (cross-ratios)
and so the one point function is fixed up to a constant by conformal symmetry [1]. Given
two bulk points x = (x, y) and x′ = (x′, y′), we can construct two independent cross-ratios
ξa : B × B → R, under the defect conformal maps (2.1),

ξ1 = s2

4|y||y′| , ξ2 = y · y′

|y||y′|
, s2 = (x− x′)2, |y| =

√
y2

1 + . . .+ y2
q . (2.2)

(The defining property of a cross-ratio is ξa(x, x′) = ξa(φ(x), φ(x′)).) Certain formulae are
more simply expressed using particular rational combinations of ξ1 and ξ2. In particular,
we will have occasion to use u2 = ξ1

ξ1+ξ2 and ξ3 = 1−ξ2
2

ξ2
.

For the special case q = 1 we only have one independent cross-ratio since ξ2 → 1.
Furthermore we have, u2 → v2 = ξ1

ξ1+1 and ξ3 → 0. The simplification in the case q = 1 is
part of a more general phenomena when we consider higher point functions. As discussed
in [2, 4], given n bulk points, we can construct the analog of ξ1 and ξ2 for any pair of these
points, giving n(n− 1) cross ratios in general. However, if p or q is too small compared to
n, some of these cross ratios will not be independent, as happens when n = 2 and q = 1.
More generally, there will be fewer independent cross ratios if q < n or p + 2 < n. For
a lengthier and more detailed discussion of these cross ratios, including when some of the
operators live on the defect, see [2].

2.1 O(d) vectors, bi-vectors and rank-2 tensors

The action of the defect conformal group (2.1) on the correlation function must obey a
Ward identity when the theory is a dCFT. The identity states that for any conformal
transformation φ we have the equality,

〈(φ · OI)(x)(φ · OJ)(x′)〉 = 〈OI(x)OJ(x′)〉, (2.3)

where φ· is the action of the conformal group on primary fields. Recall that a primary field
is defined by the transformation property,

(φ · OI)(φ(x)) := Ω−∆
φ (x)G JI [Rφ(x)]OJ(x) ,

where (Rφ)µν (x) = (∂νφµ)(x)
Ωφ(x) and ∆ is the scaling dimension of OI . The I, J are generalised

indices that indicate the representation of O(d) under which O transforms. Lastly, G is a
matrix acting on the representation space of O(d).
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Independent Tensor Structures

Co-Dimension Cross-Ratio
Vector

Bi-Vector
2-Tensor

at x at x′ at x at x′

q > 2 ξ1, ξ2 Ξ(1)
µ , Ξ(2)

µ Ξ′(1)
α , Ξ′(2)

α Iµα, J ′µα δµν , Jµν δαβ , J ′′αβ
q = 2 ξ1, ξ2 Ξ(1)

µ , Ξ(2)
µ Ξ′(1)

α , Ξ′(2)
α Iµα δµν δαβ

q = 1 ξ1 Ξ(1)
µ Ξ′(1)

α Iµα δµν δαβ

Table 1. List of independent tensor structures used to construct two-point correlation function
between any two bulk primaries with arbitrary spin. The definition of the cross-ratios, vectors,
bi-vectors and rank-2 tensors can be found in (2.2), (2.4), (2.6) and (2.8) respectively.

Hence, (2.3) provides constraints on the correlation function arising from the defect
conformal group. In table 1, we list a set of independent tensor structures that can be used
to construct correlation functions satisfying the Ward identity.

Using the cross-ratios (2.2), we can define two structures Ξ(1) and Ξ(2) which enable
us to satisfy the Ward indentity for primary vectors. The structures Ξ(a) can be viewed
as O(d) vectors at a point x; they transform as Ξ(a)

µ → (Rφ)νµ(x)Ξ(a)
ν under the defect

conformal group. Along with Ξ(a), we can define two vectors Ξ′(n) which transforms as an
O(d) vector at x′. A choice of these are given explicitly in Cartesian coordinates as

Ξ(1)
µ (x, x′) = |y|

ξ1

∂ξ1
∂xµ

= 2|y|
s2 sµ − nµ,

Ξ(2)
µ (x, x′) = |y|

ξ2

∂ξ2
∂xµ

=
n′µ
ξ2
− nµ,

Ξ′(1)
µ (x, x′) = |y

′|
ξ1

∂ξ1
∂x′µ

= −2|y′|
s2 sµ − n′µ,

Ξ′(2)
µ (x, x′) = |y

′|
ξ2

∂ξ2
∂x′µ

= nµ
ξ2
− n′µ,

(2.4)

where,

nµ =

0 µ = a,
yk
|y| µ = k,

n′µ =

0 µ = a,
y′k
|y′| µ = k,

(2.5)

and sµ = xµ − x′µ. With Ξ(a) and Ξ′(n) in hand, we can construct bi-vectors, which
transform as an O(d) vector at x and x′, by taking the product Ξ(a)Ξ′(n). Similarly, we
can form rank-2 O(d) tensors at x by taking the product Ξ(a)Ξ(b) and ones at x′ by taking
the product Ξ′(n)Ξ′(m).

We can also take further derivatives of the vectors (2.4). Since Rφ depends on x or x′,
we can only take the derivative w.r.t. x of Ξ′ and w.r.t. x′ of Ξ. Two derivatives w.r.t. the
same point results in an object which will not transform correctly. These derivatives yield
two additional bi-vectors:

Iµν(x, x′) = −2ξ1|y|
∂

∂xµ
Ξ′(1)
ν = −2ξ1|y′|

∂

∂x′µ
Ξ(1)
ν , (2.6a)

J ′µν(x, x′) = ξ2|y|
∂

∂xµ
Ξ′(2)
ν = ξ2|y′|

∂

∂x′ν
Ξ(2)
µ , (2.6b)
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where Iµν = δµν − 2sµsν
s2 , is the rotation matrix corresponding to the inversion map [12],

Iµν = (Rinv)µν(x− x′) and

J ′µν(x, x′) =

δij −
yjy
′
i

y·y′ µ = i, ν = j

0 otherwise.
(2.7)

The last two independent rank-2 tensors come from contracting two bivectors over the
indices which transform at the same point. The contractions between J ′ and I or J ′ gives
a new rank-2 tensor at x and a second at x′:

Jµν(x) =

δij − ninj µ = i, ν = j

0 otherwise
, J ′′µν(x′) =

δij − n′in′j µ = i, ν = j

0 otherwise
. (2.8)

The number of primes on J indicates how many times the point x′ is implicated in its
transformation properties: no primes means a rank-2 tensor at x, one prime a bivector at
x and x′, and two primes a rank-2 tensor at x′.

We now demonstrate by explicit computation that the set of tensor structures in table 1
is closed under index contraction. We consider only contractions of indices associated with
the point x since the same relations will hold for x′ under the replacement Ξ→ Ξ′, J → J ′′.
The contractions involving vectors and rank-2 tensors at x are

Ξ(1)
µ Ξ(1)µ = 1

u2 ,

Ξ(2)
µ Ξ(2)µ = ξ3

ξ2
,

Ξ(1)
µ Ξ(2)µ = −1

2
ξ3
ξ1
,

JµνΞ(1)ν = − ξ2
2ξ1

Ξ(2)
µ ,

JµνΞ(2)ν = Ξ(2)
µ ,

JµαJ αν = Jµν ,
J µµ = q − 1.

(2.9)

The contractions involving the bi-vectors are,

IµνΞ(1)ν = X ′µ,

IµνΞ(2)ν = −
(
ξ3Ξ′(1)

µ + ξ2Ξ′(2)
µ

)
,

J ′µνΞ(1)µ = 1
2ξ1

Ξ′(2)
ν ,

J ′µνΞ(2)µ = − 1
ξ2

Ξ′(2)
ν ,

J ′µα(J ′) α
ν = Jµν + Ξ(2)

µ Ξ(2)
ν ,

J ′µαIαν = Jµν + Ξ(2)
µ Ξ(1)

ν ,

JµνIνα = J ′µα − Ξ(2)
µ X ′α,

J νµJ ′να = J ′µα,
IµαI

α
µ = δµν .

(2.10)

where X ′µ := ξ2
(
Ξ′(1)
µ − Ξ′(2)

µ

)
.

The structures in table 1 are independent in the sense that they cannot be written as a
product of lower rank tensor structures. In this language, Ξ(n)Ξ′(m) is not an independent
bi-vector even though it is a necessary ingredient in constructing the correlation function
of two vector operators. The independent structures are closed under contraction, as seen
from (2.9) and (2.10). No new ones can be formed through derivatives or contractions.

For a parity even theory, we expect that this set of structures is suficient to construct
the correlation function between any two bulk operators of arbitrary spin.1 For bulk

1For parity odd theories, we must add some Levi-Civita tensors εµ1···µd , εa1···ap and εi1···iq to the
construction.
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operators with I1 and I2 indices, we construct all possible terms with I1 and I2 indices
using the independent structures in table 1. We then symmetrize or antisymmetrize over
the indices and remove traces, as required in order to obtain an object with the right
transformation properties under the O(d)×O(d) group acting on the two operators.

Indeed, not counting the Kronecker delta function used to remove traces, the num-
ber eight of independent structures here is the same as the number of structures used to
construct correlation function polynomials in embedding space in [1]. Moreover, as seen
in appendix E, the monomial building blocks in embedding space project down to linear
combinations of our structures in real space. Therefore, the number of independent terms
in any correlation function that we construct must match ref. [1]. We only consider up to
rank-2 tensors in this work. However, counting the total number of structures in selected
correlators such as 〈SµνρO〉, 〈SµνρVα〉, 〈SµνρλO〉, for symmetric, traceless S, we can match
the number obtained from embedding space.2 We also match the number, six, of indepen-
dent structures in the correlator 〈FµνVλ〉 for an antisymmetric operator Fµν (pers. comm.
M. Meineri).

q = 1, 2. When q = 1, we reduce to bCFT. Here Ξ(2) = Ξ′(2) = J = J ′ = J ′′ =
0. Similarly, q = 2 is also a special case because we find that J , J ′ and J ′′ are not
independent. In this case the following identities hold,

J ′µν = − 1
ξ3

Ξ(2)
µ Ξ′(2)

ν , Jµν = ξ2
ξ3

Ξ(2)
µ Ξ(2)

ν , J ′′µν = ξ2
ξ3

Ξ′(2)
µ Ξ′(2)

ν . (2.11)

2.2 Comment about one and higher point functions

The main purpose of this work is to investigate two point functions, but we would like to
make a couple of remarks about one point and higher point functions before passing to the
main order of business. Curiously, although we found the tensor Jµν through the existence
of cross ratios, this structure exists independently of them, and is important for allowing
nonzero one-point functions in dCFT. If we have an operator OI in a representation of
O(d) such that we can also construct something out of the Jµν and δµν structures in the
same representation, then OI is allowed to have a nonzero one point function. Importantly,
Jµν does not exist for q = 1 which forbids anything except for scalars developing a nonzero
expectation value in bCFT [10]. More generally in dCFT, we see that vectors and anti-
symmetric two-forms are also forbidden from having a nonzero expectation value.

