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1 Introduction

Perturbative Quantum Chromodynamics (QCD) has enjoyed rapid progress in the past
two decades. Most remarkably, we have witnessed an “next-to-leading order (NLO) revolu-
tion” [1–6]: all important hard-scattering LHC processes can be computed, in an automated
way, at next-to-leading-order in the strong-coupling expansion [7, 8]. The automation of
NLO computations has marked the culmination of years of challenging research which
revealed elegant structures in gauge-theory amplitudes, loop integration and phase-space
integration over real partonic radiation. Impressive progress on the same fronts (ampli-
tudes, loop and phase-space integration) has been achieved beyond NLO. Many 2 → 2
processes are by now computable at next-to-next-to-leading-order (NNLO) [9–15], while
hadron collider processes with simpler kinematics can be calculated at N3LO [16–22]. A
first cross-section for a 2→ 3 process has been computed at NNLO in the approximation of
a large number of colors [23]. Here we shall explore a factorization-based approach to that
may be useful in the computation of multiloop amplitudes with multiple external lines,
and give a first application at two loops in massless quantum electrodynamics.

Currently, theoretical simulations and experimental measurements are in most cases
of comparable accuracy. However, it is expected that with the collection of 15 times more
data by the end of the LHC physics program, in the next two decades, and further advances
in data analysis methods, the precision of many measurements will surpass the accuracy
of theoretical predictions [24]. Theory will therefore be the limiting factor in the precise
extraction of fundamental parameters, in testing the Standard Model of particle physics
and in revealing potential signals of new phenomena. It will become important in the
future to perform the many more NNLO and N3LO cross-section computations necessary
to match the projected experimental uncertainties.

We believe that the biggest stumbling block towards this goal is the computation of
new two-loop and three-loop amplitudes. This may be surprising given that we have seen an
enormous progress in the development of methods for multi-loop amplitude computations
in recent years. On the analytic front, powerful algebraic Feynman diagram simplifications
with reductions to “master integrals” have been devised [25–47]. The master integrals
themselves have been objects of an intense field of research and their evaluation is nowa-
days made with powerful mathematical methods which exploit newly discovered algebraic
properties of polylogarithmic functions and iterated integrals [48–56], enabling direct para-
metric integration [57] using (quasi-) finite bases [58]. On the numerical side, methods such
as solving master integral differential equations numerically [9, 59–63], sector decomposi-
tion and related numerical methods in Feynman parameter space [64–76], Mellin-Barnes
integration [77–84] have proven to be very powerful.

In their current form, however, the aforementioned methods are seriously challenged by
the core of multi-loop amplitude computations needed for the purposes of the future preci-
sion physics program at the LHC. Their computational cost increases fast with complexity,
measured either by the number of loops or the number of scattered particles. Next genera-
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tion problems, such as three-loop amplitudes for 2→ 2 processes1 beyond the massless case
(for which we note recent spectacular breakthroughs [86–88]) and two-loop amplitudes for
2→ 3 processes with two or more mass parameters, appear to have a prohibitive algebraic
complexity. Beyond the algebraic obstructions, on the analytic front, the “basis” of special
functions (elliptic polylogarithms, etc.) which emerge routinely in such computations is
not fully known. There is a realistic chance that the computational complexity cannot
be tamed by following these well established and, up to now, very successful paths. New
approaches must also be pursued. In this spirit, new ideas aiming at fundamental aspects
of perturbative computations are emerging [89–101].

We believe that numerical integration directly in momentum space can provide a pow-
erful solution to the computational complexity of multi-loop amplitudes. In momentum
space, Feynman diagrams take the form of simple rational functions before loop integra-
tion. The evaluation of the multi-loop amplitude integrands is inexpensive, especially when
modern recurrence and other generation methods [7, 8, 102–106] are employed. The idea
of integrating scattering amplitudes directly in momentum-space is appealing because at
a loop order NL the number of integrations (≤ 4NL) is independent of the number of
scattered particles. This is very helpful in the effort to automate the evaluation of ampli-
tudes for generic processes, since the number of integrations in other approaches depends
strongly on the number of external particles. This is, for example, one main reason that
while analytic approaches have been very successful in two-loop 2 → 2 amplitudes, the
computation of 2→ 3 two-loop amplitudes is much more complicated [23, 107–118].

However, it is also true that direct momentum-space integration cannot be applied in
a straightforward manner either. Feynman amplitudes are divergent in d = 4 space-time
dimensions due to ultraviolet (UV) and infrared (IR) singularities. While UV singularities
are canceled by renormalization, IR singularities cancel when all components of physical
cross-sections (including phase-space integration over real radiation and convolution with
parton densities/fragmentation functions) are assembled. In order to make this cancellation
manifest and to obtain convergent representations of the physical remainder, the singular-
ities need to be explicitly extracted from the integrand of multi-loop amplitudes. Similar
extractions are of course required for phase-space integrands [13, 15, 19, 22, 119–147].

Rendering amplitudes integrable with removal of IR and UV divergences followed by
appropriate contour deformations has been pursued at one loop, in foundational works
of refs. [148–155]. At higher loop orders, the structure of IR and UV divergences is
severely entangled and designing subtractions which remove simultaneously all singular-
ities is challenging. In a recent work [156], it was shown that such singularities can be
successfully removed in practice at higher loops by an amplitude-level “nested subtrac-
tion” approach [157–160]. There has also been related work on expressing amplitude in-
tegrands in a basis of integrals which makes the divergence structures manifest, known as
the “local numerator” approach. This method has been applied in N = 4 super-Yang-Mills
theory [161–165] and to less supersymmetric theories, including QCD [112, 166–168].

1In supersymmetric gauge theories, scattering amplitudes of even higher external state multiplicities and
at four loops have been computed recently, e.g. in [85].
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In this article, we demonstrate for the first time that two-loop amplitudes for the pro-
cesses e−+ e+ → γ∗’s can be freed locally, i.e., at the integrand level, from all infrared and
ultraviolet divergences by a limited number of counterterm subtractions. The process of
annihilation into off-shell photons is chosen for its relative simplicity, and because its IR
structure is closely related to annihilation into massive electroweak bosons. The countert-
erms remove all types of soft, collinear and ultraviolet singularities. Infrared counterterms
are summed into simple universal factors which are easy to integrate analytically, regardless
of the number of final-state photons considered. Our approach is inspired by the picture of
infrared factorization [157–159, 169–178, 178–185] which is established for amplitudes after
integration of the loop momenta. Unlike ref. [156], we will not attempt to construct coun-
terterms for every individual diagram, but will construct counterterms for the sum of all
diagrams, using a suitable choice of loop momentum routings to combine all diagrams into
a single integrand. The benefit of summing over diagrams is that IR singularities become
factorized, that is, proportional to lower-loop amplitudes, and the needed counterterms are
very simple even when the number of external legs is very large.

The origin of gauge theory infrared divergences in terms of factorized and universal jet
and soft functions has been demonstrated by a number of methods [158, 185]. In this paper,
we use a consequence of this factorization: processes with the same set of jet functions and
soft infrared functions can differ only in their short-distance, “hard” functions. In this way,
a known process can be used as a guide to isolate the hard functions in a more complex
process. We shall use below the color-singlet annihilation form factor at two loops (here,
in QED) as the known function, which we shall use to determine the much more complex
annihilation cross section for n off-shell photons. The construction of counterterms below
will follow the procedures implemented in proofs of factorization, and will rely on Ward
identities that decouple unphysically polarized vectors from physical processes.

The efficacy of such a subtraction method depends on the logarithmic nature of in-
frared divergences in gauge theories. The power counting procedure that gives this im-
portant result has been known for a long time, and has been described in detail in the
literature [186–188]. Key steps in these arguments depend on essential features of self
energy and three-point vertex subdiagrams in massless renormalized perturbation theory.
First, a renormalized fermion self energy diagram takes the form /p πF (p2/µ2), with µ the
renormalization scale. This is the inverse propagator times a function, πF , of the invariant
mass that is no more than logarithmically divergent. In the same way, the renormalized
vector self energy takes an analogous form, with a potentially logarithmically divergent
function, πV , times the unique transverse tensor, (gµνq2 − qµqν)πV (q2/µ2). Finally, after
integration and renormalization, a three-point subdiagram can depend only on its external
momenta, and must obey the relevant Ward identities of the theory.

As discussed below, the tensor properties of two- and three-point functions that we
have just described are a challenge to any local subtraction method, because they are only
guaranteed to hold after the internal loop integrals have been carried out. At fixed val-
ues of internal loop momenta, self energy subdiagrams can produce power divergences in
infrared limits. In addition, we will see that the internal loop momenta of vertex subdia-
grams generically produce polarizations of their external photons that are in the directions
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of those loop momenta. We shall refer to these below as “loop polarizations”. Loop po-
larizations, of course, are not necessarily in the directions of external momenta, and, as
we shall see, interfere with the factorization, and hence universality, of infrared enhance-
ments. All of these complications begin at two loops, and much of this article will be
involved with showing how such obstacles can be overcome. Specifically, we will modify
the loop integrand of certain diagrams by adding terms that vanish upon integration, to
restore manifest logarithmic singularities that factorize into lower-loop expressions before
integration is carried out.

The detailed implementation of these ideas as presented in this paper is intended in
part as an existence proof that the challenges described above can be overcome in a realistic
theory for a set of physically-realizable processes. Even within these limitations, we do not
present our solutions as unique or necessarily optimal. We believe, however, that they
provide a basis and motivation to pursue this approach further, in particular to nonabelian
theories.

After setting the notation in the following section, we discuss the underlying factoriza-
tion properties of the class of processes under consideration, and point out the possibility of
realizing this factorization at the level of the integrands. In section 3 we construct a set of
infrared and ultraviolet counterterms for the one-loop amplitude of multiple off-shell pho-
ton production in electron-positron annihilation. The infrared counterterms are manifestly
proportional to the tree-level amplitude, thanks to Ward identities that reveal the factor-
ized nature of the singularities. We continue to the construction of IR and UV counterterms
for the two-loop amplitude, first for diagrams with fermion loops (section 4), and then for
diagrams with loops formed by additional photons (section 5). In these constructions, we
will modify certain one-loop self energy and vertex subgraphs to make factorization prop-
erties of IR divergences manifest before integration. UV subdivergence counterterms for
one-loop subgraphs will be carefully constructed to obey Ward identities even away from
the strict UV limit, to prevent spoiling the IR factorization properties of the remaining
loop. We will present in section 6 numerical checks to demonstrate that all IR and UV sin-
gularities are removed by our subtraction terms. The subtraction terms can themselves be
analytically integrated by standard methods, and the detailed calculation will be presented
in a forthcoming publication. We conclude with a summary of the procedures developed
in this paper, and a brief discussion of the outlook for further progress.

2 Expansions and factorization for integrands

We consider the QED Lagrangian in the Feynman gauge, with Nf massless lepton fields
which carry an electric charge qf , normalized in units of the positron charge e,

L =
Nf∑
f=1

iψ̄f
(
/∂ − iqfe /A

)
ψf −

1
4FµνF

µν − 1
2ξ (∂ ·A)2 , ξ = 1. (2.1)

In addition to soft singularities, the theory also exhibits collinear singularities due to the
masslessness of the fermionic fields.
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We will focus on processes with multiple photons produced in electron-positron anni-
hilation,

e−(p1) + e+(p2)→ γ∗(q1) + . . .+ γ∗(qn) , (2.2)

where in parenthesis we denote the momenta of the external electron, positron and photons.
We will consider here the case of off-shell photons, q2

i 6= 0, focusing on the treatment of
initial-state singularities. Although off-shell, these amplitudes are gauge invariant, and
share many of the properties of amplitudes for the production of massive vector bosons.
By restricting ourselves to off-shell photons only, we can concentrate on the IR divergences
associated with initial states. Building on the formalism we develop below, we intend in
future work to treat amplitudes with on-shell photons and charged particles in the final
state.2

2.1 Expansions

The infrared structure of a probability amplitude for a process in this class, eq. (2.2), is
independent of the number of photons. We will therefore treat the final state in complete
generality. For the initial state, we define the Mandelstam variable s ≡ (p1 + p2)2.

As an expansion series in the coupling constant, a generic n-photon production ampli-
tude is given by

M = en
[
M (0) + e2M (1) + e4M

(2)
full + . . .

]
, (2.3)

where M (0) denotes the tree-level process and M (k) is the k-loop amplitude. At two loops,
the n-photon production amplitude acquires an explicit dependence on the electric charges
of all fermionic flavors due to closed fermion loops (as in figure 8 below). The two-loop
amplitude can then be further decomposed as

M
(2)
full = M (2) +

n+2∑
c=2

∑
f

qcf

M (2)
c , (2.4)

where qfe is the charge associated to the fermion species f . The term M (2) contains
diagrams with no fermion loops. The amplitude coefficients M (2)

c originate from Feynman
diagrams with a closed fermion-loop, and c photons coupled to the loop. At two loops,
as many as two of these photons may be virtual. Since we are working in QED, due to
Furry’s theorem, these coefficients vanish for odd values of c.

The one-loop, two-loop, etc., orders of the n-photon production amplitude are integrals
over loop momenta

M (1) =
∫

ddl

(2π)dM
(1)(l), M (2) =

∫
ddk

(2π)d
ddl

(2π)dM
(2)(k, l) , . . . (2.5)

We will adopt the above notation also for counterterms and finite amplitudes after sub-
traction; in all cases, M , with various superscripts and subscripts, will be used to denote

2Beginning at two loops, even for outgoing on-shell photons we will encounter “transient” final-state
singularities, which disappear in the fully integrated amplitude, but which require special treatment to
achieve local integrability.
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integrated quantities whileM will be used to denote unintegrated quantities. For the tree
amplitude, there is no loop integration, so M (0) and M(0) will be used interchangeably.
The tree-level and one-loop amplitudes,M(0) andM(1), respectively, will be written down
from diagrams in the Feynman gauge; the same is true for a starting expression of the
two-loopM(2), but a modified version of amplitudeM(2) will be constructed, to make IR
factorization properties more manifest without changing the integrated amplitude.

To denote counterterms, we will use the generic notation

RrM (2.6)

to represent a local (i.e. integrand-level) approximation of some amplitudeM in a certain
IR or UV limit r. For example, we will write RsoftM(1) to denote the soft limit of the
one-loop amplitude. We stress the inherent freedom and ambiguity left in this notation:
RrM only needs to match the divergent part of M in the limit r, while the finite part is
unspecified. The specific choice of counterterms will be a main topic of this paper. Now
it’s natural to use the notation

RrM (2.7)

to denote the result of integrating eq. (2.6) over loop momenta.
Due to the electron-positron initial state, the amplitude takes the form

M = v(p2)M̃ (p1, p2, {qj})u(p1) , {qj} = q1, . . . , qn , (2.8)

where M̃ is a matrix in spinor space, and where the dependence of the amplitude on
electron and positron spinors is shown explicitly. We will adopt a similar notation for var-
ious amplitude components, whereby M̃ (X) (M̃(X)) denotes the integrated (unintegrated)
component X of the amplitude with external spinors removed.

For future reference, it will be useful to define the Dirac projectors,

P1 ≡
/p1/p2

2p1 · p2
, P2 ≡ 1−P1 (2.9)

which satisfy
P2

1 = P1, P2
2 = P2, (2.10)

and

P1 u(p1) = u(p1), v̄(p2)P1 = v̄(p2), P2 u(p1) = 0, v̄(p2)P2 = 0 . (2.11)

The first of these projectors, also commonly used in SCET [189], will serve in our definition
of infrared counterterms at one and two loops.

2.2 Factorization for integrals and integrands

As noted above, for the processes under study, all IR singularities are associated with
virtual lines that are either collinear to the incoming electron or positron, or have vanishing
momenta and are attached to one of the external lines of the pair or to fermion lines that are
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collinear to the incoming lines. All such IR behavior factorizes from the “hard scattering”,
in this case the production of off-shell photons.

All such amplitudes enjoy the same pattern of factorization as the (Sudakov) annihi-
lation form factor for massless fermions in QED. Let us briefly review the reasons for this
result. Infrared singularities are generated by the loops of jet functions for the electron
and for the positron, and by loops in a soft function, which describes the coupling of soft
photons to those jets, and their scattering through virtual massless fermion loops. In fact,
for our discussion, we will not need to construct these functions explicitly. We need only
know that they factor from a hard-scattering, or short-distance function. The hard func-
tion, in turn, depends only on the momenta of outgoing photons and the on-shell incoming
lines, and is completely insensitive to collinear evolution before the hard scattering, as well
as to all soft photons. The factorization is therefore in terms of a product, rather than a
convolution. Product factorization is characteristic of all wide-angle or large-momentum
transfer scattering amplitudes in gauge theories [158, 173].

There are many ways to express the product factorization described above. For us,
it will be convenient to give it as a product in Dirac space, and in terms of integrands,
following the notation of eq. (2.5). (We suppress the subscript “full” in eq. (2.5), but
the following discussion applies independently to each of the terms in the expansion in the
order of fermion loops, eq. (2.4).) For the amplitude that describes the annihilation process
e−(p1) + e+(p2) → γ∗(q1) + · · · + γ∗(qn), with all photons off-shell, we will represent the
factorized amplitude as a specific matrix element,

M (p1, p2, {qj}) =
〈

0| ψ̄(0) [P1T (p1, p2, {qj}) P1] ψ(0) |p1, p2
〉

=

p1

p2

T

q1

q2

qn

···

≡ F [P1T ({qj}) P1] . (2.12)

Here, the first equality identifies the full amplitude for the annihilation of the pair as the
matrix element of a composite operator, written as ψ̄[P1TP1]ψ. This operator is local
in the fermion fields, which bracket a Dirac vertex that depends on all of the external
momenta, but which is fully infrared finite. The matrix is represented by the box in the
figure. We will show how to construct this matrix below. The third relation introduces a
shorthand notation that we will use below for the matrix element, as a function F , formally
acting on the vertex. The function F is computed from the loop integrals illustrated in the
figure.

As shown in eq. (2.12), each diagram that contributes toM (and hence F ) in eq. (2.12)
contains a single electron-positron vertex P1T (p1, p2, {qj}) P1, represented by the boxed T
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in the figure. At this vertex, the total momentum of the initial state, p1 +p2, flows into the
final-state photons. The factor T in eq. (2.12),represents a hard-scattering function that
contains all dependence on the final state momenta {qj}. It also depends on the on-shell
initial momenta of the pair, p1 and p2. The matrix T begins at lowest order with a sum
over tree diagrams, stripped of incoming Dirac spinors. It is multiplied on the left and
right by the projection matrix P1 defined in eq. (2.9), whose role we discuss at the close
of this subsection. At higher orders, the matrix P1TP1 will be computed from sums of
loop diagrams. Its integrals, however, will be completely independent of the loop integrals
of F , as we will describe below. The independence of these integrals is equivalent to the
product factorization described above, and realized in the notation of eq. (2.12).

The content of eq. (2.12) is that all IR singularities arise from form factor integration,
and are independent of the final state momenta. Correspondingly, the matrix P1T ({qj}) P1
is IR finite in four dimensions and has all the dependence on final-state momenta. This
relation holds to all orders in perturbation theory [158] for renormalized amplitudes.

