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1 Introduction

Understanding the origins of flavour in both the quark and lepton sectors, i.e., the origins
of the patterns of quark masses and mixing, of the charged-lepton and neutrino masses, of
neutrino mixing and of the CP violation in the two sectors is one of the most challenging
unresolved fundamental problems in particle physics [1].1

Within the reference three neutrino mixing scheme, the lepton flavour problem consists
of three basic elements or sub-problems, namely, understanding:

1“Asked what single mystery, if he could choose, he would like to see solved in his lifetime, Weinberg
doesn’t have to think for long: he wants to be able to explain the observed pattern of quark and lepton
masses.” From Model Physicist, CERN Courier, 13 October 2017.
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i) the origin of the hierarchical pattern of charged-lepton masses: me � mµ � mτ ,
me/mµ ' 1/200, mµ/mτ ' 1/17;

ii) why neutrino masses mνj are much smaller than the masses of charged leptons and
quarks, mνj ≪ m`,q, q = u, c, t, d, s, b and ` = e, µ, τ , with mνj . 0.5 eV, m` ≥ 0.511
MeV, mq & 2 MeV;

iii) the origins of the patterns of neutrino mixing of 2 large and 1 small angles, and
of the two independent neutrino mass squared differences, ∆m2

21 � |∆m2
31| with

∆m2
21/|∆m2

31| ' 1/30, where ∆m2
ij ≡ m2

i −m2
j .

Each of these three sub-problems is by itself a formidable problem. As a consequence,
individual solutions to each of them have been proposed. The hierarchical pattern of
charged-lepton masses can most naturally be understood within the Froggatt-Nielsen mech-
anism based on the U(1)FN flavour symmetry [2] and its extensions. The enormous dis-
parity between the neutrino masses and the masses of the charged leptons and quarks can
be understood within the seesaw or radiative models of neutrino mass generation or else
employing the Weinberg effective operator idea [3] (for a concise review see, e.g., [4]). All
these approaches lead naturally to massive Majorana neutrinos. Arguably the most ele-
gant and natural explanation of the observed pattern of neutrino (or lepton) mixing of two
large and one small mixing angles is obtained within the non-Abelian discrete symmetry
approach to the problem (see, e.g., [5–9]).

In the case of the quark sector, the flavour problem similarly has two basic sub-
problems, namely, understanding:

i) the origins of the hierarchies of the masses of the charge 2/3 and of the charge (−1/3)
quarks;

ii) the origins of the relatively small values of the three quark mixing angles.

The most natural qualitative solution of these two problems is arguably provided by the
Froggatt-Nielsen approach [2], although the approach based on non-Abelian discrete sym-
metries has been applied to the quark flavour problem as well. Solutions to the two flavour
problems within the theories with extra dimensions have also been proposed.2

The specific solutions to the individual lepton flavour sub-problems listed above be-
come problematic when applied to the sub-problems they were not intended to solve. The
seesaw and the radiative neutrino mass models do not lead to understanding of the origin
of the pattern of neutrino mixing without additional input, consisting typically of impos-
ing specific additional symmetries (of GUT or flavour type) on the relevant constructions.
Within the Froggatt-Nielsen approach one most naturally obtains small values of the three
neutrino mixing angles and while the charged-lepton and quark mass hierarchies can be
qualitatively understood within this approach, the specific predictions suffer from rela-
tively large uncertainties. The symmetry breaking in the lepton and quark flavour models

2A rather comprehensive discussion of the past proposed approaches to the lepton and quark flavour
problems can be found in the review article [1].
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based on non-Abelian discrete symmetries is impressively cumbersome: it requires the in-
troduction of a plethora of ‘flavon’ scalar fields having elaborate potentials, which in turn
require the introduction of large shaping symmetries to ensure the requisite breaking of
the symmetry leading to correct mass and mixing patterns.

There have been also attempts to make progress, e.g., on the lepton flavour problem by
combining the proposed ‘solutions’ of the three related sub-problems. In these combined
approaches it is difficult, if not impossible, to avoid the drawbacks of each of the ‘ingredient’
sub-problem ‘solutions’. In some cases this can be achieved at the cost of severe fine-
tuning. Thus, a universal, elegant, natural and viable theory of flavour that is free from
undesired drawback features is still lacking. Constructing such a theory would be a major
breakthrough in particle physics.

The unsatisfactory status of the flavour problem and the remarkable progress made
in the studies of neutrino oscillations (see, e.g., [10]), which began 22 years ago with the
discovery of oscillations of the atmospheric νµ and ν̄µ by the Super-Kamiokande experi-
ment [11] and lead, in particular, to the determination of the pattern of neutrino mixing,
stimulated renewed attempts to seek alternative viable approaches to the lepton as well as
to the quark flavour problems. A step in this direction was made in [12] where the idea
of using modular invariance as a flavour symmetry was put forward. This new original
approach based on modular invariance opened up a new promising direction in the studies
of the flavour problem and correspondingly in flavour model building.

The main feature of the approach proposed in [12] is that the elements of the Yukawa
coupling and fermion mass matrices in the Lagrangian of the theory are modular forms of a
certain level N which are functions of a single complex scalar field τ — the modulus — and
have specific transformation properties under the action of the modular group. In addition,
both the couplings and the matter fields (supermultiplets) are assumed to transform in rep-
resentations of an inhomogeneous (homogeneous) finite modular group Γ(′)

N . For N ≤ 5,
the finite modular groups ΓN are isomorphic to the permutation groups S3, A4, S4 and A5
(see, e.g., [13]), while the groups Γ′N are isomorphic to the double covers of the indicated
permutation groups, S′3 ≡ S3, A′4 ≡ T ′, S′4 and A′5. These discrete groups are widely used in
flavour model building. The theory is assumed to possess the modular symmetry described
by the finite modular group Γ(′)

N , which plays the role of a flavour symmetry. In the simplest
class of such models, the VEV of the modulus τ is the only source of flavour symmetry
breaking, such that no flavons are needed. Another appealing feature of the proposed
framework is that the VEV of τ can also be the only source of breaking of the CP symme-
try [14]. When the flavour symmetry is broken, the elements of the Yukawa coupling and
fermion mass matrices get fixed, and a certain flavour structure arises. As a consequence of
the modular symmetry, in the lepton sector, for example, the charged-lepton and neutrino
masses, neutrino mixing and the leptonic CPV phases are simultaneously determined in
terms of a limited number of coupling constant parameters. This together with the fact that
they are also functions of a single complex VEV — that of the modulus τ — leads to ex-
perimentally testable correlations between, e.g., the neutrino mass and mixing observables.
Models of flavour based on modular invariance have then an increased predictive power.
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The modular symmetry approach to the flavour problem has been widely implemented
so far primarily in theories with global (rigid) supersymmetry. Within the SUSY frame-
work, modular invariance is assumed to be a feature of the Kähler potential and the
superpotential of the theory.3 Bottom-up modular invariance approaches to the lepton
flavour problem have been exploited first using the groups Γ3 ' A4 [12, 16], Γ2 ' S3 [17],
Γ4 ' S4 [18]. After the first studies, the interest in the approach grew significantly and
models based on the groups Γ4 ' S4 [19–26], Γ5 ' A5 [26–28], Γ3 ' A4 [23, 29–50],
Γ2 ' S3 [51, 52] and Γ7 ' PSL(2,Z7) [53] have been constructed and extensively studied.
Similarly, attempts have been made to construct viable models of quark flavour [54] and
of quark-lepton unification [55–63]. The formalism of the interplay of modular and gCP
symmetries has been developed and first applications made in [14]. It was explored further
in [64–67], as was the possibility of coexistence of multiple moduli [68–71], considered first
phenomenologically in [19, 30]. Such bottom-up analyses are expected to eventually connect
with top-down results [72–93] based on ultraviolet-complete theories. While the aforemen-
tioned finite quotients ΓN of the modular group have been widely used in the literature to
construct modular-invariant models of flavour from the bottom-up perspective, top-down
constructions typically lead to their double covers Γ′N (see, e.g., [75, 77, 78, 94]). The
formalism of such double covers has been developed and viable flavour models constructed
in refs. [95–97] and [98, 99] for the cases of Γ′3 ' T ′, Γ′4 ' S′4 and Γ′5 ' A′5, respectively.

