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Abstract: In a series of previous papers, we have presented a new approach, based on
perturbative QCD, for the evolution of a jet in a dense quark-gluon plasma. In the original
formulation, the plasma was assumed to be homogeneous and static. In this work, we
extend our description and its Monte Carlo implementation to a plasma obeying Bjorken
longitudinal expansion. Our key observation is that the factorisation between vacuum-like
and medium-induced emissions, derived in the static case, still holds for an expanding
medium, albeit with modified rates for medium-induced emissions and transverse momen-
tum broadening, and with a modified phase-space for vacuum-like emissions. We highlight a
scaling relation valid for the energy spectrum of medium-induced emissions, through which
the case of an expanding medium is mapped onto an effective static medium. We find that
scaling violations due to vacuum-like emissions and transverse momentum broadening are
numerically small. Our new predictions for the nuclear modification factor for jets RAA,
the in-medium fragmentation functions, and substructure distributions are very similar to
our previous estimates for a static medium, maintaining the overall good qualitative agree-
ment with existing LHC measurements. In the case of RAA, we find that the agreement
with the data is significantly improved at large transverse momenta pT & 500GeV after
including the effects of the nuclear parton distribution functions.

Keywords: Heavy Ion Phenomenology, Jets

ArXiv ePrint: 2012.01457

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2021)209

mailto:paul.caucal@ipht.fr
mailto:edmond.iancu@ipht.fr
mailto:gregory.soyez@ipht.fr
https://arxiv.org/abs/2012.01457
https://doi.org/10.1007/JHEP04(2021)209


J
H
E
P
0
4
(
2
0
2
1
)
2
0
9

Contents

1 Introduction 1

2 Parton showers in a longitudinally-expanding medium 5
2.1 The physical picture for a static plasma 5
2.2 Basic characterisation of a longitudinally expanding plasma 7
2.3 Vacuum-like-emissions (VLEs) in the longitudinally expanding plasma 7
2.4 Colour decoherence in an expanding medium 9
2.5 Medium-induced emissions (MIEs) in a longitudinally expanding plasma 10
2.6 Transverse momentum broadening in an expanding plasma 12

3 Monte-Carlo implementation and choice of parameters 14

4 Scaling properties of jet fragmentation: expanding vs. static media 15
4.1 Scaling and the static-equivalent medium 15
4.2 Scaling violations from transverse momentum broadening 16
4.3 Energy loss by the leading parton via MIEs 18
4.4 Scaling violations and energy loss for full in-medium parton shower 20

5 Jet quenching phenomenology in a longitudinally-expanding medium 22
5.1 The nuclear modification factor for jets RAA 23
5.2 Jet fragmentation function 24
5.3 Jet substructure observables 26

6 Conclusion 29

A Angular structure of medium-induced cascades in expanding media 30
A.1 Exact scaling for k⊥-inclusive parton distributions 30
A.2 Transverse momentum dependence of parton distributions 31
A.3 Average transverse momentum in the multiple-branching regime 32

1 Introduction

The physics of jet quenching — a generic denomination for the modifications that a jet
produced in the dense environment of an ultrarelativistic heavy-ion collision undergoes
when propagating through and interacting with this surrounding medium — represents one
of the main tools at our disposal for experimentally probing the quark-gluon plasma, the
state of QCD matter at high partonic densities. There is by now overwhelming evidence,
notably from Au+Au collisions at RHIC and Pb+Pb collisions at the LHC, for strong
nuclear modifications of the jet properties. In order to draw the appropriate lessons from
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these data, the experimental efforts must be accompanied by theoretical progress, aiming
at understanding the jet-medium interactions from first principles.

Perturbative QCD offers a suitable framework for systematic first-principles studies.
Its applicability to the problem of jet quenching is by no means obvious: the relevant
phenomena involve widely separated scales, including relatively soft ones, like the tem-
perature of the medium, which is not much higher than the QCD confinement scale. It
is not straightforward either: even when the coupling is weak, the high-parton densities
entail collective phenomena, like multiple scattering and multiple medium-induced emis-
sions, which call for all-order resummations. Last but not least, irrespective of the value of
the coupling, there are aspects of the dynamics — like the geometry of the collisions, the
rapid longitudinal expansion of the partonic medium created in the wake of the collision,
or the hadronisation of the jet constituents at late times — which are intrinsically non-
perturbative. In order to encompass such complex phenomena, a perturbative setup should
be supplemented by an (as-small-as-possible) amount of non-perturbative modelling.

In this paper, we work in the context of the perturbative picture proposed and devel-
oped in refs. [1–3] (see also [4] for an extensive review and additional calculations), which
itself builds upon a series of earlier first-principle developments. The physical picture un-
derlying our approach is anchored in a remarkable property emerging from perturbative
QCD: the parton cascades are factorised between vacuum-like emissions (VLEs), which
are triggered by the virtuality of the initial parton and occur at early times, and medium-
induced emissions (MIEs), which are triggered by collisions with the plasma constituents
and can occur anywhere inside the medium.

Originally justified in a double-logarithmic approximation, in which successive VLEs
are strongly ordered in both energies and emission angles [1], this factorised picture has
later been argued to remain valid in a less restrictive, single logarithmic, approximation,
which assumes angular ordering alone [2]. The treatment of the MIEs is based on the
BDMPSZ approach [5–13], which takes into account the coherence effects associated with
multiple scattering during the quantum formation of an emission. Multiple branching,
which becomes important for relatively soft MIEs, has been included by iterating the
BDMPSZ rate, as proposed in refs. [14–16] (see also [17–25] for related work).

Under these assumptions, both the vacuum-like emissions and the medium-induced
ones are described by Markovian branching processes, albeit with different ordering vari-
ables: the emission angle for the VLEs and, respectively, the physical time for the MIEs.
This probabilistic description allowed us to develop a Monte-Carlo (MC) event generator
which includes both types of branching processes in a simple modular structure which
translates the factorisation between VLEs and MIEs. Its first applications to the phe-
nomenology of jet quenching turned out to be encouraging [2, 3], despite the rather crude
description of the medium itself.

Indeed, in all these applications, the medium was assumed to be a homogeneous and
stationary slice of plasma of longitudinal width L, the distance travelled by the jet inside
the medium. Furthermore, the interactions between the jet and the plasma have so far
been fully characterised by a constant “jet quenching parameter” q̂, the rate for transverse
momentum broadening via collisions. This oversimplified picture neglects important phe-
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nomena like the longitudinal and radial expansions of the medium, the medium geometry
and the associated distribution of the hard interaction point (hence, of the effective medium
size L), and the medium response to the jet (e.g. the soft hadrons from the underlying event
which are dragged by the jet and cannot be distinguished from genuine jet components). In
this paper we shall improve our approach by taking into account the longitudinal expansion
of the medium.

More concretely, our objective is twofold. On the conceptual side, we will demonstrate
that the factorised picture for in-medium jet radiation that we put forward in [1–4] re-
mains valid for a medium undergoing Bjorken longitudinal expansion [26], modulo a few
suitable adaptations to account for the expanding medium. On the phenomenology side,
we will check via explicit Monte Carlo simulations that the qualitative agreement that we
previously observed between our predictions and the experimental data for a few selected
observables remains equally good after including the effects of the longitudinal expansion.

The first modification in our factorised picture is quite obvious: the rate for transverse
momentum broadening is now controlled by a time-dependent transport coefficient, which
for the Bjorken (isentropic) expansion takes the form of a power law:1 q̂(t) = q̂0(t0/t). The
initial value q̂0 and the initial time t0 can be treated as free parameters, or, alternatively,
they can be both related to the gluon saturation momentum Qs in the incoming nuclei [17].
In this paper, we shall adopt the second viewpoint, which has the fringe benefit of preserving
the same number of free parameters as for a static medium (q̂ gets replaced by Qs). In
practice, the ratio L/t0 is quite large — L/t0 & 20 for the typical values we will consider
— showing that the dilution of the medium via longitudinal expansion is a sizeable effect,
with potentially large consequences.

The other modifications associated with the expansion of the medium are less obvious,
as they refer to radiation processes, which are non-local in time. Since the VLEs occur, by
definition, “like in the vacuum”, one may think that they are insensitive to the properties of
the medium, in particular to its expansion. As already explained in [1], this is not true: the
phase-space for the VLEs occurring inside the plasma is reduced by medium rescattering.
This reduction avoids the overlap in phase-space between VLEs and MIEs and thus lies at
the heart of our argument in favour of factorisation. We show that the argument underlying
this particular constraint (the boundary of the “vetoed region”) can be transposed from
the static medium to the longitudinally expanding one — so in particular, the factorisation
property remains true.

Concerning the MIEs, we adopt the same strategy as in the case of a static medium,
namely we provide a faithful description only for the relatively soft emissions, with energies
ω � ωc ' q̂(L)L2. Such emissions are the most interesting for our purposes, as they
control important phenomena like the energy lost by the jet, or the nuclear effects on the
jet fragmentation and several substructure observables. A key feature of the soft MIEs
is that they have short formation times, tf � L, meaning that multiple emissions are
important and must be resummed to all orders. The fact that tf � L greatly simplifies

1A more general behaviour proportional to (t0/t)γ , with γ ≤ 1, will be considered in our theoretical
arguments, but the most common choice γ = 1 will be privileged in the applications to phenomenology.
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this resummation [14–16] since it implies that the soft emissions can be effectively treated
as instantaneous and resummed by iterating an emission rate — in turn related to the
low-energy approximation of the BDMPSZ spectrum for an expanding medium [10, 11].
By the same argument, the emission rate for an expanding medium is found to be the
same as for a static medium, with q̂ replaced by an instantaneous q̂(t) measured at the
emission time.

This last observation implies that the medium-induced branching processes for the
expanding and the static media, respectively, can be exactly mapped onto each other via
a redefinition of the time variable. This mapping entails a very useful scaling relation
between the parton distributions generated via MIEs in the two cases: their longitudinal
distributions become identical if the jet quenching parameter for the static medium is
chosen to obey q̂stat ' 4q̂(L) (cf. eq. (4.1) for the exact definition). We note that this
scaling differs from the one originally observed2 in ref. [10] and studied numerically in
refs. [27, 28]: that property was derived for the average energy loss by the leading parton,
a quantity controlled by gluon emissions with relatively large energies ω ∼ ωc, whereas our
scaling is strictly valid for ω � ωc. It was recently observed [29] that the full BDMPSZ
spectrum for an expanding medium [10, 11] actually admits two scaling properties: one
which becomes exact at low energies ω � ωc, and one which is better verified at larger
energies ω ∼ ωc. Since our approach uses an approximate version of the BDMPSZ spectrum
valid for soft emissions, it only reproduces the low-energy scaling, which is exactly satisfied
in our soft limit.

However, this scaling is violated by the other ingredients of the dynamics — the trans-
verse momentum broadening and the VLEs —, because of their different functional depen-
dencies upon q̂(t). These violations are particularly interesting, since they are consequences
of the longitudinal expansion which cannot be “scaled out”, i.e. cannot be identically re-
produced by a well chosen static medium, with q̂stat ' 4q̂(L). In this paper we shall study
these scaling violations via a combination of numerical (Monte Carlo) and analytic meth-
ods. By comparing results for the expanding medium and for the “equivalent” static one
with q̂stat ' 4q̂(L), we will identify two types of scaling violations: a slight reduction in the
phase-space for the VLEs, and a (similarly small) reduction in the transverse momentum
broadening of the soft gluons. Physically, they reflect the fact that the collisions are less
effective in an expanding medium, which is rapidly diluting, than in a static one, even if
the latter is “well-tuned”.