Equation (2.12) is also a sum over all orders in this fully factorized expression. To
a given power of the coupling, say (e2)a = (4πα)a, a ≥ 1 in the notation of eq. (2.3),
M (a) ({qj}) is a function of a loop momenta, while F and T appear at all loop orders that
add up to a, as

M (a) ({qj}) =
∫
k1...a

M(a) ({qj}, k1, . . . ka)

=
a−1∑
b=0

∫
kb+1...a

F (a−b)
[
kb+1, . . . ka; P1

∫
k1...b

T (b) ({qj}, k1, . . . kb) P1

]
+F (0)

[
P1

∫
k1...a

T (a) ({qj}, k1, . . . ka) P1

]
. (2.13)

In this product factorization, the notation implies that the integrals over loops in the
form factor F are completely decoupled from those in matrix T , whose integrands are
represented by F and T , respectively. The form factor integrand for F (2) is illustrated
diagrammatically in figure 1. Also included implicitly are the UV counterterms that are
part of the perturbative expansion in these expressions for renormalized amplitudes.

Because of the separation of integrations, we can think of eq. (2.12) as an effective
theory expression for this class of amplitudes, where hard scales, of the order of external
invariants, have been integrated out within T . From this point of view as well, the matrix
P1TP1 is a local vertex. The Dirac structure of this vertex depends on the nature of the
hard scattering. For our case, with photon production only, T will be a Dirac vector, dressed
by an IR finite coefficient function. For other electroweak processes, potentially including
heavy lepton flavors in the hard scattering, axial vector, tensor and scalar matrices will
all occur in general. In both this picture and the factorization formula, it is necessary to
regulate UV divergences associated with the separation of scales, and to renormalize the
operator represented here by the vertex.

We can now exploit the perturbative expansion of the factorized amplitude. To begin,
in the sum over orders in eq. (2.13), we have already separated the case b = a, for which the
form factor at zeroth order is just the local vertex, evaluated between the external Dirac
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F (2)[P1TP1] = + +

+ + + ,

Figure 1. Diagrams that contribute to F (2) for arbitrary order in the local vertex T .

spinors v̄(p2) and u(p1). We then find, using the properties of the projectors in eq. (2.11),
that at the level of integrands as well as integrals, we may identify

F (0)
[
P1

∫
k1...a

T (a) ({qj}, k1, . . . ka) P1

]
= v̄(p2)

[
P1

∫
k1...a

T (a) ({qj}, k1, . . . ka) P1

]
u(p1)

= v̄(p2)
∫
k1...a

T (a) ({qj}, k1, . . . ka) u(p1)

≡
∫
k1...a

M(a)
finite ({qj}, k1, . . . ka)

≡M (a)
finite ({qj}) . (2.14)

In the final definitions we recognize from eq. (2.13) a term from which all IR subdivergences
have been subtracted. The finiteness of this term at all loop orders is equivalent to the
statement of factorization for this amplitude. Solving for M (a)

finite in (2.13), we can interpret
the additional terms as subtractions, what we will refer to as “infrared counterterms” below,
which regulate all IR singularities in the integrand of the amplitude at this order.

Given (2.14), we can now identify, following eq. (2.5) for amplitudes without external
spinors, that

T (a) = M̃
(a)
finite . (2.15)

This result enables us to solve iteratively for the finite remainder at order a + 1 in terms
of those at lower order,

M
(a+1)
finite = M (a+1) −

a∑
b=0

F (a+1−b)
[
P1M̃

(b)
finiteP1

]
. (2.16)

At the lowest orders, we can immediately write down expressions that we will encounter
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again below,

M
(0)
finite = M (0) , (2.17)

M
(1)
finite = M (1) − F (1)

[
P1M̃

(0)P1
]
, (2.18)

M
(2)
finite = M (2) − F (1)

[
P1M̃

(1)
finiteP1

]
− F (2)

[
P1M̃

(0)P1
]
. (2.19)

The advantage of this procedure is that all dependence on the multiplicity and masses of
the produced photons is isolated in the functions M̃finite, which are infrared and ultraviolet
finite after the integrals have been carried out. For a complex process, however, with high
multiplicity in the final state, these integrals may be difficult to carry out analytically.

So far, our discussion is still entirely at the level of integrated amplitudes. As explained
above, our goal is to formulate the M (a)

finite so that they may be evaluated numerically.
With this in mind, we turn to the question of how to derive analogs of eqs. (2.18)

and (2.19) at the level of the integrands for these quantities, in forms that are at the same
time locally integrable at singularities and manifestly convergent at infinity. To emphasize
these two aspects, we write the analogs of (2.18) and (2.19) as

M(0)
finite = M(0) , (2.20)

M(1)
finite = M(1)

UV−finite −F
(1)
UV−finite

[
P1M̃(0)P1

]
, (2.21)

M(2)
finite = M(2)

UV−finite −F
(1)
UV−finite

[
P1M̃(1)

finiteP1
]
−F (2)

UV−finite

[
P1M̃(0)P1

]
.

(2.22)

In these expressions and below, M(a) will denote a sum of a-loop integrands without UV
counterterms. Here the subscript “UV-finite” represents the relevant set of diagrams, with
new ultraviolet counterterms subtracted at the integrand level. Schematically, we may
write at a loops, for bothM(a) and F (a),

M(a)
UV−finite = M(a) −

∑
UV regions i

RiM(a) + · · · ,

F (a)
UV−finite = F (a) −

∑
UV regions i

RiF (a) + · · · , (2.23)

where Ri is an operator that inserts a counterterm appropriate for UV region i. Terms
not shown involve nestings of UV limits and UV limits where more than a single loop
momentum diverges. We will use this notation, adapted to the specific cases being treated,
below. In the same spirit, the form factor terms F in eqs. (2.21) and (2.22), explicitly
subtract the singular infrared behavior of the integrands of the original diagrams.

We emphasize that these relations do not generally hold for amplitude and form factor
integrands written down directly from the QED Lagrangian. Beyond one loop, it will be
necessary to modify both the original amplitudes and the IR subtraction terms. These
changes are necessary because factorization properties are expressions of the symmetries,
especially gauge symmetry, of the theory, and such symmetries are not always manifest
locally. We explain the challenges involved in finding a construction that obeys these rela-
tions in the following sections. We close this section with a brief discussion of counterterms,
followed by an explanation of our use of the projection matrices, P1.
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In our treatment, the ultraviolet counterterms in eq. (2.23) will be written, not directly
as a Laurent series in ε = 2− d/2, but as a set of explicit integrals, whose integrands, once
combined with the integrands of the original diagrams, produce convergent integrals overall.
The counterterm integrals, which can be carried out independently as well, will depend on
arbitrary masses, which serve to regularize them in the infrared, and in principle to match
them to (massless) QED counterterms in any renormalization scheme. The modifications
we make to organize the behavior of the original diagrams and IR subtractions so that they
obey eqs. (2.22) affect the choices of UV counterterms in general. We will therefore find it
useful to specify IR counterterms before the UV at a given order. Once specified, the UV
counterterms may be implemented independently from the IR as in eq. (2.23), and then
folded into eq. (2.22) to specify the fully finite amplitude.

The set of counterterms for each diagram that contributes toM will include a subset
that is in one-to-one correspondence to the original counterterms of the theory for these
diagrams. We will find, however, that additional counterterms are necessary to make all
integrals converge, even though these counterterms may add up to zero in the final integral.
An example will be found below in light-by-light scattering diagrams.

Many of the same UV counterterms that appear in M will appear in the form factor
integrals of F . We will also encounter UV counterterms associated with the renormalization
of the vertex we have denoted by P1TP1.

In our discussion, we shall not consider contributions to the amplitude with the self-
energies of the external lines, which we simply truncate and multiply by spinors or photon
polarizations. Correspondingly, we do not carry out a multiplicative renormalization for our
amplitudes. This process, however, is completely standard and unaltered by our construc-
tion. We will implement our construction explicitly for the one- and two-loop amplitudes
of the full class of processes in eq. (2.2).

Finally, before going on to the treatment of the one-loop amplitudes, eq. (2.21), we
will address the motivation for the use of the projectors P1. The example ofM(1)

finite shows,
at the first nontrivial order, the essential role of these projections. Consider the factor
F (1), which is illustrated in figure 2. Because the integral in F (1) is fully decoupled from
M̃(0), the fermion propagators that are contracted with the local vertex in figure 2 are
generically off-shell. This would imply that, without the projectors, the tree-level hard
scattering function M̃(0) would lose gauge invariance. At tree level, this means that it
would not be transverse to unphysical polarizations of the external photons.

To see the loss of gauge invariance explicitly, we consider a generic contribution to
M̃(0), with n external photons attached in some fixed order Π, with fixed polarizations,
ε∗(qi). We isolate one of these, say ε∗ν(qe), which we will replace by its momentum qνe . We
will refer to such a polarization as “scalar” or “longitudinal”, terms which are equivalent
for massless vectors. For massive vectors, qνe is strictly speaking the scalar polarization.

Let us denote by M(0,Π)
ν the sum of all insertions of the scalar-polarized photon of

momentum qe into the fermion line from which the final-state photons emerge, keeping the
order of the other photons fixed. This sum reduces to only two terms, determined by the
QED Ward identity. The result is easily derived in complete generality by repeated use of
the lowest order identity, which will be revisited in the next section. Here, we simply give
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M̃(0)

p1

p2

Figure 2. Illustration of F (1) at lowest order.

the result,

qνe
∑

qeinsertions
M̃(0,Π)

ν = /p2

(
/p2 − /qe

)−1 n∏
c=2, 6=e

/ε∗(qc)

/p1 −
c−1∑

d=1, 6=e
/qd

−1

+
n∏

c=2, 6=e
/ε∗(qc)

/p1 −
c−1∑

d=1, 6=e
/qd − /qe

−1 (
/p1 − /qe

)−1
/p1 .

(2.24)

If this expression is inserted in eq. (2.21) without the projectors P1, both terms will vanish
only if both virtual fermion lines in figure 2 are on-shell. As a result, there will be gauge
dependence in all regions except when the virtual photon carries zero momentum. In
particular, in collinear regions for the photon’s momentum, gauge dependence is induced.
In contrast, with the projectors in place, this gauge-dependence vanishes identically because
/p2

1 = /p2
2 = 0. At the same time, in all singular regions, the projectors act as the identity

for on-shell lines.
In summary, the result of our procedure will be expressions for the integrands of

amplitudes, as in eqs. (2.21) and (2.22), in which all infrared singularities are subtracted
as form factor integrands (the F (L) in eq. (2.13)), up to two loops. All process-dependent
information is isolated in each M̃(a)

finite, which can in principle be evaluated numerically. We
anticipate that it will be possible to extend this procedure beyond two loops, and to other
theories for a wide class of related processes.

In the following section, we turn to this formalism at one loop.

3 The one-loop amplitude

The one-loop amplitude M (1) for the process e−(p1) + e+(p2)→ γ∗(q1) + . . . γ∗(qn) is a d-
dimensional integral (with d = 4−2ε in dimensional regularization) over the components of
the loop momentum, as in eq. (2.5). M (1) is singular in d = 4 space-time dimensions, due to
IR and UV divergences. In this section, we will describe how to remove these singularities
systematically from the integrand, through the introduction of simple counterterms. Our
approach will be by direct construction of the necessary subtractions. As we proceed, the
general formula for the fully-integrable and process-dependent result,M(1)

finite in eq. (2.21),
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will emerge from the analysis. We emphasize that, even at one loop, we will encounter
many individual diagrams that do not have the structure of eq. (2.21).

Our aim is to identify a set of counterterms that are local in momentum space, and
which add up to a single function M(1)

singular(l) of the loop momentum that approximates
the full one-loop integrand M(1) in all divergent limits. The integration will then be re-
organized into two integrals,

M (1) =
∫

ddl

(2π)d
[
M(1)(l)−M(1)

singular(l)
]

+
∫

ddl

(2π)dM
(1)
singular(l) . (3.1)

The first integral on the right-hand side, which we will identify with M
(1)
finite in eq. (2.18),

will be convergent in four space-time dimensions and amenable, in principle, to direct
numerical integration. We will not discuss its practical computation here, but note that
relevant methods have been developed in ref. [190]. The second integral will contain all
divergences in the dimensional regularization parameter ε. We will detail the construction
of its integrand and its evaluation within dimensional regularization. We emphasize that
the finiteness of the first term in eq. (3.1) is a property of the sum over all one-loop
diagrams, and the construction of counterterms will reflect properties of the sums of their
integrands.

Generic IR and UV counterterms at one loop have already been derived in refs. [151,
152, 191]. The counterterms that we present in this section are equivalent to the ones in
the literature, in approximating all singular limits of one-loop amplitudes. Their derivation
here serves to describe generic features of our methodology and as an introduction to the
construction of the more complicated two-loop counterterms that will be presented for
the first time, in later sections. Our derivation of local UV counterterms at one loop is
designed, in particular, to respect Ward identities. The full set of counterterms will become
important at two loops in constructing UV-subdivergence counterterms that do not spoil
IR-factorization properties, which depend crucially on these Ward identities. As suggested
in section 2.2, we will see that the IR and UV counterterms necessary for a process with
n photons match those of the e+e− annihilation form factor. In this way, we use our
knowledge of the simplest process under consideration, e+ + e− → γ∗, to organize singular
contributions to a much larger set of processes.

3.1 IR divergences of the one-loop amplitude

In this subsection we will present the subtraction of IR divergences from M (1), reflected
at the integrand level by the terms F (1) in eq. (2.21). We will study their UV structure in
the following subsection.

We may decompose the one-loop amplitude into four classes,

M (1) ≡

p1

p2

··· = M (1,A) +M (1,B1) +M (1,B2) +M (1,C) , (3.2)
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each of which is characterized by the following diagrams:

• the virtual photon is adjacent to both incoming fermions,

M (1,A) ≡

p1

p2

q1

qn

q2
·
·
·

l + external photon permutations , (3.3)

• the virtual photon is adjacent to the incoming electron but not to the incoming
positron,

M (1,B1) ≡

p1

p2

q1

qn

q2
·
·
·

l +

p1

p2

q1

qn

q2
q3·

·
·

l + . . . , (3.4)

where the ellipses denote additional photon insertions into the “hard” subdiagram,
consisting of all lines that are off-shell for l||p1, as well as permutations among the
external photons,

• the virtual photon is adjacent to the incoming positron but not to the incoming
electron,

M (1,B2) ≡

p1

p2

q1

qn

q2
·
·
·

l +

p1

p2

q1

qn

q2
q3·

·
·

l + . . . , (3.5)

• and, finally, the virtual photon is not adjacent to either of the incoming fermions

M (1,C) ≡

p1

p2

q1

qn

q2··

l +

p1

p2

q1

qn

q2

q3··

l + . . . . (3.6)

We assign a loop momentum label l to all the diagrams, and the loop momentum flow is
directed towards the vertex closest to the incoming electron. To compute diagrams analyti-
cally, it is often convenient to choose different momentum routings in different diagrams, as
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permitted by the shift-invariance of loop integrals. However, as will become apparent soon,
such loop momentum label assignments can obscure important cancellations of collinear
singularities in the sum of diagrams. A judicious assignment of the loop momentum for
all diagrams is necessary in order to render these cancellations local in momentum space,
and our momentum assignment achieves this purpose. In addition, the collinear limits will
factorize in terms of the tree-amplitude, again locally at the level of the integrand.

IR singularities are associated with configurations where the loop momentum l either
vanishes in all four components, or is collinear to one of the two incoming lines. For the
diagrams of M (1), the complete list of such singularities is

• a soft singularity l = 0 in the graphs of M (1,A),

• a collinear singularity l = −x1p1, 0 ≤ x1 ≤ 1, in the graphs of M (1,A) and M (1,B1),

• a collinear singularity l = x2p2, 0 ≤ x2 ≤ 1, in the graphs of M (1,A) and M (1,B2).

We refer to these points or lines as “pinch surfaces” [159, 180]. To identify these regions, we
recall that diagrammatic integrals are defined in the complex plane for each loop momen-
tum component, and carried out along a contour that is specified by the “iε” prescription
for propagator denominators. In general, these contours can be deformed away from poles
where propagator denominators vanish, unless poles coalesce from opposite sides of the
contour, producing a “pinch”. This happens from two poles of a single denominator, when-
ever the corresponding line carries zero momentum in all four components, or from pairs
of denominators, when they share the light-like momentum of an external particle. The
latter are collinear pinches, the former are soft. Note that when the virtual photon line of
diagram M (1,A) carries zero momentum, both adjacent internal fermion lines are automat-
ically on-shell, carrying their respective external momenta, so that in this case a soft pinch
forces three lines to be on shell at once.

The set of collinear and soft singularities identified above do not exhaust the full set of
pinch surfaces in the amplitudes that we treat here, but they are the only ones that produce
infrared singularities. That is, they are the only pinch surfaces that are not integrable
in four dimensions. The simplest examples of integrable pinch surfaces are points in loop
momentum space where a fermion line carries zero momentum. All of our diagrams include
such points within their loop momenta, but they are always integrable, because of the extra
factor of momentum in the numerator of fermion propagators. We will not reproduce the
power counting necessary to show these results here, but refer the reader to, for example,
refs. [159, 180]. A recent and very general discussion has been given in ref. [192].

An essential feature of the list of divergent pinch surfaces given above is that it is the
same for any number of final-state photons in our basic set of processes, eq. (2.2). As
we will show, as indicated in eq. (2.21), that this universality will be inherited by the IR
counterterms necessary to factorize infrared behavior. Indeed, the full infrared behavior
for every such amplitude is already present in the case n = 1 in eq. (2.2), the annihilation
form factor e+ + e− → γ∗.

We now seek a functionM(1)
IR that approximates the one-loop integrandM(1) in all of

the above IR-divergent limits for the general process with an arbitrary number of photons
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in the final state. The construction of such an approximation is complicated somewhat
by overlaps of soft and collinear divergences. For example, the region l ∼ −x1p1, which
yields a collinear singularity, overlaps for x1 = 0 with the l ∼ 0 region, which yields a
soft singularity. The entanglement of IR divergences takes more complicated patterns at
higher loop orders. However, it has been shown that approximations of the integrands
of arbitrary loop integrals can be constructed systematically with the method of nested
subtractions[157–159, 188]. In this approach, the diverse singular regions are ordered ac-
cording to their extent within the integration volume. Then, the singularities are removed
recursively, subtracting first the ones corresponding to the smallest volumes. Example ap-
plications of the nested subtractions method for one- and two-loop Feynman integrals can
be found in ref. [156]. In this article, we perform an explicit application of the method for
physical amplitudes.

Following the nested subtraction approach, we first need to find an approximation of
the integrand in the soft limit, which receives contributions only from the diagrams of the
class M (1,A). The sum of their integrands can be written compactly in the form

M(1,A) = −ie2

l2(p1 + l)2(p2 − l)2N
(1) , (3.7)

where the numerator N (1) reads

N (1) = v̄(p2)γµ
(
/l − /p2

)
M̃(0)(p1 + l, p2 − l, q1, . . . , qn)

(
/p1 + /l

)
γµu(p1). (3.8)

In the soft limit lµ → 0, we neglect l inside M̃(0), and approximateM(1) with

M(1) l→0−−→RsoftM(1)

=
ie2v̄(p2)γµ

(
/l − /p2

)
M̃(0)(p1, p2, q1, . . . , qn)

(
/p1 + /l

)
γµu(p1)

l2(p1 + l)2(p2 − l)2 . (3.9)

In this definition of the soft counterterm, we have left the denominators of the outermost
electron and positron lines intact, in particular not dropping terms quadratic in l compared
to pi · l, with i = 1, 2. In addition, we keep the exact l-dependence in the numerator except
inside M̃(0), where we set l = 0.