In almost all phenomenologically viable flavour models based on modular invariance
constructed so far the hierarchy of the charged-lepton and quark masses is obtained by fine-
tuning some of the constant parameters present in the models.4 Perhaps, the only notable
exceptions are refs. [100, 101], in which modular weights are used as Froggatt-Nielsen
charges, and additional scalar fields of non-zero modular weights play the role of flavons.

In the present article we develop the formalism that allows to construct models in
which the fermion (e.g. charged-lepton and quark) mass hierarchies follow solely from the
properties of the modular forms present in the fermion mass matrices, thus avoiding the
fine-tuning without the need to introduce extra fields. We consider theories described by
a modular group Γ′N with N ≤ 5 (which encompasses the unprimed ΓN ). It was noticed
in [19] and further exploited in [27, 30, 65] that for the three fixed points of the VEV of τ in
the modular group fundamental domain, τsym = i, τsym = ω ≡ exp(i 2π/3) = − 1/2+i

√
3/2

(the ‘left cusp’), and τsym = i∞, the theories based on the ΓN invariance have respectively
ZS2 , ZST3 , and ZTN residual symmetries. In the case of the double cover groups Γ′N , the ZS2
residual symmetry is replaced by the ZS4 and there is an additional ZR2 symmetry that is
unbroken for any value of τ (see [96] for further details). The indicated residual symmetries
play a crucial role in our analysis.

The fermion mass matrices are strongly constrained in the points of residual symme-
tries. This suggests that fine-tuning could be avoided in the vicinity of these points if
the charged-lepton and quark mass hierarchies follow from the properties of the modular

3Possible non-minimal additions to the Kähler potential, compatible with the modular symmetry, may
jeopardise the predictive power of the approach [15]. This problem is the subject of ongoing research.

4By fine-tuning we refer to either i) high sensitivity of observables to model parameters or ii) unjustified
hierarchies between parameters which are introduced in the model on an equal footing.
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forms present in the corresponding fermion mass matrices5 rather than being determined
by the values of the accompanying constants also present in the matrices. Relatively small
deviations of the modulus VEV from the symmetric point might also be needed to ensure
the breaking of the CP symmetry [14].

We note that in [108] flavour models in the vicinity of the residual symmetry fixed
points, τsym = i, ω, i∞, have been investigated within the modular invariant A4 framework
(N = 3). The authors find viable lepton (quark) flavour models in the vicinity of each of
three residual symmetry values of τsym (of τsym = i), in which the mixing arises seemingly
without fine-tuning. At the same time, the charged-lepton and quark mass hierarchies are
obtained by fine-tuning the values of the constants present in the respective mass matrices.

The aim of this study is to investigate the possibility of obtaining fermion mass hierar-
chies — and, in models of lepton flavour, large mixing — without fine-tuning. The article
is structured as follows. After introducing the necessary tools in section 2, we describe how
one can naturally generate hierarchical mass patterns in the vicinity of symmetric points
in section 3.1. In section 3.2, the role of decompositions under the residual symmetry
groups is highlighted. We perform a systematic scan of attainable hierarchical patterns
for N ≤ 5, the results of which are reported in section 3.3. The analysis of two promising
lepton flavour models in section 3.4 motivates the discussion, in section 4.1, of necessary
conditions to avoid fine-tuned leptonic mixing. We are then driven to a subset of viable
models, the most promising of which is explored in section 4.2. We summarise our results
and conclude in section 5.

2 Framework

2.1 Modular symmetries as flavour symmetries

We start by briefly reviewing the modular invariance approach to flavour. In this supersym-
metric (SUSY) framework, one introduces a chiral superfield, the modulus τ , transforming
non-trivially under the modular group Γ ≡ SL(2,Z). The group Γ is generated by the
matrices

S =

 0 1
−1 0

 , T =

1 1
0 1

 , R =

−1 0
0 −1

 , (2.1)

obeying S2 = R, (ST )3 = R2 = 1, and RT = TR. Elements γ of the modular group act
on τ via fractional linear transformations,

γ =

a b
c d

 ∈ Γ : τ → γτ = aτ + b

cτ + d
, (2.2)

5In the case of τsym = i∞ this idea is related to the fact that Yukawa couplings may become suppressed
in the limit of large Im τ , which was originally noticed in the context of string theory. More specifically, the
Yukawa couplings of twisted fields in heterotic orbifold models were shown to be exponentially suppressed
by d2 ∝ Im τ (cf. eq. (3.5)), where d is the distance between the fixed points to which the fields are
attached [102, 103] (see also [104, 105]). This mechanism was suggested as a possible origin of the observed
hierarchies of quark and lepton masses (see, e.g., [106, 107]).
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N 2 3 4 5
ΓN S3 A4 S4 A5

Γ′N S3 A′4 ≡ T ′ S′4 ≡ SL(2,Z4) A′5 ≡ SL(2,Z5)
dimMk(Γ(N)) k/2 + 1 k + 1 2k + 1 5k + 1

Table 1. Finite modular groups and dimensionality of the corresponding spaces of modular forms,
for N ≤ 5. Note that for N = 2 only even-weighted modular forms exist.

while matter superfields transform as ‘weighted’ multiplets [12, 94, 109],

ψi → (cτ + d)−k ρij(γ)ψj , (2.3)

where k ∈ Z is the so-called modular weight6 and ρ is a unitary representation of Γ.
In using modular symmetry as a flavour symmetry, an integer level N ≥ 2 is fixed and

one assumes that ρ(γ) = 1 for elements γ of the principal congruence subgroup

Γ(N) ≡


a b
c d

 ∈ SL(2,Z),

a b
c d

 ≡
1 0

0 1

 (mod N)

 . (2.4)

Hence, ρ is effectively a representation of the (homogeneous) finite modular group Γ′N ≡
Γ
/

Γ(N) ' SL(2,ZN ). For N ≤ 5, this group admits the presentation

Γ′N =
〈
S, T, R | S2 = R, (ST )3 = 1, R2 = 1, RT = TR, TN = 1

〉
. (2.5)

The (lowest component of the) modulus τ acquires a VEV which is restricted to
the upper half-plane and plays the role of a spurion, parameterising the breaking of
modular invariance. Additional flavon fields are not required, and we do not consider
them here. Since τ does not transform under the R generator, a ZR2 symmetry is pre-
served in such scenarios. If also matter fields transform trivially under R, one may iden-
tify the matrices γ and −γ, thereby restricting oneself to the inhomogeneous modular
group Γ ≡ PSL(2,Z) ≡ SL(2,Z) /ZR2 . In such a case, ρ is effectively a representation of a
smaller (inhomogeneous) finite modular group ΓN ≡ Γ

/ 〈
Γ(N) ∪ ZR2

〉
. For N ≤ 5, this

group admits the presentation

ΓN =
〈
S, T | S2 = 1, (ST )3 = 1, TN = 1

〉
. (2.6)

In general, however, R-odd fields may be present in the theory and Γ and Γ′N are then
the relevant symmetry groups. As shown in table 1, the finite modular groups ΓN and
Γ′N are isomorphic to permutation groups and to their double covers for small N . Group-
theoretical results for the ΓN groups are collected in appendix B of [14], while for the
double cover groups Γ′N they can be found in refs. [95, 96, 98].