Having gone through the exercise of constructing two-point correlation functions, the
procedure in broad outline is clear for n-point functions as well. Given n bulk points,
for each pair (xr, xs) we can construct ξ1 and ξ2 type cross-ratios, calling them ξ

(r,s)
1 and

ξ
(r,s)
2 respectively. Since a total of n(n− 1)/2 unique pairs can be formed, we have naively
n(n−1) independent cross ratios. For p and q to small compared to n, some of these won’t
be independent (see the discussion immediately preceeding section 2.1).

2Eq. (3.19) in of ref. [1] is missing a couple of factors. The correct version should be (pers. comm.
E. Lauria)

min(J1,J2)∑
k=0

2∏
j=1

(
Jj − k + 1−

⌊
Jj − k

2

⌋)(⌊
Jj − k

2

⌋
+ 1
)
.
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Given our set of independent cross ratios, we can then construct tensor structures
analogous to those in table 1. Fixing a point xr, we can form (n − 1) distinct pairs
involving xr. Taking derivatives with respect to xr of both ξ(r,s)

1 and ξ(r,s)
2 gives us 2(n−1)

independent vectors at the given point xr. Repeating this procedure for all the n points
gives a total of 2n(n − 1) vectors, Ξ(1)(r,s)

µ and Ξ(2)(r,s)
µ . By further taking the derivative

of Ξ(1)(r,s) and Ξ(2)(r,s) with respect to xs, we can form a bi-vector of type I and type
J ′. Let us call them I

(r,s)
µν and J ′(r,s)µν respectively. Consequently, at each pair we have 2

independent bi-vectors and hence a total of n(n − 1)/2 bi-vectors of type I and J ′ each.
Finally, for each point xr we can construct the independent rank-2 tensor J , namely J (r)

µν .
We then assemble from these constituents objects with the correct O(d) transforma-

tion properties — by appropriately antisymmetrizing, symmetrizing, and removing traces.
Although we do not check the closure of this set of independent tensor structures under
contraction (as done for the two-point case in (2.9) and (2.10)), we do find a correspon-
dence with the embedding space results in [4]. In particular, the number of vectors matches
their K(i)

ab and K̄(i)
ab , the number of bi-vectors matches their S(i,j)

ab and S̄(i,j)
ab and finally the

number of rank-2 tensors matches their H(i,j)
a .

3 Bulk-bulk two point functions

As a warm-up, the two point correlator between two bulk scalar primaries of dimension ∆
and ∆′ is well known to have the form3

〈O(x)O′(x′)〉 = |y
′|∆−∆′

s2∆ f(ξ1, ξ2), (3.1)

where f(ξ1, ξ2) is an arbitrary function of the cross-ratios. In what follows, we will inves-
tigate correlation functions involving a scalar field O, a conserved current Jµ, and stress
tensor Tµν and (in the particular case of four dimensions) a Maxwell field strength Fµν .
Also, when counting the number of PDE constraints arising from conservation or equations
of motion (see table 2), we use the argument that taking the divergence reduces the spin of
the correlator by 1 and hence the number of independent structures present in the resulting
correlator is equal to the number of PDE constraints. For example taking the divergence
of 〈TµνO〉 we see the resulting correlator is of the form 〈VνO〉 and hence 2 independent
PDE constraints are expected.

3.1 〈JO〉

The two point correlator between a bulk vector operator Vµ of dimension ∆ and a scalar
primary O of dimension ∆′ is fixed up to two functions of two cross ratios:

〈Vµ(x)O(x′)〉 = 1
|y|∆|y′|∆′

(
f1(ξ1, ξ2)Ξ(1)

µ + f2(ξ1, ξ2)Ξ(2)
µ

)
. (3.2)

3Note we can use (2.2) to write |y| = s2

4|y′|ξ1
.
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Correlators
# of functions Conservation

q > 2 q = 2 q = 1 q > 2 q = 2 q = 1
〈JµO〉 2 2 1 1 1 1
〈JµJν〉 5 4 2 2 2 1
〈TµνO〉 4 4 1 2 2 1
〈TµνJα〉 12 8 2 10 8 3
〈TµνTαβ〉 19 10 3 12 8 2

Correlators, d = 4
# of functions EoM

q = 3 q = 2 q = 1 q = 3 q = 2 q = 1
〈FµνO〉 1 1 0 2 2 0
〈FµνFαβ〉 10 5 2 6 4 1

Table 2. This table contains a list of bulk-bulk correlators which we consider in section 3 and the
number of independent structures appearing in the correlators, dependent on the co-dimension q.
It also denotes the number of PDE constraints arising from conservation of current ∂µJµ = 0 and
stress tensor ∂µTµν = 0, everywhere in the bulk. Correlators involving a Maxwell field strength
Fµν are also considered, specifically when d = 4, and we list the number of PDE constraints arising
from the bulk equation of motion ∂µFµν = 0.

In the special case that V µ = Jµ is a conserved current (with dimension ∆ = d−1), we have
the constraint ∂µ〈Jµ(x)O(x′)〉 = 0, satisfied everywhere in the bulk. Current conservation
leads to the following relation between the functions f1 and f2:

(2pξ1 + (d− 2)ξ2)f1 + 2ξ2
1

u2 f
(1,0)
1 − ξ2ξ3f

(0,1)
1

+ 2ξ1

(
2− q − 1

ξ2
2

)
f2 − ξ1ξ3

(
f

(1,0)
2 − 2f (0,1)

2

)
= 0, (3.3)

where the identities (A.1) were used in the derivation.

q = 1. In the codimension one case, the structure Ξ(2) is absent and the cross ratios
ξ2 → 1 and ξ3 → 0 degenerate. The constraint (3.3) reduces to,

((d− 2) + 2(d− 1)ξ1)f1 + 2ξ1(1 + ξ1) df1
dξ1

= 0

which has the simple solution

f1(ξ1) = c ξ
1− d2
1 (1 + ξ1)−

d
2 = c ξ1−d

1 vd ,

where c is an integration constant. This result matches the bCFT result in [12] with
appropriate rescaling.
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3.2 〈JJ〉

The two point correlator between two identical vector fields of dimension ∆ depends on
five arbitrary functions of two cross ratios:

〈Vµ(x)Vν(x′)〉 = 1
s2∆

(
f1Ξ(1)

µ Ξ′(1)
ν + f2Ξ(2)

µ Ξ′(2)
ν + f3

(
Ξ(1)
µ Ξ′(2)

ν + Ξ(2)
µ Ξ′(1)

ν

)
+ f4Iµν + f5J ′µν

)
,

(3.4)

The tensor structure of f3 appears in a symmetric combination because the operators in
the correlation function are assumed to be identical. (Conversely, if the operators were
distinct, the coefficients of Ξ(1)

µ Ξ′(2)
ν and Ξ(2)

µ Ξ′(1)
ν should be independent.)

Reflection positivity places bounds on the bulk-bulk functions appearing in the corre-
lator between identical operators. The reflection plane is taken to be a hypersurface that
intersects the defect at right angles, which fixes ξ2 = 1. The positivity demands that,

f4(ξ1, 1) ≥ 0, (f4 + f5)(ξ1, 1) ≥ 0,
(
f4 + f1

u2

)
(ξ1, 1) ≥ 0. (3.5)

If V µ = Jµ is a conserved current, then ∆ = d−1 and ∂µ〈Jµ(x)Jν(x′)〉 = 0. This divergence
∂µ〈Jµ(x)Jν(x′)〉 is the correlation function of a scalar with a vector, and we just saw that
it depends generically on two functions of two cross ratios. Thus, conservation will lead to
two constraints on the five fi. Using the identities (A.1) and (A.2), we find

2ξ2
1

u2 f
(1,0)
1 − ξ2ξ3f

(0,1)
1 − (ξ2(d+ 1) + 2ξ1(q − 1)) f1 + ξ1ξ3

(
2f (0,1)

3 − f (1,0)
3

)
+
(
ξ3d− 2ξ1

(
ξ3
ξ2

+ (q − 1)
))

f3 + 2ξ2
1ξ2f

(1,0)
4 − 2ξ1ξ2ξ3f

(0,1)
4 = 0,

(3.6)

and

ξ2f1 + ξ1ξ3
(
2f (0,1)

2 − f (1,0)
2

)
+
(
ξ3(d− 1)− 2ξ1

(
ξ3
ξ2

+ 1
ξ2

2
+ (q − 1)

))
f2

+ 2ξ2
1

u2 f
(1,0)
3 − ξ2ξ3f

(0,1)
3 −

(
ξ2(d− 1) + 2ξ1(q − 1)− 1

ξ2

)
f3 − 2ξ2

1ξ2f
(1,0)
4

− 2ξ1ξ
2
2f

(0,1)
4 + ξ1

(
f

(1,0)
5 − 2f (0,1)

5

)
+
(2ξ1
ξ2
− (d− 1)

)
f5 = 0.

(3.7)

q = 1. Here we only have one PDE because (3.7) was obtained by setting the coefficient
of Ξ′(2) to zero, which does not exist when q = 1. The PDE constraint for q = 1 is,

2ξ2
1

( 1
v2
df1
dξ1

+ df4
dξ1

)
= (d+ 1)f1.

Notice that this only involves f1 and f4 since the other tensor structures are zero when q=1.
The PDE constraint matches the bCFT result in [12] under appropriate identification.

q = 2. For this case we take f5 → 0 since J ′ is not independent (2.11).
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3.3 〈TO〉

The two point correlator of a symmetric rank-2 tensor S with dimension ∆ and a scalar of
dimension ∆′ is given by,4

〈Sµν(x)O(x′)〉 = |y
′|∆−∆′

s2∆

(
f1Ξ(1)

µ Ξ(1)
ν + f2Ξ(2)

µ Ξ(2)
ν + f3Ξ(1)

(µ Ξ(2)
ν) + f4Jµν + f5δµν

)
. (3.8)

We need the correlator to be traceless to consider the energy momentum tensor. Taking
the trace of the above equation, we obtain a constraint on f5,

f5 = −
(
f1
u2d

+ f2ξ3
ξ2d
− f3ξ3

2ξ1d
+ f4(q − 1)

d

)
. (3.9)

Now we can write the two point correlator between the energy momentum tensor and
a scalar,

〈Tµν(x)O(x′)〉 = |y
′|d−∆′

s2d

[
f1

(
Ξ(1)
µ Ξ(1)

ν −
δµν
u2d

)
+ f2

(
Ξ(2)
µ Ξ(2)

ν −
δµνξ3
ξ2d

)
+ f3

(
Ξ(1)

(µ Ξ(2)
ν) + δµνξ3

2ξ1d

)
+ f4

(
Jµν −

q − 1
d

δµν

)]
.

(3.10)

This gives a total of 4 structures matching the number obtained from the embedding space
theory [1]. Imposing conservation of T and using the identities (A.4), we obtain two PDE
constraints on f1, . . . , f4,(

2ξ1(1− q)− ξ2
d

(d+ 2)(d− 1)
)
f1 + 2ξ2

1
u2d

(d− 1)f (1,0)
1 − ξ2ξ3f

(0,1)
1 + 2ξ1ξ3

ξ2
f2

− 2ξ2
1ξ3
ξ2d

f
(1,0)
2 +

(
ξ3
2d(d+ 1)(d− 2)− ξ1

(
ξ3
ξ2

+ q − 1
))

f3

+ ξ1ξ3

(2− d
2d f

(1,0)
3 + f

(0,1)
3

)
+ 2(q − 1)ξ1f4 − 2ξ2

1

(
q − 1
d

)
f

(1,0)
4 = 0,

(3.11)

and,

ξ2
d

(d−2)f1−
2ξ1ξ2
u2d

f
(0,1)
1 +

(
ξ3d−4ξ1

(
ξ3
ξ2
− 1
ξ2

2d
+ q

2

))
f2

+ξ1ξ3

(2
d

(d−1)f (0,1)
2 −f (1,0)

2

)
+
(
ξ3
2 −qξ1−

ξ2
d

(
1+ d2

2 + 1
ξ2

2

))
f3

+ ξ2
1
u2 f

(1,0)
3 + ξ2ξ3

2d (2−d)f (0,1)
3 +ξ2df4−ξ1ξ2

(
f

(1,0)
4 +2

(
q−1
d
−1
)
f

(0,1)
4

)
= 0.