We now turn our attention to the collinear region l||p1. Naively, we would have to
analyze each diagram individually, but the situation is actually much simpler. In covari-
ant gauges, collinear divergences appear when vector particles connect jet subdiagrams to
the hard scattering. In individual diagrams, these contributions are non-factoring in their
momentum dependence. Such collinear vector lines, however, always carry scalar polar-
izations (equivalent to longitudinal polarizations for massless particles), contracted with
the hard scattering subdiagram. The Ward identities of the theory (in this case, QED)
ensure that the sum of all such contributions factorizes at fixed momenta for the collinear
photons [188]. This, by now standard, result enables us to introduce local counterterms
for the sum of diagrams, avoiding the potentially complicated non-factoring dependence of
each diagram individually.
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Only the diagrams in M (1,A) and M (1,B1) contribute to the collinear divergence in the
region l ‖ p1. We write the sum of their integrands in the form

M(1,A+B1) ≡M(1,A) +M(1,B1)

= −ie
l2(p1 + l)2 v̄(p2)ηµν M̃(0,A+B1)

µ (p1 + l, p2, l; q1, . . . , qn)
(
/p1 + /l

)
γνu(p1) .

(3.10)

In this relation, M̃(0,A+B1)
µ (p1 + l, p2, l; q1, . . . , qn) represents the sum of tree diagrams from

the set A + B1 including all vertices at which the final state photons and an additional
external photon of momentum l attach, but excluding the diagram where l is directly
attached to p1. Momentum l flows out of each tree diagram and into the vertex adjacent
to the electron line that is external to the full one-loop diagram, to be consistent with
eq. (3.7). The polarization vector of the exchanged photon (momentum l) as well as the
electron and positron spinors are removed from M̃(0,A+B1)

µ . The momenta of the additional
photon and the incoming electron are generically off-shell, but they approach the mass shell
in the collinear limit lµ ≈ x1p

µ
1 .

Using η1 as a reference vector, any qµ in the direction of pµ1 , i.e., qµ = xqp
µ
1 can be

approximately rewritten as
qµ ≈ q · η1

l · η1
lµ, (3.11)

or alternatively,
qµ ≈ 2q · η1

(l + η1)2 − η2
1
lµ. (3.12)

Either of these approximations becomes accurate in the diagrams above when the photon
of momentum l becomes collinear to p1, with qµ a linear combination of pµ1 and lµ. While
eq. (3.11), with a denominator linear in l, suffices in order to demonstrate the factorization
of collinear singularities (see, for example, ref. [158]), in this article we use the equivalent
version of eq. (3.12) with a quadratic denominator.

Similarly, in the collinear limit l ≈ −x1p1, the metric tensor can be decomposed in
terms of lµ and the generic vector ηµ1 as

ηµν = lµην1
l · η1

+ lνηµ1
l · η1

− η2
1

(l · η1)2 l
µlν + ηµν⊥ , (3.13)

where ηµν⊥ lν = ηµν⊥ η1ν = 0, (no ηµ1 ην1 term is necessary at l2 = 0). Staying always within
the collinear approximation, where l2 → 0, we can equivalently approximate the metric
with

ηµν ≈ 2lµην1
(l + η1)2 − η2

1
+ 2lνηµ1

(l + η1)2 − η2
1
− 4η2

1(
(l + η1)2 − η2

1

)2 l
µlν + ηµν⊥ . (3.14)

Using anti-commutation relations for Dirac matrices and the Dirac equation satisfied by the
external spinor u(p1), in the collinear limit lµ ≈ −x1p1, the rightmost factors in eq. (3.10)
can be re-written as, (

/p1 + /l
)
γν u(p1) ≈ 2(p1 + l)ν u(p1) ∝ p1 ν . (3.15)
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We now use these considerations to show how collinear singularities factorize on a point-
by-point basis in our one-loop diagrams.

By decomposing the metric tensor ηµν in eq. (3.10) according to eq. (3.14), we notice
that only one term gives a non-vanishing contribution in the collinear limit. Thus, in the
limit l ≈ −xp1 we can make the replacement ηµν → 2ην1 lµ/[(l+η1)2−η2

1] without changing
the behavior ofM(1,A+B1) in the region l||p1. This allows us to write

M(1,A+B1) ≡M(1,A) +M(1,B1) ≈
−ie

l2(p1 + l)2 v̄(p2)
[ 2ην1 lµ

(l + η1)2 − η2
1
M̃(0,A+B1)

µ (p1 + l, p2, l; q1, . . . , qn)
]

×
(
/p1 + /l

)
γνu(p1). (3.16)

We represent the right-hand side of eq. (3.16) graphically by

e2M(1,A+B1) ≈

p1

p2

q1

qn

q2
·
·
·

µ

ν

l +

p1

p2

q1

qn

q2
·
·
·

µ

νl

+

p1

p2

q1

qn

q2
q3·

·
·

µ

νl + . . . . (3.17)

The triangle arrow at the lower end of photon lines denotes the following polarization
approximation in the photon propagator:

: −i
q2 η

µν → −i
q2

2ην1 qµ

(q + η1)2 − η2
1
, (3.18)

where η1 is chosen to have a large rapidity separation from p1 (i.e. it is not collinear to
p1). Here we are effectively considering a photon line whose polarization is proportional
to its own momentum, a scalar polarization. Here and below we choose the triangle ar-
row notation to define a quadratic, rather than linear, denominator in the approximate
polarization tensor. For the opposite collinear limit, we use a gray triangle to denote
an analogous approximation, with a reference vector η2 chosen to have a large rapidity
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1
e

p p− q

q

=

p− q

q

−

p

q

Figure 3. A pictorial representation of a tree Ward identity eq. (3.20). Fermion-fermion-photon
vertices with arrowed photons denote a contraction of the QED triple vertex with the photon
momentum −ieγµ → −ie/q, multiplied by appropriate extra factors shown on the left-hand side of
eq. (3.20). The photon can be regarded as an external photon with a scalar polarization vector,
equal to its momentum. The double lines represent insertions of momenta without a photon-fermion
vertex, multiplied by appropriate factors as shown on the right-hand side of eq. (3.20).

separation from p2,

: −i
q2 η

µν → −i
q2

−2ην2 qµ

(q − η2)2 − η2
2
. (3.19)

The expression in eq. (3.16) is now ready to be simplified with a partial fractioning identity,
which is a manifestation of the QED Ward identity,

2ην1
(q + η1)2 − η2

1

[
i

/p− /q
(−ie/q)

i

/p

]
= e

2ην1
(q + η1)2 − η2

1

[
i

/p− /q
− i

/p

]
. (3.20)

This identity describes the effect of attaching a photon with a scalar polarization on a
fermion line. We visualize the identity in figure 3. We also note the following identities for
insertions of scalar photons in external fermion lines:

−2ην2
(q − η2)2 − η2

2

[
i

/p+ /q
(ie/q)u(p)

]
= e

−2ην2
(q − η2)2 − η2

2
u(p) , (3.21)

2ην1
(q + η1)2 − η2

1

[
v̄(p)(−ie/q)

i

−/p+ /q

]
= e

2ην1
(q + η1)2 − η2

1
v̄(p), (3.22)

which are depicted pictorially in figure 4. We now see that repeated applications of
eqs. (3.20)–(3.22) to eq. (3.17) result in pairwise cancellations of all terms except one,

e2M(1,A+B1) ≈ −ie2

l2(p1 + l)2 v̄(p2)
[ 2ην1

(l + η1)2 − η2
1
M̃(0)

] (
/p1 + /l

)
γνu(p1) , (3.23)

where M(0) is the lowest-order tree diagram, whose external vertices do not include the
virtual photon. The cancellations are illustrated, as an example, for graphs in two-photon
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Figure 4. A pictorial representation of the effect of attaching scalar-polarized photons to external
fermion lines in eqs. (3.21)–(3.22). The dots represent external fermion legs.

p1

p2

q1

q2

l +

p1

p2

q1

q2

l =

− e



p1

p2

q1

q2

l −

p1

p2

q1

q2

l
+

p1

p2

q1

q2

l



= −e

p1

p2

q1

q2

l

Figure 5. The application of Ward identities to factorize the l ‖ p1 collinear divergence in the case
of two-photon production. This is a graphical representation of eq. (3.23).
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production in figure 5. With the action of the Ward identity, non-factorizing collinear
singularities cancel, and the one-loop collinear limit is expressed in terms of the lowest
order, on-shell tree amplitude. The general case of an arbitrary number of photon emissions
is proven analogously, and eq. (3.23) holds generally.

Interestingly, if we choose η1 to be equal to −p2 in eq. (3.23), then the three denomi-
nators become identical to those of the soft-photon approximation given by the right-hand
side of eq. (3.9). After some simple Dirac algebra, it can be shown that the numerator of
eq. (3.23) also coincides with that of eq. (3.9) in the collinear limit l ‖ p1. An analogous
observation can be made for the opposite collinear limit l ‖ p2. Therefore, the right-hand
side of eq. (3.9), which is simply a form factor whose vertex is the tree amplitude (with l

set to 0), may be used as a “global” IR counterterm that simultaneously cancels soft and
collinear singularities of the one-loop amplitude. This is an expression of the universality
of IR behavior in the complete set of amplitudes under consideration. As discussed in sec-
tion 2.2, we will place the tree amplitude between the Dirac projectors defined in eq. (2.9).
We arrive at the following global IR counterterm,

RIRM(1) = ie2
v̄(p2)γµ

(
/p2 − /l

)
P1M̃(0)(p1, p2; q1, . . . , qn)P1

(
/p1 + /l

)
γµu(p1)

l2(p1 + l)2(l − p2)2 , (3.24)

which is equivalent to the soft photon approximation in eq. (3.9) because P1 acts as the
identity in the soft, and collinear, regions. This is the usual one-loop form factor, which
we will denote by F (1), but with the QED vertex replaced by the truncated tree-level
spinor matrix sandwiched between a pair of projectors, just as in eq. (2.12). Therefore, the
one-loop IR counterterm is equivalent to

RIRM(1) ≡ F (1)
[
P1M̃(0)(p1, p2; q1, . . . , qn)P1

]
≡ M̃(0)

p1

p2

, (3.25)

where we have recalled the corresponding diagrammatic notation of figure 2.
The IR subtraction with the form factor counterterm of eq. (3.25) suffices to remove

locally infrared singularities for one-loop amplitudes where the final-state photons are on-
shell as well. Even though diagrams such as in M (1,C) have collinear pinches when two
fermion lines share the momentum of a light-like outgoing photon, numerator factors con-
spire to make them IR finite in physical amplitudes. In contrast, certain two-loop diagrams
with on-shell photons are only finite after integration, in their original forms. An extension
of our formalism at two loops for on-shell photons will be presented in future work.

We comment here on how the P1 projector, as defined by eq. (2.9), in eq. (3.24) yields
a tree-amplitude factor explicitly, in a regularization scheme where helicities are treated
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in four dimensions. Using the spin sum for either u(p1) or v̄(p2), the projector P1 has the
following two alternative representations,

P1 = 1
2p1 · p2

/p1
(
vL(p2)v̄L(p2) + vR(p2)v̄R(p2)

)
, (3.26)

P1 = 1
2p1 · p2

(
uL(p1)ūL(p1) + uR(p1)ūR(p1)

)
/p2 . (3.27)

Without loss of generality, let us consider the case in which the incoming electron is left-
handed, and the incoming positron is right handed. We replace u(p1) by uL(p1) and replace
v̄(p2) by v̄R(p2) in eq. (3.24). (Due to the chirality-preserving nature of interactions in
massless QED, the amplitude vanishes when the incoming electron and positron have the
same chirality.) These spinors satisfy,

1− γ5

2 uL(p1) = uL(p1), 1 + γ5

2 uL(p1) = 0, (3.28)

v̄R(p2)1 + γ5

2 = v̄R(p2), v̄R(p2)1− γ5

2 = 0 . (3.29)

The IR counterterm RIRM(1) in eq. (3.24) is rewritten as

RIRM(1) = −ie2

l2(p1 + l)2(l − p2)2(2p1 · p2)2 v̄R(p2)γµ(/p2 − /l)/p1

×
(
vL(p2)v̄L(p2) + vR(p2)v̄R(p2)

)
M̃(0)(p1, p2, q1, . . . , qn) (3.30)

×
(
uL(p1)ūL(p1) + uR(p1)ūR(p1)

)
/p2

(
/p1 + /l

)
γµuL(p1) .

Since an odd number of gamma matrices preserves chirality, the above expression reduces to

RIRM(1) = −ie2

l2(p1 + l)2(l − p2)2(2p1 · p2)2 v̄R(p2)γµ(/p2 − /l)/p1vR(p2) (3.31)

×
[
v̄R(p2)M̃(0)(p1, p2, q1, . . . , qn)uL(p1)

]
ūL(p1)/p2

(
/p1 + /l

)
γµuL(p1) .

The square bracket in this equation is precisely the tree amplitude contracted with the
external spinors v̄R(p2) and uL(p1), so the counterterm of eq. (3.24) is proportional to the
tree amplitude even before integration.

In summary, in this subsection we have shown that the following remainder of the
one-loop amplitude leads to an IR-finite integration,

M(1)
IR-finite =M(1) −RIRM(1) , (3.32)

with RIRM(1) given by the explicit subtraction of eq. (3.31), or equivalently, in form factor
notation by eq. (3.25). Although this procedure provides an integral that is free of infrared
singularities, to provide a numerically computable expression, we must also subtract UV-
divergent behavior at the level of the integrand. We now turn to this procedure.
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3.2 Ward identity-preserving Ultraviolet counterterms

The IR-finite one-loop integrand, eq. (3.32), retains its non-convergent behavior in the UV
limit. It is therefore not yet suitable for numerical evaluation. In order to remove the
integral’s UV-singularities through a local subtraction, we need to find an approximating
functionRUVM

(1)
IR-finite that matches the singular behavior of the integrand in the UV-limit,

RUVM
(1)
IR-finite = RUV

(
M(1) −RIRM(1)

)
= RUVM(1) −RUVRIRM(1) , (3.33)

with RIRM(1) given in eq. (3.24). It is at this point that we will encounter UV divergences
associated with the factorized amplitude, eq. (2.12).

At one loop in the process under study, UV divergences occur only in triangle diagrams
and fermion self-energies, which we will denote by Γ(1),ν

eeγ and Π(1)
e , respectively. Following

our convention for the routing of the loop momenta, these Green’s functions have the
integrands

eΓ(1),ν
eeγ (p, q, l) ≡ l

p

p+ l

p+ l + q
q

=
(
−e3

) γµ(/p+ /l + /q)γν(/p+ /l)γµ
(p+ q + l)2(p+ l)2l2

, (3.34)

and

Π(1)
e (p, l) ≡ l

p

p+ l

= −e2 γ
µ(/l + /p)γµ
l2(l + p)2 , (3.35)

where p is in general off-shell and q can be the momentum of a real or (starting at two
loops) virtual photon. The Ward identity for these Green’s functions takes the form

qν Γ(1),ν
eeγ (p, q, l) = Π(1)

e (p, l)−Π(1)
e (p+ q, l) . (3.36)

For the vertex diagram, we choose, as suggested above, a UV counterterm that is defined
by its integrand, given in this case by

eΓ(1,UV ),ν
eeγ (l) ≡

(1) q
=
(
−e3

) γµ/lγν/lγµ
(l2 −M2)3 , (3.37)
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which picks out the only term of the numerator that results in a logarithmic UV divergence,
while regulating denominators with a common mass, M , which will play the role of a
renormalization scale. We stress that in this paper, a “counterterm” is always defined at
the integrand level, although the graphical notation above draws the counterterm as a local
vertex. Our counterterms include all local counterterms in the conventional sense once,
but only after, loop integration is carried out.

For the fermion self energy, we must cancel both linear and logarithmic UV divergences,
where the latter are linear in the external momentum. Again regulating denominators with
a common mass, the resulting counterterm that we choose is

Π(1,UV )
e (p, l) ≡ (1)

p

=
(
−e2

) [ γµ/lγµ
(l2 −M2)2 −

γµ/l/p/lγµ

(l2 −M2)3

]

= −e2 γµ/lγµ
(l2 −M2)2 − pνΓ(1,UV ),ν

eeγ (l) . (3.38)

In each case, the label (1) indicates that this is a one loop local counterterm. Notice that
the above counterterms satisfy the Ward identity as well,

qνΓ(1,UV ),ν
eeγ (l) = Π(1,UV )

e (p, l)−Π(1,UV )
e (p+ q, l), (3.39)

for any values of l whether or not they are large compared to the scales of external momenta.
Therefore, the renormalized remainders of the above Green’s functions will automatically
satisfy the Ward identity as well. Though not essential for the one-loop case, this will turn
out to be a particularly useful property at two loops for obtaining factorized counterterms
of collinear limits in the presence of UV sub-divergences.

Note that the Ward identity for the UV counterterms eq. (3.39) is by no means guar-
anteed by the Ward identity for the original diagrams eq. (3.36), since we always have the
freedom of adjusting non-divergent contributions to the UV counterterms. For example,
an alternative UV counterterm for the self energy diagram, by Nagy and Soper [191], is

− e2 γ
µ(/l + /p)γµ[

(l + p/2)2
]2 . (3.40)

This alternative counterterm perfectly matches the UV-divergent behavior of eq. (3.34) at
both linearly and logarithmically divergent orders, but its finite parts would not preserve
the Ward identities in conjunction with our UV vertex counterterm, eq. (3.37). We have
chosen non-divergent terms so that the UV counterterm for the self energy, eq. (3.38), is
aligned with our UV counterterm for the vertex, eq. (3.37), for both finite and divergent
parts, preserving the Ward identity locally.3

3A clean way to arrive at eqs. (3.37) and (3.38) is to perform a series expansion of eqs. (3.34) and (3.35)
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We have now specified the local UV-counterterms of the one-loop amplitude,

e2RUVM(1) =

p1

p2

(1) q1

qn

q2··

+

p1

p2

q1

qn

(1)

q2··

+

p1

p2

q1

qn

(1) q2
q3··

+ . . .+

p1

p2

q1

(1)
qn

q2··

+ external photon permutations . (3.41)

Finally, we need to find a UV approximation for the infrared counterterm, RIRM(1) in
eq. (3.24). We choose

e2RUVRIRM(1) ≡ v̄(p2)


(1)


u(p1)

= v̄(p2)
[(
−ie2

) γµ/lP1M̃
(0)(p1, p2; q1, . . . , qn)P1/lγµ

(l2 −M2)3

]
u(p1) . (3.42)

In the above, we have drawn a square vertex with an extra cross to denote the UV limit of
the triangle diagram in eq. (3.25) with a form factor vertex P1M̃(0)P1, analogous to how
the diagram in eq. (3.37) denotes the UV limit of the vertex diagram in eq. (3.34), with
a label “(1)” indicating that it is a 1-loop counterterm. Again the projector P1 is always
omitted in the diagrammatic notation. In terms of the relation, eq. (2.21) that defines
M(1)

finite, this counterterm will produce a contribution to F (1)
UV−finite.