Finally, to understand how modular symmetry may constrain the Yukawa couplings
and mass structures of a model in a predictive way, we turn to the Lagrangian — which

6While we restrict ourselves to integer k, it is also possible for weights to be fractional [78, 110–112].
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for an N = 1 global supersymmetric theory is given by

L =
∫

d2θ d2θ̄ K(τ, τ̄, ψI , ψ̄I) +
[ ∫

d2θW (τ, ψI) + h.c.
]
. (2.7)

Here K is the Kähler potential, while the superpotential W can be expanded in powers of
matter superfields ψI ,

W (τ, ψI) =
∑(

YI1...In(τ)ψI1 . . . ψIn

)
1
, (2.8)

where one has summed over all possible field combinations and independent singlets of the
finite modular group. By requiring the invariance of the superpotential under modular
transformations,7 one finds that the field couplings YI1...In(τ) have to be modular forms of
level N . These are severely constrained holomorphic functions of τ , which under modular
transformations obey

YI1...In(τ) γ−→ YI1...In(γτ) = (cτ + d)kρY (γ)YI1...In(τ) . (2.9)

Modular forms carry weights k = kI1 + . . .+ kIn and furnish unitary representations ρY of
the finite modular group such that ρY ⊗ ρI1 ⊗ . . .⊗ ρIn ⊃ 1. Non-trivial modular forms of
a given level exist only for k ∈ N, span finite-dimensional linear spacesMk(Γ(N)), and can
be arranged into multiplets of Γ(′)

N . The fact that these spaces have low dimensionalities
for small values of k and N (as shown in table 1) is at the root of the predictive power of
the described setup, since only a restricted number of τ -dependent Yukawa textures are
allowed in the superpotential.

Note that modular forms are functions of τ and are thus invariant under R. In order to
compensate the (−1)k factor in eq. (2.9), odd-weighted forms must furnish representations
with ρY (R) = −1 (we use hats to denote such representations). For even-weighted modular
forms, one has instead ρY (R) = 1.

2.2 Residual symmetries

The breakdown of modular symmetry is parameterised by the VEV of the modulus and
there is no value of τ which preserves the full symmetry. Nevertheless, at certain so-called
symmetric points τ = τsym the modular group is only partially broken, with the unbroken
generators giving rise to residual symmetries. Recall that the R generator is unbroken for
any value of τ , so that a ZR2 symmetry is always preserved.

The fundamental domain D of the modular group is shown in figure 1, along with its
symmetric points. There are only three inequivalent symmetric points, namely [19]:

• τsym = i∞, invariant under T , preserving ZTN × ZR2 ;

• τsym = i, invariant under S, preserving ZS4 (recall that S2 = R); and

• τsym = ω ≡ exp(2πi/3), ‘the left cusp’, invariant under ST , preserving ZST3 × ZR2 .
Finally, it is worth noting that these symmetric values preserve the CP symmetry of

a CP- and modular-invariant theory (e.g. a modular theory where the couplings satisfy a
reality condition) [14, 96]. A ZCP

2 symmetry is preserved for Re τ = 0 or for τ lying on the
border of D, but is broken at generic values of τ .

7In theories of supergravity W transforms under the modular symmetry with a certain weight [94, 109],
shifting the required weights k of the modular forms.

– 7 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
6

−1 −1/2 0 1/2 1
Re τ

0

1/2

1

3/2

2

√
3/2

Im
 τ

i
e2πi/3

i∞

D

Figure 1. The fundamental domain D of the modular group Γ and its three symmetric points
τsym = i∞, i, ω. The value of τ can always be restricted to D by a suitable modular transformation.
Figure from ref. [96].

3 Mass hierarchies without fine-tuning

3.1 Mass matrices close to symmetric points

In theories where modular invariance is broken only by the modulus, the flavour structure
of mass matrices in the limit of unbroken supersymmetry is determined by the value of
τ and by the couplings in the superpotential. At a symmetric point τ = τsym, flavour
textures can be severely constrained by the residual symmetry group, which may enforce
the presence of multiple zero entries in the mass matrices. As τ moves away from its
symmetric value, these entries will generically become non-zero. The magnitudes of such
(residual-)symmetry-breaking entries will be controlled by the size of the departure ε from
τsym and by the field transformation properties under the residual symmetry group (which
may depend on the modular weights). This is shown in what follows.

Consider a modular-invariant bilinear

ψci M(τ)ij ψj , (3.1)

where the superfields ψ and ψc transform under the modular group as8

ψ
γ−→ (cτ + d)−kρ(γ)ψ ,

ψc
γ−→ (cτ + d)−kc

ρc(γ)ψc ,
(3.2)

so that each M(τ)ij is a modular form of level N and weight K ≡ k + kc. Modular
invariance requires M(τ) to transform as

M(τ) γ−→ M(γτ) = (cτ + d)Kρc(γ)∗M(τ)ρ(γ)† . (3.3)
8Note that in the case of a Dirac bilinear ψ and ψc are independent fields, so in general kc 6= k and

ρc 6= ρ, ρ∗.
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Taking τ to be close to the symmetric point, and setting γ to the residual symmetry
generator, one can use this transformation rule to constrain the form of the mass matrix
M(τ). We consider each of the three symmetric points in turn.

3.1.1 τsym = i∞

The representation basis for the group generators S and T typically found in the literature
is the T -diagonal basis, in which ρ(c)(T ) = diag(ρ(c)

i ). This basis is particularly useful for
the analysis of models where τ is ‘close’ to τsym = i∞, i.e. models with large Im τ . By
setting γ = T in eq. (3.3), one finds

Mij(Tτ) = (ρciρj)∗Mij(τ) . (3.4)

It is convenient to treat the Mij as functions of q ≡ exp (2πiτ/N), so that

ε ≡ |q| = e−2π Im τ/N (3.5)

parameterises the deviation of τ from the symmetric point. Note that the entries Mij(q)
depend analytically on q and that q T−→ ζq, with ζ ≡ exp (2πi/N). Thus, in terms of q,
eq. (3.4) reads

Mij(ζq) = (ρciρj)∗Mij(q) . (3.6)

Expanding both sides in powers of q, one finds

ζnM
(n)
ij (0) = (ρciρj)∗M

(n)
ij (0) , (3.7)

where M (n)
ij denotes the n-th derivative of Mij with respect to q. This means that M (n)

ij (0)
can only be non-zero for values of n such that (ρciρj)∗ = ζn.

It is clear that in the symmetric limit q → 0 the entry Mij = M
(0)
ij is only allowed to

be non-zero if ρciρj = 1. More generally, if (ρciρj)∗ = ζ l with 0 ≤ l < N ,

Mij(q) = a0 q
l + a1 q

N+l + a2 q
2N+l + . . . (3.8)

in the vicinity of the symmetric point. It crucially follows that the entry Mij is expected
to be O(εl) whenever Im τ is large. The power l only depends on how the representations
of ψ and ψc decompose under the residual symmetry group ZTN . This point will be made
explicit in section 3.2.

3.1.2 τsym = i

For the analysis of models where τ is in the vicinity of τsym = i, it is convenient to switch
to the basis where the S generator is represented by a diagonal matrix. In this S-diagonal
basis, one has ρ(c)(S) = diag(ρ(c)

i ).9 It is useful to define and work with

ρ̃
(c)
i ≡ i

k(c)
ρ

(c)
i , (3.9)

9Although we make use of the same notation, the ρ(c)
i depend on the basis under consideration.
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which not only simplify the algebra, but also correspond to representations of the residual
symmetry group, see eq. (3.23). By setting γ = S in eq. (3.3), one finds

Mij(Sτ) = (−iτ)K (ρ̃ci ρ̃j)∗Mij(τ) . (3.10)

We now treat the Mij as functions of

s ≡ τ − i
τ + i

, (3.11)

so that, in this context, ε ≡ |s| parameterises the deviation of τ from the symmetric point.
Note that the entries Mij(s) depend analytically on s and that s S−→ −s. Thus, in terms of
s, eq. (3.10) reads

Mij(−s) =
(1 + s

1− s

)K
(ρ̃ci ρ̃j)∗Mij(s) ⇒ M̃ij(−s) = (ρ̃ci ρ̃j)∗M̃ij(s) , (3.12)

where we have introduced M̃ij(s) ≡ (1 − s)−KMij(s). Expanding both sides in powers of
s, one obtains

(−1)nM̃ (n)
ij (0) = (ρ̃ci ρ̃j)∗M̃

(n)
ij (0) , (3.13)

where M̃ (n)
ij denotes the n-th derivative of M̃ij with respect to s.

It should be clear from eq. (3.13) that for τ ' i the mass matrix entry Mij ∼ M̃ij

is only allowed to be O(1) when ρ̃ci ρ̃j = 1. If instead ρ̃ci ρ̃j = −1, the entry Mij ∼ M̃ij is
expected to be O(ε), with ε = |s|. Note that, unlike in the previous section, the relevant
factors ρ̃(c)

i depend on the weights k(c) via eq. (3.9).