The main conclusion emerging from our analysis is that the scaling violations only have
a small effect, at the level of a few percent, on all the quantities that we have investigated.
These include the average energy loss by the jet (cf. section 4) and the observables that we
had previously computed for the static case [2, 3] and that we shall here recompute for the
longitudinally-expanding plasma (see section 5): the nuclear modification factors (a.k.a.
RAA ratios) for the inclusive jet production, the jet fragmentation function, and the Soft
Drop [30, 31] distributions for zg [32] and θg.

2With our present conventions, the scaling in ref. [10] amounts to q̂stat = 2q̂(L); see also eq. (4.2) below.
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For all these observables, the nuclear effects are dominated by the energy lost by the jet
via soft MIEs at large angles. The (almost-exact) scaling property that emerges from our
analysis guarantees that an equally-good description of these observables can be obtained
for an expanding medium and for a static one. Indeed, our Monte Carlo predictions for
an expanding medium are as good as those obtained in our previous papers [2, 3] for a
static medium. We find a qualitative, and even semi-quantitative, agreement between our
predictions and the respective LHC data for all the observables that we considered and for
several (physically-reasonable) values for our only three free parameters.

In the case of the RAA ratio for inclusive jet production, we find that the agreement
with the LHC data is considerably improved at large transverse momenta pT & 500GeV
after including the effect of nuclear parton distribution functions [33] for the hard process
which initiates the jets. Physically, this yields a suppression of the quark distribution in the
incoming nuclei compared to a proton at large values x ∼ 1 for the longitudinal momentum
fraction [34].

The structure of this paper is as follows. In section 2, after briefly recalling the un-
derlying physics assumptions and the general structure of our theoretical description, we
discuss the modifications which occur in the formalism after taking into account the longi-
tudinal expansion of the medium. In section 3, we describe the practical consequences of
these modifications for the Monte-Carlo implementation of our approach. In section 4, we
discuss the scaling property which relates parton distributions created via medium-induced
emissions in a longitudinally-expanding medium to that in an “equivalent” static medium.
After explaining the theoretical basis of this scaling and of its violations by the full dy-
namics, we present numerical tests together with analytic calculations which illustrate the
scaling quality. In section 5, we present MC calculations for the observables aforemen-
tioned. At several places, we compare the respective predictions for an expanding medium
and the “equivalent” static medium, in order to emphasise their strong similarity. We
present for the first time in our picture results including the nuclear PDFs and predictions
for the distribution of the Soft Drop subjet separation angle θg. We present our conclusions
in section 6.

2 Parton showers in a longitudinally-expanding medium

In this section we shall describe the generalisation of our physical picture in refs. [1–3]
to the case of a plasma which obeys longitudinal expansion. The consequences of this
expansion for the transverse momentum broadening and for the medium-induced radiation
have been explored at length in the literature (see e.g. refs. [10, 11, 27–29, 35, 36] for
approaches similar to ours). In what follows we shall build upon such previous studies
to incorporate the medium expansion in our unified description for the in-medium parton
showers, including both vacuum-like and medium-induced emissions.

2.1 The physical picture for a static plasma

Let us first recall the main approximations underlying our effective theory for jet radiation,
as originally developed for a static medium in refs. [1–3]. The main feature of our picture is
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a factorisation in time between the vacuum-like emissions (VLEs), triggered by the initial
virtuality of the leading parton, and the medium-induced emissions (MIEs) triggered by
collisions in the plasma. It is convenient to describe separately each stage in the temporal
development of the parton cascades.

(i) VLEs inside the medium. The VLEs occurring inside the medium are computed in
a leading logarithmic approximation which implies, in particular, strong ordering in
the emission angles. Whereas this ordering is natural for jets propagating in the
vacuum, due to the (quantum and colour) coherence of the partonic sources, it is
non-trivial for jets propagating through a dense medium, where colour coherence can
be washed out by the collisions with the medium constituents. Yet, we have shown
in [1] that angular ordering is preserved for the VLEs developing inside the medium,
mainly due to their sufficiently short formation time. The only effect of the medium
during this stage is a kinematical constraint which reduces the phase-space available
for radiation (cf. the region labelled “inside medium” in figure 1 below).

(ii) MIEs through the medium. After formation, the partons produced via VLEs prop-
agate through the medium and act as sources for the next stage, medium-induced
radiation. In practice, the MIEs are iterated by following a Markovian branching
process, with the branching rate tuned to match the BDMPSZ spectrum for a sin-
gle gluon emission with relatively small energy ω � ωc ≡ q̂L2/2. This probabilis-
tic picture provides a faithful description of the soft gluon emissions with energies
ω . ωbr ≡ ᾱ2

sωc, for which multiple branching is expected to be important. Such soft
gluons propagate at large angles (typically, outside the jet boundary) and are the
main source of jet energy loss. The somewhat harder emissions, with intermediate
energies ωbr < ω < ωc, generally remain inside the jet, affecting its substructure, and
act as additional sources for softer radiation (hence for energy loss). Such emissions
are rare, so they are correctly described by the single emission limit of our branching
process, at least so long as ω � ωc. Finally, the very hard emissions with ω & ωc are
strongly suppressed, since they require a relatively hard scattering; we have modelled
this suppression by a sharp upper cutoff at ω = ωc on the medium-induced spectrum.

(iii) VLEs outside the medium. The partons produced inside the medium, via either
VLEs or MIEs, are still virtual, with a minimal virtuality (or transverse momentum)
of order k2

⊥ ∼
√
q̂ω, as introduced by collisions during the formation time. They

will evacuate this virtuality (down to the hadronisation scale Λ) via parton emissions
outside the medium, which follow the standard vacuum angular-ordered pattern, with
one noticeable exception: the very first emission outside the medium can occur at
any angle. This happens because this emission has been sourced by partons which
have crossed the medium along a large distance, of order L, and which have lost their
coherence via rescattering, so they can be seen as independent. This is conceptually
important as it opens the angular phase-space beyond what would normally happen
in a vacuum parton cascade.
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2.2 Basic characterisation of a longitudinally expanding plasma

Our main purpose in this paper is to generalise the above picture to the case of a plasma
undergoing longitudinal expanding according to the Bjorken picture [26], i.e. such that the
distribution of particles is boost-invariant. This is a reasonably good approximation for
the bulk matter created in heavy-ion collisions in the so-called “central plateau” region [26]
and, in particular, at midrapidities. For such a plasma, the parton density ρ depends only
upon the proper time τ ≡

√
t2 − z2 (with z referring to the collision axis), and so does the

jet quenching parameter q̂, which is proportional to ρ (at least in perturbation theory).
In what follows, we shall restrict ourselves to jets propagating at central rapidities:3

η ' 0, or z ' 0, so we can identify τ ≡ t. As explained e.g. in appendix A of ref. [10], the
time dependence of the parton density, hence of q̂, can be easily computed for the case of
an isentropic flow; one finds

q̂(t) ' q̂0

(
t0
t

)γ
, with γ ≡ 3v2

s = 1
1 + ∆1/3

. (2.1)

Here vs denotes the sound velocity, which would be equal to 1/
√

3 (implying γ = 1) for
an ideal gas. The parameter ∆1, which measures the deviation from the ideal gas limit,
is positive in perturbation theory and of order α2

s, implying that γ is close to, but smaller
than, one. In practice, we treat this power as a free parameter, for which we consider
various values 0 ≤ γ ≤ 1, with γ = 0 corresponding to the static case. Note also that
q̂0 (and hence q̂(t)) is proportional to the Casimir CR for the colour representation of the
parton; in what follows we reserve the simple notation q̂ for the case where the parton is a
gluon. The corresponding quantity for a quark is q̂F = (CF /CA)q̂.

The initial time t0 in eq. (2.1) is, roughly speaking, the time after which a partonic
medium has been created by the collision. On physical grounds, this is expected to be the
time after which the small-x gluons from the wavefunctions of the incoming nuclei have
been liberated by the collision (see e.g. the discussion in [17]). These gluons have transverse
momenta of the order of the nuclear saturation momentum Q2

s ≡ Q2
s(A, x) and longitudinal

wavelengths λz = 1/pz . 1/Qs. Hence one can estimate t0 ' 1/Qs, corresponding to the
time required for the two nuclei to cross each other along a distance given by the maximal
λz value. Similarly, we have q̂0t0 ' Q2

s, since transverse momentum broadening starts at
time t0 with the intrinsic momentum of the liberated gluons. In what follows, we shall use
these simple estimates to replace the 2 parameters q̂0 and t0 by a single one, Q2

s, which takes
the place of the (time-independent) jet quenching parameter q̂ used for a static medium.
Some representative values that we shall later use for applications are Qs = 1÷2GeV (for a
Pb nucleus at x ∼ 10−3), implying t0 = 1/Qs = 0.1÷0.2 fm and q̂0 = Q3

s = 5÷40GeV2/fm.

2.3 Vacuum-like-emissions (VLEs) in the longitudinally expanding plasma

The original hard process (generally, a 2→ 2 partonic scattering) giving rise to the leading
parton with initial energy E occurs very fast, over a time t ∼ 1/E � t0, that can be safely

3The generalisation to more general rapidities (still within the central plateau) could be obtained by
following [36].
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set to zero when studying the subsequent evolution of the jet and of the medium. The
leading parton is typically produced with a large, time-like, virtuality that it evacuates via
successive emissions. The early emissions are typically hard and thus have short formation
times tf ' 2ω/k2

⊥ ' 2/(ωθ2), with ω the energy of the emitted gluon, k⊥ ' ωθ its
transverse momentum and θ its angle relative to the jet axis. These emissions can occur
either before the formation of the medium, tf < t0, i.e. truly in the vacuum, or within the
(time-dependent) medium, when tf > t0.

In our perturbative picture, an emission is considered to be vacuum-like (as opposed to
medium-induced) provided its transverse momentum k⊥ is much larger than the respective
momentum that would be acquired via collisions during formation: k2

⊥ � 〈k2
⊥〉(tf , t0),

where

〈k2
⊥〉(t, t0)≡

∫ t

t0
dt′ q̂(t′) = q̂0t

γ
0
t1−γ−t1−γ0

1−γ = q̂(t)t 1−(t0/t)1−γ

1−γ −→
γ→1

q̂0t0 ln t

t0
, (2.2)

where we repeatedly used eq. (2.1) for q̂(t). The condition k2
⊥ � 〈k2

⊥〉(tf , t0) introduces
a restriction on the phase-space (ω, θ) for VLEs, conveniently formulated as a low-energy
boundary ω > ω0(θ), where ω0(θ) is implicitly defined by

ω2
0θ

2 = 〈k2
⊥〉(tf , t0) with tf = 2

ω0θ2 . (2.3)

This equation can be further simplified without compromising our leading-logarithmic ac-
curacy. Indeed, the phase-space for VLEs is best represented in logarithmic variables, say
lnω and ln(1/θ), to properly account for the logarithmic, soft and collinear, singularities
of the bremsstrahlung spectrum. Considering γ = 1 for definiteness, eqs. (2.2)–(2.3) imply
ω2

0θ
2 = Q2

s ln(tf/t0), hence ln(ω2
0θ

2) = lnQ2
s + ln ln(tf/t0). The second term in the r.h.s. is

slowly varying and can safely be neglected. Similarly, for γ < 1 and tf � t0, eqs. (2.2)–(2.3)
imply ln(ω2

0θ
2) = ln[q̂(tf )tf ] + ln[1/(1− γ)] and the constant shift ln[1/(1− γ)] can be ig-

nored. Hence, to the accuracy of interest, the solution ω0(θ) to eq. (2.3) for any γ ≤ 1 can
be written as4

ω ≥ ω0(θ) ≡
(

21−γ q̂0t
γ
0

θ4−2γ

) 1
3−γ

=
(

21−γ q̂(L)Lγ

θ4−2γ

) 1
3−γ

= 2
1−γ
3−γ θ

− 4−2γ
3−γ Qs, (2.4)

where in the last step we have also used q̂0t0 = Q2
s and t0 = 1/Qs to simplify the result.