(3.12)

q = 1. For this case f2, . . . , f4 vanish, ξ2 → 1 and ξ3 → 0, while the second PDE (3.12)
(obtained by setting coefficients of Ξ(2) to zero) does not exist. So, the constraint reduces to,

2ξ2
1

v2
df1
dξ1

= (d+ 2)f1.

4We use round brackets on indices to denote symmetrisation and square brackets for antisymmetrisation
(including a factor of 1

n! ). We use | to separate indices that are being (anti)symmetrised when not next to
each other.
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This is simply solved to give,

f1(ξ1) = c

(
ξ1

ξ1 + 1

)1+ d
2

=⇒ f1(v) = cvd+2,

which matches the result from [12] with the appropriate rescaling.

q = 2. Here, J is not independent and so we set f4 = 0.

3.4 〈TJ〉

The two point correlator between a symmetric rank-2 tensor S of dimension ∆ and a vector
V of dimension ∆′ is given by,

〈Sµν(x)Vα(x′)〉 = |y
′|∆−∆′

s2∆

(
gnJµνΞ′(n)

α + hnδµνΞ′(n)
α + FnΞ(n)

(µ Iν)α +GnΞ(n)
(µ J

′
ν)α

+
∑

n≥m,r
fmnrΞ(m)

(µ Ξ(n)
ν) Ξ′(r)α

)
, (3.13)

where we restrict the sum over n to avoid double counting and so fmnr has 6 indepen-
dent components. There are 14 structures here, but tracelessness of Sµν removes two,
constraining h1 and h2,

h1 = −1
d

(
g1(q − 1) + f111

u2 −
f121ξ3

2ξ1
+ f221ξ3

ξ2
+ F1ξ2 − F2ξ3

)
, (3.14a)

h2 = −1
d

(
g2(q − 1) + f112

u2 −
f122ξ3

2ξ1
+ f222ξ3

ξ2
− F1ξ2 − F2ξ2 + G1

2ξ1
− G2
ξ2

)
. (3.14b)

The embedding space result [1] also involves 12 structures.
If the rank-2 tensor Sµν is actually the stress tensor Tµν and the vector Vµ a conserved

current Jµ, then we should furthermore set ∆ = d, ∆′ = d−1 and impose the conservation
conditions. Conservation of Jµ gives four PDE constraints while the conservation of Tµν

gives six constraints. (We simply count the structures needed to write down 〈Sµν(x)O(x′)〉
and 〈Vµ(x)V ′ν(x′)〉, respectively and where S is traceless.) In total, there are 12 functions
and 10 PDE relations, which we will spare the reader.

q = 1. Here Ξ(2), Ξ′(2), J and J ′ all vanish and the number of structure reduces to
2. The conservation of Tµν gives two ODE constraints while the conservation of Jµ gives
one ODE constraint. Since there are only 2 functions but 3 constraints, the system is
overdetermined, and one might guess the correlation function vanishes. However, some of
the constraints are degenerate, and the correlation function is fixed up to a constant (see
p 14 of [13]).

q = 2. Here J and J ′ are not independent and the number of structures reduces to
8. The conservation of Jµ now gives three PDE constraints while the conservation of Tµν

gives five PDE constraints. This is a system with 8 functions and 8 PDE relations. It
would be interesting to see if the system can be solved.
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3.5 〈TT 〉

The two point correlator between symmetric rank-2 tensors S and S′ is given by (B.1).
There is a total of 36 independent components. Demanding that Sµν is traceless gives 5
constraints and then demanding S′µν is traceless gives a further 4 constraints. This is a total
of 9 constraints for 36 structures, hence reducing the number of independent structures to
27 and so matching the number predicted by the embedding formalism. For 〈TT 〉 we need
to further impose symmetry associated with identical operators alongside tracelessness.
Symmetrising gives the two point correlation function of T ,

〈Tµν(x)Tαβ(x′)〉 = 1
s2d

[ 10∑
n=1

fn(ξ1, ξ2)T (n)
µν;αβ +

9∑
m=1

gm(ξ1, ξ2)S(m)
µν;αβ

+ h1δµνδαβ + h2
(
δµνΞ′(1)

α Ξ′(1)
β + δαβΞ(1)

µ Ξ(1)
ν

)
+ h3

(
δµνΞ′(2)

α Ξ′(2)
β + δαβΞ(2)

µ Ξ(2)
ν

)
+ h4

(
δµν(Ξ′(1)

α Ξ′(2)
β + Ξ′(1)

β Ξ′(2)
α ) + δαβ(Ξ(1)

µ Ξ(2)
ν + Ξ(1)

ν Ξ(2)
µ )
)

+H
(
Jµνδαβ + δµνJ ′′αβ

) ]
, (3.15)

where T (n)
µν;αβ , S

(n)
µν;αβ can be found in (B.2) and (B.3) and the functions h1, . . . , h4 and H

satisfy the following relations,

h1 = −2f1
d

+ 4ξ2
d2

( 1
u2 + ξ3

2ξ1

)
f2 −

4ξ3
d2

(
1− ξ3

2ξ1

)
f3 −

4ξ3
d2

(
1 + 1

u2

)
f4 (3.16a)

+ f5
u4d2 + ξ2

3
ξ2

2d
2 f6 + 2ξ3

ξ2u2d2 f7 −
2ξ3

ξ1u2d2 f8 −
2ξ2

3
ξ1ξ2d2 f9 + ξ2

3f10
ξ2

1d
2 + 2

d2

(
(q − 1) + ξ3

ξ2

)
g1

− ξ3
ξ2

1d
2 g2 −

4ξ3
ξ2

2d
2 g3 + 4ξ3

ξ1ξ2d2 g4 + 2(q − 1)
u2d2 g5 + 2(q − 1)ξ3

ξ2d2 g6 −
2(q − 1)ξ3
ξ1d2 g7

+ (q − 1)2

d2 g8 + 4
d2

(
(q − 1)− ξ3

2ξ1

)
g9,

h2 = −4ξ2
d
f2 + 4ξ3

d
f4 −

f5
u2d
− ξ3
ξ2d

f7 + ξ3
ξ1d

f8 −
q − 1
d

g5, (3.16b)

h3 = 4ξ2
d
f3 + 4ξ2

d
f4 −

ξ3
ξ2d

f6 −
f7
u2d

+ ξ3
ξ1d

f9 −
2g1
d

+ 4g3
ξ2d
− 2g4
ξ1d
− q − 1

d
g6, (3.16c)

h4 = 2ξ2
d
f2 + 2ξ3

d
f3 −

f8
u2d
− ξ3
ξ2d

f9 + ξ3
ξ1d

f10 −
g2
ξ1d

+ 2g4
ξ2d
− q − 1

d
g7 −

2g9
d
, (3.16d)

and,
H = −2

d
g1 −

g5
u2d
− ξ3
ξ2d

g6 + ξ3
ξ1d

g7 −
q − 1
d

g8 −
4
d
g9. (3.17)

There are also additional constraints from conservation of T . This gives twelve PDE
constraints and so we have a system with 19 functions and 12 PDE relations.

q = 1. In this case Ξ(2) = Ξ′(2) = 0 and the independent structures reduce down to 5 with
2 constraints coming from tracelessness. This leaves a total of 3 independent structures
appearing in 〈Tµν(x)T λρ(x′)〉. Conservation of Tµν gives two ODE constraints and so we
have a system of 3 functions with 2 ODE relations, reducing the number of independent
functions to 1, as discussed long ago in [12].
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q = 2. In this case J , J ′, and J ′′ are not independent and so we set all the gm = 0 and
H = 0, leaving us with 14 structures. Furthermore, the traceless constraints also reduce
down to four and hence 〈Tµν(x)T λρ(x′)〉 has 10 independent structures. These are given
by the T (n) structures in (B.2) via (3.15) subject to (3.16) with gm = H = 0. (The S(m)

structures vanish.) Conservation of Tµν gives eight PDE constraints, and so we have a
system of 10 functions with 8 relations.

3.6 Constraints from Maxwell’s equation in d = 4 on 〈FO〉 and 〈FF 〉

〈FO〉. The correlation function between a Maxwell field strength and a scalar is given by,

〈Fµν(x)O(x′)〉 = |y
′|2−∆′

(s2)2 f
(
Ξ(1)
µ Ξ(2)

ν − Ξ(1)
ν Ξ(2)

µ

)
. (3.18)

Imposing the equation of motion ∂µF
µν = 0 and using the identity on (A.3), we obtain

two PDE constraints for f ,(
−3ξ3 + 2ξ1

(
ξ3
ξ2

+ q − 1
))

f + ξ1ξ3
(
f (1,0) − 2f (0,1)

)
= 0, (3.19)

and,

(2ξ1(2− q) + ξ3 − 2ξ2) f + 2ξ2
1

u2 f
(1,0) − ξ2ξ3f

(0,1) = 0. (3.20)

The PDEs can be solved to find,5

f(ξ1, ξ2) = cξ3
1ξ2

(1− ξ2
2)

q−1
2 (−1 + (2ξ1 + ξ2)2)

p+1
2
, (3.21)

where c is an integration constant, p = d − q and the solution is valid for p = 1, q = 3
and p = 2, q = 2. The combination −1 + (2ξ1 + ξ2)2 in the denominator of the expression
diverges at the defect and goes to zero in the coincident limit. (For the case q = 1, Ξ(2)

vanishes and the 〈FO〉 correlator is automatically zero.)

〈FF 〉. The correlation function between two Maxwell field strength tensors is given by,

〈Fµν(x)Fαβ(x′)〉= 4
(s2)2

[
f1
2 Iµ[αIβ]ν+f2Ξ(1)

[ν Iµ][αΞ′(1)
β]

+f3
(
Ξ(1)

[ν Iµ][αΞ′(2)
β] +Ξ(2)

[ν Iµ][αΞ′(1)
β]

)
+f4Ξ(2)

[ν Iµ][αΞ′(2)
β] +f5Ξ(1)

[µ Ξ(2)
ν] Ξ′(1)

[α Ξ′(2)
β]

+ f6
2 J

′
µ[α|J

′
ν|β]+f7Ξ(1)

[µ J
′
ν][βΞ′(1)

α] +f8
(
Ξ(1)

[µ J
′
ν][βΞ′(2)

α] +Ξ(2)
[µ J

′
ν][βΞ′(1)

α]

)
+f9Ξ(2)

[µ J
′
ν][βΞ′(2)

α] +f10J ′[µ|[αIβ]|ν]

]
. (3.22)

Reflection positivity demands that,

2(f1 + f10)(ξ1, 1) ≥ 0, 2(f1 + 2f10 + f6)(ξ1, 1) ≥ 0, 2
(
f1 + f2

u2

)
(ξ1, 1) ≥ 0,

2
(
f1 + f10 + f2 + f7

u2

)
(ξ1, 1) ≥ 0.