3.1.3 τsym = ω

Finally, for the analysis of models where τ is in the vicinity of τsym = ω, we consider the
basis where the product ST is represented by a diagonal matrix. In this ST -diagonal basis
where ρ(c)(ST ) = diag(ρ(c)

i ), it is useful to define

ρ̃
(c)
i ≡ ω

k(c)
ρ

(c)
i , (3.14)

which are representations under the residual symmetry group, see eq. (3.24). By setting
γ = ST in eq. (3.3), one finds

Mij(STτ) = [−ω(τ + 1)]K (ρ̃ci ρ̃j)∗Mij(τ) . (3.15)

It is now convenient to treat the Mij as functions of

u ≡ τ − ω
τ − ω2 , (3.16)

so that, in this context, ε ≡ |u| parameterises the deviation of τ from the symmetric point.
Note that the entries Mij(u) depend analytically on u and that u ST−−→ ω2u. Thus, in terms
of u, eq. (3.15) reads

Mij(ω2u) =
(

1− ω2u

1− u

)K
(ρ̃ci ρ̃j)∗Mij(u) ⇒ M̃ij(ω2u) = (ρ̃ci ρ̃j)∗M̃ij(u) , (3.17)
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where M̃ij(u) ≡ (1− u)−KMij(u). Expanding both sides in powers of u, one obtains

ω2nM̃
(n)
ij (0) = (ρ̃ci ρ̃j)∗M̃

(n)
ij (0) , (3.18)

where M̃ (n)
ij denotes the n-th derivative of M̃ij with respect to u.

It follows that for τ ' ω the mass matrix entry Mij ∼ M̃ij is only allowed to be O(1)
when ρ̃ci ρ̃j = 1. More generally, if ρ̃ci ρ̃j = ωl with l = 0, 1, 2, then the entry Mij ∼ M̃ij is
expected to be O(εl) in the vicinity of τ = ω, with ε = |u|. Like in the previous section,
the factors ρ̃(c)

i depend on the weights k(c), see eq. (3.14).

3.2 Decomposition under residual symmetries

We have just shown that, as τ departs from a symmetric value τsym, the entries of fermion
mass matrices are of O(εl), where ε parameterises the deviation of τ from τsym. The powers
l are extracted from products of factors which, in this section, are shown to correspond
to representations of the residual symmetry group. One can systematically identify these
residual symmetry representations for the different possible choices of Γ′N representations
of matter fields. This knowledge will later be exploited to construct hierarchical mass
matrices via controlled corrections to entries which are zero in the symmetric limit.

We start by noting that matter fields ψ furnish ‘weighted’ representations (r, k) of
the finite modular group Γ′N . Whenever a residual symmetry is preserved by the value of
τ , matter fields decompose into unitary representations of the residual symmetry group.
Modulo a possible ZR2 factor,10 these groups are the cyclic groups ZTN , ZS4 , and ZST3 (cf. sec-
tion 2.2). A cyclic group Zn ≡ 〈a | an = 1〉 has n inequivalent 1-dimensional irreducible
representations (irreps) 1k, where k = 0, . . . , n − 1 is sometimes referred to as a charge.
The group generator a is represented by one of the n-th roots of unity,

1k : ρ(a) = exp
(

2πik
n

)
. (3.19)

For odd n, the only real irrep of Zn is the trivial one, 10 (the reality of an irrep is indicated
by removing the boldface). For even n, there is one more real irrep, 1n/2. All other irreps
are complex, and split into pairs of conjugated irreps: (1k)∗ = 1n−k.

To illustrate the aforementioned decomposition of representations at symmetric points,
we take as an example a (3, k) triplet ψ of S′4. It transforms under the unbroken γ = ST

at τ = ω as
ψi

ST−−→ (−ω − 1)−k ρ3(ST )ij ψj = ωkρ3(ST )ij ψj . (3.20)

One can check that the eigenvalues of ρ3(ST ) are 1, ω and ω2, and so in a suitable (ST -
diagonal) basis the transformation rule explicitly reads

ψ
ST−−→ ωk


1 0 0
0 ω 0
0 0 ω2

ψ =


ωk 0 0
0 ωk+1 0
0 0 ωk+2

ψ , (3.21)

which means that ψ decomposes as ψ  1k ⊕ 1k+1 ⊕ 1k+2 under the residual ZST3 .
10See the discussion in appendix A.
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One can find the residual symmetry representations for any other ‘weighted’ multiplet
of a finite modular group in a similar fashion. For a given level N , the decompositions of
fields under a certain residual symmetry group only depend on the pair (r, k). In general:

• At τ = i∞, ψ ∼ (r, k) transforms under the unbroken γ = T as

ψi
T−→ ρr(T )ij ψj = ρi ψi , (3.22)

where for the last equality we have assumed to be in a T -diagonal basis (no sum over
i). The phase factors ρi correspond to the ZTN irreps into which ψ decomposes. It
follows that each ρi is a power of ζ = exp(2πi/N), depending on r but not on k.

• At τ = i, ψ ∼ (r, k) transforms under the unbroken γ = S as

ψi
S−→ (−i)−kρr(S)ij ψj = ikρi ψi , (3.23)

where for the last equality we have assumed to be in an S-diagonal basis (no sum over
i). The phase factors ρ̃i = ikρi correspond to the ZS4 irreps into which ψ decomposes.
It follows that each ρ̃i is a power of i which depends both on r and on k (mod 4).

• At τ = ω, ψ ∼ (r, k) transforms under the unbroken γ = ST as

ψi
ST−−→ (−ω − 1)−kρr(ST )ij ψj = ωkρi ψi , (3.24)

where for the last equality we have assumed to be in an ST -diagonal basis (no sum
over i), as in the explicit example of eq. (3.21). The phase factors ρ̃i = ωkρi corre-
spond to the ZST3 irreps into which ψ decomposes. It follows that each ρ̃i is a power
of ω which depends both on r and on k (mod 3).

After identifying the (~)
ρi and (~)

ρ ci factors for the fields ψ and ψc entering a bilinear
(equivalently, their irrep decompositions), one can apply the results of the previous section
to determine the structure of a mass matrix in the vicinity of a symmetric point in terms
of powers of ε, in the appropriate basis. It follows from the above that, in the analysis
with large Im τ , the product (ρciρj)∗ matches some power ζ l with 0 ≤ l < N , while in
the analysis corresponding to τ ' ω one necessarily has ρ̃ci ρ̃j = ωl with l = 0, 1, 2. These
were tacitly taken as the most general possibilities in sections 3.1.1 and 3.1.3. The same
reasoning implies that, in the τ ' i context, ρ̃ci ρ̃j is some integer power il, with l = 0, 1, 2, 3.
It turns out that only two out of the four possibilities are viable, namely l = 0, 2 so that
ρ̃ci ρ̃j = ±1, as considered in section 3.1.2. This is due to the fact that M(τ)ij is R-even
and thus the fields ψci and ψj need to carry the same R-parity (see also appendix A).

We list in tables 6–9 of appendix A the decompositions of the weighted representations
of Γ′N (N ≤ 5) under the three residual symmetry groups, i.e. the residual decompositions
of the irreps of Γ′2 ' S3, Γ′3 ' A′4 = T ′, Γ′4 ' S′4 = SL(2,Z4), and Γ′5 ' A′5 = SL(2,Z5).
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3.3 Hierarchical structures

3.3.1 From entries to masses

We are in a position to use the results found so far and construct hierarchical mass matrices
in the vicinity of a symmetric point. We have seen that in an appropriate basis M(τ(ε))ij ∼
O(εl). For each (i, j) pair, the power l can be obtained from the residual symmetry group
decompositions of tables 6–9.