We have now succeeded in finding an approximation of the one-loop amplitude inte-
grand in all singular limits. We can then decompose the integrand as,

M(1)(l) =M(1)
finite(l) +M(1)

singular(l) . (3.43)

The first term on the right-hand side of eq. (3.43),M(1)
finite(l), is integrable in four space-time

dimensions. All singularities are now contained in

M(1)
singular(l) = RIRM(1)(l) +RUVM(1)(l)−RUVRIRM(1)(l). (3.44)

in the limit of large l, and truncate both series at the order that corresponds to a logarithmic divergence
after loop integration, before adding a mass regulator to every propagator. The uniform truncation of the
series preserves the Ward identity that relates the vertex and the self energy, and the final step of adding
an IR mass regulator again preserves the Ward identities.
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Expressions for the counterterms on the right-hand side of eq. (3.44) have been given
by eqs. (3.24) for the IR counterterm, eqs. (3.34), (3.36) and (3.41) for the UV subtrac-
tion and (3.42) for the combined UV/IR term. The integration of the counterterms in
M(1)

singular(l) over loop momentum l can be performed simply in d = 4 − 2ε dimensions.
These results can then be combined with the numerical evaluation of M(1)

finite(l). In terms
of the general relation, eq. (2.21), we can identify

M(1)
UV−finite =M(1) −RUVM(1) ,

F (1)
UV−finite = RIRM(1) −RUVRIRM(1)

= F (1) −RUVF (1) , (3.45)

where in the second relation for F (1)
finite we have used eq. (3.25). We note that the single IR

subtraction, F (1), removed soft and collinear divergences from a large class of diagrams,
thus simplifying the application of the method. At one loop, our construction was carried
out with unmodified integrands, specified directly by the QED Lagrangian. At two loops,
we will find again that the set of IR subtractions is much simpler than the full set of
diagrams. To achieve this simplification, however, it will be necessary to develop modified,
but equivalent integrands.

3.3 Integration of singular counterterms

Before going on to the two-loop application of out method, we will complete the discussion
of the one-loop case by integrating our one-loop counterterms in dimensional regularization.
This is the lowest-order example of how the factorization procedure gives a set of closed
expression with all singularities of the amplitude, both IR and UV, isolating all dependence
on the final state in an integrable function, specified by eq. (3.43).

Let us consider first the UV counterterms for the one-loop vertex and propagator,
which appear in eq. (3.41). The vertex counterterm integrates to,∫

ddl

(2π)d eΓ(1,UV ),ν
eeγ (l) = Z̃

(1)
1 (−ieγν) , (3.46)

or, diagrammatically,

∫
ddl

(2π)d (1) q
= Z̃

(1)
1 , (3.47)

with
Z̃

(1)
1 = e2

(4π)
d
2

Γ(1 + ε)(1− ε)2

ε

(
M2

)−ε
. (3.48)

For the integral of the electron-propagator counterterm we find∫
ddl

(2π)d
i

/p
Π(1,UV )
e (p, l) i

/p
= −Z̃(1)

1
i

/p
, (3.49)
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or, diagrammatically,

∫
ddl

(2π)d
(1)

i//pi//p
= −Z̃(1)

1
i//p

. (3.50)

As expected, every vertex or propagator counterterm in eq. (3.41) is proportional to the
corresponding tree diagram. The proportionality factor is equal and opposite for the two
types of counterterms, which is a direct consequence of the Ward identity (3.36). Therefore,
in the integral, vertex and propagator counterterms cancel pairwise. Since there is one more
vertex than propagators in any such graph, we deduce a very simple result for the integral
of the UV counterterms. They are proportional to the tree-amplitude,

e2RUVM
(1) ≡ e2

∫
ddl

(2π)dRUVM(1) = Z̃
(1)
1 M (0). (3.51)

We will return to the role of the Ward identity in the renormalized amplitude below.
Equally simple is the integration of the UV counterterm of the form factor vertex, the
integral of eq. (3.42),

e2RUVRIRM
(1) ≡ e2

∫
ddl

(2π)d RUVRIRM(1)(l)

= Z̃
(1)
1

4(1− ε)2 v̄(p2) γµ γν P1M̃
(0)P1 γν γµ u(p1) . (3.52)

Meanwhile, the integration of the IR counterterm yields

RIRM
(1) ≡

∫
ddl

(2π)dF
(1)(l) (3.53)

= − 1
(4π)

d
2

Γ(ε)Γ(1− ε)2

Γ(2− 2ε) (−s)−ε
([2

ε
+ ε

(1− ε)

]
v̄(p2)P1M̃

(0)P1u(p1)

− 1
4(1− ε) v̄(p2)γµγν P1M̃

(0)P1 γνγµu(p1)
)
,

with s = (p1+p2)2. Combining this result with the ultraviolet counterterm of eq. (3.51) and
the UV-IR combination counterterm of eq. (3.52) to get the full singular contribution to the
amplitude in eq. (3.44), we find that the divergent part of the bare one-loop amplitude!is

M
(1)
singular = − 1

(4π)
d
2

1
Γ(1− ε) (−s)−ε

×
{( 2

ε2
+ 3
ε

+ ln
(
M2

−s

)
+ 11

)
v̄(p2)P1M̃

(0)P1u(p1)

− 1
4

(
ln
(
M2

−s

)
+ 3

)
v̄(p2)γµγν P1M̃

(0)P1 γνγµu(p1)
}

+O(ε) . (3.54)

We note that
v̄(p2)P1M̃

(0)P1u(p1) = v̄(p2)M̃ (0)u(p1) = M (0), (3.55)
and the divergent part as ε → 0 is proportional to the tree-amplitude in agreement with
previous expectations [172, 173].
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4 Two-loop diagrams with fermion loops

In the previous section, we exploited factorization to construct local infrared and ultraviolet
counterterms for one-loop amplitudes. We are now ready to develop counterterms that
achieve the same goal for two-loop amplitudes. The result will be a set of integrands that are
locally integrable in exactly d = 4 dimensions. As mentioned above, to achieve integrability
it will be necessary to develop a modified, but analytically equivalent, integrand for this
set of diagrams with respect to expressions obtained by the direct application of Feynman
rules. The finite remainders found from our modified integrands will satisfy eq. (2.22), thus
implementing factorization at the level of the integrand.

In this section, we begin the treatment of two-loop diagrams with the study of those
diagrams with a fermion loop. As we shall see, the IR structure of these diagrams is closely
related to that of the one-loop diagrams treated above. Nevertheless, we will encounter
several obstacles to the construction of local infrared counterterms. In these diagrams,
such issues will involve integrals over the fermion loops.

Once integrated, fermion loops enjoy features associated with the Ward identities of
QED, such as the transversality of the vacuum polarization, and the UV-finiteness of light-
by-light scattering. These are routinely invoked in treatments of the renormalization and
IR structure of the full amplitude. Here, we seek to implement these features on a local
basis in momentum space.

As we shall see, the integrands of diagrams with a one-loop photon vacuum polariza-
tion subgraph exhibit power singularities in addition to logarithmic singularities. They also
give rise to anomalous polarizations (“loop polarizations” below) that spoil the local fac-
torization in collinear limits that we found at one loop. These problems can be sidestepped
at the cost of giving up manifest locality, if we integrate first over the vacuum polarization
loop. This, however, is just what we want to avoid doing here. In addition, local collinear
factorization is not manifest for individual Feynman diagrams with four-point or higher
fermion loop subgraphs, which, while they do not contribute to collinear divergences after
integration, exhibit collinear singularities locally.

We will solve these problems by deriving alternative forms for the amplitude inte-
grands, for which the power-counting of singularities is canonical, and whose properties
in collinear regions are locally consistent with factorization. For these modified ampli-
tude integrands, we will be able to design local counterterms that cancel all infrared and
ultraviolet singularities, point by point in the integration domain.

4.1 Diagrams with one-loop photon vacuum polarization subgraphs

Recalling the notation of eq. (2.4), we start with M(2)
2 , consisting of two-loop diagrams

with a photon vacuum polarization subgraph, as in figure 6. The integrand M(2)
2 can be

generated from the diagrams of the one-loop amplitude in eqs. (3.3)–(3.6), by replacing the
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q1

q2

qn

···

p1

p2

q1

q2

qn

···

p1

p2

q1

q2

qn

···

p1

p2

Figure 6. A class of diagrams that contribute to M(2)
2 with a photon vacuum polarization sub-

graph.

free photon propagator with its one-loop correction,

−igµν
l2

→
µ ν

l
k + l

k

≡ −i
l2

(−iΠµν(l)) −i
l2
, (4.1)

with

− iΠµν(l) = −e2 tr
[(
/k + /l

)
γµ /k γν

]
k2(k + l)2 . (4.2)

We observe that in the single soft limit, lµ ∼ δ → 0, µ = 0, . . . 3, at fixed, non-lightlike k,
the one-loop photon propagator integrand scales as

−i
l2

(−iΠµν(l)) −i
l2
∼ δ−4, (4.3)

which is more singular than at tree-level by two powers. This leads to a power-like singu-
larity for the two-loop amplitude in the limit of soft l, and it is no longer possible to rely
on the leading-power approximation to write down a factorized counterterm analogous to
eq. (3.9) of the one-loop case. Similarly enhanced are collinear singularities. For example,
in the collinear limit l ‖ p1 at generic values of the vacuum polarization loop momentum,
the divergence in l is linear instead of logarithmic, simply because of the factor (l2)−2.
At each such point, the polarization of the photon l may be proportional to kµ, which
is arbitrary, and hence non-factorizing in general. Hence, at the local level, the two-loop
integrand loses important features that we found at one loop.

The soft and collinear non-factorizing and power-like singularities of the amplitude
we have just identified, however, are only apparent at the local, fully unintegrated level.
For example, after integrating over the fermion loop momentum k, a tree-like δ−2 scaling
is restored for the propagator in the soft limit, where all components of lµ scale like δ.
However, it is not necessary to integrate the fermion loop to reduce the degree of divergences
in l to the logarithmic level. The vacuum polarization loop integral can be rewritten in a
fully equivalent manner by, for example, Passarino-Veltman tensor reduction [193]. After
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Figure 7. Ward identity for factoring out collinear divergences when l ‖ p1, which relies on the
leading-order approximation that the photon polarization is longitudinal or equivalently, scalar.

this reduction, the integrand for the one-loop photon propagator reads,

µ ν

l
k + l

k

= 1
l2

2(d− 2)
d− 1 e2

(
ηµν −

lµlν
l2

) 1
k2(k + l)2 . (4.4)

The result of the k loop integral for this expression is precisely equivalent to the original
form, but in this expression the transversality of the photon is manifest.

The above form can be replaced by an even simpler expression, in which logarithmic
power counting is also regained. The same gauge-invariant amplitude will be found if
the lµlν/l2 term from the vacuum polarization is dropped in every diagram in which it
appears. In practice, by repeated use of the same Ward identity as in eq. (3.20), it is easy
to show that when all diagrams are combined these terms produce a fully scaleless integral.
Therefore, the longitudinal tensor gives a zero contribution to the amplitude integral and
it can be dropped from the propagator.4 After doing so, the tensorial form of the effective
one-loop virtual propagator matches the one of the tree photon-propagator,

µ ν

l
k + l

k

→ ηµν
l2

2(d− 2)
d− 1

1
k2(k + l)2 . (4.5)

Using this result, it is simple to generate a suitable integrand for M(2)
2 (k, l) from the

corresponding one-loop amplitude integrandM(1)(l) as

M(2)
2 (k, l) = i

2(d− 2)
d− 1

1
k2(k + l)2 M

(1)(l) . (4.6)

4Scaleless integrals vanish in dimensional regularization due to cancellation of UV and IR poles. Dropping
scaleless integrals mixes UV and IR poles, but this is not a problem because the universal structure of UV
and IR divergences of gauge theory amplitudes are known.
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This is our first example of a modified, alternative two-loop integrand, whose integral is
equivalent to the original form, but whose infrared behavior is amenable to local subtraction
and factorization as in figure 7.

Infrared singularities in eq. (4.6) are approximated by the counterterm

RIRM
(2)
2 (k, l) = i

2(d− 2)
d− 1

1
k2(k + l)2 RIRM(1)(l)

≡ F (2)
2 (k, l) , (4.7)

where the “form factor” diagram RIRM(1)(l) = F (1)(l) is given by eq. (3.24). The second
identify defines the modified two-loop form factor subtraction for the contributions of this
set of diagrams to the integrable two-loop integrand in eq. (2.22). This modified form
factor subtraction would emerge from exactly the same reasoning as above applied to the
vacuum polarization in its diagrams.

We now turn our attention to ultraviolet divergences, subtracting the UV subdiver-
gences ofM(2)

2 −RIRM
(2)
2 as k →∞ or l→∞, as suggested in eq. (2.23). Instead of giving

separate but straightforward derivations of the UV counterterms, it is equivalent in this
case simply to present the following full remainder after the subtraction, whose integrals
are free of infrared and ultraviolet singularities,

M(2)
2, finite = i

2(d− 2)
d− 1

[
1

k2(k + l)2 −
1

(k2 −M2)2

]
M(1)

finite(l) . (4.8)

Here, the finite one-loop result is specified by eqs. (3.43) and (3.44),

M(1)
finite(l) =M(1)(l)−RUVM(1)(l)−RIRM(1)(l) +RUVRIRM(1)(l) . (4.9)

Notice that M(2)
2, finite in eq. (4.8) is not singular in the simultaneous k, l → ∞ limit, so

it is not necessary to subtract an additional counterterm for the “double-UV” limit. In
eq. (4.9), the one-loop IR subtraction produces an integrand that vanishes like a power
when lµ or l2 vanishes, and thus controls logarithmic enhancements in momentum lµ from
IR limits of the vacuum polarization integral over k. A straightforward expansion of the
terms in eq. (4.8), using (4.9), shows that it is precisely of the form anticipated in eq. (2.22)
in terms of our modified amplitude and form factor integrands.

In summary, we have decomposed the M(2)
2 coefficient to the two-loop amplitude

integrand into a remainder that can be integrated directly in four dimensions, and a simple
singular part that can be integrated in d = 4− 2ε dimensions,

M(2)
2 =M(2)

2, finite +M(2)
2, singular , (4.10)

withM(2)
2, finite given by eqs. (4.8) and (4.9).

4.2 Other fermion-loop contributions

We will now treat the remaining classes of fermion-loop diagrams, with c > 2, where
κ ≡ c − 2 final-state photons are emitted from the fermion loop, as in figure 8. The loop
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Figure 8. The class of diagrams that contributes to the M(2)
κ+2, κ > 0 two-loop amplitude coeffi-

cient.

Figure 9. Illustration of a single collinear singularity in graphs with fermionic loops as l becomes
parallel to p1. The gray blob denotes all permutations of the real and virtual photons attached to
the fermion loop.

momentum l is always chosen to be the photon momentum flowing to a vertex adjacent to
the p1 electron, and the other loop momentum k is always chosen to be one of the fermion
lines in the fermion box.5 Due to Furry’s theorem, amplitude coefficients for odd values
of κ vanish. We do not consider diagrams in which a single virtual photon decays into
an odd number of final-state photons (κ = c − 1), because the IR divergences of this set
of diagrams are identical to those of a one-loop diagram with the emission of n − κ + 1
photons, at least one of which is off-shell.

Some diagrams that contribute toM (2)
κ+2, κ > 0, illustrated by figure 9, develop collinear

singularities when a virtual photon that is attached at one end to the incoming electron or
positron and at the other to the fermion loop becomes parallel to the incoming fermion.

5It is not important which one of the four lines in the box is chosen as k, and the choice does not have
to be aligned between different diagrams.
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The functional form of all such diagrams that contribute to the collinear singularity from
l ‖ p1 is

M(2)
κ+2 = 1

l2(p1 + l)2 v̄(p2)Aν(qκ+1, . . . , qn)
(
/p1 + /l

)
γµu(p1)

×Mµν
photons

q1, . . . , qκ, l, −
κ∑
j=1

qj − l

 . (4.11)

In the collinear limit l ≈ −xp1, the last few factors times the Dirac spinor u(p1) become(
/p1 + /l

)
γµu(p1) ≈ 2(1− x)p1µ u(p1). (4.12)

Since this is proportional to p1µ, we can apply the approximation of eqs. (3.12) and (3.18)
with q replaced by l to rewrite eq. (4.11) as

M(2)
κ+2

∣∣∣
l‖p1
→ 1

l2(p1 + l)2 v̄(p2)Aν(qκ+1, . . . , qn)
(
/p1 + /l

) 2/η1
(l + η1)2 − η2

1
u(p1)

×lµMµν
photons

q1, . . . , qκ, l, −
κ∑
j=1

qj − l

 . (4.13)

The one-loop (κ + 2)-photon amplitude Mµν can be simplified further with the use of
Ward identities. The two virtual photons that attach to these loops have momenta l and
−l −

∑κ
i=1 qi flowing out of the loops. Of the two, the photon with momentum l is scalar-

polarized. The action of the Ward identity is illustrated below for the case of two photons
in the final state. We have, in the notation of figure 3 and eq. (3.20),

2/η1
(l + η1)2 − η2

1
lµMµν

photons

(
k, q1, q2, l, l̃

)

=
k

q1 q2

l̃

l

+

k

l̃

q1 q2

l

+
k + l

k

q1 q2

l̃

l

+ symmetric terms

= e

 k
q1 q2

l̃
l

−
k

q1 q2

l̃
l
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+ e

 k
q1 q2

l̃

l
−

k
q1 q2

l̃

l



+ e

 k

q1
q2

l̃

l
−

k + l

q1 q2

l̃l


+ symmetric terms

= e

 k
q1 q2

l̃
l

−

k + l

q1 q2

l̃l


+ symmetric terms . (4.14)

We have used the shorthand notation l̃ = −l − q1 − q2, while “symmetric terms” denotes
diagrams with other permutations of external photons qi. In the final equality, we find
the difference of integrands for the same three-photon amplitude evaluated at two different
values of the loop momentum,

2/η1
(l + η1)2 − η2

1
lµMµν

photons

(
k, q1, q2, l, l̃

)
=

2/η1
(l + η1)2 − η2

1

[
Mν

photons (k, q1, q2,−q1 − q2)

−Mν
photons (k + l, q1, q2,−q1 − q2)

]
, (4.15)

where Mν
photons is defined in eq. (4.14). This difference integrates to zero in dimensional

regularization, which respects momentum-shift invariance. Therefore

∫
ddk

(2π)d
2/η1

(l + η1)2 − η2
1
lµMµν

photons

(
k, q1, q2, . . . , l, l̃

)
= 0. (4.16)

We again encounter a situation, however, in which integration over a loop momentum re-
moves singularities which are present locally, and need to be removed for local integrability.

As for the vacuum polarization diagrams above, we will achieve the removal of local
collinear singularities by a modification of the integrand, adding to it terms that vanish
upon integration, as follows. Again, gauge invariance will make this possible. Without
changing the integrated value of the amplitude, we can exploit eq. (4.16) and modify the
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integrand of eq. (4.11) as,

M(2)
κ+2 = 1

l2(p1 + l)2 v̄(p2)Aν(qκ+1, . . . , qn)
(
/p1 + /l

)
γ̂µ (l, η)u(p1)

×Mµν
photons

q1, . . . , qκ, l,−
κ∑
j=1

qj − l

 . (4.17)

Here, we have modified the vertex adjacent to the incoming electron line, replacing γµ by

γ̂µ (l, η1) ≡ γµ − lµ
2/η1

(l + η1)2 − η2
1
, η2

1 6= 0 , (4.18)

where η1 is chosen so that it produces no new pinches from the extra denominator. In the
collinear limit, l = −xp1, we have(

/p1 + /l
)
γ̂µ (l, η1)u(p1) l=−xp1−−−−−→ 0. (4.19)

An analogous modification will be made for diagrams which develop a singularity when a
photon is collinear to the positron. For diagrams which can develop both types of collinear
singularities, we perform these modifications simultaneously. We write,

···
··

p1

p2

p1 + la

lb − p2

la

lb

··

= v(p2)γ̂ν(lb,−η2)
(
/l b − /p2

)
. . .
(
/p1 + /la

)
γ̂µ(la, η1)Mµν

photons . (4.20)

The above expression integrates to the same value as with γ̂µ → γµ, and is free of collinear
singularities. We have chosen the reference vector for the p2-collinear divergence to be
−η2, in accordance with eq. (3.19). We note that in this case, there is no corresponding
modification to a form factor subtraction term in eq. (2.22). The modified contributions
are now infrared-integrable on their own, without further subtraction.