(3.23)

5Although we don’t know what to make of it, it is interesting to note that one can impose a massless
free field equation on the scalar field as well, provided q = 3 and ∆′ = 1.
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q = 3. When q = 3 we find that,

J ′µ[α|J
′
ν|β] = − 2

ξ3
Ξ(2)

[µ J
′
ν][βΞ′(2)

α] , (3.24)

and the number of independent structures reduces to nine.

q = 2. When q = 2 we can set f6, . . . , f10 to zero due to (2.11). So, focusing on the
p = q = 2 case and applying the equation of motion gives four PDE constraints for
f1, . . . , f5,

2ξ2
1ξ2f

(1,0)
1 − 2ξ1ξ2ξ3f

(0,1)
1 − 2(ξ1 + 2ξ2)f2 + 2ξ2

1
u2 f

(1,0)
2 − ξ2ξ3f

(0,1)
2

+
(
−2ξ1
ξ2

2
+ 3ξ3

)
f3 − ξ1ξ3

(
f

(1,0)
3 − 2f (0,1)

3

)
= 0,

(3.25)

− 2ξ2
1ξ2f

(1,0)
1 − 2ξ1ξ

2
2f

(0,1)
1 + ξ2f2 + (ξ3 − ξ2 − 2ξ1)f3 + 2ξ2

1
u2 f

(1,0)
3 − ξ2ξ3f

(0,1)
3

− 2
(2ξ1
ξ2

2
− ξ3

)
f4 − ξ1ξ3f

(1,0)
4 + 2ξ1ξ3f

(0,1)
4 = 0,

(3.26)

− 2ξ2
1ξ2f

(1,0)
2 − 2ξ1ξ

2
2f

(0,1)
2 − 2ξ1

ξ2
(1 + ξ2

2)f3 − 2ξ2
1ξ2f

(1,0)
3 + 2ξ1ξ2ξ3f

(0,1)
3 + 2ξ1ξ3f4

− 4
(
ξ1
ξ2

2
− ξ3

)
f5 − ξ1ξ3

(
f

(1,0)
5 − 2f (0,1)

5

)
= 0,

(3.27)

2ξ1ξ
2
2

ξ3
f2 + 2ξ1ξ

2
2

ξ3
f3 − 2ξ2

1ξ2f
(1,0)
3 − 2ξ1ξ

2
2f

(0,1)
3 − 4ξ1

ξ2
f4 − 2ξ2

1ξ2f
(1,0)
4 + 2ξ1ξ2ξ3f

(0,1)
4

+ 2(ξ2 − ξ3)f5 −
2ξ2

1
u2 f

(1,0)
5 + ξ2ξ3f

(0,1)
5 = 0.

(3.28)

q = 1. When q = 1, only f1 and f2 are present with the usual simplifications and there
is only one ODE constraint,

2ξ2
1

(
f ′1 + f ′2

v2

)
= 4f2. (3.29)

We may make this ODE look simpler by changing basis f2 → v2g2 and by changing variables
from ξ1 → v. This results in the ODE,

v
d

dv
(f1 + g2) = 2g2.

Since the coefficient of the derivative terms are equal, we may change basis again to f1 →
g1 − g2, which simplifies the ODE further,

g2 = v

2
dg1
dv

. (3.30)

A free Maxwell theory in the bulk has only one independent structure for q = 1.
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4 Bulk-defect two point functions

One reason to study bulk-defect two point functions is the fact that any bulk primary
operator can be expressed as a sum over operators on the defect — the defect OPE. The
defect OPE of any bulk primary OI(x) with dimension ∆O can be written as,

OI(x, y) =
∑
φ̂J

∑
∆̂φ̂

1

|y|∆O−∆̂φ̂

DJI (~∂, y, c(n)
Oφ̂, ĉφ̂φ̂)φ̂J(x), (4.1)

where φ̂J is a defect primary with dimension ∆̂φ̂ and DJI is a parallel derivative operator
depending on the bulk-to-defect coefficients c(n)

Oφ̂ and the two point coefficient ĉφ̂φ̂ of φ̂. In
particular, if the bulk-to-defect coefficients between O and some φ̂ are vanishing, then φ̂

cannot appear in defect OPE of O. To derive the contribution of a particular φ̂K to the
defect OPE, we simply take the product with (4.1) and calculate the correlation function,

1

|y|∆O−∆̂φ̂

DJI 〈φ̂J(x)φ̂K(x′)〉 = 〈OI(x)φ̂K(x′)〉 =
c

(n)
Oφ̂

|y|∆O−∆̂φ̂

T(n)IK

(s2 + |y|2)∆̂
, (4.2)

where T(n) are the appropriate tensor structures. By matching the expansion on both sides
as y → 0, one can in principle determine the DJI , although our interest is not in these
operators.6 Instead, we focus on the precise form of bulk-defect two point functions and
the tensor structures T(n).

4.1 Tensor structures for the defect limit

A defect of our formalism, which is not shared by the embedding space method, is that
in the absence of a cross ratio, we do not have a procedure for constructing relevant
tensor quantities. We saw this issue in the case of the one-point function, which must
be constructed out of products of the rank-2 tensor Jµν . We found the tensor Jµν in the
process of constraining the two-point functions. The structure Jµν occurs in the contraction
of J ′µα with itself, and the bivector J ′µα in turn arises as a mixed derivative of the cross
ratio ξ2. Despite the fact that there is no cross ratio for the one-point function, having
found Jµν , we are free to use it in the construction of one-point functions.

The situation in the case of bulk-to-defect two point functions is similar. We have no
cross ratio, but again there is a workaround. We can study the defect limit of bulk-bulk
two point functions. From this procedure, we recover all of the relevant tensor structures
necessary for constructing a general bulk-to-defect two-point function from scratch and the
independent structures are given in table 3. We make this claim because there is a one-to-
one match of the structures we find here to the structures required in embedding space [1].

Here we analyse the limit where y′ = 0. An immediate issue is that the cross ratio
ξ2 and several of the tensor structures have an ill behaved y′ → 0 limit. We remedy
this problem by taking various linear combinations of the cross ratios and multiplying by

6See [10] for the q = 1 case and [1] for q > 1.
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Independent Tensor Structures for Bulk-to-Defect
Vectors

Bivector
2-Tensor

at x
at x′

at x
at x′

spin = a i (µ, a) (µ, i) (a,b) (a,i) (i,a) (i,j)

Ξ̂(1)
µ 0 X̂ ′i Îµa Îµi Jµν , δµν δab 0 0 δij

Table 3. List of independent tensor structures used to construct bulk-to-defect two point corre-
lation functions. The definition of these structures can be found in (4.5) where we use a hat on
the bulk tensor structure to indicate it being evaluated at y′ = 0. For a bulk-to-defect two point
correlation function, the tensor structures at x can have bulk Lorentz spin while the structures at
x′ can either have parallel and/or orthogonal spin. Likewise, a bivector at (x,x′) will have one bulk
spin and one parallel or orthogonal spin. Hence we separate the spin combinations in this table.

appropriate powers of ξ1 and ξ2. A basis with well defined limit as y′ → 0 is,{
Ξ(1)
µ ,

ξ2
ξ1

Ξ(2)
µ

}
&
{
X ′α,

ξ2
ξ2

1
Ξ′(2)
α

}
,
{
Iµα, J̄ ′µα

}
, {δµν ,Jµν}&

{
δαβ , J̄ ′′αβ

}
, (4.3)

for vectors at x and x′, bivectors, and rank two tensors at x and x′ respectively and
where X ′α := ξ2(Ξ′(1)

α − Ξ′(2)
α ), Iµα := Iµα − Ξ(1)

µ X ′α, J̄ ′µα := J ′µα − Ξ(2)
µ X ′α and J̄ ′′αβ :=

J ′′αβ + Ξ′(1)
α Ξ′(1)

β . In fact, several of these structures simply vanish or are not independent
in the defect limit as y′ → 0,
ξ2
ξ1

Ξ(2)
µ → 0 , ξ2

ξ2
1

Ξ′(2)
α → 0 , X ′a → 0 , J̄ ′µa → 0 , J̄ ′µi → Iµi , J̄ ′′A → 0 , J̄ ′′ij → δij (4.4)

where A represents the choices of spin (a, b), (a, i) and (i, a). As in the one-point function
case, Jµν is not affected by the limit. Not counting the Kronecker delta’s, the remaining
structures reduce to,

Ξ(1)
µ

∣∣
y′=0 =


2|y|

s2+|y|2 sa µ = a,(
2|y|2

s2+|y|2 − 1
)
ni µ = i,

X ′i
∣∣
y′=0 = −ni,

Iµb
∣∣
y′=0 =

δab −
2sasb

s2+|y|2 µ = a,

−2|y|nisb
s2+|y|2 µ = i,

Iµj
∣∣
y′=0 =

0 µ = a,

δij − ninj µ = i.

(4.5)

We represent the bulk-to-defect tensor structures (see table 3) with a hat, e.g. Ξ̂(1)
µ =

Ξ(1)
µ |y′=0 etc. Similar to the bulk tensor structures (see (2.9) and (2.10)), the set of in-

dependent bulk-to-defect tensor structures are also closed under contraction. Leaving out
the trivial contractions involving the δ’s we have,

Ξ̂(1)
µ Ξ̂(1)µ = X̂ ′i X̂ ′i = 1,

Ξ̂(1)
µ Îµa = Ξ̂(1)

µ Î
µ
i = 0,

X̂ ′iÎµi = Jµν Îµa = 0,

Ξ̂(1)
µ J µν = ÎµiÎµa = 0,

Jµν Îµi = Îνi,
ÎµaÎµb = δab,

ÎµiÎ i
ν = Jµν ,

ÎµiÎµj = δij − X̂ ′i X̂ ′j = Îij ,

ÎµaÎ a
ν = δµν − Ξ̂(1)

µ Ξ̂(1)
ν − Jµν .

(4.6)
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We believe we have found all the relevant structures from which to construct the bulk-to-
defect correlation function between operators of arbitrary spin. Indeed, in embedding space,
ref. [1] construct these same bulk-to-defect two point functions from the five monomials
QiBD, i = 0, . . . , 4. In our language, Q0

BD maps to Îµa, Q1
BD to X̂ ′i , Q2

BD to Ξ̂(1)
µ , Q3

BD to
Îµi, and Q4

BD to Jµν . Given this mapping, we can see from a combinatorial point of view
that exactly the same set of two-point functions should arise in both cases. In appendix C,
we write a selection of bulk two point functions using the basis (4.3) in order to explore
certain special cases where the bulk-to-defect coefficient can be obtained from the functions
appearing in the bulk correlator.

4.2 〈V Ô〉

The two point correlation function between any bulk vector and any defect scalar is given by,

〈Vµ(x)Ô(x′)〉 =
cV Ô

s2∆̂|y|∆−∆̂
Ξ̂(1)
µ (4.7)

where7 s = x− x′ and s2 = s2 + |y|2.