Note that a modular-symmetric mass matrix M(τ(ε)) depends analytically on the
small real parameter ε, defined in section 3.1 for each symmetric point. Physical masses
are the singular values of M(τ) and are also analytic functions of ε.11 After the modular
symmetry breaking, the leading superpotential contribution to each fermion mass is thus
expected to be proportional to a power of ε which depends on the hierarchical structure
of the entries of M . To find out which, one can make use of the following set of relations,
valid for any n× n complex matrix M [114]:∑

i1<...<ip

m2
i1 . . .m

2
ip =

∑
|detMp×p|2 , (3.25)

where p = 1, . . . , n is fixed, mi are the singular values of M , and the sum on the right-hand
side goes over all possible p×p submatricesMp×p ofM . In the particular case of n = 3, we
denote the masses by (m1,m2,m3) such that their leading terms are respectively of order
(εd1 , εd2 , εd3) with d1 ≥ d2 ≥ d3 ≥ 0. Then,

m2
3 ∼

∑
i,j

|Mij |2 = TrM †M ,

m2
2m

2
3 ∼

∑
| detM2×2|2 ⇒ m2

2 ∼
∑
| detM2×2|2

TrM †M ,

m2
1m

2
2m

2
3 = |detM |2 ⇒ m2

1 ∼
|detM |2∑
| detM2×2|2

,

(3.26)

where ∼ refers to power counting in ε and not necessarily to a reliable approximation.
Note that so far the considered mass spectrum is generic. This is to be contrasted with
the special case of a hierarchical 3× 3 mass matrix, for which d1 > d2 > d3 ≥ 0 and thus
m1 � m2 � m3. In this case, eqs. (3.26) turn into useful approximations,

m2
3 '

∑
i

m2
i = TrM †M ,

m2
2m

2
3 '

∑
i<j

m2
im

2
j = 1

2
(
(TrM †M)2 − Tr(M †M)2

)
,

(3.27)

and lead to reliable expressions for m3, m2 and m1 = | detM |/(m2m3).

3.3.2 Example and results

As an example of application of our results, consider a model at level N = 5 with τ having
a large imaginary part and with matter fields in weighted representations ψ ∼ (3, k) and

11More precisely, the elements of the unordered tuple of non-zero singular values are absolute values of
analytic functions of ε, see Theorem 4.3.17 in ref. [113].
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ψc ∼ (3′, kc). From table 9 one sees that ψ  10⊕11⊕14 and ψc  10⊕12⊕13 under the
residual group at the symmetric point τsym = i∞. One can then identify ρi = diag(1, ζ, ζ4)
and ρci = diag(1, ζ2, ζ3), with ζ = exp(2πi/5), which allows for the structure

M(τ(ε)) ∼


1 ε4 ε

ε3 ε2 ε4

ε2 ε ε3

 , with ε = e−2π Im τ/5 . (3.28)

Resorting to (3.26), one finds that the spectrum is hierarchical, with (m3,m2,m1) ∼
(1, ε, ε4).

Note that to have a non-zero mass matrix one needs the sum K = k+kc to be even (in
this case), since matter fields furnish unhatted representations of the finite modular group
and should carry the same R-parity (see appendix A). Furthermore, in order to obtain
the full structure of eq. (3.28) and the expected hierarchical spectrum, K must be large
enough that sufficient modular forms contribute to M(τ). For instance, for K = 2 the
superpotential may turn out to include a unique contribution:

W ⊃
∑
s

αs
(
Y

(5,2)
5 (τ)ψcψ

)
1,s

⇒ M(τ) = α


√

3Y1 Y5 Y2

Y4 −
√

2Y3 −
√

2Y5

Y3 −
√

2Y2 −
√

2Y4


Y

(5,2)
5

, (3.29)

where the αs are coupling constants, the sum is taken over all possible singlets s and
Y

(N,K)
r(,µ) denotes the modular form multiplet of level N , weight K and irrep r, with µ

possibly labelling linearly independent multiplets of the same type. The rightmost matrix
subscript indicates the multiplet to which the Yi components belong. We have considered
the T -diagonal basis for A′5. One can explicitly check that, at leading order in ε = |q|,
the components of Y (5,2)

5 (τ) read (Y1, Y2, Y3, Y4, Y5) ' N
(
−1/
√

6, q, 3q2, 4q3, 7q4
)
, with

q = exp (2πiτ/5) and a common normalisation N . The power structure matches that
of eq. (3.28) and naïvely this corresponds to the desired (1, ε, ε4) spectrum. Upon closer
inspection, however, one realises that the determinant of M vanishes identically for any
value of τ ,

detM ∝
√

6Y1Y3Y4 − Y 2
2 Y4 + Y2

(
Y 2

3 −
√

6Y1Y5
)

+ Y5
(
Y 2

4 − Y3Y5
)

= 0 , (3.30)

meaning that at least one fermion is massless. In the vicinity of τsym = i∞, we have
(m3,m2,m1) ∼ (1, ε, 0). This issue is resolved already at weight K = 4, for which the
modular multiplets Y (5,4)

4 , Y (5,4)
5,1 , and Y (5,4)

5,2 are available. In this case the spectrum follows
a (1, ε, ε4) pattern, without a massless fermion (see section 3.4.1).

Let us pause and describe our philosophy going forward. We are interested in iden-
tifying 3 × 3 hierarchical mass matrices where the hierarchical pattern is a result of the
proximity of the modulus to a point of residual symmetry and no massless fermions are
present in the spectrum. We assume to effectively be dealing with bilinears of the type (3.1)
and consider all possible 3-dimensional representations for the fields ψ and ψc. While the
representations r and rc are in general reducible, we focus on the case where the same
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N Γ′N Pattern Sym. point Viable r⊗ rc

2 S3 (1, ε, ε2) τ ' ω [2⊕ 1(′)]⊗ [1⊕ 1(′) ⊕ 1′]

τ ' ω [1a ⊕ 1a ⊕ 1′a]⊗ [1b ⊕ 1b ⊕ 1′′b ]
3 A′4 (1, ε, ε2)

τ ' i∞ [1a ⊕ 1a ⊕ 1′a]⊗ [1b ⊕ 1b ⊕ 1′′b ] with 1a 6= (1b)∗

4 S′4

(1, ε, ε2) τ ' ω [3a, or 2⊕ 1(′), or 2̂⊕ 1̂(′)]⊗ [1b ⊕ 1b ⊕ 1′b]

(1, ε, ε3) τ ' i∞
3 ⊗ [2⊕ 1, or 1⊕ 1⊕ 1′], 3′ ⊗ [2⊕ 1′, or 1⊕ 1′ ⊕ 1′],

3̂′ ⊗ [2̂⊕ 1̂, or 1̂⊕ 1̂⊕ 1̂′], 3̂ ⊗ [2̂⊕ 1̂′, or 1̂⊕ 1̂′ ⊕ 1̂′]

5 A′5 (1, ε, ε4) τ ' i∞ 3⊗ 3′

Table 2. Hierarchical mass patterns which can be realised in the vicinity of symmetric points.
These patterns are unaffected by the exchange r ↔ rc and may only be viable for certain weights
(see appendix B). Subscripts run over irreps of a certain dimension, and 1′′′a = 1a for N = 3, while
1′′a = 1a for N = 4. Primes in parenthesis are uncorrelated.

weight is shared between the irreps into which they decompose.12 Thus, in our search, we
take r(c) to be either irreducible or a direct sum of irreps sharing the same ρ(R). While it is
possible for r(c) to be a direct sum of hatted and unhatted representations, the requirement
of a common weight k(c) would result in the co-existence of R-odd and R-even fields within
ψ(c). The fact that M(τ) is R-even would then imply the isolation of these sectors by the
ZR2 symmetry and the vanishing of some mixing angles.

Finally, it is straightforward to recognise that if all mass matrix entries are either O(1)
or O(ε), then leading contributions to the masses themselves are not expected to be smaller
than O(ε), unless one resorts to cancellations. Therefore, for τ ' i one cannot produce the
desired hierarchical patterns solely as a consequence of the smallness of ε.

The result of our analysis is given in tables 10–13 of appendix B. These tables sum-
marise, for each of the levels N ≤ 5, the patterns which may arise in the vicinity of the two
potentially viable symmetric points, τsym = ω and i∞, for all (r, rc) pairs of 3-dimensional
representations and all weights k(c). One finds that it is only possible to obtain hierarchical
spectra for a small list of representation pairs, the most promising of which are collected
here, in table 2.