In summary, we have modified the integrand of M(2)
κ+2, to make each of its diagrams

regular in all its collinear limits, without changing its integral. This was done with a simple
modification of the fermion-photon vertex when it occurs adjacent to an incoming leg. This
class of diagrams has no further infrared divergences.

4.3 UV counterterms for c = 4

In QED, the fermion loops in M(2)
c for c = 4 are UV finite after summing over diagrams

that permute the photons connected to the loop, but only after the fermion loop integral
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k + q1 + q2

k

k + q1 k + q1 + q2 + q3

q2

q1 q4

q3

Figure 10. The four-photon subdiagram with a fermion loop, which has unphysical UV divergences
diagram by diagram.

has been carried out. The complete result must be finite, simply because there is no
gauge-invariant local four-photon vertex. Nevertheless, individual diagrams for c = 4
(light-by-light scattering) are UV divergent in d = 4. To preserve local convergence, we
must construct additional counterterms for these diagrams. Analogous counterterms were
developed for QCD in ref. [191]. Unlike QCD, however, for QED such counterterms have
no counterpart in the renormalization of the theory.

The general form of a four-photon subdiagram is

V µ1µ2µ3µ4(q1, q2, q3,−q1 − q2 − q3)

= e4 (−1) tr[/kγµ1(/k + /q1)γµ2(/k + /q1 + /q2)γµ3(/k + /q1 + /q2 + /q3)γµ4 ]
k2(k + q1)2(k + q1 + q2)2(k + q1 + q2 + q3)2 , (4.21)

as illustrated in figure 10. In the UV limit, we write down the counterterm just as for
the vacuum polarization in eq. (4.8), by dropping all external momenta and IR-regulating
denominators with a mass M ,

RUVV
µ1µ2µ3µ4 = −e4 tr (/kγµ1/kγµ2/kγµ3/kγµ4)

(k2 −M2)4 . (4.22)

The counterterm in this expression corresponds to the specific subdiagram of eq. (4.21).
There are six such counterterms, corresponding to the number of non-cyclic permutations of
indices, and hence to distinguishable attachments of the two virtual and two real photons
to the loop. Our UV-convergent contribution to M(2)

4, finite is just the sum of these six
distinguishable diagrams, each minus its counterterm. Each one of these combinations
specifies a locally integrable two-loop integral, which is also UV convergent.

The corresponding contribution toM(2)
4, singular is just the sum of the six counterterms,

eq. (4.22) plus permutations. Their sum can be combined into a single, local vertex embed-
ded in the one-loop diagram in figure 11. Using tensor reduction, we obtain for this sum,
which is necessarily symmetric in the indices µ1 . . . µ4, an integrand that is proportional to
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p1

p2

RUVV
µ1µ2µ3µ4

Figure 11. The four-photon UV counterterm inserted into a one-loop diagram.

ε = 2− d/2,

∑
permutations

RUVV
µ1µ2µ3µ4 = 8e4 ε(1− ε)

(2− ε)(3− ε)

(
k2)2

(k2 −M2)4

× [ηµ1µ2ηµ3µ4 + ηµ1µ3ηµ2µ4 + ηµ1µ4ηµ2µ3 ] . (4.23)

The integral of loop momentum k has a pole, so that the sum of counterterms is finite in
d = 4,

∑
permutations

∫
ddk

(2π)dRUVV
µ1µ2µ3µ4 = ie4

12π2 [ηµ1µ2ηµ3µ4 + ηµ1µ3ηµ2µ4 + ηµ1µ4ηµ2µ3 ] .

(4.24)
As noted above, this finite result does not correspond to a counterterm of QED renor-
malization. In fact, it is not by itself gauge invariant, simply because it does not vanish
when index µi is contracted with the corresponding photon’s momentum. This is not a
problem, however, because the integral of the diagram in figure 11 is locally IR finite and
UV convergent. Figure 11 simply produces finite shifts in M(2)

4, finite and M(2)
4, singular, with

the same magnitudes but with opposite signs. Its only effect is to enable us to express
M(2)

4, finite as a sum of locally integrable and UV convergent diagrams.
To summarize the results of this section, we have identified integrable expressions

for the sets of two-loop diagrams with fermion loops, {M(2)
c }. For those with a vacuum

polarization,M(2)
2 , the integrable remainder is found by subtracting singular terms that are

closely related to one-loop IR and UV singularities. The remainder is given in convenient
form by eq. (4.8), which is equivalent to the subtraction specified in eq. (2.22), in terms of
the one-loop integrable remainder function. The sums of diagrams with c > 2, with final-
state photons attached to the fermion loop, are finite, even though individual diagrams
have collinear singularities, and in the case c = 4, ultraviolet divergences. For all such
diagrams, modifications of the integrands themselves, as in eq. (4.17), lead to expressions
that are locally integrable on a diagram-by-diagram basis, and which taken together give
the original integral. For the c = 4 light-by-light case, the introduction of a set of UV
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counterterms whose sum is finite provides a convergent integrand, while giving the same
finite result as in the original form after integration. In the following section, we turn to
the remaining two-loop diagrams, without fermion loops.

5 Two-loop photonic contributions

In this section, we will describe the construction of subtraction terms for the ultraviolet and
infrared singularities in the M(2) integrand that consists of two-loop Feynman diagrams
with no fermion loops. All of these diagrams will have two virtual photons. As for the
fermion loop diagrams, the finite remainders found from our modified integrands will satisfy
eq. (2.22), again implementing factorization at the level of the integrand.

For the removal of infrared divergences, we will adopt the same form factor approach
as we used for the one-loop amplitude, where the local integrand of a 2 → 1 form factor
with an appropriately defined vertex served as the infrared counterterm for the amplitude
of a generic 2→ n process. For this approach to succeed, collinear photons must factorize
locally from the off-shell subdiagram in all singular limits, that is, prior to any integration.

As we shall see, the factorization of a collinear photon in certain two loop diagrams
is less obvious than the one loop, precisely because of the presence of the extra loop
momentum. The procedure we will describe below entails two steps:

• first generating the two-loop integrand with an appropriate routing of loop momenta,

• and then replacing some terms in the integrand with equivalent ones (i.e., which
integrate to the same value) that are locally integrable in collinear singular limits.

The following three subsections detail and summarize these steps, which will bring the
infrared singularities of this set of diagrams under control.

Once we have derived a locally integrable integrand for the two-loop amplitude, we will
still need two sets of ultraviolet counterterms, just as we did at one loop, and implemented
as described after eq. (2.23). The elements of the first set are in one-to-one correspondence
with the counterterms of the QED Lagrangian, but presented in integral form. They are
formulated so that, when added to the full integrand, they give a fully convergent integral
in all UV limits of the original amplitude. The second set of UV counterterms is required
because form factor-based infrared counterterms induce additional UV divergences. We
emphasize again that the latter counterterms are a familiar feature of many factorization
techniques. Subsection 5.4 will deal with the construction of both sets of UV counterterms.

The outcome of the construction described below will be a reorganized expression for
the full two-loop photonic contributions to the amplitude. It will be the sum of a set of
“simple” but singular integrals, which can be carried out in dimensional regularization for
any of the 2→ n processes in question, plus an integral that depends on all the details of
the process, but which is numerically integrable in four dimensions. The number of IR and
UV counterterms generated by this procedure will depend on the process, but will not be
qualitatively different than for the original set of diagrams with their QED counterterms.
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5.1 Generation of the two-loop integrand

We construct the two-loop integrand starting from the usual application of QED Feynman
rules in the Feynman gauge. This construction is not unique, given the invariance of
individual Feynman diagrams under shifts of the loop momenta. To combine all diagrams
into a single integrand, we need to make an unambiguous choice of momentum labeling for
every diagram so that they may be combined before integration. Once loop momenta are
labeled in this way, we may systematically identify and combine singular soft and collinear
regions in the full set of diagrams. Analogous procedures will apply in any theory.6 As at
one loop, we aim to label loop momenta in a way which allows the application of Ward
identities for a local cancellation of non-factorizing collinear singularities.

We label the momenta of the two virtual photons with l and k, both directed away from
the vertex closest to the incoming positron. It is unimportant to specify which of the two
photons carries momentum k and which carries momentum l, due to a symmetrization over
momentum routings, which we will discuss shortly. This initial integrand is illustrated by,

M(2)
0 (k, l) =

p1

p2

q1

qn

q3

q2

··

k

l +

p1

p2

q1

qn

·

·
·kl +

p1

p2

q1

qn

·

·
·

k

l

+

p1

p2

q1

qn

q2··

k
l +

p1

p2

q1

qn

q2

q3··

kl +

p1

p2

q1

qn

qn−1
··

l k

+

p1

p2

q1

qn

q2·
··

k

l

+

p1

p2

q1

qn

q2··

k

l + . . . . (5.1)

We will need to manipulate this form further, in order to produce a modified integrand,
which we will denote as

M(2)(k, l) , (5.2)

6In passing, we also note that labeling the momentum of a line does not specify its direction. In
particular, the set of subtractions we will construct eliminates singularities when the internal photons are
in either of the directions specified by the incoming fermions.
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which will factorize in all singular collinear limits. Our manipulations will include sym-
metrizations of the loop momenta, and modifications of integrands that do not change
integrated results. We detail these manipulations in the following subsections.

5.1.1 Global amplitude symmetrizations

As we will soon explain, we need to perform the four-fold symmetrization generated by

k ↔ l, (k⊥, l⊥)↔ (−k⊥,−l⊥), (5.3)

where k⊥ and l⊥ are the components of the loop momenta kµ and lµ that are orthogonal
to both the incoming electron momentum, p1, and the incoming positron momentum, p2.
This symmetrization is applied globally, to all diagrams of the amplitude. The symmetrized
integrand,

M(2)
sym(k, l) ≡ 1

4
[
M(2)

0 (k, l) +M(2)
0 (l, k) +M(2)

0 (k∗, l∗) +M(2)
0 (l∗, k∗)

]
, (5.4)

with l∗ = l(l⊥ → −l⊥), k∗ = k(k⊥ → −k⊥), exhibits more complete factorization properties
than the individual terms that make it up on the right-hand side. Here, the notation
M(2)

0 refers to the integrands written down directly from the QED Lagrangian, which are
symmetrized as shown to defineMsym.

To see the need for the k ↔ l symmetrization, let us examine, as an example, two-loop
diagrams of the e−(p1) + e+(p2) → γ∗(q1) + γ∗(q2) amplitude that are singular in two
different collinear limits. First, we consider a loop momentum k collinear to the positron
momentum p2, with the second loop momentum l in the hard region. Analogous to the
analysis of collinear singularities at one loop using Ward identities, a sum of diagrams
which factorize in the collinear k ‖ p2 singularity are,

M(2)
0 (k, l) k‖p2−−−→ + + +

+ . . .

= + . . . (5.5)

In the above, grey triangles denote the collinear approximation for photon propagators
collinear to p2, defined in eq. (3.19). The identity follows, as at one loop, by successive
application of the lowest order Ward identity, eq. (3.20). In eq. (5.5), we have included only
a typical class of diagrams where the momentum k is adjacent to the collinear leg p2 and
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attaches to all propagators of the same one-loop subgraph. The dots denote omitted dia-
grams that can also be grouped into similar classes. In the collinear limit that we consider
here, Ward identities (leading to factorization) can be applied to each class independently.

Let’s now look at a distinct limit, where the photon of momentum k becomes collinear
to the incoming electron, k ‖ p1,

M(2)
0 (k, l) k‖p1−−−→ + + +

+ . . .

= + . . . . (5.6)

In eq. (5.6), we show the analogous set of Feynman diagrams that are needed as a sum for
factorization, using white triangles to denote collinear approximations defined in eq. (3.18).
Once again, the collinear singularity occurs when the loop momentum k is adjacent to the
external leg, which carries momentum p1 this time. We now observe that the second
Feynman diagram on the right-hand side of eqs. (5.6) is actually also needed in eq. (5.5),
but with the momenta l and k exchanged. If we make a single assignment of loop momenta
that is consistent with factorization of the k ‖ p1 limit, then we will spoil the factorization
of the k ‖ p2 limit, and vice versa. In effect, the assignment of momenta can be thought
of as an instruction for how to combine the integrands of the diagrams shown in these
figures. With fixed assignments of line momenta as shown in the figures, the association of
the points in momentum space where the Ward identity acts would not be automatic, but
would require a change of variables. This conflict is resolved simply by symmetrizing over
the two momentum assignments, and both collinear limits factorize for the combination
M(2)

0 (k, l) +M(2)
0 (l, k) without a change of variables in momenta. Once the momenta are

averaged in this manner, each momentum assignment will find its matching assignment in
every diagram.

The additional reflections (k⊥, l⊥) ↔ (−k⊥,−l⊥) in the transverse plane in eq. (5.4)
are required for the factorization of collinear singularities in propagators which receive hard
self energy and vertex corrections. The diagrams in question are shown in figure 12, for
the case when the self energy or vertex corrections are on the electron side. The case when
they appear on the positron side is completely analogous and is omitted from the figure
as well as much of the later discussions. We will see below the role of reflections in the
transverse planes when we study collinear limits involving these diagrams.

We will refer to the diagrams with an electron or positron self energy correction outside
the gray off-shell subdiagram, from which the final-state photons emerge, as type S, and
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(a) (b)

(c) (d)

Figure 12. Diagrams requiring special treatment. We refer to the diagrams of the first line as
type S, and of the second line as type V.

the diagrams with a QED vertex correction outside the gray photon emission blob as type
V. For concreteness, we will assign l to be the momentum of the virtual photon of the
self energy or vertex sub-loop in type S and type V diagrams as in figure 12. This choice
is simply a convention, since the integrand will be symmetrized according to eq. (5.4) in
the end. We call all the other diagrams regular diagrams, decomposing the two-loop
integrand as a sum of contributions from these three classes,

M(2)
sym =

[
M(2)

type S +M(2)
type V +M(2)

regular

]
sym

, (5.7)

whereM(2)
sym denotes the full initial integrand with fixed momentum assignments and sym-

metrizations in eq. (5.3) for each of the terms on the right. We will not alter the integrand
of M(2)

regular beyond these momentum symmetrizations, while M(2)
type S and M(2)

type V will
require a somewhat more elaborate treatment.

5.1.2 Collinear regions in type S and type V diagrams

The diagrams in M(2)
type S and M(2)

type V of figure 12, until altered, do not exhibit factor-
ization in all infrared singular limits locally. In this discussion, we demonstrate that local
factorization can be achieved by overcoming three challenges, as summarized below and
then elaborated upon.

1. Stronger than logarithmic divergences due to doubled fermion propagators,

2. apparent contributions of unphysical “loop polarizations” that are not compatible
with factorization in collinear limits,
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Figure 13. Illustration of the desired factorization property of type S diagrams in the collinear
k ‖ p1 limit. Prior to integration, the propagator denominator (p1 + k)2 appears twice, giving rise
to power divergences in the collinear limit. Appropriate modifications of the diagrams are needed
to reduce the divergence to a logarithmic one, so that we can apply the collinear approximations,
in particular the polarization approximations eq. (3.18) with q = k indicated by the triangle arrow.

3. and, finally, scaleless integrals appearing as self energy corrections to external legs.

The first challenge, which we encountered for photon self-energies in the previous
section, is apparent in diagrams of type S, where self energy corrections to a fermionic
propagator adjacent to an external electron or positron are inserted. These diagrams
possess single-soft k → 0 and collinear k ‖ p1 singularities, whose strength is exacerbated
by the presence of the self energy correction and the double occurrence of a denominator.7

A straightforward power counting shows power divergences, instead of tamer logarithmic
divergences. A naive subtraction of the infrared divergences would require counterterms
for both the leading and next-to-leading singular terms, while the factorization of k ‖ p1
collinear singularities with the application of Ward identities, schematically illustrated in
figure 13, would apply only to the leading terms. Of course, if we perform the integral
over l, the amputated self energy diagram gives a result proportional to /p1 + /k which
combines with the identical /p1 + /k from the numerator of the adjacent fermion propagator
to cancel the extra (p1 +k)2 denominator, but this would not achieve our goal of fully local
factorization.

The second challenge posed by “loop polarizations” emerges, for example, in the cal-
culation of the collinear limit k → −xp1 in type V diagrams. Let us focus on the vertex
subgraph given by eq. (3.34) multiplied with a common fermion propagator and a spinor

7A related discussion of double propagators can be found in ref. [94].
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factor, as they appear in type V diagrams,

p1 p1 + l p1 + l + k

p1 + k

k

l

= −i e3 (/p1 + /k)γµ(/p1 + /l + /k)γν(/p1 + /l)γµu(p1)
(p1 + l + k)2(p1 + l)2l2

k=−xp1−−−−−→ −i e3 2 (2− d)
1 + 2k·p2

s

(p1 + l + k)2

[
lν

l2
− lν + pν1

(l + p1)2

]
u(p1) . (5.8)

The tensor structure of the subgraph in the collinear limit is crucial for factorization.
Analogous to the one-loop case in eq. (3.15), the term with the vector pν1 in the numerator
corresponds to a photon with a scalar polarization in the collinear limit. This term, when
all Feynman diagrams of type V are summed and cancellations due to Ward identities are
carried out, yields a factorized contribution in this limit. The lν vector, on the other hand,
corresponds to a photon with a random polarization, which we call “loop polarization”,
and it is problematic. Ward-identity cancellations are not present for these terms. Before
going on, we note that both loop polarization terms in (5.8) have one fewer propagator
than the original diagram, and appear in integrals characteristic of self energies, rather
than the full vertex. This feature will be used to advantage below.

The third challenge concerns the factorization of k ‖ p2 collinear singularities. Regular
diagrams (i.e., not of type S or type V) factorize straightforwardly by Ward identities
after using the collinear polarization approximation of eq. (3.19) with q = k. But the sum
of type S and type V diagrams, through Ward identities, becomes an expression which
does not factorize into lower-loop amplitudes times an one-loop correction on the incoming
positron (p2) leg, as illustrated in figure 14. Of course, this problem goes away if we do
not attempt to formulate factorization locally; after integrating over the sub-loop l, the self
energy correction to the incoming electron line produces a factor of /p1, which annihilates
the massless external spinor u(p1), and the right-hand side of figure 14 vanishes. However,
in order to be able to construct local counterterms for the amplitude, we need to exhibit
factorization at the integrand level. It is therefore our aim to rewrite the type S and type
V diagram expressions so that the sum in figure 14 vanishes locally in the limit k ‖ p2.
Later we will construct the modified vertex integrand, eq. (5.12) and modified self energy
integrand, eq. (5.18), which exactly satisfy the desired Ward identity,

ην2kµ
(k − η2)2 − η2

2
V µ

mod + ην2kµ
(k − η2)2 − η2

2
Sµmod = 0, when k ‖ p2, (5.9)

as illustrated in figure 15.