Conserved current. When ∂µV
µ(x) = 0, then we get the constraints ∆ = d − 1 and

∆̂ = d−q = p. The first constraint is required for a bulk conserved current while the second
implies if the dimension of the defect scalar ∆̂ 6= p then cV Ô = 0 when V is conserved.
In particular, the defect OPE of a bulk conserved current Jµ(x) can only have scalars of
dimension p. This reduces to the bCFT result when q = 1 and hence p = d− 1.

Bulk limit. We consider the special case where the defect OPE of a bulk operator
O(x′, y′) expanded around y → 0 has a finite leading order contribution from only one
defect scalar primary Ô, i.e. O(x, 0) = Ô(x). For such a case, we can obtain cV Ô through
the function f1 present in the bulk-bulk correlator 〈Vµ(x)O(x′)〉 in (3.2). The relation is
simply the boundary condition,

lim
ξ1→∞

(4ξ1)∆′f1(ξ1, ξ2) = cV Ô, lim
ξ1→∞

ξ∆′+1
1 ξ−1

2 f2(ξ1, ξ2) = finite . (4.8)

Note the limit ξ1 → ∞ needs to exist independent of ξ2 since ξ2 has an undefined limit
as y′ → 0. That the structure ξ2ξ

−1
1 Ξ(2)

µ vanishes in the defect limit places a finiteness
constraint on f2.

4.3 〈V V̂ 〉

The two point correlation function between any bulk vector and any defect vector with
parallel spin is given by,

〈Vµ(x)V̂a(x′)〉 =
cV V̂

s2∆̂|y|∆−∆̂
Îµa . (4.9)

Conserved current. When ∂µV
µ(x) = 0, we simply get one condition ∆ = d − 1

independent of ∆̂. If V̂ is a conserved defect current and hence has ∆̂ = p − 1, the only
way to satisfy the Ward identity ∂aV̂ a(x) = 0 is to set cV V̂ = 0. In other words, a conserved
defect current cannot appear in the defect OPE of any bulk vector.

7We continue to use this convention throughout this section.
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Bulk limit. If there exists a V̂ such that V ′a(x′, 0) = V̂a(x′) we have the following bound-
ary conditions on the functions appearing in (C.2),

lim
ξ1→∞

gs(ξ1, ξ2) = finite, lim
ξ1→∞

g5(ξ1, ξ2) = cV V̂ , (4.10)

where s ∈ {1, 2, 3, 4, 6}. To reiterate, finiteness of the basis (4.3) as y′ → 0 enables us to put
a finiteness condition on the bulk correlation functions directly, for this type of special case.

The two point correlation function between a bulk vector and a defect vector with
orthogonal spin can also be obtained from (C.2):8

〈Vµ(x)Ŵj(x′)〉 = 1
s2∆̂|y|∆−∆̂

(
cV ŴΞ(1)

µ X̂ ′j + c′
V Ŵ
Îµj
)

(4.11)

Conserved current. When ∂µV µ = 0, we get the constraints ∆ = d− 1 and cV Ŵ (∆̂−
p) = c′

V Ŵ
(q − 1), reducing to one independent coefficient. In particular when ∆̂ = p and

q 6= 1, we have c′
V Ŵ

= 0. When q = 1, the c′
V Ŵ

term vanishes since δij − ninj → 0, and
conservation states cV Ŵ = 0 unless ∆̂ = p = d− 1; as expected, this is the same condition
as for 〈JÔ〉. Conversely, we see when ∆̂ = ∆ = d− 1 and q 6= 1, the Ward identity simply
reduces to cV Ŵ = c′

V Ŵ
.

Bulk limit. If V ′i (x′, 0) = Ŵi(x′), we have the following boundary conditions on the
functions appearing in (C.2),

lim
ξ1→∞

g1(ξ1, ξ2) = cV Ŵ , lim
ξ1→∞

gr(ξ1, ξ2) = finite, lim
ξ1→∞

(g5 + g6)(ξ1, ξ2) = c′
V Ŵ

, (4.12)

where r ∈ {2, 3, 4}. An example can be found in section 5.1.

4.4 〈SÔ〉

The correlation function between a bulk symmetric and traceless tensor with a defect scalar
is given by,

〈Sµν(x)Ô(x′)〉 = 1
s2∆̂|y|∆−∆̂

[
cSÔ

(
Ξ̂(1)
µ Ξ̂(1)

ν −
1
d
δµν

)
+ c′

SÔ

(
Jµν −

q − 1
d

δµν

)]
(4.13)

Energy momentum tensor. When Sµν = Tµν and hence ∂µTµν = 0 everywhere in the
bulk, we obtain the usual constraint ∆ = d and also the relation,

∆̂
d

(q − 1)c′
SÔ = −

(
∆̂
d

(1− d) + p

)
cSÔ, (4.14)

and so we only have one independent coefficient. Similar to the 〈V V̂ 〉 case we just consid-
ered, when q = 1, the structure multiplying c′

SÔ is absent and ∆̂ = d (otherwise cSÔ = 0)
meaning that the defect OPE of Tµν can only have scalars with dimension d (i.e. the bCFT
result). Likewise, when ∆̂ = d and q 6= 1 the Ward identity simply reduces to cSÔ = c′

SÔ.

8This result corrects a typo in (2.38) of [1].
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Bulk limit. When O(x′, 0) = Ô(x′), we have the following boundary conditions on the
functions appearing in (C.3),

lim
ξ1→∞

g1(ξ1, ξ2) = cSÔ, lim
ξ1→∞

gn(ξ1, ξ2) = finite, lim
ξ1→∞

g4(ξ1, ξ2) = c′
SÔ, (4.15)

where n ∈ {2, 3}. We will see a counter example in section 5.1.

4.5 〈F V̂ 〉

The correlation function between a bulk anti-symmetric tensor and a parallel spin defect
vector is given by,

〈Fµν(x)V̂a(x′)〉 =
2cF V̂

s2∆̂|y|∆−∆̂
Ξ(1)

[µ Îν]a (4.16)

We observe that for a line defect p = 1 in four dimensions, where we additionally assume
V̂t = Ĵt is a conserved charge, we can interpret Ĵt as the insertion of a charge on the defect.
Then the correlation function

〈FitJt〉 ∼
ni
|y|2

reduces to the statement of Coulomb’s Law.

Equation of motion. When ∂µFµν = 0 in the bulk (i.e. when the Maxwell field is free),
we get the constraints ∆ = d − 2 and ∆̂ = p − 1 and hence the defect vector has to be a
conserved current meaning that the defect OPE of Fµν which is free in the bulk can only
contain defect vectors which are conserved. Furthermore, for a Maxwell theory we have
∆ = d/2 and we find that the equation of motion can only be applied when d = 4. When
V̂ is a conserved current for any Fµν , we obtain the simple condition ∆̂ = p− 1.

Bulk limit. When V ′a(x′, 0) = V̂a(x′) we have the following boundary conditions on the
functions appearing in (C.4),

lim
ξ1→∞

gm(ξ1, ξ2) = finite, lim
ξ1→∞

g3(ξ1, ξ2) = cF V̂ , (4.17)

where m ∈ {1, 2, 4, 5, 6}.

4.6 〈F F̂ 〉

The correlation function between a bulk anti-symmetric tensor and a defect anti-symmetric
orthogonal tensor is given by,

〈Fµν(x)F̂ij(x′)〉 = 2
s2∆̂|y|∆−∆̂

[
cFF̂ (ÎµiÎνj − Îµj Îνi)

+ c′
FF̂

(
X̂ ′i Ξ̂

(1)
[µ Îν]j − X̂

′
jΞ̂

(1)
[µ Îν]i

)]
(4.18)
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Equation of motion. When ∂µFµν = 0 in the bulk, we obtain the condition ∆ = d− 2
and the relation,

c′
FF̂

(∆̂− p) = −2(2− q)cFF̂ , (4.19)

leaving only one independent coefficient. When q = 2 and ∆̂ 6= p we see that c′
FF̂

= 0
and also the structure involving cFF̂ vanishes. Hence the correlation function is zero. If
instead ∆̂ = p and q 6= 2, we see that cFF̂ = 0. In the special case when both q = 2
and ∆̂ = p = d − 2 = ∆ the relation is automatically satisfied and we seem to have two
independent coefficients. However, since for q = 2 the structures corresponding to cFF̂
vanishes, we only have c′

FF̂
. Finally, when ∆̂ = ∆ = d − 2, irrespective of q and p, the

Ward identity simply reduces to c′
FF̂

= 2cFF̂ .

Bulk limit. When F ′ij(x′, 0) = F̂ij(x′), we have the following boundary conditions on
the functions appearing in (C.5),

lim
ξ1→∞

gm = finite, lim
ξ1→∞

(
g1 + g7

2 + g12

)
= cFF̂ , lim

ξ1→∞
(g2 + g8) = c′

FF̂
, (4.20)

where m ∈ {3, 4, 5, 6, 9, 10, 11}. An example can be found in section 5.3.
Here are some more correlators which we list without further analysis,

〈O(x, y)Ŵj(x′)〉 = −
cOŴ

(s2)∆̂|y|∆−∆̂
nj , (4.21a)

〈O(x, y)Ŝij(x′)〉 =
cOŜ

(s2)∆̂|y|∆−∆̂

(
ninj −

δij
q

)
, (4.21b)

where Ŝij is a traceless and symmetric defect tensor.

5 Free field defect CFT

We will now focus on specific examples of free theories symmetric under the restricted
conformal group (2.1). The purpose of looking at a free theory is mostly to study a simple
example which has a defect symmetry allowing us to verify the general results in sections 3
and 4.

5.1 Free scalar theory on Rp × (Rq/Z2)

The parent theory is N massless scalar fields in d dimensions with the free propagator
δAB

(s2)∆ , where ∆ = d
2 − 1. We then take an orbifold, where we identify directions normal to

the defect y ∼ −y. The spacetime becomes Rp × (Rq/Z2), and we are faced with a choice
what to do to φA under the orbifold action. Two natural choices are to send φA → ±φA.
The method of images then produces the propagator

〈φA(x)φB(x′)〉 = δAB

( 1
(s2)∆ + λ

(s̃2)∆

)
, (5.1)
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where s̃2 = (x − x′)2 + (y + y′)2 and λ = ±1. In the codimension one case, these choices
correspond to more familiar Neumann and Dirichlet boundary conditions. In fact, letting
λ ∈ R be arbitrary, the correlators have the appropriate symmetry for a dCFT with a p-
dimensional defect.9 However, we will see shortly that λ > 0 violates an energy condition.

This theory exhibits a global O(N ) symmetry giving rise to the bulk conserved current,

JABµ = φA∂µφ
B − φB∂µφA, (5.2)

and from translation invariance (in the bulk) we have an improved energy-momentum
tensor,

Tµν = ∂µφA∂νφ
A − 1

2δµν∂
αφA∂αφ

A − d− 2
4(d− 1)(∂µ∂ν − δµν∂α∂α)φ2, (5.3)

which has a non-zero one point function respecting the conformal symmetry given by,

〈Tµν(x)〉 = − λN
(2y)d

d(d− 2)
(d− 1)

[
Jµν −

q − 1
d

δµν

]
. (5.4)

Curiously, positive λ is not consistent with the Average Null Energy Condition (ANEC)
when q > 1. The ANEC states that the integral of the tangential-tangential component of
the stress-tensor along a light-like trajectory must be positive. Appropriately Wick rotating
our result to Lorentzian signature, that integral in this case is proportional to λ [14]. Of
course in the codimension one case, 〈Tµν〉 itself vanishes and there is no such constraint.
The ANEC was proven to hold assuming a Rd−1,1 space-time [15, 16], and it is not clear
that the theorem should hold in this more general orbifolded context.