This restriction ω > ω0(θ) applies of course only to the VLEs occurring inside the
medium, i.e. such that the respective formation times satisfy tf <L, or ω>ωL(θ) ≡ 2/(Lθ2).
We conclude that, as in the case of a static medium, the phase-space for VLEs inside the
medium contains a vetoed region, at ωL(θ) < ω < ω0(θ). This region ends at the point
(ωc, θc) where the two boundaries intersect with each other (see figure 1):

ωc = q̂(L)L2

2 , θc = 2√
q̂(L)L3 , (2.5)

4In order to recover the known result for the static medium in the limit γ → 0, one should also remember
that, in that limit, one should replace Qs → q̂1/3; then eq. (2.4) reduces to ω3

0θ
4 = 2q̂, or k2

⊥ =
√

2q̂ω.
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log(ω)

lo
g
(θ

)
θc

R

pT0ωc

non perturbative outside
medium

inside
medium

VETOED ω
=
ω

0 (θ)

ωθ 2
L

=
2

ω
θ

=
k⊥
,m

in ∼
Λ

Q
C
D

expanding

static

Figure 1. Double logarithmic phase space for VLEs in an expanding medium. The in-medium
boundary (plain red line) is set by eq. (2.4) and is our reference choice for the Monte-Carlo imple-
mentation. The (red) dashed line represents the boundary of the “equivalent” static medium (see
the discussion in section 4).

which look formally similar to the respective expressions for the static medium, except for
the replacement of the time-independent jet quenching parameter q̂ by its value q̂(L) at
t = L. This replacement has important consequences. For example, for γ = 1, eq. (2.5)
implies ωc = Q2

sL/2 and θc = 2/(QsL), meaning in particular that ωc(L) is only linearly
increasing with L (rather than quadratically for a static medium).

Note finally that the condition tf � t0 that we used in deriving eq. (2.4) is satisfied for
any point on the boundary ω = ω0(θ) provided it is satisfied for the largest allowed emission
angle, equal to the jet angular opening R (cf. figure 1). Taking γ = 1 for simplicity, this is
equivalent to requiring R� 2, which will be always satisfied in what follows.

2.4 Colour decoherence in an expanding medium

To study the colour decoherence introduced by random collisions in the medium, it is
customary to follow the propagation of a quark-antiquark antenna in a colour singlet state
(a “dipole”) and with a small opening angle θ0 [37–40]. Assume the antenna is created by a
hard process occurring at t = 0. The probability for the antenna to remain a colour singlet
after crossing the medium along a distance/time t is |S(t)|2, with S(t) the S-matrix for the
elastic scattering between the qq̄ pair and the medium. Using the Gaussian approximation
for the dipole cross-section together with the fact that the transverse size of the dipole r(t)
grows linearly with time, r(t) ' θ0t, one finds (see e.g. [39])

S(t) ' exp
(
−θ

2
0
4

∫ t

t0
dt′ q̂(t′) t′2

)
= exp

(
−θ

2
0 q̂(t)t3

4
1− (t0/t)3−γ

3− γ

)
. (2.6)

The dipole has lost colour coherence, meaning that the quark and the antiquark act as
independent sources of radiation, when |S| � 1 or, alternatively, when the exponent in
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eq. (2.6) becomes of order one. Assuming t � t0, one finds the following estimate for the
decoherence time

tcoh(θ0) =
( 4
θ2

0 q̂0t
γ
0

)1/(3−γ)
= t0

( 2
θ0

)2/(3−γ)
, (2.7)

where we have used q̂0 = 1/t30 to obtain the second equality. So it is consistent to assume
tcoh � t0 so long as θ0 � 2. Using this estimate for tcoh, one can verify that:

(a) Colour decoherence plays no role during the formation of the in-medium vacuum-like
cascades. In particular, it does not alter the angular ordering of the successive VLEs.
The respective argument goes exactly as for a static medium [1].5

(b) The decoherence time tcoh(θ) becomes equal to the medium size L when θ = θc(L), with
θc(L) defined in eq. (2.5). This means that antennas with opening angles θ � θc(L)
rapidly lose colour coherence after formation and thus act as independent sources
for MIEs, or for VLEs outside the medium. Vice-versa, antennas with small opening
angles θ ≤ θc(L) remain coherent throughout the medium, so they radiate MIEs as
their parent partons would do. This implies that emissions at small angles θ ≤ θc(L)
are not influenced by the medium and hence can always be treated as out-of-medium
emissions, irrespective of their actual formation time (smaller or larger than L). This
explains the horizontal, lower, boundary, θ = θc(L) delimiting the phase-space for
in-medium VLEs in figure 1.

2.5 Medium-induced emissions (MIEs) in a longitudinally expanding plasma

As in the static case, our main purpose is to provide a faithful description for the rela-
tively soft emissions, with short formation times tf � L, for which multiple branching
is potentially important. In a static medium, such emissions can occur anywhere inside
the medium, with a uniform rate. For the expanding medium, we expect a bias towards
the early time, when the medium is denser. Yet, we anticipate that the formation times
tf (ω, t) for the soft emissions are still much smaller than the average time t of their emission:
tf (ω, t) � t. Under this assumption, that we shall justify a posteriori, the soft emissions
are quasi-local processes in time, which proceed as in the static medium, except for the fact
that their rate (or formation time) is controlled by the instantaneous value q̂(t) of the jet
quenching parameter at the (average) time of their formation. So, their (time-dependent)
formation time can be estimated as

tf (t) =
√

2z(1− z)xE
q̂eff(t, z)

z�1≈
√

2ω
q̂(t) , q̂eff(t, z) ≡ q̂(t)

[
1− z(1− z)

]
, (2.8)

5Here is a short version of the argument, for completeness: consider an antenna with opening angle θ0

which initiates a vacuum-like gluon emission with energy ω1 and at a large angle θ1 > θ0. Together, the
conditions ω1 > ω0(θ1) and θ1 > θ0 imply tf = 2/(ω1θ

2
1) < tcoh(θ0), meaning that the gluon is coherently

emitted by the two legs of the antenna. Hence, this would-be large-angle emission is in fact suppressed by
interference effects, like for antennas in the vacuum.
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for the case of a g → gg splitting, where the parent gluon has energy xE, z is the splitting
fraction, and ω ≡ zxE is the energy of the emitted gluon.6 Then the time-dependent
splitting rate follows as (with ᾱs = αsNc/π)

d2Γmed
dzdt = αsPg→gg(z)√

2π
1

tf (t) = ᾱs
[1− z(1− z)]2

z(1− z)

√
q̂eff(t, z)

z(1− z)xE . (2.9)

When used as a rate for successive gluon branchings in a Markovian process, this expression
is strictly valid only for emissions which are soft enough for the condition tf (ω, t) � t to
be satisfied at generic times t � t0. We now show that this condition is indeed satisfied
for the soft gluons subjected to multiple branching. To that aim, we first estimate the
probability for emitting a single gluon with energy ω = zE � E up to time t. This is
obtained by integrating (2.9) up to a time t, which gives (with x = 1)

∫ t

t0
dt′ d

2Γmed
dzdt′ ' ᾱs

∫ t

t0
dt′
√
q̂(t′)
ω
' ᾱs

2
2− γ

√
q̂(t)t2
ω

, (2.10)

where in the second equality we have assumed t� t0. This is indeed the typical situation
since (i) medium-induced emissions can a priori occur at any time within the medium
and (ii) for any γ < 2 (including the physical value γ ≤ 1), the probability (2.10) for their
emission is dominated by its upper limit at t. Despite the fact that the medium becomes
more and more dilute with increasing t, the rate for this dilution is still small enough for
the multiplicity (which is a cumulative effect) to be controlled by relatively late emissions,
at times t� t0.

The probability (2.10) becomes of order one, meaning that multiple branching becomes
important, when ω . ωbr(t), with

ωbr(t) ≡
4

(2− γ)2
ᾱ2
s q̂(t)t2

2 . (2.11)

Using eq. (2.8), it is now straightforward to deduce that, parametrically,

tf (ω, t) . ᾱst � t when ω . ωbr(t), (2.12)

(we have also used the fact that the coupling is by assumption weak, ᾱs � 1), which con-
firms that the condition tf (ω, t)� t is well satisfied for the relevant, soft, gluon emissions.

That said, the rate in eq. (2.9) can also be used for harder emissions, which are rare (i.e.
which occur at most once over a time t ∼ L), provided its time integral up to L reproduces
the expected result for the BDMPSZ spectrum in an expanding medium [10, 11, 35]. This
is indeed the case as one can see by replacing t→ L in eq. (2.10), which gives

ω
dPmed

dω =
∫ L

t0
dt d2Γmed

dzdt ≡ ᾱs

√
2ω̃c(L)
ω

L�t0' ᾱs
2

2− γ

√
q̂(L)L2

ω
, (2.13)

6One can “derive” eq. (2.8) by recalling that the transverse momentum k⊥ of a MIE is acquired via
collisions during formation, i.e. it is given by eq. (2.2) with t0 → t and t → t + tf . For tf � t, this yields
〈k2
⊥〉(t+ tf , t) ' q̂(t)tf , which in turn implies tf = 2ω

q̂(t)tf
=
√

2ω
q̂(t) in agreement with (2.8).
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where we introduced (recall the definition of ωc(L) in eq. (2.5))

ω̃c(L) ≡ 2
(2− γ)2 q̂(L)L2

[
1− (t0/L)1− γ2

]2 L�t0' 4
(2− γ)2 ωc(L). (2.14)

Eq. (2.13) is the right limit of the general result [10, 11, 35] for sufficiently low energies
ω � ω̃c(L) and remains a good approximation (at least, parametrically) up to ω ∼ ω̃c(L).

The upper limit ω̃c(L) is natural in this context, as this is (parametrically) the en-
ergy of a MIE with formation time tf ∼ L. And indeed, the full BDMPSZ spectrum in
refs. [10, 11, 35] is rapidly decreasing for larger energies ω � ω̃c, like the power (ω̃c/ω)2.
To mimic that, we simply supplement our simplified rate in eq. (2.9) with a sharp cutoff
at ω = ω̃c(L). This approximation has essentially no impact on the observables that we
are primarily interested in,7 like the nuclear modification factor RAA, which are controlled
by relatively soft emissions with ω � ω̃c(L).