5.1.3 Strategy for factorizable vertex and self energy corrections

In the following, local factorization is made possible by specifying modified one-loop vertex
and self energy integrands for subdiagrams that appear adjacent to the incoming lines.
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Figure 14. Illustration of the k ‖ p2 collinear singularities when summing type S and type V
diagrams. The sum is a non-factorized collinear singularity at the integrand level, and vanishes
only after integration.

p1

k

l

+

p1

k

−→ = 0
kµ = xpµ

l

Figure 15. The exchange photon Ward identity for the modified integrands. This figure should
be contrasted with figure 14 for the unmodified integrands, where the right-hand side is nonzero
locally.

The modified integrands are designed to leave the integrated amplitudes unchanged in
dimensional regularization. These modifications will apply to generic e−(p1) + e+(p2) →
γ∗(q1)+ . . .+γ∗(qn) amplitudes of an arbitrary photon multiplicity, n, in the final state, as
well as to the two-loop 2→ 1 form factor. We will see that suitably modified integrands of
the latter can serve as local IR counterterms of all other amplitudes in the class, providing
a non-trivial two-loop generalization of the one-loop IR counterterm of eq. (3.24).

Each integral in the type S and type V diagrams of figure 12 is characterized by an
internal loop momentum for the vertex or self energy, which we will denote as l, and the
momentum of the exchanged photon, which we denote by k. As noted above, the loop
labels will be symmetrized, but the arguments here will not require that.
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In these diagrams, the singular regions can be denoted by seven pairs (A,B). The first
index, A, refers to the loop momentum k and takes the values A = 1, 2, S,H when k is
collinear to p1, collinear to p2, soft or hard respectively. Here “hard” means the typical
hard momentum transfer scale of the process, for example, the energy of final-state photons,
which are taken to be all of the same order. The second, B, refers to the loop momentum
l, and can take the values B = 1, S,H only for the singular regions of these diagrams.

For all leading singular regions of the form (A,B) where neither A nor B equals H,
there are no hard sub-integrals by definition. In these regions, (1, 1), (2, 1), (S, 1), on-
shell lines are attached to tree rather than one-loop subgraphs and the necessary Ward
identities, based as always on eq. (3.20), work point-by-point in loop momentum space.
The singularities factorize locally, and do not require any alterations of the functional form
of the integrand. We can thus focus on “single limits”, (1, H), (2, H), (S,H), (H, 1), where
only one of the loop momenta becomes soft or collinear. We will now show how to treat
the single-collinear limits. The region (S,H) may be treated similarly to (1, H).

To factorize the amplitude in the three single-collinear limits, where a collinear line
attaches to a vertex carrying hard loop momentum, we will try to construct integrands
that have four necessary and sufficient properties:

• In region (1, H) (exchange photon k collinear to p1 and loop momentum l hard and
fixed) there should be no “loop polarizations” in singular terms. Leading singular
behavior in this region should arise only from terms in which the photon with mo-
mentum kµ is scalar-polarized, i.e., with a polarization vector proportional to pµ1
or kµ, on the index that is contracted with the hard scattering subdiagram. This
polarization is captured by the polarization approximation introduced in eq. (3.18).

• In the same region (1, H), power-like singularities coming from doubled propagators
in type S diagrams, shown in figure 12(a)-(b), should be reduced to no stronger than
logarithmic.

• In region (2, H) (k collinear to p2, l fixed), singular terms should obey the modified
Ward identity for the scalar polarized photon of momentum k when it attaches to the
type V vertex diagram on the p1 line or is adjacent to the type S self energy diagram,
as in figure 15.

• The Ward identity for a scalar-polarized photon carrying loop momentum l in the
region (H, 1) (k hard and l collinear to p1), illustrated in figure 16, is responsible
for factorizing the l ‖ p1 singularity into a product of a singular collinear function
and a one-loop amplitude with loop momentum k. This identity is respected by the
original Feynman diagram expressions and must remain valid after any modifications
that we perform on type V diagrams. In practice this means that the modification
of the type V diagram, which appears on the left-hand side of figure 16, should not
change its singular behavior in the l ‖ p1 limit.
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p1 p1 + l p1 + l + k

p1 + k

k

l

−→
l→−(1−x)p1

e
2x

1− x


p1 xp1 xp1 + k

−(1− x)p1

k

−

p1 xp1 p1 + k

−(1− x)p1

k



Figure 16. Result of the Ward identity in the l collinear to p1 limit.

5.1.4 Modification of type V integrands

For type V diagrams in figure 12(c)-(d), i.e., QED vertex diagrams on an external fermion
leg, with k the exchanged photon and l the loop momentum, the l sub-loop integrand can
be written as

p1 p1 + l p1 + l + k

p1 + k

k

l

≡ V µ
0 (l, k, p1)

= −ie3
[

(/p1 + /k) γα(/p1 + /k + /l)γµ(/p1 + /l)γα

(p1 + k)2(p1 + k + l)2l2(p1 + l)2

]
u(p1) .

(5.10)

Note that we have included the adjacent (/p1 + /k)/(p1 + k)2 fermion propagator in the
expression for the vertex. The subscript in V0 indicates that we will later modify this
factor of the integrand.
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After some Dirac algebra in d = 4−2ε dimensions, using identities such as γαγµγνγργα=
2εγµγνγρ − 2γργνγµ, we find

V µ
0 (l, k, p1) = 2 i e3

(p1 + k)2

{
(1− ε)

(
2(lµ + pµ1 )
l2(p1 + l)2

[
1−

k2 + (/p1 + /l)/k
(p1 + k + l)2

]

− 2(pµ1 + lµ)
(p1 + l)2(p1 + k + l)2 −

2(p1 + k)µ − γµ/k
l2(p1 + k + l)2

)

−
(/p1 + /k)

[
−(/p1 + /l)γµ/k + ε/kγµ(/p1 + /l)

]
l2(p1 + l)2(p1 + k + l)2

}
u(p1) . (5.11)

This factor includes all the dependence on loop momentum, lµ. The overall denominator
(p1 + k)2 produces a pinch for k collinear to p1 in combination with the denominator k2

of the propagator for the photon emerging from the one-loop vertex. Similarly, a pinch
singularity is produced for l collinear to p1 due to the denominators l2 and (l + p1)2.
Crucially, we observe that these two collinear singularities are disentangled. In particular,
the terms in the first two lines of eq. (5.11) that are singular for both k ‖ p1 and l ‖ p1
cancel in the l ‖ p1 limit. Similarly, the final term of eq. (5.11), proportional to /p1 + /k, is
suppressed in the k ‖ p1 limit and is singular only when l ‖ p1. This natural separation
of the (1, H) and (H, 1) collinear regions allows us to modify terms of the integrand which
contribute to the k ‖ p1 limit without affecting the singular behavior in the l ‖ p1 region.

Based on this, we propose to replace V µ
0 in eq. (5.11) by an equivalent form, in which

loop polarizations proportional to lµ are eliminated from terms that are singular when the
exchanged photon momentum k becomes collinear to p1. This is done by averaging the full
expression on the first line of eq. (5.11), containing the factor (pµ1 + lµ)/[l2(p1 + l)2] , over a
change of variables from l to −p1−l, and by averaging over an analogous change of variables
in the 1/[(p1 + l)2(p1 +k+ l)2] term of the second line, exchanging p1 + l with −(p1 +k+ l).
Finally, anticipating our treatment of region (2, H), we explicitly write down the average
kT ↔ −kT , lT ↔ −lT , as required by the global symmetrization of eq. (5.3) applied to
both regular diagrams and type S/type V diagrams, which we denote by a subscript 〈T 〉.
Note that in either limits k ‖ p1 or k ‖ p2, kT is close to zero and the symmetrization is
essentially just lT ↔ −lT .

The resulting expression, only slightly more complicated than (5.11) is

V µ
mod(l, k, p1) ≡ 2ie3

(p1 + k)2

{
(1− ε)

l2(p1 + l)2

[
pµ1 −

(pµ1 + lµ)(k2 + (/p1 + /l)/k)
(p1 + k + l)2

+ lµ(k2 − /l /k)
(k − l)2

]
+ (1− ε) kµ

(p1 + l)2(p1 + k + l)2 (5.12)

−(1− ε)
(/p1 + /k)γµ

l2(p1 + k + l)2 −
(/p1 + /k)[−(/p1 + /l)γµ/k + ε/kγµ(/p1 + /l)]

l2(p1 + l)2(p1 + k + l)2

}
〈T 〉

u(p1).

On the right, we can readily confirm the absence of factorization-breaking loop polarizations
for singular contributions in the region (1, H). Explicit factors of lµ are suppressed in this
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region by the factor of k/ acting on the Dirac spinor, or by an explicit factor of k2. We
emphasize that although V µ

mod in (5.12) is not equal to V µ
0 , its integral over l gives exactly

the same result, so that it can be used in place of V µ
0 in the calculation of the amplitude.

5.1.5 Modification of type S integrands

The type S self energy integrand is treated in a manner analogous to the type V vertex.
We seek a functional form that can be combined with the expressions for the vertex in
the Ward identity relevant to the region (2, H), figure 15, when k is collinear to p2 and l
is hard. Here we shall simply present the form that will provide the correct combination,
confirming that it is equivalent to the defining form of the self energy integrand, after
integration.

We start with the integrand of the self energy subdiagram,

p1 p1 + k p1 + l + k

p1 + k

k

l

≡ Sµ0 (l, p1, k)

= −ie3 (/p1 + /k)
(p1 + k)2

γα(/p1 + /k + /l)γα
l2(p1 + k + l)2

(/p1 + /k)
(p1 + k)2 γ

µu(p1) , (5.13)

which defines the original integrand, Sµ0 (l, p1, k). Again we have included the adjacent
(/p1 + /k)/(p1 + k)2 fermion propagator in the expression for the self energy, just as we did
for the vertex. In this standard form, the factor S0 has a double pole at (p1 + k)2 = 0,
times the truncated self energy, which, after integration over l, leaves a single pole in the
combination.

To get started, we easily symmetrize the integral over a change of variable,

∫
ddl S0(l, p1, k) =

∫
ddl

1
2 [S0(l, p1, k) + S0(−p1 − k − l, p1, k)]

= ie3 (1− ε) (p/1 + k/)
(p1 + k)2 γ

µ u(p1)
∫
ddl

1
l2(p1 + l + k)2 , (5.14)

in which the single pole is explicit, and proportional to the scalar self energy integral.
Using the symmetries of the integral and the Dirac equation, there are many ways

of finding an integrand for the l integral that is equivalent to the ones found from (5.13)
and (5.14). We shall find an expression that preserves the Ward identity for the exchange
vector k in regions (1, H) and (2, H). (We do not demand that the Ward identity be exact
in other, finite regions.)
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In our next step, we provide a form equivalent to (5.14), which is a simple combination
of two terms, related by a change of variables,

Sµ1 (l, p1, k) ≡ −e3 i(1− ε)
(p1 + k)2

[
/k − /l

(p1 + l)2(k − l)2 −
p/1 + k/− /l

l2(p1 + k + l)2

]
γµu(p1) .

(5.15)

To verify that the integral of Sµ1 equals that of Sµ0 , it is only necessary to change variables
to l′ = l + k in the first term of (5.15). It is straightforward to check that this expression,
together with the modified vertex expression, eq. (5.12), obeys the modified Ward identity
in region (2, H) as in figure 15.

As it stands, however, eq. (5.15) is not quite what we want, because it introduces a new
problem of loop polarizations, previously encountered in the unmodified type V diagrams,
in region (1, H), where k is parallel to p1. These arise from the components of lµ in both
the p2 and transverse directions.

To solve this problem, we will analyze the loop momentum in the numerators of
eq. (5.15) in terms of components parallel and transverse to the incoming momenta p1
and p2,

lµ = l · p2
p1 · p2

pµ1 + l · p1
p1 · p2

pµ2 + lµT . (5.16)

We will perform a symmetrization only for the p2 light-cone component in the two numer-
ators of eq. (5.15). We leave the p1 light-cone component and the transverse components
intact. This partial tensor reduction introduces modified versions of the loop momentum
vector, l̄µ+ and l̄µ−, defined by

l̄µ± = l · p2
p1 · p2

pµ1 ±
1
2
k · p1
p1 · p2

pµ2 + lµT (5.17)

in the two numerators. It is a simple exercise to show that replacing /l by /l+ (or /l−) in the
first (or second) term in the square bracket of eq. (5.15) does not change the result after
integration over l. The resulting expression is,

Sµmod(l, p1, k) ≡ −ie3 (1− ε)
(p1 + k)2

[
/k − /l+

(p1 + l)2(k − l)2 −
p/1 + k/− /l−
l2(p1 + k + l)2

]
〈T 〉

γµu(p1) . (5.18)

We are again using 〈T 〉 to denote the transverse part of the global symmetrization eq. (5.3).
This is our final form for the type S self energy diagram of figure 12(a)-(b).

Eliminating the p2 light-cone component of l removes its contributions to “loop po-
larizations”. The transverse component of l, which also gives rise to loop polarizations, is
eliminated in the k ‖ p1 limit by averaging with a global reflection of the amplitude on
the transverse plane in eq. (5.3). This reflection is implicitly applied to every term of the
amplitude integrand. Under this transverse reflection and averaging, the denominators in
eq. (5.18) are unchanged, but the /lT parts of the numerators cancel.

The transverse symmetrization is specifically designed to eliminate the “loop polariza-
tion” problem of the type S. Although this appears to be of a limited scope, the transverse
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symmetrization needs to be applied globally, i.e. to all diagrams as in eq. (5.3), to preserve
the interconnected web of Ward identity relations that enable factorization of divergences
in a variety of other collinear limits.

5.2 Summary and validation of modified amplitude integrand in single-collinear
limits

We have now arrived at an alternative expression for the two-loop amplitude which solves
the challenges of the original form. We first specified the assignments of loop momenta in
all Feynman diagrams of the two-loop integrandM(2)

0 (k, l), derived in the Feynman gauge,
in eq. (5.1). Then we manipulated the integrand in the following manner.

1. For type V diagrams, i.e. vertex corrections adjacent to external fermion lines as
illustrated in figure 12(c)-(d), we modified the integrand expression V µ

0 in eq. (5.10)
into V µ

mod in eq. (5.12) which is identical after integration.

2. For type S diagrams, i.e. self energy corrections adjacent to external fermion lines as
illustrated in figure 12(a)-(b), we modified the integrand expression Sµ0 in eq. (5.13)
into Sµmod in eq. (5.18).

3. For analogous type S and type V diagrams with self energy or vertex corrections
adjacent to positron lines, the corresponding modifications are obtained by reflection.

4. A four-fold symmetrization of the integrand (including all diagrams, some of which
have been modified) is performed as in eq. (5.4).

The outcome is a modified integrand, which is a sum of three contributions, as in eq. (5.7),
now written as

M(2)(k, l) =
[
M(2)

type S +M(2)
type V

]
modified

+M(2)
regular , (5.19)

with the modified self energy and vertex integrands specified by eqs. (5.18) and (5.12),
respectively. The symmetrizations of eq. (5.4) are understood. This will be the starting
point for subtraction of infrared and ultraviolet divergences at the integrand level. The
same modifications will be applied to two-loop form factor subtractions.

Before we proceed with the subtraction of infrared divergences, we will verify that
indeed the new integrand possesses the promised factorization properties. Specifically, be-
low, we will show analytically that in the regions (H, 1) and (2, H), which were problematic
originally, Ward identities and factorizations are now realized locally in momentum space.
Factorization in the (1, H) region is self-evident by the absence of loop-polarizations in
eq. (5.12) and (5.18) and we do not discuss it any further.

5.2.1 Factorization in region (H, 1)

To test for the desired property in region (H, 1) (l collinear to p1), we can replace the
loop momentum vector lµ by −(1 − x)pµ1 with 1 > x > 0 in eq. (5.12), except in the
singular denominators, l2 and (p1 + l)2. At fixed, off-shell k, we expect the photon carrying
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momentum l to satisfy a tree-level Ward identity, giving one term that factorizes l and
k dependence, and another term in which they are linked, as shown in figure 16. The
latter term will cancel against other diagrams that are singular when l is collinear to p1.
Explicit calculation confirms that in the l → −(1 − x)p1 limit, singular behavior follows
the expected pattern.

As noted above, the vertex V µ
mod, eq. (5.12), is identical to the original form in this

region, so we are just exhibiting how this works. Applying the Dirac equation and p2
1 = 0

to the averaged vertex, eq. (5.12), the singular part of the vertex diagram is the collection
of terms proportional to the symmetric factor 1/l2(p1 + l)2. These terms (which are even
in lT ) are given, in detail, by

lim
l→−(1−x)p1

[
(p1 + l)2l2 V µ

mod

]
= 2ie3

(p1 + k)2

{
pµ1 −

x
(
k2 + xp/1k/

)
pµ1

k2 + 2xp1 · k

−x
(
k2 + (1− x)p/1k/

)
pµ1

k2 + 2(1− x)p1 · k
+ (p/1 + k/) (xp/1)γµk/

k2 + 2xp1 · k

}
u(p1)

= −2ie3

(p1 + k)2

{
x (k/p/1k/)

(k + xp1)2

}
γµ u(p1) , (5.20)

where the second form results from the cancellation of all terms proportional to pµ1 , and
where we have observed that the Dirac equation implies p/1γ

µk/ u(p1) = −p/1k/γ
µ u(p1). A

little further rewriting shows that this result equals the sum of terms associated with the
Ward identity for a scalar-polarized vector particle, connecting a lowest-order jet with one
of the diagrams of the one-loop hard subdiagram,

lim
l→−(1−x)p1

[
(p1 + l)2l2 V µ

mod

]
≡ lim

l→−(1−x)p1

[
(p1 + l)2l2 V µ

0

]
= −ie3 2x

1− x

[ 1
(xp/1 + k/) −

1
(p/1 + k/)

]
γµu(p1) . (5.21)

This Ward identity is the expected one, and is represented in figure 16.

5.2.2 Region (2, H) and the k Ward identity

The final step is to verify that the Ward identity for the exchanged photon, figure 15,
is respected by our modified integrand, eq. (5.12), once it is added to the appropriately-
modified self energy, eq. (5.18). Since we are interested in the behavior of the integral
in the k collinear to p2 region, (2, H), we can approximately set k2 = 0, which simplifies
the algebra considerably. Straightforward algebra and the Dirac equation then yield the
relatively simple expression

kµV
µ

mod(l,k,p1)k2=0 =−ie3 (1−ε)
(p1+k)2

[
(p/1−/l)k/

(p1+k+l)2l2
+

/lk/

(k−l)2(p1+l)2

]
〈T 〉

u(p1). (5.22)
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To this expression, we will add the self energy integrand. Neglecting terms that vanish at
k2 = 0, we find

kµV
µ

mod(l, k, p1)|k2=0 + kµS
µ
mod(l, k, p1)|k2=0 = −ie3 (1− ε)

(p1 + k)2

×
[

(/l− − /l)/k
(p1 + k + l)2l2

+ (/l − /l+)k/
(k − l)2(p1 + l)2

]
〈T 〉

u(p1) . (5.23)

Given that

(/l − /l±)/p2 = 0, (5.24)

we verify,

kµV
µ

mod(l, k, p1)|k2=0 + kµS
µ
mod(l, k, p1)|k2=0 = 0, k ‖ p2 , (5.25)

and thus the factorization is complete on a point-by-point basis, as illustrated in figure 15.
This takes care of the (2, H) region. Of course, to get the point-by-point Ward identity,
we had to use consistent routing of momenta in the vertex and self energy diagrams, and
that is what our modifications were designed to achieve.