We have excluded from this summary table reducible representations made up of three
copies of the same singlet, since in those cases at least three independent modular multiplets
of the same type must contribute to the mass matrix to avoid a massless fermion, and the
number of superpotential parameters is unappealingly high. Still, such cases may result in
other interesting hierarchical patterns such as (1, ε2, ε3) and (ε, ε2, ε3) and can be found in
the tables of appendix B.

12The freedoms in choosing i) the normalisations of modular multiplets and ii) the normalisations of
Clebsch-Gordan coefficients introduce ambiguities in the identification of hierarchies. In the interest of
minimizing their impact, when possible we make use of modular form multiplets obtained from tensor
products of a single k = 1 multiplet with itself, via canonically normalised Clebsch-Gordan coefficients,
as in [96]. Using this procedure, one expects that relative normalisations of modular multiplets cannot be
responsible for hierarchies, at least within the same weight k.
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Observable Best-fit value and 1σ range
me/mµ 0.0048± 0.0002
mµ/mτ 0.0565± 0.0045

NO IO
δm2/(10−5 eV2) 7.34+0.17

−0.14

|∆m2|/(10−3 eV2) 2.485+0.029
−0.032 2.465+0.030

−0.031

r ≡ δm2/|∆m2| 0.0295± 0.0008 0.0298± 0.0008
sin2 θ12 0.305+0.014

−0.013 0.303+0.014
−0.013

sin2 θ13 0.0222+0.0006
−0.0008 0.0223+0.0007

−0.0006

sin2 θ23 0.545+0.020
−0.047 0.551+0.016

−0.034

δ/π 1.28+0.38
−0.18 1.52+0.13

−0.15

Table 3. Best-fit values and 1σ ranges for neutrino oscillation parameters obtained from the global
analysis [115], and for charged-lepton mass ratios, given at the scale 2 × 1016 GeV with the tan β
averaging described in [12], obtained from ref. [116]. The parameters entering the definition of r
are δm2 ≡ m2

2 −m2
1 and ∆m2 ≡ m2

3 − (m2
1 +m2

2)/2.

Inspired by these results, we now turn to the construction of realistic models of lepton
flavour where mass hierarchies are a consequence of the described mechanism.

3.4 Promising models

To ascertain the viability of modular-invariant models of lepton flavour one must confront
their predictions with experimental data on ratios of charged-lepton masses, neutrino mass-
squared differences and leptonic mixing angles, see table 3 (the constraints on the Dirac
CPV phase δ are ignored in our fit). The reader is referred to [19] for details on our
numerical procedure.

The minimal-form Kähler potential is here considered,

K(τ, τ , ψI , ψI) = −Λ2
0 log(−iτ + iτ) +

∑
I

|ψI |2

(−iτ + iτ)kI
, (3.31)

with Λ0 of mass dimension one. We further take Higgs doublets Hu and Hd to be sin-
glets under the modular group. Charged-lepton masses are obtained from their Yukawa
interactions,

W ⊃
∑
s

αs
(
Y

(N,kY )
rs (τ)Ec L

)
1,s
Hd , (3.32)

where L and Ec denote lepton doublet and charged-lepton singlet superfields with weights
kL and kE , respectively. Neutrino masses are generated either by the Weinberg operator,

W ⊃ 1
Λ
∑
s

gs
(
Y

(N,kW )
rs (τ)L2

)
1,s
H2
u , (3.33)

or within a type-I seesaw UV completion,

W ⊃
∑
s

gs
(
Y

(N,kY )
rs (τ)N c L

)
1,s
Hu +

∑
s

Λs
(
Y

(N,kM )
rs (τ) (N c)2

)
1,s

, (3.34)
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where at least 2 neutrino gauge-singlet superfields N c of weight kN are present in the model.
To compensate the modular weights of field monomials, the modular forms entering the
Weinberg and Majorana terms need to have weights kW = 2kL and kM = 2kN , while those
in Yukawa terms need instead kY = kL + kE and kY = kL + kN .

The relevant superpotentials can be cast in the form

W = λij E
c
i Lj Hd +


1
2 cij Li Lj H

2
u (Weinberg)

Yij N c
i Lj Hu + 1

2 (MN )ij N c
i N

c
j (Seesaw)

. (3.35)

After electroweak symmetry breaking, with 〈Hu〉 = (0, vu)T and 〈Hd〉 = (vd, 0)T , these
result in the Lagrangian mass terms for leptons

L ⊃ −
(
Me
)
ij
eiL ejR −

1
2
(
Mν

)
ij
νciR νjL + h.c. , (3.36)

which have been written in terms of four-spinors. Here, Me = vdλ
†, while

Mν =

v2
u c (Weinberg)
−v2

u YT M−1
N Y (Seesaw)

. (3.37)

Finally, aiming at minimal and predictive examples, we impose a generalised CP symmetry
on the models, enforcing the reality of coupling constants [14].

3.4.1 A′5 models with L ∼ 3, Ec ∼ 3′

We start by considering the most ‘structured’ series of hierarchical models, i.e. the case
with both fields L, Ec furnishing complete irreducible representations of the finite modular
group. According to table 2, the only such possibility arises at level N = 5 in the vicinity
of τ = i∞ when L and Ec are different triplets of the finite modular group A′5. For
definiteness, we choose L ∼ (3, kL), Ec ∼ (3′, kE). The predicted charged-lepton mass
pattern is (mτ ,mµ,me) ∼ (1, ε, ε4).

We have performed a systematic scan restricting ourselves to models requiring modular
forms of weight not higher than k = 6, and involving at most 8 effective parameters
(including Re τ and Im τ). Models producing a massless electron are rejected. For neutrino
masses generated via a type I seesaw, we have considered gauge-singlet superfields N c

furnishing a complete irrep of dimension 2 or 3. Out of the 36 models thus identified, we
have selected the only one which i) is viable in the regime of interest, ii) produces a charged-
lepton spectrum which is not fine-tuned,13 and iii) is consistent with the experimental
bound on the Dirac CPV phase δ. For this model, kL = 3, kE = 1 and N c ∼ (2̂′, 2). The
corresponding superpotential reads:

W =
[
α1
(
Y

(5,4)
4 EcL

)
1

+ α2
(
Y

(5,4)
5,1 EcL

)
1

+ α3
(
Y

(5,4)
5,2 EcL

)
1

]
Hd

+
[
g1
(
Y

(5,5)
6̂,1 N cL

)
1

+ g2
(
Y

(5,5)
6̂,2 N cL

)
1

+ g3
(
Y

(5,5)
6̂,3 N cL

)
1

]
Hu

+ Λ
(
Y

(5,4)
3′ (N c)2

)
1
.

(3.38)

13Note that fitting simultaneously mass ratio and mixing angle data may drive the model parameters to
tuned values, even if no tuning is expected at the level of charged-lepton masses.
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The modular forms entering W are obtained from the lowest weight (k = 1) sextet [99],

Y
(5,1)

6̂ =
(
2 ε5 + θ5, 2 θ5 − ε5, 5 ε θ4, 5

√
2 ε2 θ3, −5

√
2 ε3 θ2, 5 ε4 θ

)T
, (3.39)

where θ and ε are functions of the modulus, θ(τ) = 1+3q5/5+2q10/25−28q15/125+. . . and
ε(τ) = q

(
1− 2q5/5 + 12q10/25 + 37q15/125 + . . .