For later convenience, we note that if one introduces the “dimensionless time” τ

such that

dτ
dt ≡

√
q̂(t)
E

=⇒ τ(t, t0) =
∫ t

t0
dt′
√
q̂(t′)
E

= 2
2− γ

√
q̂(t)t2
E

[
1− (t0/t)1− γ2

]
, (2.15)

the rate for MIEs, eq. (2.9), becomes time-independent when rewritten as a rate in τ :

d2Γmed
dzdτ = ᾱs

[1− z(1− z)]5/2
√
x [z(1− z)]3/2

. (2.16)

We conclude this section with a comment on the value of the QCD coupling to be
used for MIEs. In all previous formulæ, we treated this as a fixed coupling. Physically
though, one should use the QCD running coupling at a scale of the order of the relative
transverse momentum of the emitted gluon, as acquired during the formation time. This
scale depends upon the kinematics of the emission and, for an expanding medium, also
upon time: αs(k2

f ) with k2
f ' q̂(t)tf '

√
2q̂(t)ω (cf. footnote 6). That would of course

change most of the previous formulæ in this section (in particular, the definition (2.15) of
the reduced time). In what follows, we shall however keep the fixed-coupling approximation
for the MIEs, like we have done in our previous studies (see e.g. [2]), and postpone the
inclusion of the respective running-coupling corrections to a future work.

2.6 Transverse momentum broadening in an expanding plasma

As already mentioned, the partons propagating through the plasma suffer transverse mo-
mentum broadening via multiple soft scattering, with a rate equal to q̂(t). In this section,
we shall study this process in more detail and establish some results that will be useful
later, when interpreting our Monte-Carlo predictions.

7We intend to relax this approximation in a future work, by using a branching rate derived from the
complete expression for the BDMPSZ spectrum, as done e.g. in ref. [29]. For the time being, we have per-
formed numerical tests using an approximation for the rate which interpolates between the right behaviours
at both small and large energies (compared to ω̃c(L)) and found only negligible effects on quantities like
the RAA ratio.
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For the partons created via VLEs, the transverse momentum acquired via elastic col-
lisions adds to that generated at the emission vertex. For those produced via MIEs, the
collisions represent the only source of transverse momentum. The collisions can occur both
during the quantum emission process, in which case they determine the formation time
tf (ω) according to eq. (2.8), and during the propagation of the daughter partons until they
split again, or until they leave the medium. For the soft emissions, with ω � ω̃c(L), to
which the rate (2.9) strictly applies, the formation time is comparatively small, tf (ω)� L,
and one can neglect the transverse momentum broadening during formation: that is, one
can treat a MIE as a collinear branching. After formation, the daughter partons suffer
elastic collisions, leading to a random walk in transverse momentum space.

For a parton created at time t1 and which decays at time t2 ≤ L (with t2 = L for a
parton exiting the medium before splitting), its transverse momentum with respect to its
parent parton is sampled according to the Gaussian distribution,

d2Pbroad
d2k⊥

= 1
π〈k2
⊥〉(t2, t1)

exp
(

−k2
⊥

〈k2
⊥〉(t2, t1)

)
, (2.17)

with the average 〈k2
⊥〉(t2, t1) given by eq. (2.2).

In the Monte Carlo simulations, we shall use this probability distribution to generate
the transverse momentum acquired by each parton from the moment t1 when it is created
in the plasma until the moment t2 when it decays again, or it leaves the medium. However,
for the sake of analytic arguments to be discussed in section 4, we would also need a
more general estimate for the average transverse momentum squared 〈k2

⊥〉(t2, t1), in which
one averages over the initial and final times (t1 and t2, respectively). For relatively large
energies ω � ωbr, where multiple branching is negligible, such an estimate is easy to obtain:
an energetic parton propagates through the medium along a distance ∼ L and thus acquires
a typical k⊥-broadening given by eq. (2.2) with t→ L.

The corresponding calculation for the softer gluons with energies ω . ωbr is more
subtle as one must take the multiple branchings into account. In the case of a static
medium, a simple estimate can be found via the following, intuitive, argument: gluons with
ω . ωbr have a typical lifetime (from their emission to their splitting) tbr ∼ (1/ᾱs)tf , with
tf =

√
2ω/q̂. During this lifetime, the emission will accumulate a transverse momentum

broadening k̄ 2
⊥(ω) ' q̂tbr ∼ (1/ᾱs)

√
ωq̂.

A more precise calculation8 presented in [41] has confirmed this simple estimate and
also fixed the overall proportionality coefficient: k̄ 2

⊥(ω) '
√
ωq̂/4ᾱs for ω � ωbr (see also

the related studies in [42–46]). In appendix A, we generalise the calculation of ref. [41]
to the case of an expanding medium. Interestingly, we find k̄ 2

⊥(ω) '
√
ωq̂(L)/4ᾱs, which

is formally identical to that for the static case up to the replacement q̂ → q̂(L). The
appearance of the late-time quenching parameter q̂(L) comes from the fact that very soft
gluons (ω . ωbr) are predominantly created at the latest stages of the jet evolution, when
the number of their sources (other soft gluons) is largest.

8This calculation involves some simplifying assumptions, notably a simpler version for the branching
kernel (see appendix A for details), which do not alter the qualitative features that we are presently
interested in.

– 13 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
9

3 Monte-Carlo implementation and choice of parameters

Most of the picture described in section 2 can be easily implemented in a parton-shower
Monte Carlo program. For the case of a static medium, this implementation has been
presented in great detail in ref. [2]. In what follows, we shall discuss only the specific
adjustments which are needed in order to take the expansion of the medium into account.

As far as the VLEs are concerned, the only modification associated with the expansion
of the medium is the different kinematic boundary for the VLEs emitted inside the medium
(i.e. in the red region of figure 1). For this, we directly use eq. (2.4) with an endpoint given
by eq. (2.5). The branching probability and the running-coupling prescription for the QCD
coupling at the emission vertex are as presented in ref. [2].

Medium-induced emissions are obtained by implementing the dimensionless-time
rate (2.16) together with its generalisations to other partonic channels,9 with τ defined
by eq. (2.15). As in ref. [2], we evaluate this rate with a fixed value for the QCD coupling,
that we denote as αs,med and will be treated as a free parameter. The use of a more physical
prescription for this coupling, along the lines discussed at the end of section 2.5, should be
one of the objectives of a future upgrade of our MC implementation.

Still concerning the MIEs, we impose an upper limit on their energies in the form of a
sharp cutoff at ω = ω̃c, cf. eq. (2.14). The transverse momentum broadening is generated
according to the Gaussian distribution, eq. (2.17), where the initial and final physical
times t1 and t2 are obtained from their dimensionless equivalents, τ1 and τ2, by inverting
explicitly (2.15).

We note the small mismatch between the scale ω̃c, used as the endpoint for the energy
of medium-induced emissions, and ωc, used to define the phase-space available for VLEs.
In the leading, double-logarithmic, accuracy to which we control the boundaries of the
phase-space available for VLEs, we could equally use ωc or ω̃c to define the lower endpoint
of the vetoed region (recall the discussion after eq. (2.3)). In practice, we have decided
to use ωc which not only is simpler, but also most naturally follows from our physical
arguments in section 2.3.

As described in ref. [2], our simple (collinear) implementation for the vacuum part of the
parton shower requires the introduction of a maximal angle, that we set here to θmax = 1,
and of a minimal k⊥ for vacuum emissions, that we set here to
k⊥,min = 0.25GeV.10 We then have to fix the parameters describing the expanding medium.
In the numerical calculations to follow, we will consider γ = 1 for an expanding medium
and compare our results with a static medium (γ = 0). We will fix the medium length to
L = 4 fm. The two parameters t0 and q̂0 characterising the expansion of the medium are
both fixed in terms of the initial saturation momentum Qs, using t0 = 1/Qs and q̂0t0 = Q2

s.
The different sets of medium parameters we study are listed in table 1. For each value of
Qs, the coupling αs,med has been roughly adjusted so as to provide a good description of

9The Casimir factor and the z-dependence depend on the decay channel of the splitting; see [47] for
explicit expressions.

10In practice, these scales can be varied to gauge the size of the uncertainties associated with our simple
modelling of vacuum parton showers, as we have done in refs. [2, 3]. For simplicity, we do not do this here.
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Qs t0 L q̂0 q̂(L) αs,med ω̃c ωbr θc q̂stat

[GeV] [fm] [fm] [GeV2/fm] [GeV2/fm] [GeV] [GeV] [GeV2/fm]

1.2 0.1667 4 8.64 0.36 0.35 36.48 4.08 0.0833 0.99
1.4 0.1429 4 13.72 0.49 0.28 51.57 3.68 0.0714 1.39
1.6 0.125 4 20.48 0.64 0.23 69.40 3.35 0.0625 1.85
2 0.1 4 40 1.0 0.17 113.4 2.99 0.05 2.98

Table 1. Set of parameters that we consider throughout this paper. The values of αs,med are
adjusted so as to obtain a good description of the RAA jet nuclear suppression factor (see section 5).
The row highlighted in bold corresponds to our default set.

the LHC data [48] for the jet nuclear modification factor RAA (see section 5.1). For com-
pleteness, we list in table 1 the parameters ω̃c from eq. (2.14) as well as ωbr = ᾱ2

s,medω̃c,
the typical scale at which multiple branching becomes important for MIEs, and the de-
coherence angle θc, eq. (2.5). The last column gives the “static-equivalent” value of the
quenching parameter q̂. It is defined in eq. (4.1) below, a choice that we shall discuss at
length in section 4. The set of parameters shown in bold characters in table 1 corresponds
to our default choice.

4 Scaling properties of jet fragmentation: expanding vs. static media

In this section, we highlight an interesting scaling property between the longitudinal spec-
trum of MIEs in an expanding medium and that of a suitably-defined static medium. We
first derive this scaling in section 4.1, then discuss two sources of scaling violations: (i) the
transverse momentum broadening and its impact, first, on the jet fragmentation function
(section 4.2) and, second, on the energy loss via MIEs by a single hard parton (section 4.3),
and (ii) VLEs emitted inside the medium (section 4.4).

4.1 Scaling and the static-equivalent medium

After introducing the dimensionless time variable τ in eq. (2.15), the rate d2Γmed
dzdτ for MIEs

in the expanding medium is independent of τ and formally identical to that of a static
medium, for which the τ -variable is naturally defined as τ(t) ≡ t

√
q̂/E. Since the rates in

τ are identical, so are the respective energy distributions for the partons produced via MIEs
after a (physical) time L, provided the jet quenching parameter q̂stat for the “equivalent”
static problem satisfies11 τstat(L− t0) = τ(L, t0), i.e.

q̂stat =
(

1
L− t0

∫ L

t0
dt′
√
q̂(t′)

)2

= 4
(2− γ)2 q̂(L)

(
1− (t0/L)1− γ2

1− t0/L

)2
L�t0' 4

(2− γ)2 q̂(L) .

(4.1)
11We choose the size Lstat = L−t0 of the equivalent static problem to be the same as that of the expanding

medium. This is convenient when discussing the physical correspondence between the 2 problems, but it is
not required at a mathematical level as eq. (4.1) only constrains the product q̂statL

2
stat.
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For this equivalence to hold, we also need to make sure that this static-equivalent medium
has the same upper limit on the energy spectrum, namely ω = ω̃c, cf. eq. (2.14). This
cutoff can be equivalently written as ω̃c = q̂stat(L − t0)2/2, which is precisely the form of
the corresponding cutoff for a static medium, as used in our previous studies [1–3].