5.3 Two-loop “form factor” infrared counterterms

The amplitude integrands prepared in the previous subsections have the property that they
factorize in all infrared limits. As a result of this factorization, infrared singular factors are
common to all e−(p1)+e+(p2)→ γ∗(q1)+ . . .+γ∗(qn) amplitudes for arbitrary numbers of
photons in the final state. In particular, the same singular factors are found in the 2→ 1
“form factor” amplitude, which will enable us to use this simpler process to organize the
infrared structure of the entire class of processes. As discussed in section 2, this universality
is known to hold once loop momentum integrations are carried out. In this discussion, we
have made the ingredients for factorization manifest at the level of integrands in the class
of diagrams that we discuss.

To exploit this universality, we begin as in the one-loop case, and generate integrands
for the form factor, now with modified vertex and self energy integrands, joining them to
the tree level amplitudes for e−(p1) + e+(p2) → γ∗(q1) + . . . + γ∗(qn). We depict again
the one-loop and two-loop form factor functionals, following the notations of eqs. (2.14)
and (3.25), as in figures 1 and 2, which we reproduce here as equations for ease of discussion,

F (1) [P1TP1] = (5.26)
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F (2) [P1TP1] = + +

+ + + .

(5.27)

The loop momenta in the form factor amplitude are assigned and symmetrized with an
identical procedure as that described in subsection 5.1 for the generic e−(p1) + e+(p2) →
γ∗(q1)+. . .+γ∗(qn) amplitudes. For concreteness, we have made specific assignments on the
k, l labels to the virtual photons exchanged among fermion lines in the form factor diagrams.
The averaging over loop momentum routings and transverse loop momentum reflections of
eq. (5.4) is understood implicitly. Type S self energy and type V vertex subgraphs in the
last four diagrams of eq. (5.27) are modified with the extra symmetrizations explained in
subsection 5.1, just as the diagrams in figure 12.

The squared vertex in each figure represents a matrix in spinor space, in between a pair
of P1 ≡

/p1/p2
2p1·p2

projectors, eq. (2.9). T captures contributions from amplitude propagators
which remain off-shell in infrared limits where either k and/or l vanish. As such, and due
to factorization, it is independent of the loop momenta assigned to the virtual photons
outside the squared vertex in the above diagrams. For our purposes, T will stand for a tree
amplitude integrand, independent of both k and l, inserted in the one-loop and two-loop
form factor of eqs. (5.26) and (5.27), or a one-loop amplitude integrand, depending on the
loop momentum l, inserted in the one-loop form factor of eq. (5.26).

We have explained in section 3 how an infrared finite remainder of the one-loop am-
plitude integrand is derived with the use of a one-loop form factor subtraction at the level
of the integrand. We recall here the final result at one loop of eqs. (3.32), equivalent to
eqs. (3.25) and (3.24),

M(1)
IR−finite =M(1) −F (1)

[
P1M̃(0)P1

]
. (5.28)

This result is the form we would like to generalize, including the treatment of its induced
ultraviolet singularities.

We are now ready to discuss the subtraction of infrared singularities for the two-loop
amplitude. Starting from the modified two-loop integrand M(2) constructed in subsec-
tion 5.1, we will first subtract a “global” counterterm that simultaneously cancels all sin-
gularities in “double-IR” limits in which both loop momenta k and l are soft or collinear to
incoming fermion lines, e.g., the double-soft limit with kµ, lµ much less than the hard scales,
the soft-collinear limit with kµ soft, l ‖ pi (here i = 1 or 2), the limit of two collinear pairs
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with k ‖ p1, l ‖ p2, and the two-loop collinear limit with k, l ‖ pi. This global double-IR
counterterm is precisely the set of diagrams given in eq. (5.27),

Rdouble-IRM(2) = F (2)
[
P1M̃(0)P1

]
, (5.29)

where we use the two-loop form factor as a local approximation of all double-infrared
singularities. The subtraction gives

M(2)
double-IR-finite =M(2) −F (2)

[
P1M̃(0)P1

]
, (5.30)

in which we recognize the beginning of the pattern of the two-loop finite remainder,
eq. (2.22), so far with a subtraction only for the double-IR limits. The modification of
type S and type V diagrams is understood in these expressions to match the behavior of
the modified amplitude, as described above.

Next we must subtract a counterterm that cancels all remaining singularities in “single-
IR” limits, where one of the two loop momenta becomes either soft (single-soft) or collinear
(single-collinear) to the incoming electron or positron, and one loop becomes hard while
flowing through the short-distance subdiagram. (Type S and type V diagrams, in which a
potentially hard loop is disconnected from the hard scattering are already taken care of.)
For this, we are seeking an approximation of the two-loop integrand remainder after the
subtraction of the double-IR singularities,

Rsingle-IRM
(2)
double-IR-finite = Rsingle-IR

(
M(2) −F (2)

[
P1M̃(0)P1

])
. (5.31)

Due to the local factorization properties of our amplitude integrand, the single-IR singu-
larities of the two-loop amplitude factorize in terms of a one-loop amplitude with hard
momentum and a universal factor, which is the same for any number of photons in the
final state and can be approximated with a one-loop form factor integrand. The factoriza-
tion can be easily derived by using Ward identities, analogous to the one-loop case. For
example, figure 17 illustrates the factorization of singularities in the single-collinear limit
k ‖ p1 in the sum of a class of diagrams. Factorization implies that the full contribution of
regions in the amplitude where one loop is infrared and one hard is given by the product
of the one-loop integrand in eq. (2.21) and the one-loop form factor integrand,

Rsingle-IRM(2) = F (1)
[
P1M̃(1)P1

]
. (5.32)

Similarly, we remove the single-IR limit from the two-loop form factor counterterm,

Rsingle-IRF (2)
[
P1M̃(0)P1

]
= F (1)

[
P1F (1)

[
P1M̃(0)P1

]
P1
]
. (5.33)

The above compact notation corresponds to the following momentum representation

F (1)
[
P1F (1)

[
P1M̃(0)P1

]
P1
]

= −e
4

4 v̄(p2)γµ 1
/k − /p2

×P1γ
ν 1
/l − /p2

P1M̃(0)P1
1

/l + /p1
γνP1

× 1
/k + /p1

γµu(p1) + (3 symmetric terms of eq. (5.4)).

(5.34)
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Figure 17. Illustration of factorization of single-collinear singularities of the two-loop amplitude.

Combining, eq. (5.32) and eq. (5.33) into eq. (5.31) we have that

Rsingle-IRM
(2)
double-IR-finite = Rsingle-IR

(
M(2) −F (2)

[
P1M̃(0)P1

])
= F (1)

[
P1M̃(1)P1

]
−F (1)

[
P1F (1)

[
P1M̃(0)P1

]
P1
]

= F (1)
[
P1
(
M̃(1) −F (1)

[
P1M̃(0)P1

])
P1
]

= F (1)
[
P1M̃(1)

IR-finiteP1
]
, (5.35)

where M̃(1)
IR−finite is given by eqs. (3.32) using (3.24), removing the external spinors. This

provides the second IR subtraction in eq. (2.22).
We recall from the discussion at the end of section 2 that the P1 projectors play an

important role in eq. (5.35) in preventing the introduction of spurious IR singularities. Let
us examine their action here, in the momentum representation of the above counterterm,
which reads

F (1)
[
P1M̃(1)

IR-finiteP1
]

= −ie
2

4 v̄(p2)γµ 1
/l − /p2

P1M̃(1)
IR-finite(k)P1

1
/l + /p1

γµu(p1)

+ 3 symmetric terms of eq. (5.4). (5.36)

In a collinear limit such as k ‖ p1 of eq. (3.32), the factor M̃(1)
IR-finite, which is defined without

external spinors, is actually divergent. The divergence arises from terms of the amplitude
that vanish in the Ward identity by the equation of motion for the external fermions. Such
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non-factoring terms cannot be canceled by a form factor subtraction. However, given that
M̃(1)

IR-finite is positioned in between a pair of projectors which play the role of the external
spinors, in the sense that /p1P1 = P1/p2 = 0, these singularities are guaranteed to vanish.
In the absence of the projectors, such singularities vanish only in regions where the other
loop momentum l is soft or collinear to one of the incoming particles.

In conclusion, we have arrived at a compact preliminary result for the finite remainder,
subtracted for all infrared limits of our modified two-loop amplitudes,

M(2)
IR-finite =M(2) −F (2)

[
P1M̃(0)P1

]
−F (1)

[
P1M̃(1)

IR-finiteP1
]
. (5.37)

Effectively, this is eq. (2.22) before subtractions for UV behavior are carried out. Eq. (5.37)
is valid locally, and the right-hand side is free of nonintegrable infrared behavior at all points
in the integration domain of the loop momenta. It is worth pointing out that the number of
IR counterterms in this expression is smaller than the number of diagrams that contribute
to the amplitude.

5.4 Ultraviolet singularities of the photonic two-loop amplitude M(2)

The integrand M(2)
IR−finite defined by eq. (5.37) can be thought of as an unrenormalized

two-loop amplitude with its infrared singularities subtracted. However, the integral of this
amplitude remainder is still singular in the ultraviolet limits k → ∞ and/or l → ∞. To
complete our work, we need to remove these ultraviolet singularities from the integrand as
well.

Our aim will be to construct ultraviolet counterterms that reflect the structure on the
right-hand side of eq. (5.37). As above, we denote them by the action of an operator RUV,
so that, schematically,

RUVM
(2)
IR−finite = RUVM(2) −RUVF (2)

[
P1M̃(0)P1

]
−RUVF (1)

[
P1M̃(1)

IR-finiteP1
]
.

(5.38)

The first term in eq. (5.38) removes the ultraviolet singularities of the two-loop amplitude
integrandM(2)

M(2) −RUVM(2) =M(2)
UV−finite . (5.39)

Similarly, the second term in eq. (5.38) cancels the ultraviolet singularities in the two-loop
form factor integrals of F (2) which serves as a counterterm of double infrared singularities,

F (2)
[
P1M̃(0)P1

]
−RUVF (2)

[
P1M̃(0)P1

]
= F (2)

UV−finite

[
P1M̃(0)P1

]
. (5.40)

The last term in eq. (5.38) must remove ultraviolet singularities from both the one-loop form
factor integral of F (1) and its one-loop infrared-subtracted amplitude kernel P1M̃(1)

IR-finiteP1,

F (1)
[
P1M̃(1)

IR-finiteP1
]
−RUVF (1)

[
P1M̃(1)

IR-finiteP1
]

= F (1)
UV−finite

[
P1M̃(1)

finiteP1
]
.

(5.41)

We will produce the desired ultraviolet approximations in the equations above analogously
to the quantum field theoretical procedure of ultraviolet renormalization, by introducing
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diagrammatic counterterms. These will have the effect of removing ultraviolet singularities
from one-loop and two-loop propagator and vertex subgraphs whenever they appear in
diagrams of the one-loopM(1) and two-loopM(2) amplitudes as well as the one-loop F (1)

and two-loop F (2) form factor integrals. Our diagrammatic counterterms will be local in
both momentum and coordinate space. Their integrands are functions of the loop momenta,
which will combine with corresponding two-loop integrands to give convergent results.
However, upon analytic integration of their loop momenta, their integrated values will also
match the known poles of QED counterterms in the dimensional regulation parameter ε
(common to any renormalization scheme).

This local renormalization procedure completes the integrand decomposition of the
two-loop bare amplitude into

M(2) =M(2)
singular +M(2)

finite , (5.42)

where all ultraviolet and infrared singularities reside in the first term,M(2)
singular, of the right-

hand side and the second termM(2)
finite is completely free of non-integrable singularities in

d = 4 dimensions. The finite remainder is given by eq. (2.22), reproduced here,

M(2)
finite =M(2)

UV-finite −F
(2)
UV-finite

[
P1M̃(0)P1

]
−F (1)

UV-finite

[
P1M̃(1)

finiteP1
]
, (5.43)

where all terms on the right-hand side are convergent in the k →∞ and/or l →∞ limits
while their sum is free of any infrared singularities. M(2)

singular is a sum of ultraviolet finite
form factor one-loop and two-loop amplitudes whose analytic integration involves well-
known integrals [194, 195] and standard reduction methods. The integration of M(2)

singular
over the loop momenta in dimensional regularization will be presented in a separate pub-
lication.

In section 3, we explained in detail the derivation of local ultraviolet counterterms
for the diagrams in M(1) and F (1). We use these counterterms at two loops as well, in
order to cancel ultraviolet singularities from one-loop propagator and vertex subgraphs in
diagrams ofM(2) and F (2). We will elaborate below essential infrared properties of their
corresponding counterterm diagrams in configurations where one of the loop momenta is in
the ultraviolet region and the other is in an infrared singular region. We will then extend
the derivation of one-loop counterterms of one-loop self energy and vertex subgraphs for
the modified integrands as they appear in type S and type V diagrams. Finally, we will
discuss how to derive counterterms which respect infrared factorization, when both loop
momenta tend to infinity.

5.4.1 One-loop ultraviolet counterterms in regular diagrams

In section 3, we derived one-loop local ultraviolet counterterms for the one-loop QED ver-
tex and electron self energy graphs, eqs. (3.37) and (3.38), respectively. Our approach
for their construction aimed to address the following problem. When a loop momentum,
for example k, is taken to an infinite value, the second loop momentum l is unrestricted
and can assume values which give rise to infrared singularities. For such loop momen-
tum configurations, simultaneous subtractions are required for both ultraviolet and soft
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Figure 18. Illustration of ultraviolet counterterms, as defined in eq. (3.37) and (3.38), for one-loop
vertex and self energy subgraphs in regular diagrams (as opposed to type S and type V diagrams).

or collinear singularities. However, a naive introduction of ultraviolet counterterms could
spoil the factorization of collinear singularities.

To address this complication, in section 3 we introduced local ultraviolet countert-
erms for the one-loop electron propagator and the one-loop electron-electron-photon vertex
that respect the QED Ward identity. Let us examine the function of the counterterms of
eq. (3.37) and (3.38), for diagrams in M(2)

regular such as the ones illustrated in figure 18.
The corresponding counterterm diagrams, in which the ultraviolet limit is approximated
by eqs. (3.37) and (3.38), exhibit the same cancellations of collinear singularities that oc-
cur in the original diagrams. The pattern of the Ward identity for the collinear regions of
counterterm diagrams is illustrated in figure 19.

Therefore, our construction of ultraviolet counterterms ensures that collinear singular-
ities associated with the non-UV loop remain in a factorized form. This factorized singu-
larity can then be precisely canceled by the form factor amplitude F (1)

UV-finite

[
P1M̃(1)

finiteP1
]

in eq. (5.43). We remark that for this cancellation to occur, it is important that the local
vertex of the form factor counterterm, P1M̃(1)

finiteP1, is UV regularized by the use of the
same counterterms for one-loop self energy and vertex graphs as those we have used in
M(2)

regular.
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Figure 19. Illustration of a Ward identity that must be satisfied by the UV counterterms for one-
loop self energy and vertex subgraphs. Note that we are referring to counterterms at the integrand
level, and the counterterm designations in the figure correspond to functions whose dependence on
the loop momentum l is suppressed in the notation.

5.4.2 One-loop ultraviolet counterterms specific to type S and type V dia-
grams

To complete the derivation of one-loop ultraviolet counterterms forM(2) we have to discuss
the ultraviolet limit of the integrand of one-loop vertex and self energy subgraphs in type
V and type S diagrams, which we have cast in a modified form.

In the large l limit, the modified vertex expression of eq. (5.12) is logarithmically
divergent, so we can easily write down its UV subdivergence counterterm by taking the
leading large-l limit of the expression,

Rl→∞V µ
mod. = 2ie3 (1− ε)

(p1 + k)2(l2 −M2)2

[
pµ1 + kµ − (/p1 + /k)γµ − 2lµ/l /k

l2 −M2

]
〈T 〉

u(p1) . (5.44)

Though the original type S electron self energy expression eq. (5.13) is linearly divergent
in the limit of large l, our equivalent form of eq. (5.18) is only logarithmically divergent.
This allows us to easily write down the UV counterterm

Rl→∞Sµmod. = e3 i(1− ε)
(p1 + k)2(l2 −M2)2

/p1 + /̄l+ − /̄l− +

(
/̄l+ + /̄l−

)
2k · l

(l2 −M2)


〈T 〉

γµu(p1) .

(5.45)
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Figure 20. A sample graph that contributes to the second term on the right-hand side of eq. (5.37),
using the same notation as eq. (3.25).

The symmetrization of the transverse components of the loop momentum ensures that
those momenta remain UV finite when k is collinear to either p1 or p2.

Importantly, the above counterterms eqs. (5.44) and (5.45) satisfy the necessary Ward
identity for factorization (or rather, cancellation) of the singularity in the limit k ‖ p2,
analogous to eq. (5.9),

kµRl→∞Sµmod.

∣∣∣
k→yp2

= − kµRl→∞V µ
mod.

∣∣∣
k→yp2

. (5.46)

Because of this result, the UV counterterms do not re-introduce unfactorized collinear
singularities when k ‖ p2. It is also easy to check that in the limit k ‖ p1, the above
counterterms do not re-introduce the “loop polarization” problem. In these results the
transverse symmetrizations in eqs. (5.44) and (5.45) are necessary.

Type S and type V diagrams are also present in the two-loop form factor amplitude
F (2), which we have used as an infrared counterterm on the right-hand side of eq. (5.37).
Consistently, we use the expressions of eq. (5.44) and eq. (5.45) as ultraviolet counterterms
in the form factor F (2) as well.

5.4.3 One-loop ultraviolet counterterms specific to the form factor F (1) and
F (2) amplitudes

In subsections 5.4.1 and 5.4.2, we constructed ultraviolet counterterms for one-loop vertex
and self energy graphs in regular diagrams as well as type S and type V diagrams. Addi-
tional ultraviolet counterterms are needed for one-loop vertex subgraphs in the form factor
F (1) and F (2) amplitudes on the right-hand side of eq. (5.37)

The ultraviolet singularity of F (1) (similar to the usual QED one-loop vertex) has
already been encountered in eq. (3.42). The same singularity appears in F (2), for which
a sample diagram is shown of figure 20. The large-l limit in figure 20 is singular and the
singularity can be also subtracted by a counterterm that is identical to the square bracket
of eq. (3.42).
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Next we construct a one-loop ultraviolet counterterm for the last term in eq. (5.37)
with a momentum representation8

F (1)
[
P1M̃(1)

IR-finiteP1
]

= v̄(p2)

(−ie2
) γµ(/k − /p2)P1M̃(1)

IR-finite(l)P1(/k + /p1)γµ
k2(k + p1)2(k − p2)2

u(p1).

(5.47)
The subtraction of the one-loop singularity as l becomes large, by using the counterterms
of eq. (3.41) and eq. (3.42), turns M̃(1)

IR-finite(l) into M̃(1)
finite(l) of eq. (3.44). A further

counterterm for the one-loop singularity as k becomes large is required and it is similar
to eq. (3.42). The ultraviolet approximation of k → ∞, following the l → ∞ subtraction,
reads

Rk→∞F (1)
[
P1M̃(1)

finite(l)P1
]

= v̄(p2)
[(
−ie2

) γµ/kP1M̃(1)
finite(l)P1/kγµ

(k2 −M2)3

]
u(p1). (5.48)

5.4.4 Double ultraviolet counterterms

After discussing the subtraction of ultraviolet singularities in single limits where only one
of the loop momenta approaches infinity, we turn our attention to double ultraviolet sin-
gularities in the region where both loop momenta k, l become infinitely large. As in the
standard renormalization procedure at two loops, the subtraction of such singularities is
performed after one-loop singularities have already been subtracted. This order of sub-
tractions for singularities in ultraviolet regions is necessary to avoid double counting, and
leads to counterterms for the singularities in the double-ultraviolet region which produce
integrands that are also convergent in single-ultraviolet regions.