)
, with q = exp (2πiτ/5). In our regime

of interest, |q| is small and the sextet modular multiplet approximately reads Y (5,1)
6̂ '

(1, 2, 5q, 0, 0, 0), which motivates an alternative definition of expansion parameter, |ε| with
ε ≡ 5ε/θ ' 5q, used only in the context of this section. The charged-lepton mass matrix is
then approximated by

M†e '
4
√

2√
3
vdα1θ

4


9
2
(
α̃2 − 10

9 α̃3
) √

2
5
(
− 14

25 + 53
50 α̃2 − α̃3

)
ε4 1√

2 (4 + α̃2) ε
2
√

2
5
(
− 7

5 + α̃2 − α̃3
)
ε3 −

( 2
5 + α̃2 − 2α̃3

)
ε2 − 2

5
( 7

25 + 53
50 α̃2 − α̃3

)
ε4

1√
2

(
− 4

5 + α̃2 − 2α̃3
)
ε2 (2− α̃2) ε − 4

5
( 7

10 + α̃2 − α̃3
)
ε3

 ,

(3.40)
with α̃2 ≡ 2√

5α2/α1, α̃3 ≡ 2
√

6
5
√

5α3/α1, matching the pattern in eq. (3.28). It follows that
the charged-lepton mass ratios are given by

me

mµ
' 16

125

∣∣∣∣∣(4 + α̃2 − 5α̃3) (10 + 7α̃2 − 5α̃3) (2− 4α̃2 + 5α̃3)
(2− α̃2)2 (9α̃2 − 10α̃3)

∣∣∣∣∣ |ε|3 ,
mµ

mτ
' 2

∣∣∣∣ 2− α̃2
9α̃2 − 10α̃3

∣∣∣∣ |ε| ,
(3.41)

at leading order in |ε|. These expressions alone isolate viable (ε-independent) regions
in the plane of α̃2 and α̃3. Taking the 1σ ranges for charged-lepton mass ratios from
table 3, we plot these regions in figure 2. The superimposed contours refer to the Barbieri-
Giudice measure of fine-tuning [117] in the charged-lepton sector, max(BG), corresponding
to the largest of four quantities |∂ ln(mass ratio)/∂ ln α̃2,3|. An observable O is typically
considered fine-tuned with respect to some parameter p if BG ≡ |∂ lnO/∂ ln p| & 10 [117].

Expansions similar to (3.40) for the neutrino Yukawa and mass matrices are not useful
since |ε| is not the only small parameter in the neutrino sector. In particular, some entries
ofMν are proportional to 1+(5/12)g2/g1−

√
3 g3/g1 which is forced by the fit to be O(10−2)

in the viable region. Fine-tuning in the neutrino sector is expected (see section 4.1) and
is related to the fact that the residual symmetry constrains not only the charged-lepton
masses, but also the lepton mixing pattern. By sending Im τ → ∞ while keeping the
couplings fixed to their best-fit values, one can check that the (13), (23), (31) and (32)
entries of the PMNS matrix become zero. In particular, sin2 θ23 → 0, and therefore the
symmetric limit does not provide an approximate description of leptonic mixing.

The result of the fit of this A′5 model is summarised in the first column of table 5,
which includes best-fit values and the corresponding 3σ ranges. The viable region in the
τ plane is shown on the left side of figure 5 and corresponds to a neutrino spectrum with
inverted ordering (IO).

3.4.2 S′4 models with L ∼ 2̂⊕ 1̂, Ec ∼ 3̂′

In the second most ‘structured’ case, one of the fields L, Ec is an irreducible triplet,
while the other decomposes into a doublet and a singlet of the finite modular group. This
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Figure 2. Values of the charged-lepton Yukawa couplings of the A′5 model with large Im τ which,
when eq. (3.41) is applicable, allow to reproduce charged-lepton mass ratios at 1σ (green). The red
regions are not accessible due to an upper limit on |ε| within the fundamental domain. Contours
refer to a Barbieri-Giudice measure of fine-tuning (see text). The yellow star shows the location of
the best-fit point for this model.

possibility is realised at level N = 4 in the vicinity of τ = i∞, see table 2. For definiteness,
we take L = L12 ⊕ L3 with L12 ∼ (2̂, kL), L3 ∼ (1̂, kL), and Ec ∼ (3̂′, kE). The charged-
lepton mass pattern in this regime is predicted to be (mτ ,mµ,me) ∼ (1, ε, ε3).

We have performed a systematic scan restricting ourselves to models involving at most
8 effective parameters (including Re τ and Im τ ; no limit on modular form weights). Once
again, models predicting a massless electron are rejected, while the N c (when present)
furnish a complete irrep of dimension 2 or 3. Out of the 60 models thus identified, we
have selected the only one which i) is viable in the regime of interest and ii) produces a
charged-lepton spectrum which is not fine-tuned. This model turns out to be consistent
with the experimental bound on the Dirac CPV phase. It corresponds to kL = kE = 2 and
N c ∼ (3, 1) and the superpotential reads:

W =
[
α1
(
Y

(4,4)
3 EcL12

)
1

+ α2
(
Y

(4,4)
3′ EcL12

)
1

+ α3
(
Y

(4,4)
3 EcL3

)
1

]
Hd

+
[
g1
(
Y

(4,3)
3̂ N cL12

)
1

+ g2
(
Y

(4,3)
3̂′ N cL12

)
1

+ g3
(
Y

(4,3)
3̂′ N cL3

)
1

]
Hu

+ Λ
(
Y

(4,2)
2 (N c)2

)
1
.

(3.42)

The modular forms entering W are obtained from the lowest weight (k = 1) triplet [96],

Y
(4,1)

3̂ =
(√

2εθ, ε2, −θ2
)T

, (3.43)
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where θ(τ) = 1 + 2q4 + 2q16 + . . . and ε(τ) = 2q + 2q9 + 2q25 + . . ., with q = exp (iπτ/2).
Using in the context of this section the expansion parameter obtained from the ratio of
these functions, |ε| with ε ≡ ε/θ ' 2q, the charged-lepton mass matrix is approximately
given by

M †e '
√

3
2 vdα1θ

8


ε2

(α̃2+
√

3)
2
√

6 ε
(7α̃2−

√
3)

2
√

6 ε3

− α̃2
6

(7
√

3α̃2+9)
6
√

6 ε3
(√3α̃2−9)

6
√

6 ε

α̃3ε
2 − α̃3√

2ε
α̃3√

2ε
3

 , (3.44)

with α̃2 ≡ α2/α1 and α̃3 ≡ α3/α1. It matches the expected power structure in |q|, as one
can check.14 One can also find approximate expressions for the charged-lepton mass ratios,
which read

me

mµ
' 18

√
3

∣∣α̃3(α̃2
2 − 3)

∣∣
|α̃2|

(
(α̃2 +

√
3)2 + 12α̃2

3

) |ε|2 ,
mµ

mτ
'
√

3
2

√
(α̃2 +

√
3)2 + 12α̃2

3

|α̃2|
|ε| .

(3.45)

The expressions (3.45) isolate viable (ε-independent) regions in the plane of coupling con-
stants, say α̃−1

2 = α1/α2 and α̃3/α̃2 = α3/α2. We plot these regions in figure 3, in-
cluding contours quantifying the degree of fine-tuning involved in the relation between
charged-lepton mass ratios and superpotential parameters (as described in the previous
section). Note that the model best-fit point in particular corresponds to a small value of
max(BG) ' 0.74.

Regarding the neutrino sector, one can check that close to the symmetric limit the
neutrino masses follow the pattern (a|ε|6, b0 − b2|ε|2, b0 + b2|ε|2), which naturally leads
to IO. However, we were unable to find viable regions with IO and, instead, the model
predicts a neutrino spectrum with normal ordering (NO). Within the viable region, the
approximate pattern (a|ε|6, b0−b2|ε|2, b0+b2|ε|2) is not accurate since |ε| is not the only small
parameter in the neutrino sector. In particular, some of the entries of Mν are proportional
to (1 +

√
6g2/g3) which is forced to be O(10−3) in our fit. As in the previous section, the

fine-tuning in the neutrino sector is explained by the necessity to introduce large corrections
to the symmetric-limit PMNS matrix, which has a zero either in the (31) or (33) entry in
the case of NO or IO, respectively.

The result of the fit of this S′4 model is summarised in the second column of table 5.
The viable region in the τ plane is located near the point τ = 2.7i and is shown on the left
side of figure 5.