In particular, the spectrum (2.13) for an expanding medium is formally identical to
that of a static medium ω dPstat

dω = ᾱs
√

2ω̃c
ω . This is also the case for the characteristic energy

scale ωbr for the onset of multiple branching since, for t = L, the estimate in eq. (2.11)
coincides with the corresponding static-equivalent scale ωbr = ᾱ2

s q̂stat(L− t0)2/2.
Note that the full dependence on t0/L in (4.1) has to be kept for the exact scaling to

be satisfied. This is what we do for the simulation results presented in this section.12 That
said, in physical considerations and parametric estimates, we shall often neglect t0 next to
L, for simplicity; e.g., we shall simply write ωbr = ᾱ2

s q̂statL
2/2 for qualitative purposes.

To avoid potential confusion, it is useful to stress that the scaling law (4.1), which
refers to the rate (2.9) for relatively soft (ω � ω̃c) gluon emissions, is not the same as
the original scaling law identified in [10], which instead refers to the average energy loss
by the leading parton, ∆E ≡

∫
dω ω dPmed

dω . This quantity ∆E is controlled by the most
energetic MIEs, with energy ω ∼ ω̃c, which are not accurately described by our approximate
spectrum (2.13). The correct calculation of ∆E for the expanding medium in ref. [10] yields
a different scaling law: ∆Eexp = ∆Estatic, with ∆Estatic computed with q̂stat → 〈q̂〉, where
〈q̂〉 is the following time average of q̂(t):

〈q̂〉 ≡ 2
(L− t0)2

∫ L

t0
dt t q̂(t) L�t0' 2

2− γ q̂(L) . (4.2)

This 〈q̂〉 is different and actually smaller (for any γ > 0) than our q̂stat in eq. (4.1); e.g.
q̂stat ' 2〈q̂〉 for γ = 1. A recent numerical study [29] of the scaling properties of the full
BDMPSZ spectrum for an expanding medium shows that the scaling law (4.1) is indeed
well satisfied at low energies ω � ω̃c, whereas that in eq. (4.2) becomes the correct scaling
at larger energies ω ∼ ω̃c. (See also refs. [27, 28] for previous numerical studies of the
quality of the scaling law in eq. (4.2).)

Within our present description of MIEs, where the “soft” emission rate (2.9) is used
for all energies ω up ω̃c, the scaling law (4.1) is exactly satisfied for the energy distributions
produced via MIEs alone. In a more generic context, this scaling is violated by two main
effects: transverse momentum broadening and VLEs occurring inside the medium. Thus,
we expect deviations from the scaling laws in the full (energy and angle) parton distribu-
tions, produced via both VLEs and MIEs. We study the quality of these scaling properties
via Monte Carlo simulations and analytic estimates in the remaining part of this section.

4.2 Scaling violations from transverse momentum broadening

Transverse momentum broadening introduces violations of the scaling properties discussed
in section 4.1 since its rate d〈k2

⊥〉/dt = q̂(t) scales linearly in q̂(t), unlike the emission
12In practice, the exact q̂stat can be up to 30% smaller than its asymptotic value when L/t0 →∞ (which

for γ = 1 is equal to 4q̂(L)), as visible in table 1.
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t0 = 0.125 fm, L = 4 fm
q0 = 20.48 GeV2/fm
qstat = 1.85 GeV2/fm
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gluon, pT0 = 200 GeV
anti-kt(R = 0.4), max = 1.5

Fragmentation via MIEs only - MC
static ( = 0, q = qstat)
expanding ( = 1)

(a) Monte-Carlo results for the parton distribution
inside a gluon-jet generated via MIEs alone in a
Bjorken expanding medium (blue) and its equiva-
lent static medium (red).
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(
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t0 = 0.125 fm, L = 4 fm
q0 = 20.48 GeV2/fm
qstat = 1.85 GeV2/fm

s, med = 0.23
gluon, pT0 = 200 GeV

Average transverse momentum - analytic

static ( = 0, q = qstat)
expanding ( = 1)

(b) Average transverse momentum squared ac-
quired by a parton in a (purely gluonic) medium
induced cascade, in two scenarios: expanding
medium (blue) and equivalent static medium (red).
The curves are obtained by numerically evaluating
eq. (A.11).

Figure 2. Scaling violations induced by transverse momentum broadening in medium-induced
cascades. For all these results, the jet is triggered by a leading gluon with energy pT 0 = 200GeV.

rate (2.9), which scales like
√
q̂(t). In principle, exact scaling can be recovered by integrat-

ing out the parton transverse momenta to obtain inclusive energy correlations. In practice
however, when measuring energy correlations in a jet (e.g. the fragmentation function), one
excludes from the integration over transverse momenta those propagating outside the jet,
i.e. at angles θ ' k⊥/ω larger than the jet radius R. This induces a violation of scaling,
even for inclusive energy distributions.

To study numerically the scaling violations associated with k⊥-broadening, we compute
the fragmentation functionD(ω) ≡ ω(dN/dω) for events generated via MIEs alone, starting
with a leading gluon with energy pT0 = 200GeV. The resulting partons are clustered with
the anti-kt algorithm [49] (as implemented in FastJet [50]) with a radius R, keeping the
hardest resulting jet.

Figure 2a shows this distribution for the expanding medium with γ = 1 (the blue
curve) and for the “equivalent” static medium (the red curve labelled γ = 0), for our
default set of parameters (the boldface line in table 1). One sees that for sufficiently high
energies ω & 5GeV, the static and expanding results are indistinguishable from each other,
indicating perfect scaling. The narrow peak at ω ∼ pT0 represents the leading gluon,
the minimum at ω ∼ ω̃c corresponds to the upper bound on the radiation spectrum, and
the increase with decreasing ω below ω̃c is the expected growth13 ∝ 1/

√
ω, cf. eq. (2.13).

However, the scaling is broken at lower energies ω . 5GeV, where both distributions show
a broad peak.

13eq. (2.13) is the spectrum in the single emission approximation, but the 1/
√
ω behaviour at low energies

is preserved by multiple branching [15, 17].
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These features are easy to understand. Partons with large ω remain inside the jet even
after transverse momentum broadening, hence their energy spectrum is independent of the
jet radius R and scaling is obeyed. On the contrary, momentum broadening can deflect
softer gluons to angles θ ' k⊥/ω larger than R. This explains both the decrease of D(ω)
at low energies and the scaling violations, as we now explain.

To that aim, we rely on the analysis of transverse momentum broadening in section 2.6.
The broad peak visible in figure 2a at intermediate energies corresponds to the softest gluons
whose propagation angle is still inside the jet: θ ' k⊥/ω . R, or ω & k⊥/R. From figure 2a,
one sees that the relevant energies are comparable to the medium scale ωbr ' 3.35GeV
for multiple branching, cf. table 1. For these gluons, the average transverse momentum
k̄ 2
⊥(ω) is controlled by q̂(L) for the expanding medium, and by q̂stat for the “equivalent”

static one (see the discussion towards the end of section 2.6 and in appendix A). Since
q̂(L) < q̂stat, k̄ 2

⊥(ω) is smaller (for a given energy ω . ωbr) in an expanding medium
than in the equivalent static one. This is illustrated by the plot in figure 2b, which shows
numerical results for k̄ 2

⊥(ω) for the two scenarios, as obtained via the method outlined in
appendix A. Because of that, the soft gluons are more likely to remain within the jet cone
in an expanding-medium than in the corresponding static one. In particular, the position
of the low-energy peak in the spectrum can be roughly estimated as ω̄ ' k̄⊥(ω̄)/R. This
implicit equation gives a result ω̄ ' (q̂/16ᾱ2

sR
4)1/3 which is smaller for the expanding

medium than for the static one (because q̂(L) < q̂stat), in agreement with figure 2a.

4.3 Energy loss by the leading parton via MIEs

For phenomenological applications, it is interesting to understand the average energy,
ε(pT0, R), lost by a jet initiated by a hard parton of momentum pT0 outside a cone of
opening angle R. We cover the case with only MIEs in this section and discuss the case of
a full parton shower, including both VLEs and MIEs, in the next section.

Within our effective theory, ε(pT0, R) is the sum of two components [15, 51]: (i) the
energy flowing down to arbitrarily soft energies (hence, moving out to arbitrarily large
angles), via multiple branchings; this corresponds to the “turbulent flow” in the language
of refs. [15, 51] and gives a contribution proportional to ωbr, and (ii) the energy carried
by primary emissions which are soft enough to propagate at angles larger than R, i.e.
gluons with energies ω . ω̄, with ω̄ '

(
q̂(L)/16ᾱ2

sR
4)1/3 the scale introduced at the end of

section 4.2. Altogether, we can write

ε(pT0, R) ' υωbr +
∫ ω̄

0
dω ωdN

dω , (4.3)

with υ a constant.14 While the first component, inclusive in k⊥, satisfies the scaling
behaviour w.r.t. the equivalent static medium, the second component breaks the scaling
through the upper limit ω̄ which comes from the transverse momentum broadening (see
section 4.2). Since ω̄exp < ω̄stat (with obvious notations), the partonic energy loss ε(pT0, R)

14υ ' 4.96 for pT0 < ωc [15, 17], whereas in the high-energy limit pT0 � ωc, one finds υ ' 3.8 for
ᾱs = 0.24 [51].
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Figure 3. Our MC results for the average energy loss by a gluon-initiated jet are displayed as a
function of the initial energy pT 0 of the leading parton (left) and the jet radius R (right), for two
scenarios for the jet evolution: jets with MIEs only (dotted lines) and full showers with both MIEs
and VLEs (plain lines). For each scenario, we compare the case of an expanding medium (blue)
with the equivalent static one (red).

is expected to be smaller in the expanding scenario. This is another consequence of the
fact that soft emissions are more likely to remain inside the jet in an expanding medium.

To verify this and to check the functional dependence predicted by eq. (4.3), we com-
pute the average energy loss ε(pT0, R) for a gluon initiated jet and for various values of
the initial energy pT0 and the jet radius R, using again our default set of medium param-
eters. The results are shown as dotted lines in figure 3, for both the expanding medium
(blue curves) and the equivalent static one (blue curves). While they confirm that the
energy loss is slightly smaller for an expanding medium, the differences are barely visible,
corresponding to an almost perfect scaling.

To better understand this, we consider the scaling violations induced by the upper
limit ω̄ in the second term in eq. (4.3). Using ω(dN/dω) ∝ 1/

√
ω, cf. eq. (2.13), one sees

that this term scales like ω̄1/2 ∝ q̂1/6. The contribution from this second term will therefore
be larger for the static medium only by a moderate factor of (q̂stat/q̂(L))1/6 ' 41/6 ' 1.26.

The dotted lines in figure 3b show the dependence of ε(pT0, R) on R (for fixed
pT0 = 200GeV), for the two scenarios for the medium. This dependence comes from the
upper limit ω̄ in the integral term of eq. (4.3), with ω̄1/2 ∝ R−2/3. (As expected on physical
grounds, ε(pT0, R) saturates at large R.) We have checked that this particular law is in
good numerical agreement with the numerical results in figure 3b. Once again the scaling
is almost perfect.
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4.4 Scaling violations and energy loss for full in-medium parton shower

As explained at length in section 2.1 (see [2] for additional details), the VLEs radiated
inside the medium act as new partonic sources for MIEs. Each of these new sources will
therefore contribute to the overall energy lost by the jet (via radiation of MIEs at angles
θ > R). This results in a significant increase of the total jet energy loss, compared to that
of a single parton evolving via MIEs only. In this case, it is important to consider the
energy lost by the jet as a whole instead of the energy lost by just the leading parton. In
this section, we study how our results from ref. [2] are modified by the expansion of the
medium, notably in the context of the scaling relation derived in section 4.1.