Using (5.1) we find that the two point correlator between the conserved current respects
the defect conformal symmetry,

〈JABµ (x)JCDν (x′)〉 = 2
(s2)d−1

(
f1Ξ(1)

µ Ξ′(1)
ν + f2Ξ(2)

µ Ξ′(2)
ν + f3

(
Ξ(1)
µ Ξ′(2)

ν + Ξ(2)
µ Ξ′(1)

ν

)
+ f4Iµν + f5J ′µν

)
(δACδBD − δADδBC),

(5.5)

where,

f1 = f2 = −f3 = −2λ(d− 2)ξ2(u2)
d
2

(
1 + λ(u2)

d
2 + d

2(u2 − 1)
)
,

f4 = (d− 2)
(
1 + λ(u2)

d
2−1

) (
1 + λ(u2)

d
2
)
,

f5 = −2λ(d− 2)
(
1 + λ(u2)

d
2−1

)
(u2)

d
2 .

(5.6)

It can be shown that these functions satisfy the conservation PDEs (3.6) and (3.7).

9At least perturbatively, one can access more general values of λ by including degrees of freedom on the
boundary that interact with the scalar [13].
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Defect limit: y′ → 0. If we change the basis to the one corresponding to (C.2), the
functions gi are given by,

g1 = (d− 2)
(
1− λ(u2)

d
2−1(u2 − 1)(1 + du2)− λ2(u2)d−1(−1 + 2u2)

)
,

g4 = −λ(d− 2)(u2)
d
2
(
du2 + 2λ(u2)

d
2
)
,

g5 = (d− 2)
(
1 + λ(u2)

d
2−1

) (
1 + λ(u2)

d
2
)
,

g6 = −2λ(d− 2)
(
1 + λ(u2)

d
2−1

)
(u2)

d
2 ,

g2 = g3 = 0.

(5.7)

We see that the gi’s are all finite as ξ1 → 0. This implies the existence of a defect primary
Ŵi(x) such that the bulk-to-defect coefficients for 〈JµŴi〉 are given by (4.12),

cV Ŵ = c′
V Ŵ

= (d− 2)(1− λ2). (5.8)

The Ward identity is also automatically satisfied by setting ∆̂ = d − 1. So, we see that
for this free theory JABi (x, 0) is a defect primary. Furthermore, reflection positivity (3.5)
demands that c′

V Ŵ
≥ 0 and hence we have a bound on λ, that |λ| ≤ 1.

For this theory, φ2 = φAφ
A is a bulk scalar primary. The one point and two point

functions of φ2 obey the defect conformal symmetry and are given by,

〈φ2(x)〉 = λN
(2|y|)d−2 , (5.9)

and
〈φ2(x)φ2(x′)〉 = 1

(s2)d−2

[
λ2N 2ξd−2

1 + 2N (1 + λud−2)2
]
. (5.10)

From this we can read off the scaling dimension of φ2 to be ∆φ2 = d−2. Using that φ2 is a
primary, we can then look at its two point correlation function with the energy-momentum
tensor. This two point function is consistent with conformal symmetry and is given by,

〈Tµν(x)φ2(x′)〉 = −|y
′|2

s2d

[
g1

(
Ξ(1)
µ Ξ(1)

ν −
δµν
u2d

)
+ g2

(
Ξ(2)
µ Ξ(2)

ν −
δµνξ3
ξ2d

)
+ g3

(
2Ξ(1)

(µ Ξ(2)
ν) + δµνξ3

ξ1d

)
+ g4

(
Jµν −

q − 1
d

δµν

)]
,

(5.11)

where,

g1 = g2 = −g3 = 4λN d(d− 2)2

(d− 1) (u2)
d
2 +1ξ2

2 , g4 = 4λ2N 2d(d− 2)
(d− 1) ξ

d
1 . (5.12)

It can be checked that these functions satisfy the conservation PDEs (3.11) and (3.12)
for 〈TO〉. This correlator provides a counter example to the relations on (4.15) since
g4 diverges. This is due to the presence of the identity in the defect OPE of φ2 whose
contribution to the OPE is singular as y → 0. Note that the two point correlator with a
single JAB will always be zero since the AB indices are antisymmetric.
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5.2 Free Maxwell theory on a wedge

Next, we consider a free U(1) gauge theory in four dimensions with a two dimensional
orbifold defect. The orbifold in this case is obtained by identifying the transverse R2 under
rotations by 2π/N for N ≥ 2 an integer. We parametrise the space R2 × (R2/ZN ) by
x = (x, y1, y2). In the unorbifolded space, the free propagator in Feynman gauge is

〈Aµ(x)Aν(x′)〉 = δµν
s2 . (5.13)

We obtain the propagator on the orbifolded space by using the method of images. The sum
is complicated to evaluate for general values of N for arbitrary points x and x′. General
results for the sum looking at special points exist for the free scalar and spinor field theory
on a wedge [17, 18], but not to our knowledge for the Maxwell field. We will content
ourselves by showing this Maxwell theory on a wedge is a (4,2) defect CFT in just two
examples, N = 2 and N = 4.

Unlike the scalar case, the Maxwell field has a space-time index on which the rotation
acts in a nontrivial fashion. Like the scalar case, we have to decide further if the rotation
gives an extra ±1 phase when acting on the Maxwell field (the analog of absolute and
relative boundary conditions in the q = 1 case). The action of the rotation on the space-
time index is straightforward to work out in polar coordinates, x̂ = (x, r, θ). The extra
phase we incorporate by introducing real parameters λ and λ′. In fact, we will see that
the correlator has the correct dCFT form for general λ and λ′ and not just for the special
values ±1.

Wedge with N = 2. When N = 2, we are working with a special case, R2 × (R2/Z2),
of the orbifold used for the scalar theory above. The propagator on the wedge is given by,

Gλµν(x, x′) = δµν
s2 + λ

Mµν

s̃2 , (5.14)

where Mµν = diag{1, 1,−1,−1}. The correlation function 〈FF 〉 is now specified by the
functions,

f1 = 4(1 + λu4),
f2 = −8λu6ξ2,

f3 = 8λu6ξ2,

f4 = −8λu6ξ2 + 8λu4

ξ3
,

f5 = −16λu6ξ2
ξ3

,

(5.15)

on (3.22). The free Maxwell theory has a bulk stress tensor, Tµν(x) = F γ
µ Fνγ −

δµν
4 FαβF

αβ ,
which has a non-zero one point function,

〈Tµν(x)〉 = − λ

y4

(
Jµν −

1
4δµν

)
. (5.16)

As for the scalar, this result is consistent with the ANEC only for λ ≤ 0.
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Wedge with N = 4. The propagator in this case on R2 × (R2/Z4) is given by the
matrix,

G4
µν =



1
s2 + λ

s̃2 + λ′

s2+
+ λ′

s2−
0 0 0

0 1
s2 + λ

s̃2 + λ′

s2+
+ λ′

s2−
0 0

0 0 1
s2 −

λ
s̃2

λ′

s2+
− λ′

s2−

0 0 − λ′

s2+
+ λ′

s2−

1
s2 −

λ
s̃2

 , (5.17)

where s2
+ = s2 +(y1−y′2)2 +(y2 +y′1)2 and s2

− = s2 +(y1 +y′2)2 +(y2−y′1)2. We also define
new functions of the cross ratios, ξ±3 = 1

2(ξ2±
√

1− ξ2
2) and u2

± = ξ1
ξ1+ξ±3

. Calculating 〈FF 〉
we find that it again matches the general result on (3.22) with the functions f1, . . . , f5
given by,

f1 = 4(1 + λu4 + λ′u4
+ + λ′u4

−),
f2 = −8(λu6ξ2 + λ′u6

+ξ
+
3 + λ′u6

−ξ
−
3 ),

f3 = −f2 + λ′g(u2
+ + u2

−)3,

f4 = −f3 + 8λu4

ξ3
+ λ′h(u2

+ + u2
−)3,

f5 = 2f2
ξ3
− 2λ′gξ2(u2

+ + u2
−)3.

(5.18)

where,

g = 2
(
6ξ2

1 + 6ξ1ξ2 + ξ2
2
)

+ 1
(2ξ1 + ξ2)3 , (5.19a)

h = −ξ2(ξ1 + ξ2)
(
4ξ2

1 + 4ξ1ξ2 − 2ξ2
2 + 3

)
ξ1(ξ2

2 − 1)(2ξ1 + ξ2)2 . (5.19b)

The stress tensor one point function takes the usual form

〈Tµν(x)〉 = −λ+ 8λ′

y4

(
Jµν −

1
4δµν

)
. (5.20)

Consistency with the ANEC would require the weaker constraint λ + 8λ′ ≤ 0, which
eliminates the particular choice λ = −1 and λ′ = 1.

Although we don’t explicitly calculate 〈FF 〉 for more general N , we expect this wedge
theory to obey the conformal constraints for any positive integer N . The particular func-
tions f1, . . . , f5 in (5.15) and (5.18) for the wedge case above can also be shown to satisfy
the four PDE constraints in section 3.6.

〈Tµν(x)Tρσ(x′)〉. Given (for any N) a free Maxwell theory on a wedge that is conformal,
the connected correlation function between two energy momentum tensors can be written
using just the functions f1, . . . , f5 appearing in 〈FF 〉. The result is (D.2).

5.3 Maxwell theory on a R× (R3/Z2)

Another way to generalise the propagator (5.14) is to set p = 1 and q = 3. In doing so, we
arrive at

Ḡ2
µν = δµν

s2 + λ
M̄µν

s̃2 , (5.21)
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where M̄µν = diag{1,−1,−1,−1} and our spacetime points are x = (x1, y1, y2, y3). Cal-
culating the correlator 〈FF 〉, we find that it respects conformal symmetry and is given
by (3.22), where the functions are,

f1 = 4(1 + λu4),
f2 = f4 = −f3 = −8λu6ξ2,

f5 = f9 = 0,

f6 = 16λu4(1− u2ξ2ξ3),
f7 = −f8 = 16λu6ξ2,

f10 = −8λu4.

(5.22)

Note that since q = 3, we used (3.24) to remove f9 leaving us with only nine independent
structures instead of ten. In this case 〈Tµν(x)〉 = 0 and so there is no constraint on λ from
the ANEC.

Defect limit: y′ → 0. If we change the basis to the one corresponding to (C.5), the
functions gi are given by,

g1 = 2(1 + λu4),
g2 = 4[1 + λu4(1− 2u2)],
g4 = −8λu6,

g3 = g5 = g6 = 0,

g7 = 16λu4,

g8 = 8λu4(2u2 − 1),
g10 = 16λu6,

g12 = −8λu4,

g9 = g11 = 0.

(5.23)

We see that the gi’s are finite as ξ1 → ∞. This implies the existence of a defect primary
F̂ij(x) such that the bulk-to-defect coefficients for 〈FµνF̂ij〉 are given by (4.20),

cFF̂ = 2(1 + λ), c′
FF̂

= 4(1 + λ). (5.24)

The Ward identity (4.19) is also satisfied as it reduces to c′
FF̂

= 2cFF̂ when ∆′ = 2, p = 1
and q = 3. So, for this theory Fij(x, 0) is a defect primary. Reflection positivity demands
that both cFF̂ and c′

FF̂
are greater than zero, placing a lower bound λ ≥ −1.