Double-ultraviolet singularities are found in two-loop one-particle-irreducible (1PI)
propagator and vertex graphs or subgraphs in the diagrams ofM(2) and the two-loop form
factor amplitude F (2) of eq. (5.27). Counterterms for these singularities can be constructed
straightforwardly, with the following steps.

1. We first perform a series expansion of the integrands of the singular 1PI graphs/
subgraphs in the limit that both loop momenta become large uniformly, and truncate
the series to the order that contributes to logarithmic UV singularities. As a result,
we obtain tadpole-type integrands whose only denominators are k2, l2 (k ± l)2, each
raised to some non-negative integer power.

2. We then insert masses into all the denominators to eliminate infrared singularities
without changing the UV behavior, as was done at one loop in eqs. (3.37) and (3.38).
Some of the denominators are already massive by this step, because of the previ-
ous subtraction of one-loop UV sub-divergences, and these denominators are kept
massive.

The above procedure leads to counterterms that preserve the Ward identities of vertex
and propagator graphs at two loops. This is a natural consequence of the Taylor expansion

8As pointed out earlier, the k ↔ l symmetrization in eq. (5.3) makes it rather unimportant how we
assign k and l to the two photons.
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around the ultraviolet limit being truncated consistently at the same order and the intro-
duction of infrared mass regulators being performed in the same manner. The benefit of
Ward identity-preserving ultraviolet counterterms is two-fold. First, the integration of the
counterterms leads to simple results, making manifest cancellations of double-ultraviolet
counterterms of diagrams with two-loop vertex subgraphs against diagrams with two-loop
self energy subgraphs. Second, it permits an extension of our study to three-loop amplitudes
in the future, since our double-ultraviolet counterterms will not destroy the factorization
of collinear singularities associated with a third loop.

Taken together with the modified integrands of the two-loop amplitudes, and the
results of section 4, the UV counterterms described above enable us to construct the fully-
subtracted two-loop amplitude given in eq. (5.43) or equivalently (2.22). The number of
UV counterterms is similar to the number for the original diagrams, because the number
of form factor subtractions is fixed, independent of the number of final-state photons in
the process. In the following section, we will verify the integrability of our construction for
eq. (2.22).

6 Numerical checks of cancellation of singularities for off-shell multi-
photon production

In this section, we numerically check the cancellation of all IR / UV singularities at the
integrand level in e−(p1) + e+(p2)→ γ∗(q1) + γ∗(q2). This is an example from the class of
processes for which our formalism applies. Our analysis includes all the terms that make
upM(2)

finite in the full expression of eq. (2.22).
We generate the Feynman diagrams using the program QGRAF [196]. Then we use

custom Mathematica code to insert the Feynman rules, perform loop momentum sym-
metrizations, and modify certain diagram expressions as specified in the preceding text.
Among the full set of two-loop diagrams, we may summarize the following modifications.

• The finite part of diagramsM(2)
2 , with vacuum polarizations, including both IR and

UV counterterms, is generated as specified by eq. (4.8).

• Fermion loop diagrams,M(2)
c with c ≥ 4, are evaluated with modified vertices adja-

cent to the incoming electron and/or positron lines, given by eq. (4.18).

• The diagrams forM(2)
4 , which include light-by-light scattering, have UV subtractions,

as described in section 4.3, which add to a finite result, but which produce convergence
in otherwise divergent individual diagrams.

• For diagrams without fermion loops (photonic contributions), we use the modified
two-loop integrands for type V and type S subdiagrams, specified by eqs. (5.12)
and (5.18), respectively.

• The type S and type V modified integrands are also employed for the form factor
subtractions, as described in section 5.3.
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• Ultraviolet counterterms that ensure convergence for two-loop photonic amplitudes
and their IR subtractions are constructed as in section 5.4.

We check that the integrand has the correct scaling behavior to be convergent in all
possible infrared and ultraviolet limits at arbitrary phase space points. For illustration, we
present results for one such point,

pµ1 = (1, 0, 0, 1),
pµ2 = (1, 0, 0,−1),
qµ1 = (1, 0, 1/3, 1/7),
qµ2 = (1, 0,−1/3,−1/7), (6.1)

with polarization vectors (satisfying the transversality condition ε∗i · qi = 0)

ε∗µ1 = (4,−4, 9, 7),
ε∗µ2 = (2,−1,−3,−7), (6.2)

and external spinors in the Weyl basis (satisfying the Dirac equations
/p1u(p1) = v̄(p2)/p2 = 0)

u(p1) =


0
−7
3
0

 , v̄(p2) =
(
0, 13, −9, 0

)
. (6.3)

A basis of vectors transverse to the p1-p2 plane is defined as

nµx = (0, 1, 0, 0), nµy = (0, 0, 1, 0) . (6.4)

We also use a parameterization of the loop momenta kµ, lµ, which depends on a small
parameter δ and scaling exponents ωik, l, i = {+,−, T}, starting from an arbitrary choice
of loop momenta at δ = 1,

kµ = 33
17δ

ω+
k pµ1 −

48
89δ

ω−
k pµ2 + δω

T
k

(21
23 n

µ
x + 21

41 n
µ
y

)
,

lµ = 47
23δ

ω+
l pµ1 −

7
61δ

ω−
l pµ2 + δω

T
l

(
−37

73 n
µ
x −

39
67 n

µ
y

)
. (6.5)

By selecting appropriately the values of the exponents we can approach particular IR /
UV regions. The proof of UV finiteness by testing convergence as loop momenta are scaled
to infinity is well established [197]. The IR scalings of eq. (6.5) shown in tables 1)–(3
serve the analogous purpose of testing the behavior of integrals in the neighborhoods of
regions where loop momenta are pinched between coalescing poles. The demonstration
of IR finiteness or divergence for wide-angle scattering and production amplitudes by use
of these scalings is discussed in refs. [159, 198]. The explicit tests here demonstrate the
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adequacy of our IR counterterms in regulating singular behavior in these amplitudes.9 The
mass regulator for the UV counterterms is arbitrarily chosen as M = 5/3.

The numerical checks explained below have been repeated with various random choices
of external / internal momenta, polarization vectors, and spinors, for us to be confident of
the cancellation of IR / UV singularities.

6.1 Photonic contributions

The M(0) tree amplitude for e− + e+ → γ∗ + γ∗ has a “t−channel” and a “u−channel”
Feynman diagram which are symmetric under the exchange of the two final state photons.
Of course, this exchange symmetry is valid for the amplitude at all orders in perturbation
theory. At any given number of loops, we can identify a diagram as belonging to the t or
the u channel by eliminating all virtual photons from it and mapping it correspondingly
onto one of the two tree Feynman diagrams.

Our form factor subtractions act on the t and u channels independently of each other,
rendering their corresponding amplitude contributions finite separately. To verify the can-
cellation of singularities it is sufficient to consider only one of the channels. In the following,
we present results only for one of the two orderings for the final-state photons.

To test convergence in a singular region, we assign numerical values for the exponents
ω+
k , ω

−
k , ω

T
k , ω

+
l , ω

−
l , ω

T
l which parameterize it appropriately [186–188]. For example, in the

single-soft limit where k is soft and l is hard, we set ω+
k = ω−k = ωTk = 1, ω+

l = ω−l = ωTl = 0
in eq. (6.5). Now we can perform an analytic Laurent expansion in δ. For example, in the
same region, we obtain

v̄(p2) M̃ (2)
finite u(p1)

∣∣∣
t−channel

= 1
δ3 (−630.517− 24.0761i) +O

( 1
δ2

)
. (6.6)

Since all computations are over rational numbers (recall that all momenta, polarizations,
and spinors are chosen to have rational numerical components), the above numerical value is
computed with no rounding error, and the final results (involving very large numerators and
denominators) have been converted into floating point numbers here only for readability.
Therefore we are confident that the expansion coefficients are strictly zero at O(1/δ4).
Since the integration measure scales as

∫
d4k

∫
d4l ∼ δ4 · δ0 = δ4, the integral scales as δ

and is convergent in the single-soft limit.
We repeat the same procedure for all IR / UV limits and we present the scaling of the

t-channel contribution as δ → 0 in table 1. For brevity, only a set of independent limits
is presented. For example, due to the global symmetrization k ↔ l, the k ‖ p1 limit is
identical to the l ‖ p2 limit. Also, since p1 and p2 are essentially treated in the same way,
the k ‖ p2 limit is not shown separately.

We note that the subtracted integrand converges faster than expected in certain IR
limits. For example, in the double-soft limit, as shown in the 3rd row of table 1, the
four-dimensional finite integral is suppressed by δ2 instead of δ. This will be beneficial for

9For other processes, typically involving momentum pinches in so-called Glauber regions [159], additional
scaling tests become necessary to verify finiteness.

– 65 –



J
H
E
P
0
4
(
2
0
2
1
)
2
2
2

Limit ω+
k ω−k ωTk ω+

l ω−l ωTl amplitude
scaling

k soft 1 1 1 0 0 0 δ1

k ‖ p1 0 2 1 0 0 0 δ1

k, l soft 1 1 1 1 1 1 δ2

k soft, l ‖ p1 2 2 2 0 2 1 δ3

k ‖ p1, l ‖ p2 0 2 1 2 0 1 δ2

k, l ‖ p1 0 2 1 0 2 1 δ2

k, l→∞ -1 -1 -1 -1 -1 -1 δ

k →∞ -1 -1 -1 0 0 0 δ

Table 1. The scaling behavior of the photonic contributions to the finite integrand M̃ (2) in various
limits. The scaling of the integration measure has been taken into account, and the amplitude is
convergent if it scales as any positive power of δ. The loop momenta k and l are parameterized as
eq. (6.5), with the scaling exponents given in this table. Since the integrals always scale as δ raised
to a positive power, there is no divergence in any of the IR / UV limits.

high-precision numerical integration, and we leave it to future work to fully understand the
unexpected fast convergence properties.

We have also checked that when a loop momentum tends to infinity (the UV limit)
while the second loop momentum becomes soft or collinear, the integrand also scales in a
way that guarantees finiteness of the integral. This is simply a consequence of the Ward-
identity preserving nature of our UV subtraction terms, which guarantees the factorization
of infrared divergences with respect to one of the loop momenta point by point in the space
of the value of the other loop momentum.

6.2 Fermion loop contributions

Table 2 shows the relevant IR / UV scaling behavior of M(2)
2 which receives contribu-

tions from Feynman diagrams with a vacuum polarization correction to an internal photon
propagator. Again, only the t-channel ordering of the two final-state photons is presented.

Table 3 shows the relevant IR / UV scaling behavior of M(2)
4 which receives contri-

butions from six Feynman diagrams with fermion box subdiagrams. We consider the sum
of all these diagrams in our numerical check without deleting those that can be obtained
from others by crossing.

7 Conclusions

A striking property of gauge theory scattering amplitudes is the factorization of their in-
frared singularities. In this article, we have taken a first step towards understanding this
structure better at a practical level, and developing a subtraction algorithm for the evalu-
ation of multi-loop amplitudes numerically in exactly four dimensions. We have worked in
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Limit ω+
k ω−k ωTk ω+

l ω−l ωTl amplitude
scaling

l soft 0 0 0 1 1 1 δ

l ‖ p1 0 0 0 0 2 1 δ

k, l soft 1 1 1 1 1 1 δ

k, l ‖ p1 0 2 1 0 2 1 δ

k, l→∞ -1 -1 -1 -1 -1 -1 δ

k →∞ -1 -1 -1 0 0 0 δ

Table 2. The scaling behavior of the vacuum polarization contributions to the finite integrand
M̃

(2)
2 in various limits. The loop momenta k and l are parameterized as eq. (6.5), with the scaling

exponents given in this table. The scaling of the integration measure has been taken into account.
Since the integrals always scale as δ raised to a positive power, there is no divergence in any of the
IR / UV limits.

Limit ω+
k ω−k ωTk ω+

l ω−l ωTl amplitude
scaling

l ‖ p1 0 0 0 0 2 1 δ

k, l soft 1 1 1 1 1 1 δ3

k →∞ -1 -1 -1 0 0 0 δ

k, l→∞ -1 -1 -1 -1 -1 -1 δ

Table 3. The scaling behavior of the fermion box contributions to the finite integrand M̃
(2)
4 in

various limits. The loop momenta k and l are parameterized as eq. (6.5), with the scaling exponents
given in this table. The scaling of the integration measure has been taken into account. Since the
integrals always scale as δ raised to a positive power, there is no divergence in any of the IR / UV
limits.

an Abelian gauge theory, which we may think of as the perturbative expansion of massless
quantum electrodynamics, and in Feynman gauge.

In loop amplitudes, infrared factorization is generally not manifest point by point in
momentum space, or on a diagram by diagram basis. Factorization becomes manifest for
the amplitude when gauge symmetry is exploited, as Ward identities eliminate nonfactor-
izable collinear singularities in combinations of Feynman diagrams. At the integral level,
one can make simplifications that permit these group cancellations. First, “hard” con-
tributions can be explicitly integrated out and UV renormalized. This operation renders
them finite and projects them to point-like tensor structures, which in turn generate only
scalar-polarizations for virtual photons in collinear regions. Second, approximations of
Feynman integrals in the relevant divergent limits can be manipulated independently of
all other limits. It is therefore permitted and helpful to shift loop momenta differently
for each one of these limits, which is seemingly essential in order to demonstrate the can-
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cellations of non-factorizing terms. These manipulations of the integrand are helpful in
demonstrating general properties of amplitudes, such as the factorization of universal in-
frared functions from process-dependent hard scattering functions. They do not, however,
provide an algorithmic scheme for the numerical calculation of those functions.

An aim of this work has been to investigate whether infrared factorization can be im-
plemented in an alternative way, by exclusively making use of procedures that are strictly
local, i.e. valid not only for the integral but also for the integrand. By committing to
implementing factorization at the integrand level, the two tools in the previous paragraph
cannot be employed. That is, we cannot rely on the results of sub-integrals, or independent
shifts of loop momenta. Indeed, integrating out the hard regions leads to a loss of locality,
which prevents the construction of local infrared counterterms. Locality is also incompat-
ible with performing independent shifts of the momenta in diverse singular regions of the
amplitude. Rather, a global choice of loop momentum routings should achieve the can-
cellation of non-factorizing divergences in all possible singular limits simultaneously when
diagrams are combined without further shifts in momentum.

In this article, we have demonstrated that this goal can be achieved through two loops
for a large class of processes in a realistic gauge theory. In our case study, we considered a
class of QED amplitudes in Feynman gauge, for the production of multiple off-shell photons
in electron-positron annihilation.

For these amplitudes, we generated a two-loop integrand in a form in which factor-
ization is manifest for all infrared singular limits. Our integrand is an average over four
copies of a usual Feynman diagrammatic integrand with symmetric, judiciously chosen,
loop momenta routings.

Terms in the integrand originating from one-loop vertex and self energy subgraphs
require renormalization and contribute to the amplitude at “hard” scales, comparable to the
hard momentum transfer and beyond. Using the symmetries of these integrations, however,
we know that once they are fully carried out in dimensional regularization they produce
only unphysical scalar polarizations on collinear photons that connect the vertex correction
to the hard scattering. For such photons, QED Ward identities ensure that non-factorizing
contributions cancel at the point-like level in a sum over diagrams. This reasoning, however,
does not yet tell us how to actually carry out the relevant integrals numerically. Indeed,
for generic values of the vertex or self energy loop momentum, these subdiagrams generate
“loop” polarizations on their external photons, in arbitrary directions, as opposed to scalar
polarizations in the collinear direction.

In this article, we developed alternative local representations of these subgraphs, dif-
ferent than, although of course derived from, those obtained by a direct application of
Feynman rules, with properties required for factorization in all collinear and soft regions.
Our novel representation of the amplitude integrand achieves the goal of making factor-
ization in all singular limits manifest locally. It allows only scalar polarizations for those
collinear virtual photons that give rise to singular contributions. This ensures a simultane-
ous cancellation of non-factorizing IR divergent contributions in all possible singular limits
and preserves, of course, the integrated value of the original amplitude.

With local factorization manifest, we were able to remove infrared singularities with
local, universal counterterms for all e+ + e− → γ∗1 + . . . + γ∗n amplitudes, irrespective of
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the photon multiplicity, n, in the final state. Specifically, we used a simple form factor
amplitude through two loops as a “generating functional” for our infrared counterterms.
Each form factor integrand is defined by a finite local vertex, either the tree amplitude or
the finite remainder of the one-loop amplitude, between Dirac projection matrices. The
expression for the infrared finite remainder of the two loop amplitudes in eq. (5.37) is
an elegant outcome of factorization, and it constitutes a main result of this article. We
anticipate that this form will generalize to higher orders. We remark that eq. (5.37) holds
generally for final states where photons are replaced by other (W,Z,H) massive bosons. It
is also valid for the Abelian contributions to QCD amplitudes for the production of generic
colorless final states with off-shell photons or other massive bosons in quark anti-quark
annihilation.

To remove ultraviolet singularities, we introduced local counterterms for one- and two-
loop Green’s functions with two, three and, in the case of diagrams with closed fermion
loops, four legs. A delicate issue in constructing our ultraviolet counterterms has been the
preservation of factorization in singular regions where one of the loop momenta lies in the
ultraviolet regime while the second loop momentum is collinear to an incoming particle.
To achieve this, we constructed integrands for ultraviolet counterterms for self energy and
vertex graphs with consistent expansions around the ultraviolet limit, which preserve Ward
identities and, consequently, local collinear factorization.

It is possible that the reformulated integrands we have found are special cases of a more
general diagrammatic analysis based on the underlying gauge symmetry and/or generalized
tensor analyses. If so, we anticipate that such principles will emerge in the extension of the
approach described here to other theories and to generic processes, involving both incoming
and outgoing massless particles.

With the factorization-based method of this article we were able to separate explicitly,
for the first time in an amplitude with arbitrary numbers of external particles, and in a
realistic gauge theory, the finite remainder of two-loop amplitude integrands from all of
their infrared and ultraviolet singularities. As a test, we computed numerically the degree
of divergence for all pinch singularities anticipated in the two-loop e+ + e− → γ∗ + γ∗

amplitude and demonstrated that the subtracted remainder is indeed integrable, and can
in principle be evaluated with numerical integration in exactly d = 4 dimensions.

We have carried out the analytic integration of the form factor infrared counterterms
and of the ultraviolet counterterms with a straightforward application of tensor reduction
techniques to well known master integrals. Our analytic results for the divergent part of
the amplitude will be presented in a forthcoming publication.

Once local subtractions are in place, numerical integration of the finite remainders is
possible, but presents additional challenges. An important step in this direction has already
been taken in ref. [99] and in ref. [190] where amplitudes, from the class of processes with
equivalent subtractions for pinch singularities as described here, were evaluated efficiently
at one loop. Ref. [99, 190] presents an algorithm in which, after a first analytic integration
of the energy components of the loop momenta, a novel deformation of the integration
path for the remaining integrals away from non-pinched singularities is constructed. The
efficiency of this numerical integration method was tested in ref. [99, 190] with examples of
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finite integrals with many external legs and beyond two loops. The application of the same
technique for the integration of the finite remainders of the two-loop amplitudes presented
in this article is an exciting possibility.

In this article, we formulated a novel subtraction method based on local infrared fac-
torization at two loops for a class of QED amplitudes for the production of off shell photons.
We are looking forward to extending our method to generic QCD amplitudes for multi-
particle scattering processes at two loops and higher orders in future work.
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