As discussed in section 2 (see figure 1), in the presence of the longitudinal expansion,
the energies and the emissions angles of the VLEs occurring inside the medium are con-
strained by eq. (2.4) and θ ≥ θc = 2/

√
q̂(L)L3. Together with the medium-size boundary,

ω = ωL(θ) ≡ 2/(Lθ2), this defines the intersection point at ω = ωc and θ = θc, cf. (2.5).
The corresponding boundaries and intersection point for the “equivalent” static medium
are obtained by replacing γ by 0 and q̂(L) by q̂stat, with q̂stat given by eq. (4.1).

In practice, we define the total jet energy loss as difference between the energy of the
initial hard parton, pT0, and the energy of the final reconstructed jet after evolving the
hard parton including both VLEs and MIEs. To make sure this includes only the medium-
induced energy loss, and not also vacuum-like emissions outside the jet, we subtract the
equivalent average energy loss computed on vacuum jets (see the discussion in [2] for more
details). Our results for the full-jet energy loss are shown by the solid lines in figure 3. The
main trend, for both static and expanding media, is a steady growth of the jet energy loss
with the initial energy pT0 and with the radius R, due to the increase of the phase-space
for in-medium VLEs with both pT0 and R.

Figure 3 also shows a slight decrease of the energy loss for an expanding medium
(γ = 1) compared to the equivalent static one (γ = 0). This reduction becomes sizeable
only for large initial energy pT0 & 200GeV and/or very small values for the jet radius
R . 0.2. A priori, these scaling violations may have two sources: the k⊥-broadening
discussed in section 4.2 and the different phase-space available to VLEs inside the medium.
The smaller difference between the dotted lines than between the solid lines in figure 3
already suggests that the second effect — the difference in the phase-space for VLEs —
dominates over the former. We study this effect in more details below.

Strictly speaking, both the slope of the boundary in (2.4) and the coordinates of the
intersection point, differ between the two scenarios. However, within our leading loga-
rithmic approximation for the VLEs, only the (γ-dependent) change in the slope is under
control: multiplying ω0(θ) and ωL(θ) by an arbitrary numerical prefactor of order one does
not affect the overall leading-logarithmic accuracy (recall the discussion in the paragraph
after eq. (2.3)). In particular, at double-logarithmic accuracy, we could have chosen the
prefactor in eq. (2.4) such that the intersection point be given by (2.5) with q̂(L) → q̂stat
for both the expanding and the static media, or, conversely, constructed the static medium
with q̂ = q̂(L).
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(a) Monte-Carlo simulations.
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(b) Analytic (DLA) results.

Figure 4. Parton energy distribution D(ω) ≡ ω(dN/dω) in a parton shower exclusively generated
via VLEs inside the medium: (a) Monte Carlo simulations; (b) analytic results within the double-
logarithmic approximation with fixed coupling. The leading parton is a gluon with pT 0 = 500GeV
and the jet radius is R = 0.4. The solid blue lines correspond to the an expanding medium with
γ = 1; the red lines correspond to a static (γ = 0) medium, with either q̂ = q̂stat (solid lines), or
q̂ = q̂(L) (dashed lines). The contribution from the leading parton (a peak at ω ' pT 0 = 500GeV)
is not included in the analytic plot.

That said, the difference in slopes between the two scenarios does matter at double-
logarithmic accuracy. Using eq. (2.4), one can easily check that this difference is such that
the phase-space available for in-medium VLEs is smaller for an expanding medium than
for the “equivalent” static one (see figure 1). Therefore, the number of VLEs inside the
medium, and hence of sources for MIEs, is smaller for an expanding medium, resulting in
a smaller jet energy loss.

To make this argument more concrete, we can directly look at the energy (ω) distri-
bution of the partons produced only via VLEs inside the medium (i.e. without MIEs and
without the VLEs outside the medium). Figure 4 shows our results, for an initial parton of
500GeV. Figure 4a is the result of our Monte Carlo simulations and figure 4b is the result
of the analytic calculation in the double-logarithmic approximation (more details below).
Each plot includes three curves: the solid blue line corresponds to an expanding medium,
with γ = 1 and our default medium parameters; the two red curves correspond to two
different choices for a static medium, with different transport coefficients:15 q̂ = q̂stat, cf.
eq. (4.1) (solid red line), and q̂ = q̂(L) (dashed red line). This last choice gives the same
values of ωc and θc as in the expanding medium.

In all cases, one sees a peak at large ω corresponding to the leading parton, together
with a continuous distribution extending towards smaller ω. More importantly, we see a

15The first choice, i.e. q̂ = q̂stat, is truly natural only in the context of the MIEs, for which it guaran-
tees the scaling property discussed in section 4.1. In the present context of VLEs, both choices look a
priori reasonable.
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global increase in the number of sources in both static media compared to the expanding
one. This ultimately yields the larger energy loss observed in the full MC simulations, as
shown by the solid lines in figure 3. This is more striking for the static medium where
the values of ωc and θc have been chosen to agree with the expanding medium, the red
dashed line inf figure 4. In this case, the static and expanding cases agree almost perfectly
at high ω (ω & ωc = 25.6GeV). For ω . ωc = 25.6GeV, the expanding medium yields a
distribution which is more suppressed than for the static one with q̂ = q̂(L), due to the
different slope of the phase-space boundary.

We finally explain our analytic results in figure 4b. We start from the double-differential
distribution in ω and θ computed in our first paper [1],

T (ω, θ) = ωθ2 d2N

dω dθ2 = ᾱsI0

2

√
ᾱs ln pT0

ω
ln R

2

θ2

 , (4.4)

with I0 the modified Bessel function of rank 0. This result is valid in the vacuum and in the
fixed-coupling limit. The inside-medium ω spectrum is obtained by integrating (4.4) over θ
with the constraint that the emission occurs inside the medium, i.e. satisfies both eq. (2.4)
and θ > θc. The former constraint dominates for ω < ωc, while the latter dominates above
ωc. One finds

D(ω) ≡ ω dN
dω '

√
ᾱs

Lmin
ln pT0

ω

I1
(

2
√
ᾱs ln pT0

ω
Lmin

)
, (4.5)

with I1 the modified Bessel function of rank 1 and

Lmin ≡


ln R2

θ2
c

if ω > ωc,

1
2−γ ln ω3−γR4−2γ

21−γ q̂0t
γ
0

if ω < ωc.
(4.6)

This is the result plotted in figure 4b, with an additional contribution δ(ω − pT0) from
the leading parton omitted. The analytic calculation captures, at least qualitatively, the
features seen in the Monte Carlo simulation, cf. figure 4a.

5 Jet quenching phenomenology in a longitudinally-expanding medium

In this last section, we present MC simulations for three standard jet observables in ultra-
relativistic heavy ion collisions: the nuclear modification factors for inclusive jet production,
the jet fragmentation function, and the zg and θg distribution obtained with the Soft Drop
substructure tool. Our aim is twofold. On one hand, we would like to gauge the impact of
the medium expansion on the selected observables, by comparing it with the corresponding
predictions of the “equivalent” static-medium scenario. On the other hand, we would like
to demonstrate that adding the longitudinal expansion to the general picture presented
in [1] still provides as good a phenomenological description of these observables as that
obtained for a static medium in [2, 3]. As in these latter studies, it is not our intention
here to provide realistic fits of the experimental data, but merely to show that overall
physical picture explains the salient features visible in these data.
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5.1 The nuclear modification factor for jets RAA

We start by computing the nuclear modification factor for the inclusive jet cross-section,
RAA, as a function of the jet transverse momentum pT , following the ATLAS set-up [48].

Compared to our earlier work in [2], we have included in our simulation the effect of
the nuclear PDF effects, which have been argued in [52, 53] to have a sizeable impact on
RAA especially at large pT . In practice, this is done by adding the EPPS (NLO) nuclear
PDFs corrections [33] to the Born-level matrix elements used in our medium Monte Carlo
medium simulations. Currently, these corrections are afflicted by large uncertainties, but
in our MC calculations we have solely included their central values.16 Indeed, we have
checked that the associated uncertainties could be absorbed into (slight) modifications of
our free parameters, while still keeping them within physically reasonable ranges.

The red dotted curve in figure 5a shows the effect on RAA of the nuclear PDFs alone,
i.e. without any final-state quenching: the hard process is weighted by the nuclear PDFs,
but the subsequent jet evolution occurs as in the vacuum. At large pT & 500GeV, the
nuclear PDFs tend to reduce the jet cross-section by ∼ 20%. This is likely a consequence
of the EMC effect [34] i.e. of the suppression of the quark PDF at large x in nuclei compared
to nucleons. Even if this initial-state effect is sizeable, we remind the reader that, in our
picture, the crucial ingredient explaining the flatness of RAA at high pT is the increase of
the average energy loss by the jets, due to the increase in the number of partonic sources
produced via VLEs inside the medium [2]. This effect per se (without nuclear PDFs
effects) was sufficient to provide a good description of the ATLAS data [48] (within their
uncertainty), as shown in [2]. The inclusion of the nuclear PDF effects provides a further
reduction at large pT , significantly improving the agreement with the ATLAS data.

To isolate the effect of the medium expansion on RAA, we show in figure 5a the results of
two MC simulations (both including the nuclear PDFs): one for a longitudinally-expanding
medium with γ = 1, Qs = 1.6GeV, L = 4 fm and αs,med = 0.23 (our default set of medium
parameters, see the third line in table 1) and the other one for the “equivalent” static
medium, with q̂stat given by eq. (4.1) and Lstat = L− t0.

The numerical results in figure 5a show only a mild difference between the two scenar-
ios, with RAA being slightly larger for the expanding medium than for the static one and
the difference increasing slowly with the jet pT . Since the jet RAA is mainly controlled by
the jet energy loss, this is in agreement with our previous discussion of the scaling viola-
tions in section 4 (see figure 3a) where we observed a smaller average jet energy loss for the
full in-medium parton shower for an expanding medium compared to the equivalent static
one, with a stronger effect at large pT . The fact that the net effect of the longitudinal
expansion can be so well reproduced by an effective static-medium scenario a posteriori
explains why it has been possible in [2] to provide a rather good description of the ATLAS
data for RAA within an oversimplified model assuming a static medium.

Let us now focus on more phenomenological studies of the RAA factor for a
longitudinally-expanding medium. Figure 5b compares our Monte-Carlo predictions for

16We also refer to ref. [54] which studies the effect of nuclear PDFs and their uncertainties on RAA,
together with other sources of scale uncertainties.
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Figure 5. Monte-Carlo simulations for the nuclear modification factor RAA for inclusive jet pro-
duction.

each of the four sets of medium parameters introduced in table 1 to the ATLAS measure-
ment, showing an excellent agreement. For each set of parameter, the value of αs,med has
been (manually) adjusted to give a good description of the data. For simplicity, we have
only varied Qs, setting t0 = 1/Qs and q̂0t0 = Q2

s, keeping γ = 1 and L = 4 fm. These last
two parameters could have been varied as well.

The physical reason behind this degeneracy in our theoretical description of RAA has
been explained in detail in [2]. In a nutshell, RAA is mainly sensitive to the energy loss via
soft MIEs at large angles, i.e. to the branching scale ωbr = ᾱ2

s,medq̂statL
2. However, varia-

tions of the in-medium phase space for vacuum-like sources associated with variations of q̂0
and t0 (through Qs) can compensate the variations of ωbr through αs,med. At this point, it
is interesting to observe that the value of αs,med which is preferred by our phenomenological
description of the RAA data is monotonously decreasing with increasing Qs, in qualitative
agreement with the property of asymptotic freedom. (Indeed, increasing Qs is tantamount
to increasing the density of the medium, as obvious from the fact that q̂0 = Q3

s.)