6 Conclusion and further discussion

In this paper we provide the necessary tensor structures, in configuration space, required
to construct bulk two-point correlation functions for a conformal field theory with a flat
defect. In doing so, we find the appropriate tensor structures required for constructing
any one-point and bulk-to-defect two point function as well. We further examine the
conservation constraints on correlators involving a conserved current and the stress tensor.
We also looked at the free field constraints on correlators involving a Maxwell field. These
constraints are summarized in table 2.

While we did not provide detailed constructions, we believe, based on the discussion
in section 2.2, that it is straightforward to extend our result to higher point correlation
functions. One simply duplicates the tensor structures in table 1 for each pair of points
and uses these as building blocks for the multi-point functions. It would be interesting to
explore these higher point cases further, and as a starting point to check that the relevant
structures form a complete set, which we did in the two-point case but not in general.
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Given the generally large number of undetermined functions required to specify our
two-point functions, the particularly harsh constraints on a couple of our correlation func-
tions call out for further analysis. In analyzing 〈Fµν(x)O(x′)〉, we found that applying
a free field constraint to Fµν meant that the correlation function was determined up to
a constant for theories with d = 4 and q = 2 or 3. We would like to find an example
where such a correlation function can be calculated and the result is nontrivial, i.e. not
zero. We also found that in codimension q = 2 and for 〈Tµν(x)Jλ(x′)〉 where Tµν(x) is the
stress tensor and Jλ(x′) a conserved current, the correlation function is fixed up to eight
functions of two cross ratios that furthermore satisfied eight partial differential equations.
In other words, if the correlation function is specified along a particular slice in cross ratio
space, it should generically be defined everywhere through the conservation equations.

A couple of other results are worthy of remark. We analyzed the constraints of reflec-
tion positivity on the 〈Jµ(x)Jν(x′)〉 and 〈Fµν(x)Fλρ(x′)〉 correlation functions, finding (3.5)
and (3.23). (The structure of the 〈Tµν(x)Tλρ(x′)〉 correlator is complicated enough that
we leave an analysis of reflection postivity of this structure for the future.) We also found
that some of our orbifold theories failed to satisfy the ANEC. As the ANEC was proven
only for Lorentz invariant theories [15, 16], the result is intriguing but not in violation of
the theorem.

We have a particular interest in defect theories that are free in the bulk and have
interactions confined to the defect. In this set, perhaps the simplest are theories with only
a free scalar in the bulk, one example of which we looked at in section 5. The subset of
such free scalar theories appears to be very constrained [19, 20], with essentially only the
codimension q = 1 case leading to defect theories which are not “trivial”.

Equally if not more interesting are defect theories with a free Maxwell field in the bulk.
Considerable research has been conducted on a codimension q = 1 theory with a free photon
in the bulk and charged fermionic matter on the boundary. This theory is sometimes called
mixed dimensional or reduced QED and has been used as an “ultra-relativistic limit” of
graphene (see for example [21]). In section 5, we looked at a q = 2 and q = 3 “wedge”
theory as a prelude to looking at higher codimension theories with charged matter on the
defect. Literature suggests that the q = 2 theory with charged matter on the defect is
problematic [22, 23] because the effective photon propagator experienced by the matter
has a logarithm in it and requires a scale to be well defined. We would like to explore what
happens in dimensional regularization, moving slightly away from the q = 2 limit whether
conformal defect constraints can be applied. The q = 3 case is also very interesting, for
example in the study of Wilson and ’t Hooft lines.
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A Useful identities for 〈JO〉, 〈JJ〉, 〈TO〉, and 〈FO〉

Here we list some identities used in deriving the constraints arising from the conservation
equations.

〈JO〉.

∂µ

(
Ξ(1)µ

(s2)d−1

)
= −2y′

s2d (2ξ1(q − 1) + ξ2d), (A.1a)

∂µ

(
Ξ(2)µ

(s2)d−1

)
= 2y′

s2d (ξ3(d− 1)− 2ξ1(ξ3/ξ2 + q − 1)). (A.1b)

〈JJ〉.

∂µΞ′(2)
ν = 2y′

s2

(
2ξ1/ξ2J

′
µν

)
,

∂µΞ′(1)
ν = −2y′

s2 Iµν ,

∂µ

(
J ′µν

(s2)d−1

)
= 2y′

s2d (2ξ1/ξ2 − (d− 1)) Ξ′(2)
ν ,

∂µ

(
Iµν

(s2)d−1

)
= 0,

(A.2)

〈FO〉.

∂µ

( 2
s4 Ξ(1)

[µ Ξ(2)
ν]

)
= 2|y′|

s6

[(
−3ξ3 + 2ξ1

(
ξ3
ξ2

+ q − 1
))

Ξ(1)
ν

+ (2ξ1(2− q) + ξ3 − 2ξ2) Ξ(2)
ν

]
,

(A.3)

〈TO〉.

∂µ

( 1
s2d

(
Ξ(1)µΞ(1)

ν −
δµν
u2d

))
= 2|y′|
s2(d+1)

[(
2ξ1(1− q)− ξ2

d
(d+ 2)(d− 1)

)
Ξ(1)
ν

+
(
ξ2
d

(d− 2)
)

Ξ(2)
ν

]
,

∂µ

( 1
s2d

(
Ξ(2)µΞ(2)

ν −
δµν ξ3
ξ2d

))
= 2|y′|
s2(d+1)

[(2ξ1ξ3
ξ2

)
Ξ(1)
ν

+
(
ξ3d− 4ξ1

(
ξ3
ξ2
− 1
ξ2

2d
+ q

2

))
Ξ(2)
ν

]
,

∂µ
( 1
s2d

(
Ξ(1)

(µ Ξ(2)
ν) −

δµν ξ3
2ξ1d

))
= 2|y′|
s2(d+1)

[
+
(
ξ3
2d(d+ 1)(d− 2)− ξ1

(
ξ3
ξ2

+ q − 1
))

Ξ(1)
ν

+
(
ξ3
2 − ξ1q −

ξ2
d

(
1 + d2

2 + 1
ξ2

2

))
Ξ(2)
ν

]
∂µ
( 1
s2d

(
Jµν −

(q − 1)
d

δµν

))
= 2|y′|
s2(d+1)

[
2ξ1(q − 1)Ξ(1)

ν + ξ2dΞ(2)
ν

]
,

(A.4)
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B Tensor structures for 〈TT 〉

The correlation function between two different symmetric rank-2 tensors is given by,

〈Sµν(x)S′αβ(x′)〉 = |y
′|∆−∆′

s2∆

(
f1I(µ|(αIβ)|ν) + hJµνδαβ + h′′J ′′αβδµν +Hδµνδαβ

+ f2[IµαJ ′νβ + IµβJ ′να + IναJ ′µβ + IνβJ ′µα] +
∑

n≥m;s≥r
fnmrsΞ(m)

(µ Ξ(n)
ν) Ξ′(r)(α Ξ′(s)β)

+ fmrΞ(m)
(µ Iν)(αΞ′(r)β) + FmrΞ(m)

(µ J
′
ν)(αΞ′(r)β) +GJµνJ ′′αβ +

∑
s≥r

h′rsΞ
′(r)
(α Ξ′(s)β) δµν

+
∑
n≥m

gmnΞ(m)
(µ Ξ(n)

ν) J
′′
αβ +

∑
s≥r

g′rsΞ
′(r)
(α Ξ′(s)β) Jµν +

∑
n≥m

hmnΞ(m)
(µ Ξ(n)

ν) δαβ

+ fJ ′(µ(α|J
′
ν)|β)

)
,

(B.1)

where we use the summation convention except when explicitly restricting the sums so that
fmnrs has 9 components, gmn, g′rs, hmn and h′rs each have 3 components. This is a total of
36 structures.

The tensor structures appearing on the correlation function between two stress ten-
sors (3.15) are the following,

T
(1)
µν;αβ = 2Iµ(αIβ)ν ,

T
(2)
µν;αβ = 4Ξ(1)

(µ Iν)(αΞ′(1)
β) ,

T
(3)
µν;αβ = 4Ξ(2)

(µ Iν)(αΞ′(2)
β) ,

T
(5)
µν;αβ = Ξ(1)

µ Ξ(1)
ν Ξ′(1)

α Ξ′(1)
β ,

T
(6)
µν;αβ = Ξ(2)

µ Ξ(2)
ν Ξ′(2)

α Ξ′(2)
β ,

T
(4)
µν;αβ = 4Ξ(1)

(µ Iν)(αΞ′(2)
β) + 4Ξ(2)

(µ Iν)(αΞ′(1)
β)

T
(7)
µν;αβ = Ξ(1)

µ Ξ(1)
ν Ξ′(2)

α Ξ′(2)
β + Ξ(2)

µ Ξ(2)
ν Ξ′(1)

α Ξ′(1)
β ,

T
(8)
µν;αβ = 2Ξ(1)

µ Ξ(1)
ν Ξ′(1)

(α Ξ′(2)
β) + 2Ξ(1)

(µ Ξ(2)
ν) Ξ′(1)

α Ξ′(1)
β ,

T
(9)
µν;αβ = 2Ξ(2)

µ Ξ(2)
ν Ξ′(1)

(α Ξ′(2)
β) + 2Ξ(1)

(µ Ξ(2)
ν) Ξ′(2)

α Ξ′(2)
β ,

T
(10)
µν;αβ = 4Ξ(1)

(µ Ξ(2)
ν) Ξ′(1)

(α Ξ′(2)
β) .

(B.2)

S
(1)
µν;αβ = 2J ′µ(α|J

′
ν|β),

S
(2)
µν;αβ = 4Ξ(1)

(µ J
′
ν)(αΞ′(1)

β) ,

S
(3)
µν;αβ = 4Ξ(2)

(µ J
′
ν)(αΞ′(2)

β) ,

S
(9)
µν;αβ = 4I(µ|(α|J ′|ν)|β),

S
(4)
µν;αβ = 4Ξ(1)

(µ J
′
ν)(αΞ′(2)

β) + 4Ξ(2)
(µ J

′
ν)(αΞ′(1)

β) ,

S
(5)
µν;αβ = Ξ(1)

µ Ξ(1)
ν J ′′αβ + JµνΞ′(1)

α Ξ′(1)
β ,

S
(6)
µν;αβ = Ξ(2)

µ Ξ(2)
ν J ′′αβ + JµνΞ′(2)

α Ξ′(2)
β ,

S
(7)
µν;αβ = 2Ξ(1)

(µ Ξ(2)
ν) J

′′
αβ + 2JµνΞ′(1)

(α Ξ′(2)
β) ,

S
(8)
µν;αβ = JµνJ ′′αβ .