5.2 Jet fragmentation function

We turn now to the discussion of the (perturbative) jet fragmentation function into par-
tons17 D(x) = 1

Njets
dN
dx , defined as the multiplicity of partons inside the jets per unit of

longitudinal momentum fraction x ≡ pT cos(∆R)/pT,jet. Here, pT and ∆R are respectively
the transverse momentum and the angle with respect to the jet axis of the measured hadron,
while pT,jet is the jet total transverse momentum. We denote by R(x) ≡ Dmed(x)/Dvac(x)

17We recall that the non-perturbative physics of hadronisation is currently not included in our
Monte Carlo.
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the associated nuclear modification factor. The jet selection used in our MC analysis closely
follows the experimental analysis by the ATLAS collaboration in [55].

In a previous paper [3], we have studied the nuclear modification of the fragmentation
function within our pQCD picture for the case of a static medium. To understand the
effect of the longitudinal expansion on this observable, it is again enlightening to compare
our MC results for R(x) for the case of an expanding medium and for the “equivalent”
static medium. This comparison is shown in figure 6a, for our default set of values for the
free parameters (cf. the bold line in table 1).

The dotted red curve in this figure corresponds to a calculation which includes the
nuclear PDFs in the initial state, but no medium effects in the final state, in analogy with
the dotted red curve in figure 5a. Unlike in the case of RAA, it appears that the nuclear
PDFs have no effect on the jet fragmentation function. This might be related to the fact
that the jet transverse momenta involved in the present calculation of R(x) are relatively
low, 200 ≤ pT,jet ≤ 251GeV.

Our MC results for R(x), including both nuclear PDFs and the in-medium effects, are
represented by the plain blue curve for the Bjorken-expanding medium and by the dashed
blue curve for the equivalent static medium. As for RAA, the scaling looks nearly exact.
At large x & 0.2, the fragmentation function enhancement (R(x) > 1) has been shown in
ref. [3] to be controlled by the energy loss by the jet together with the bias introduced by
the steeply falling initial spectrum which favours jets losing less energy than average. The
almost-perfect scaling for the fragmentation at large x therefore stems from the equivalent
almost-perfect scaling seen for RAA in figure 5a. This is a rather universal feature, that
has been argued in model-independent phenomenological studies [56] and is indeed verified
in a variety of theoretical descriptions, from weak to strong coupling [57–63].

The rather good scaling visible in figure 6a at small x . 0.02 is likely to be fortuitous:
within our effective theory at least, it is the result of the compensation between two scaling-
violating effects, which act in opposite directions. As argued in [3], the small-x part of the
medium-modified fragmentation function is controlled by the multiplicity of in-medium
VLEs and by the number of MIEs that remain inside the jet cone after crossing the medium.
The latter effect tends to increase in an expanding medium compared to the equivalent
static one since the transverse momentum broadening decreases (cf. figure 2b and the
discussion in section 4.2). The former effect decreases in the expanding medium since the
associated phase-space is smaller than for the equivalent static medium (cf. section 4.4).
The net effect visible in figure 6a turns out to be a mild increase.

Turning to a more phenomenological analysis, we exhibit in figure 6b our MC results
for the nuclear modification factor R(x) for the jet fragmentation function, for the same
four sets of medium parameters in table 1 that were already shown in figure 5b to offer a
good description for the ATLAS data for RAA. At large x & 0.2, the four curves are nearly
overlapping with each other, a property associated in [3] with the strong correlation between
hard-fragmenting jets and RAA. At the small-x end of the spectrum, the dispersion between
the different curves is more pronounced albeit still small. This reflects the complexity of
the physical mechanisms at work in that regime.
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Figure 6. Monte-Carlo calculation of the nuclear modification factor for the jet fragmenta-
tion function.

In view of the theoretical uncertainties inherent to our current framework, which are
especially important for the fragmentation function at small x (see again [3]), we do not
show an explicit comparison between our results and the LHC data for nuclear effects on jet
fragmentation. That said, it is reassuring to observe that all our curves in figure 5b show
the same qualitative features as the respective data (see e.g. [55]), that is, a pronounced
nuclear enhancement at both small x and large x, together with a nuclear suppression at
intermediate values of x.

5.3 Jet substructure observables

To conclude this survey of jet quenching observables in a longitudinally expanding medium,
we study the Soft Drop zg and θg distributions [31, 32] for β = 0, and their respective
nuclear modification factor R(zg), R(θg). Being infrared and collinear safe (θg) or at least
Sudakov-safe (zg, see ref. [32]), these observables are expected to be better-controlled in
perturbation theory than the fragmentation function. In particular, they are less sensitive
to non-perturbative hadronisation corrections which are not included in our Monte Carlo.
For brevity, we only show results for the longitudinally-expanding medium with γ = 1. We
have however checked that the scaling between an expanding medium and the equivalent
static one works well for these substructure observables.

Let us first consider the groomed θg distribution shown in figure 7a for two choices for
the jet selection in pT,jet and for the Soft Drop parameter zcut: 250 < pT,jet < 300GeV and
zcut = 0.1 (upper panel), and, respectively, 100 < pT,jet < 130GeV and zcut = 0.2 (lower
panel). In both cases, one observes a suppression of large-θg jets and an enhancement of
small-θg jets, with the transition between the two types of behaviour occurring slightly
below θg = 0.1 (i.e. for θg/R ∼ 0.2).
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Figure 7. Monte-Carlo simulations of the nuclear modification factor for distributions after Soft
Drop: (a) the groomed jet radius θg and (b) the momentum fraction zg. The Soft Drop param-
eter β is set to β = 0. For both distributions, the upper panel corresponds to zcut = 0.1 and
250 < pT,jet < 300GeV, whereas the lower panel has zcut = 0.2 and 100 < pT,jet < 130GeV. As
in the ALICE [64] and CMS measurements [65], an additional angular cut-off θg > 0.1 is imposed
for the zg distribution calculated with zcut = 0.1. We use the same sets of values for the medium
parameters as in figures 5b–6b (cf. table 1).

This behaviour indicates that the opening angle distribution for jets emerging from
the plasma within any specified range of energies has been pushed toward smaller angles,
comparing to pp jets with the same energies. This trend is a rather generic feature, which
has been observed in a variety of theoretical descriptions, at both weak [66] and strong
coupling [59, 60], and also in hybrid models [63, 67, 68]. The ultimate reason for this
narrowing of jets in the medium is that small-angle jets suffer less energy loss and jets with
a higher initial energy are less frequent (due to the steeply falling initial spectrum).

To understand our results in figure 7a in more detail and, in particular, the peculiar
transition occurring around θg = 0.1, it is important to elucidate the precise mechanisms
relating the (sub)jet angular opening to energy loss in our picture. There is first a rather
generic mechanism, present in all pQCD-based approaches: the medium introduces a bias
towards quark-initiated jets,18 which lose less energy than the gluon jets, thus leading to
a narrowing of the angular distribution [66], since quark jets are “narrower” than gluon
jets.19 Conversely, the transverse broadening of the two subjets selected by Soft Drop leads

18This bias is also responsible for most of the nuclear enhancement seen in the jet fragmentation function
at large x [3, 56–58], cf. figure 6b.

19A simple leading-log, fixed-coupling, estimation of the average groomed θg/R of quark or gluon initiated
jets gives, for β = 0, 〈θg/R〉 ' Lc/(1+Lc) with Lc = 2αsCR

π
log(1/zcut) [31], which increases as CR increases.
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to a widening of the θg distribution [66]. This effect too is present in our MC calculations
but turns out to be numerically small.

The dominant mechanism behind the sharp transition observed in the θg-distribution
in figure 7a is colour decoherence and the associated angle θc, cf. eq. (2.5). The physical
picture is as follows: when the two subjets selected by Soft Drop have an angular separation
θg > θc, each subjet loses energy independently, whereas when θg < θc the energy is lost by
the parent subjet. Since the jet energy loss increases with the number of partonic sources
for MIEs, jets with θg > θc lose more energy than jets with θg < θc. This explains the
suppression of the θg distribution for θg > θc and the enhancement for θg < θc. This shows
that the medium is acting as a filter towards coherent jets, by reducing the number of two-
prongs jets with θg � θc. A similar mechanism is also present in strong coupling models,
where the role of the coherence angle is played by the plasma resolution length [63, 67, 68].
Numerically, the transition in figure 7a is indeed seen at θg ' θc, with θc varying between
0.08 and 0.05 when Qs varies between 1.2GeV and 2GeV, cf. table 1, including the expected
shift of the transition point towards smaller θg when θc decreases (Qs increases).

On the experimental side, the narrowing of jets in the medium has been measured by
the ALICE collaboration [69]. The results are in qualitative agreement with our theoretical
predictions shown figure 7, as a suppression of large-θg jets and an enhancement of small-θg
jets are clearly visible in spite of the large statistical uncertainties. The transition in the
data occurs around θg/R ≈ 0.2 ÷ 0.3 and it does not look as sharp as in our MC results
in figure 7a. This should be expected, given that the experimental results represent an
average over various medium geometries (hence, over various values for θc). Besides, also
on the theory side, we expect that the sharpness of the transition will be smoothed out
by subleading perturbative contributions and additional effects like hadronisation, not yet
included in our simulations. The above discussion however suggests that a more precise
measurement of the θg distribution at small θg � R could give us a direct experimental
access to the plasma coherence angle θc, at least in an average sense.

Finally, the groomed zg-distribution in a Bjorken-expanding medium is presented fig-
ure 7b for the same two choices of jet selection and Soft Drop parameters as for the
θg-distributions in figure 7a. For the upper panel we have imposed the additional re-
striction that the groomed angle should satisfy θg > θcut = 0.1, as is common in several
experimental analyses. Within our pQCD picture, the physical content of the zg distribu-
tion has been explored in [2] for the case of a static medium. The medium expansion does
not change the physical mechanisms at the origin of the nuclear modifications. The overall
suppression of the distribution, i.e. the fact that R(zg) < 1 for all values of zg, is again a
consequence of the in-medium suppression of jets having a large-angle hard substructure.
This suppression is therefore less pronounced for inclusive θg jets (lower panel) than for jets
with θg > 0.1 (upper panel). On the other hand, the increase of R(zg) when decreasing zg,
especially below zg ∼ 0.2, is due to relatively hard MIEs triggering the Soft Drop condition.
As visible in the upper panel, this increase becomes more pronounced as Qs increases (for
L fixed). This is so since θc = 2/(QsL) decreases with increasing Qs (see also table 1),
meaning that the relatively hard emissions with θ ∼ θc are more likely to remain inside the
jet cone. Additionally, ωc = 1

2Q
2
sL increases with increasing Qs, making MIEs more likely

to pass the Soft Drop zcut condition.
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6 Conclusion

In this paper, we have extended our pQCD approach to the evolution of a jet in a dense
quark-gluon plasma, as developed in refs. [1–3], to the case of a medium which under-
goes longitudinal expansion. We have demonstrated that the factorisation in time be-
tween vacuum-like emissions and medium-induced emissions remains valid in the expanding
plasma and established the new phase space for in-medium VLEs to leading logarithmic
accuracy. Regarding the medium-induced radiation, we have focused on the relatively soft
emissions with energies ω � ωc, for which the emission process can be approximately
treated as local in time. This locality allowed us to absorb the medium expansion into an
effective emission rate which involves the value of the jet quenching parameter at the time
of the emission. Our Monte Carlo parton shower, initially designed for a static plasma [2],
has been extended to take into account the three main modifications introduced by the
longitudinal expansion, namely, the modified phase space for VLEs, the change in the rate
for transverse momentum broadening, and that in the emission rate for MIEs.