(B.3)

C Taking the defect limit of 〈VO〉, 〈V V ′〉, 〈SO〉, 〈FV ′〉 and 〈FF ′〉

Here we list some of the bulk-bulk correlation functions used for obtaining the bulk-defect
correlations function. The only difference here compared to section 3 is the choice of overall
normalisation and the tensor structure basis as mentioned in section 4.
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〈VO〉. The correlation function between any vector (no need to be conserved) and a
scalar is given by,

〈Vµ(x)O(x′)〉 = |y|
∆′−∆

(s2)∆′

(
g1Ξ(1)

µ + g2
ξ2
ξ1

Ξ(2)
µ

)
. (C.1)

〈V V ′〉. The correlation function between any two distinct vectors is given by,

〈Vµ(x)V ′ν(x′)〉 = |y|
∆′−∆

(s2)∆′

(
g1Ξ(1)

µ X ′ν + g2
ξ2

2
ξ3

1
Ξ(2)
µ Ξ′(2)

ν + g3
ξ2
ξ2

1
Ξ(1)
µ Ξ′(2)

ν

+ g4
ξ2
ξ1

Ξ(2)
µ X ′ν + g5Iµα + g6J̄ ′µν

)
.

(C.2)

〈SO〉. The correlation function between any symmetric, traceless tensor and a scalar is
given by,

〈Sµν(x)O(x′)〉 = |y|
∆′−∆

(s2)∆′

[
g1

(
Ξ(1)
µ Ξ(1)

ν −
δµν
u2d

)
+ g2

(
ξ2

2
ξ2

1
Ξ(2)
µ Ξ(2)

ν −
δµνξ2ξ3
ξ2

1d

)

+g3

(
ξ2
ξ1

Ξ(1)
(µ Ξ(2)

ν) + δµνξ2ξ3
2ξ2

1d

)
+ g4

(
Jµν −

q − 1
d

δµν

)]
.

(C.3)

〈FV ′〉. The correlation function between any antisymmetric tensor and a vector is
given by,

〈Fµν(x)V ′α(x′)〉 = |y|
∆′−∆

(s2)∆′

(
g1
ξ2
ξ1

Ξ(1)
[µ Ξ(2)

ν] X
′
α + g2

ξ2
2
ξ3

1
Ξ(1)

[µ Ξ(2)
ν] Ξ′(2)

α + 2g3Ξ(1)
[µ Iν]α

+ g4
ξ2
ξ1

Ξ(2)
[µ Iν]α + g5Ξ(1)

[µ J̄
′
ν]α + g6

ξ2
ξ1

Ξ(2)
[µ J̄

′
ν]α

)
.

(C.4)

〈FF ′〉. The correlation function between any two different antisymmetric tensors is
given by,

〈Fµν(x)F ′αβ(x′)〉 = 4|y|∆′−∆

(s2)∆′

[
g1Iµ[α|Iν|β] + g2Ξ(1)

[ν Iµ][αX
′
β]

+ g3
ξ2
ξ2

1
Ξ(1)

[ν Iµ][αΞ′(2)
β] + g4

ξ2
ξ1

Ξ(2)
[ν Iµ][αX

′
β] + g5

ξ2
2
ξ3

1
Ξ(2)

[ν Iµ][αΞ′(2)
β]

+ g6
ξ2

2
ξ3

1
Ξ(1)

[µ Ξ(2)
ν] X

′
[αΞ′(2)

β] + g7
2 J̄

′
µ[α|J̄

′
ν|β] + g8Ξ(1)

[µ J̄
′
ν][βX

′
α] + g9

ξ2
ξ2

1
Ξ(1)

[µ J̄
′
ν][βΞ′(2)

α]

+ g10
ξ2
ξ1

Ξ(2)
[µ J̄

′
ν][βX

′
α] + g11

ξ2
2
ξ3

1
Ξ(2)

[µ J̄
′
ν][βΞ′(2)

α] + g12J̄ ′[µ[α|Iν]|β]

]
.

(C.5)
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D 〈TT 〉 in the free Maxwell theory for d = 4, q = 2

Given that the two point correlation function of the field strength Fµν obeys the defect
conformal symmetry (3.22),

〈Fµν(x)Fαβ(x′)〉 = 4
(s2)2

[
f1I[µ|[αIβ]|ν] + f2Ξ(1)

[ν Iµ][αΞ′(1)
β]

+f3
(
Ξ(1)

[ν Iµ][αΞ′(2)
β] + Ξ(2)

[ν Iµ][αΞ′(1)
β]

)
+ f4Ξ(2)

[ν Iµ][αΞ′(2)
β] + f5Ξ(1)

[ν Ξ(2)
µ] Ξ′(1)

[α Ξ′(2)
β]

]
,

(D.1)

and given the bulk Maxwell energy momentum tensor Tµν(x) = F γ
µ Fνγ −

δµν
4 FαβF

αβ , we
find the two point correlation function of Tµν is given by (3.15),

〈Tµν(x)Tαβ(x′)〉= 1
s8

[ 10∑
n=1

gn(ξ1, ξ2)T (n)
µν;αβ+h1δµνδαβ

+h2
(
δµνΞ′(1)

α Ξ′(1)
β +δαβΞ(1)

µ Ξ(1)
ν

)
+h3

(
δµνΞ′(2)

α Ξ′(2)
β +δαβΞ(2)

µ Ξ(2)
ν

)
+h4

(
δµν(Ξ′(1)

α Ξ′(2)
β +Ξ′(1)

β Ξ′(2)
α )+δαβ(Ξ(1)

µ Ξ(2)
ν +Ξ(1)

ν Ξ(2)
µ )
)]
, (D.2)

where,

g1 = (d− 2)f2
1 + f2

2
u4 + ξ2

3
ξ2

2
f2

4 + ξ3

( 2
ξ2u2 + ξ3

2ξ2
1

)
f2

3 + 2ξ2

( 1
u2 + ξ3

2ξ1

)
f1f2

+ 2ξ3

(
ξ3
2ξ1
− 1

)
f1f4 + ξ2

3
2ξ2

1
f2f4 − 4ξ3

(
ξ2
2ξ1

+ 1
)
f1f3 −

2ξ3
ξ1u2 f2f3 −

2ξ2
3

ξ1ξ2
f3f4,

g2 = ξ2

(
ξ3
2ξ1
− 1
u2

)
f2

2 − ξ3

(
2 + ξ3

ξ1

)
f2

3 + (d− 3− ξ2
2)f1f2 − ξ2

3f1f4

+ ξ3

(
ξ3
2ξ1
− 1

)
f1f5 − ξ3

(
1 + ξ3

2ξ1

)
f2f4 + ξ2

3
4ξ2

1
f2f5 + ξ2

3
ξ2

2
f4f5 + 2ξ2ξ3f1f3

+ 3ξ2ξ3
ξ1

f2f3 + 2ξ2
3

ξ2
f3f4 −

ξ2
3

ξ1ξ2
f3f5,

g3 = ξ3

(
ξ3
2ξ1

+ 1
)
f2

4 + ξ2

( 2
u2 −

ξ3
ξ1

)
f2

3 − ξ2
2f1f2 + (d− 3− ξ2

2)f1f4

+ ξ2

( 1
u2 + ξ3

2ξ1

)
f1f5 + ξ2

( 1
u2 −

ξ3
2ξ1

)
f2f4 + f2f5

u4 + ξ2
3

4ξ2
1
f4f5 − 2ξ2

2f1f3

+ 2ξ2
u2 f2f3 −

3ξ2ξ3
ξ1

f3f4 −
ξ3
ξ1u2 f3f5,

g4 = ξ2
u2 f

2
2 + ξ2

3
ξ2
f2

4 + ξ2
2f1f2 − ξ2ξ3f1f4 + ξ3

(
ξ2
2ξ1

+ 1
)
f1f5 + ξ3

2ξ1u2 f2f5

+ ξ2
3

2ξ1ξ2
f4f5 + (d− 3 + ξ2

2 − ξ2ξ3)f1f3 + ξ2

( 1
u2 −

ξ3
2ξ1

)
f2f3

− ξ3

(
1 + ξ3

2ξ1

)
f3f4 − ξ3

(
ξ3
4ξ2

1
+ 1
ξ2u2

)
f3f5,
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g5 = 2(d− 4 + 2ξ2
2)f2

2 + 2ξ2
3

ξ2
2
f2

5 + 4ξ2
3f

2
3 − 4ξ2

3f1f5 − 2ξ3

(
ξ3
ξ1

+ 2
)
f2f5

− 8ξ2ξ3f2f3 + 8ξ2
3

ξ2
f3f5,

g6 = 2f2
5

u4 + 2(d− 4 + 2ξ2
2)f2

4 + 4ξ2
2f

2
3 − 4ξ2

2f1f5 + 2ξ2

( 2
u2 −

ξ3
ξ1

)
f4f5

+ 8ξ2
2f3f4 + 8ξ2

u2 f3f5,

g7 = 2ξ3
ξ2u2 f

2
5 + 2(d− 4 + 2ξ2ξ3)f2

3 − 4ξ2
2f1f5 − 4ξ2

2f2f4 −
4ξ2
u2 f2f5 + 4ξ3f4f5

− 4ξ2
2f2f3 + 4ξ2ξ3f3f4 + 4ξ3

(
1 + ξ2

2ξ1

)
f3f5,

g8 = −2ξ2
2f

2
2 + ξ2

3
ξ1ξ2

f2
5 − 4ξ2ξ3f1f5 − 2ξ2ξ3f2f4 −

3ξ2ξ3
ξ1

f2f5 + 2ξ2
3

ξ2
f4f5 + 2ξ2

3f3f4

+ 2(d− 3− ξ2
2)f2f3 + 2ξ3

(
1 + ξ3

2ξ1

)
f3f5,

g9 = ξ3
ξ1u2 f

2
5 + 2ξ2ξ3f

2
4 + 4ξ2

2f1f5 + 2ξ2
2f2f4 + 2ξ2

u2 f2f5 + 3ξ2ξ3
ξ1

f4f5 + 2ξ2
2f2f3

+ 2(d− 3− ξ2
2)f3f4 + 2ξ2

(
ξ3
2ξ1
− 1
u2

)
f3f5,

g10 = ξ2
2f

2
2 + ξ2

3
2ξ2

1
f2

5 + ξ2
3f

2
4 + (4− d)f2

3 − 2ξ2(ξ2 − ξ3)f1f5 + (d− 4 + 2ξ2ξ3)f2f4

+ ξ2

(3ξ3
2ξ1
− 1
u2

)
f2f5 + ξ3

(3ξ3
2ξ1

+ 1
)
f4f5 + ξ3

(
ξ2
ξ1
− 2
u2

)
f3f5, (D.3)

and the functions h1, . . . , h4 are obtained from the traceless condition (3.16).

E Embedding space to physical space

We project the embedding space building blocks for symmetric traceless bulk-bulk two
point functions to physical space,

Q1
BB → ξ2Ξ(2)

µ , Q2
BB → −2ξ1ξ2

(
Ξ(1)
µ − Ξ(2)

µ

)
, Q3

BB → −2ξ1Ξ′(1)
α − ξ2Ξ′(2)

α ,

Q4
BB → −2ξ1ξ2

(
Ξ′(1)
α − Ξ′(2)

α

)
, Q5

BB → J ′µα + ξ2Ξ(2)
µ Ξ′(2)

α ,

Q6
BB → ξ2

(
Iµα − J ′µα

)
− 2ξ1ξ2

(
Ξ(1)
µ − Ξ(2)

µ

)
Ξ′(1)
α , Q7

BB →
(
q − 1
d

δµν − Jµν
)
,

Q8
BB →

(
q − 1
d

δαβ − J ′′αβ
)
.

(E.1)

The QkBB’s are given by equation (3.18) of [1].
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