From a conceptual point of view, we have made the elementary, yet important, obser-
vation, that the locality of soft MIEs leads to exact scaling properties between expanding
and static media for the parton energy distributions (integrated over the emission angles)
in medium-induced cascades. This has allowed us to define an “equivalent static medium”
for a given expanding scenario, with the equivalence being strictly true for MIEs only. We
have used this “equivalent” static medium as a benchmark for “apple-to-apple” compar-
isons between the jet properties (energy loss, intra-jet multiplicities, jet substructure) for
an expanding and a static medium, respectively. Our key result is that the scaling property
is only mildly violated by processes which have a different scaling with q̂(t), such as the
transverse momentum broadening via multiple soft scattering, or the phase-space for VLEs
occurring inside the medium (which act as sources for medium-induced radiation).

On the phenomenological side, we have presented new Monte Carlo simulations for the
case of an expanding plasma, which cover the nuclear modification factors for inclusive jet
production (the jet RAA), the jet fragmentation function, and the Soft Drop distributions
in the groomed radius θg and the momentum sharing fraction zg. The good qualitative
agreement that we previously found between these jet observables computed in a static
medium and the LHC data turns out to remain in place after including the medium ex-
pansion. This is so because of the mildness of the scaling violations w.r.t. the “equivalent”
static medium. This consolidates the pQCD foundations of our picture for jet evolution,
since it confirms that the salient features of the nuclear effects on all the observables that
we have investigated are driven by perturbative effects and are only slightly sensitive to the
details of the bulk evolution. Our studies of the jet RAA modification factor also confirm
that the inclusion of nuclear PDF effects improve the agreement with the ATLAS data
at large pT,jet.

That said, there is still a large room for improvement in our current implementation of
an in-medium parton shower. As emphasised in several places, both the collisions inside the
medium and the medium-induced radiations are considered as relatively soft. Even though
preliminary studies seem to indicate a minor effect on the jet RAA, a proper treatment of the
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single hard scattering regime [70] and of the medium-induced spectrum at larger energies
ω & ωc (perhaps along the lines of the recent studies in [46, 71, 72]) is clearly needed and
is a part of our plans for the future. At this point, it is interesting to notice that the
scaling relation put forward in [10, 27–29] for the relatively hard (ω & ωc) medium-induced
emissions differs from “our” scaling by merely a factor of 2 (in the value of the transport
coefficient for the “equivalent” medium), thus suggesting that the scaling violations may
remain small even after including this contribution.

We have intentionally focused on jet observables for which the medium geometry can,
to a large extent, be absorbed into an effective jet path length L. Incorporating a realistic
collision geometry is left for future work, as well as a systematic study of jet observables
sensitive to it, such as the centrality dependence of RAA, or the dijet asymmetry. Finally,
even if perturbative mechanisms seem to drive the medium modifications of jet properties, it
is known that bulk-related observables such as the medium response to the jet propagation,
or the transverse expansion of the quark-gluon plasma, have a sizeable impact in the
soft sector of some observables, notably on the fragmentation function and on the jet
shapes [58, 61, 73–75]. Adding all such effects goes far beyond the current implementation
of our Monte-Carlo, yet this is clearly needed in order to develop a realistic event generator
for the study of jets in heavy-ion collisions. This discussion can be viewed as our road map
for the next years.
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A Angular structure of medium-induced cascades in expanding media

In this appendix, we shall demonstrate the results asserted in section 4 regarding the vio-
lation of exact scaling between the expanding scenario and the equivalent static medium,
due to transverse momentum broadening in medium-induced cascades. Our subsequent
treatment of multiple medium-induced branchings largely follows the corresponding dis-
cussion in refs. [15, 16, 41, 42], that we shall extend to the case of an expanding medium
by simply replacing q̂ → q̂(t), both in the emission rate and in the rate for diffusion in
transverse momentum.

A.1 Exact scaling for k⊥-inclusive parton distributions

Let us first explain in more mathematical terms what we mean by this exact scaling.
As emphasised in section 4, this scaling property only refers to the parton distribution
produced by medium-induced cascades which are inclusive w.r.t. the transverse momentum
of emission. The evolution equation for the k⊥-inclusive parton distribution at time t,
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D(x, t) ≡ xdN/dx is [15]

∂D(x,t)
∂t

= ᾱs

√
q̂(t)
E

∫
dzK(z)

[√
z

x
D

(
x

z
,t

)
− z√

x
D(x,t)

]
, K(z) = (1−z+z2)5/2

(z(1−z))3/2 .

(A.1)
Without loss of generalities, this equation is written for purely gluonic cascades. The
change of variable

τ = ᾱs

∫ t

t0
dt′
√
q̂(t′)
E

(A.2)

enables one to rewrite (A.1) in terms of the dimensionless quantities τ and x:

∂D̃(x, τ)
∂τ

=
∫

dzK(z)
[√

z

x
D̃

(
x

z
, τ

)
− z√

x
D̃(x, τ)

]
. (A.3)

Consequently, the solutions of (A.1) are of the form D(x, t) = D̃(x, τ(t)), with D̃(x, τ) a
solution of (A.3).20 If one fixes the initial time t0 and final time L of the evolution, the
k⊥-inclusive parton distribution in an expanding medium is the same as in a static one
provided one has

τexp(L) = τstat(L) ⇐⇒
∫ L

t0
dt
√
q̂(t) =

√
q̂stat(L− t0) (A.4)

giving the condition (4.1). We refer to eq. (A.4) as the scaling relation between expand-
ing and static media with q̂stat the quenching parameter associated with the equivalent
static medium.

For future analytic calculations, it is helpful to note that when the branching kernel
K(z) is approximated by K0(z) = (z(1 − z))3/2, there exists an analytic solution of (A.3)
given by:

D̃(x, τ) ≡ τ√
x(1− x)3/2 exp

(
−πτ2

1− x

)
. (A.5)

A.2 Transverse momentum dependence of parton distributions

To calculate observables sensitive to the angular distribution of the medium-induced cas-
cade (such as the fragmentation function for a jet of radius R), one needs the fully differ-
ential distribution

D(x, k⊥, t) ≡ (2π)2x
dN

dxd2k⊥
. (A.6)

The evolution equation for this quantity is given by a generalisation of (A.1) with a new
term accounting for the transverse diffusion of emissions due to momentum broadening [16]:

∂D(x,k⊥, t)
∂t

= q̂(t)
4 ∇

2
⊥D(x,k⊥, t)+ᾱs

√
q̂(t)
E

∫
dzK(z)

[ 1
z2

√
z

x
D

(
x

z
,k⊥, t

)
− z√

x
D(x,k⊥, t)

]
.

(A.7)
20Although this discussion implicitly assumes that E < ω̃c, the scaling transformation (A.2) trivially

holds also in the regime E > ω̃c.
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Because of the diffusion term, it is clear that the change of variable (2.15) does not cancel
all the q̂(t) dependence in eq. (A.7).

Instead of studying the full k⊥ distribution, let us study the average transverse mo-
mentum of gluons at the end of the evolution, defined as

k̄ 2
⊥(x) =

∫
d2k⊥ k

2
⊥D(x, k⊥, L)∫

d2k⊥D(x, k⊥, L) ≡ H(x, L)
D(x, L) ≡

x2W (x, L)
D(x, L) . (A.8)

Following [41], we have defined H(x, t) =
∫

d2k⊥k
2
⊥D(x, k⊥, t) to be the first moment of

the distribution (A.6) and W (x, t) = H(x, t)/x2. From (A.7), one easily gets the following
evolution equation for W (x, t) [41]:

∂W (x, t)
∂t

= q̂(t)
x2 D(x, t) + ᾱs

√
q̂(t)
E

∫
dzK(z)

[√
z

x
W

(
x

z
, t

)
− z√

x
W (x, t)

]
. (A.9)

After the change of variable (2.15), this equation reduces to

∂W̃ (x, τ)
∂τ

=
√
Eq̂(t(τ))
ᾱsx2 D̃(x, τ) +

∫
dzK(z)

[√
z

x
W̃

(
x

z
, τ

)
− z√

x
W̃ (x, τ)

]
, (A.10)

where the remaining q̂ dependence is a consequence of the scaling violation caused by
transverse momentum broadening. Except for the diffusion term, this equation is the same
as eq. (A.3), meaning that one can find a solution to (A.10) if a solution of eq. (A.3)
is known, using convolution methods. Namely, if D̃(x, τ) is a solution of (A.3) and
τmax ≡ τ(L), we have

W̃ (x, τmax) =
√
E

ᾱs

∫ τmax

0
dτ
∫ 1

x

dy
y
D̃

(
x

y
,
τmax − τ√

y

) √
q̂(t(τ))
y2 D̃(y, τ), (A.11)

which generalises the corresponding result for a static medium [41]. For the simplified
kernel K0(z), the function D̃ is given by eq. (A.5) so that one can numerically evaluate the
double integral (A.11). The result for k̄2

⊥(x) is shown figure 2b.

A.3 Average transverse momentum in the multiple-branching regime

It is enlightening to get the behaviour of the exact solution (A.11) at small x � ᾱ2
sω̃c,

i.e. in the multiple branching regime, assuming the simplified kernel K0(z). In the small
x limit, the y-integration is dominated by small values of y, 1 � y & x, so that the
exponential in the function D̃(x/y, (τmax − τ)/√y) fixes τ ' τmax in the τ integral [41].
Using D̃(y, τmax)/D̃(x, τmax) '

√
x/y at small x and y, one gets

k̄2
⊥(x) ' x2

√
E

ᾱs

∫ τmax

0
dτ
∫ 1

x

dy
y
D̃

(
x

y
,
τmax − τ√

y

) √
q̂(t(τmax))
y2

√
x

y
. (A.12)

Since t(τmax) = L, one notices that q̂ is automatically set to its final value q̂(L). Changing
variables to u = x/y and then τ ′ = (τmax − τ)

√
u/x, one easily gets

k̄2
⊥(x) '

√
q̂(L)xE
ᾱs

∫ 1

x
duu

∫ τmax
√

u
x

0
dτ ′ D̃(u, τ ′). (A.13)
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Finally, taking the limit x→ 0 in the double integral, one ends up with the following simple
asymptotic behaviour:

k̄2
⊥(x) '

√
q̂(L)xE
ᾱs

∫ 1

0
duu

∫ ∞
0

dτ ′ D̃(u, τ ′) =
√
q̂(L)xE
4ᾱs

(A.14)

which is shown on figure 2b (dotted curves).
This simple relation enables us to quantify the scaling violation due to transverse

broadening between an expanding medium and the “equivalent” static one, in the multiple
branching regime:

k̄2
⊥(x)

k̄2,stat
⊥ (x)

=
√
q̂(L)
q̂stat

= 2− γ
2

1− (t0/L)1− γ2

1− t0/L
. (A.15)

This ratio is always smaller than 1 for all t0 ∈ [0, L] and γ ∈ [0, 2).
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