4 Large mixing angles without fine-tuning

4.1 Viable PMNS matrix in the symmetric limit

We have seen in the previous sections that a slightly broken residual modular symmetry
allows to accommodate hierarchical charged-lepton masses without fine-tuning of the cor-

14Aside from consulting the third column of table 8, one must keep in mind the ordering of the ρ(c)
i ,

which depends on the representation basis for the group generators (we are using that of [96]).
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Figure 3. Values of the charged-lepton Yukawa couplings of the S′4 model with large Im τ which,
when eq. (3.45) is applicable, allow to reproduce charged-lepton mass ratios at 1σ (green). The red
regions are not accessible due to an upper limit on |ε| within the fundamental domain. Contours
refer to the Barbieri-Giudice measure of fine-tuning (see text). The yellow star shows the location
of the best-fit point for this model.

responding couplings. However, the resulting models are still subject to fine-tuning in the
neutrino sector, since residual symmetries typically constrain not only the charged-lepton
masses, but also the form of the PMNS matrix by forcing some of its entries to be zeros.
This raises the question of whether it is possible to have a PMNS matrix which is close
to the observed one even in the symmetric limit, i.e. such that either none of its entries
vanish, or only the (13) entry vanishes as ε→ 0.

This possibility has been investigated in ref. [118] for arbitrary flavour symmetry
groups. In particular, this analysis directly applies to the case of the flavour symme-
try being a residual modular symmetry. One of the main conclusions of ref. [118] is that
only a limited number of flavour symmetry representation choices for L and Ec give rise to
a PMNS matrix which is viable in the symmetric limit (as defined above). Most notably,
there are only two such cases consistent with hierarchical charged-lepton masses:

1. L 1⊕ 1⊕ 1, Ec  1⊕ r, where 1 is some real singlet of the flavour symmetry, and
r is some (possibly reducible) representation such that r 6⊃ 1;

2. L  1 ⊕ 1 ⊕ 1∗, Ec  1∗ ⊕ r, where 1 is some complex singlet of the flavour
symmetry, 1∗ is its conjugate, and r is some (possibly reducible) representation such
that r 6⊃ 1,1∗.
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N Γ′N Pattern Sym. point Viable rEc⊗rL Case

2 S3 (1, ε, ε2) τ 'ω [2⊕1(′)]⊗ [1⊕1(′)⊕1′] 1 or 4

τ 'ω [1a⊕1a⊕1′a]⊗ [1b⊕1b⊕1′′b ] 2

[1⊕1⊕1′]⊗ [1′′⊕1′′⊕1′],3 A′4 (1, ε, ε2)
τ ' i∞

[1⊕1⊕1′′]⊗ [1′⊕1′⊕1′′]
2

4 S′4 (1, ε, ε2) τ 'ω [3a, or 2⊕1(′), or 2̂⊕ 1̂(′)]⊗ [1b⊕1b⊕1′b] 1 or 4

5 A′5 − − − −

Table 4. Hierarchical charged-lepton mass patterns which may be realised in the vicinity of
symmetric points without fine-tuned mixing (PMNS close to the observed one in the symmetric
limit). The property which is satisfied (from 1-4, see text) is given in the last column and may
depend on the weights k and kc. The case N = 3 with τ ' ω is the only one in the table for which
rEc ↔ rL may be required, and for which not all k(c) choices are viable. For other notation, see
the caption of table 2.

The above original result makes use of the assumption that one charged-lepton mass
and at least one neutrino mass does not vanish in the symmetric limit. However, one
can also deduce from the analysis performed in [118] that the PMNS matrix is generically
unconstrained in the symmetric limit when the opposite is true. Therefore, we extend the
list of viable cases with the following two:

3. all charged-lepton masses vanish in the symmetric limit, i.e. the corresponding hier-
archical pattern involves only positive powers of ε, e.g. (ε, ε2, ε3);

4. all light neutrino masses vanish in the symmetric limit, i.e. L decomposes into three
(possibly identical) complex singlets none of which are conjugated to each other.

It follows that a modular-symmetric model of lepton flavour with hierarchical charged-
lepton masses may be free of fine-tuning if it satisfies any of the properties 1-4. Applying
this filter to the promising hierarchical cases of table 2, one is left with the representation
pairs listed here, in table 4. In this summary table, we have once again disregarded reducible
representations made up of three copies of the same singlet.

We now proceed by constructing such a model in the following section (clearly, the
models described in section 3.4 do not satisfy any of the properties 1-4). As a final re-
mark, we note that the argument of ref. [118] is only valid in the case when the flavour
symmetry analysis can be applied directly to the light neutrino mass matrix. In our setup,
this corresponds to the situation when light neutrino masses arise either directly from a
modular-invariant Weinberg operator, or via a type-I seesaw UV completion such that none
of the gauge-singlet neutrinos N c becomes massless in the symmetric limit (so that they
can be integrated out). This is the case in the two models considered so far and in the
model described in the following section.
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4.2 S′4 models with τ ' ω

We finally turn to the most ‘structured’ cases within the surviving lepton flavour models
of table 4. These arise at level N = 4 in the vicinity of τ = ω and correspond to Ec

and L being a triplet and the direct sum of three singlets of the finite modular group S′4,
respectively. The expected charged-lepton mass pattern is (mτ ,mµ,me) ∼ (1, ε, ε2).

We have performed a systematic scan restricting ourselves to promising models involv-
ing the minimal number of effective parameters (9, including Re τ and Im τ). Once again,
models predicting a massless electron are rejected, while the N c furnish a complete irrep
of dimension 2 or 3 (N c are present since Weinberg models require more parameters). Out
of 48 models, we have identified the only one which i) is viable in the regime of interest, ii)
is not fine-tuned in this regime, and iii) is consistent with the 2σ range for the Dirac CPV
phase, predicting δ ' π while other models lead to δ ' 0. For this model, L = L1⊕L2⊕L3
with L1, L2 ∼ (1̂, 2), L3 ∼ (1̂′, 2), and Ec ∼ (3̂, 4) and N c ∼ (3′, 1). The corresponding
superpotential reads:

W =
[
α1
(
Y

(4,6)
3′,1 EcL1

)
1

+ α2
(
Y

(4,6)
3′,2 EcL1

)
1

+ α3
(
Y

(4,6)
3′,1 EcL2

)
1

+ α4
(
Y

(4,6)
3′,2 EcL2

)
1

+ α5
(
Y

(4,6)
3 EcL3

)
1

]
Hd

+
[
g1
(
Y

(4,3)
3̂ N cL1

)
1

+ g2
(
Y

(4,3)
3̂ N cL2

)
1

+ g3
(
Y

(4,3)
3̂′ N cL3

)
1

]
Hu

+ Λ
(
Y

(4,2)
2 (N c)2

)
1
.

(4.1)

Since L1 and L2 are indistinguishable, one of the constants αi, with i = 1, . . . , 4, is effec-
tively not an independent parameter and can be set to zero by a suitable rotation without
loss of generality. We choose to set α2 = 0.

At leading order in the small parameter |ε|, with ε ≡ 1 − 1+
√

3
1−i

ε
θ and |ε| ' 2.8

∣∣∣ τ−ωτ−ω2

∣∣∣
in the context of this section,15 the charged-lepton mass matrix reads

M †e ' −
3(
√

3− 1)6
√

13
vdα1θ

12


1 α̃3 +

√
13
2 α̃4

i
√

39
2 α̃5√

3 ε
√

3
(
α̃3 −

√
13
2 α̃4

)
ε i

√
13

2 α̃5 ε

5
2 ε

2 1
4

(
10α̃3 +

√
13α̃4

)
ε2 −5i

√
13

4
√

3 α̃5 ε
2

 , (4.2)

while the charged-lepton mass ratios are given by

me

mµ
' 2
|α̃4α̃5|

√
4 +

(
2α̃3 +

√
13α̃4

)2
+ 39α̃2

5

3α̃2
4 +

[
1 +

(
α̃3 −

√
13α̃4

)2
]
α̃2

5

|ε| ,

mµ

mτ
' 4
√

13

√
3α̃2

4 +
[
1 +

(
α̃3 −

√
13α̃4

)2
]
α̃2

5

4 +
(
2α̃3 +

√
13α̃4

)2
+ 39α̃2

5

|ε| ,

(4.3)

15The definition of ε is motivated by the fact that ε/θ = (1− i)/(1+
√

3) at τ = ω, see eq. (3.5) in ref. [96]
(note the wrong sign in front of i in the published version of [96]).
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with α̃i ≡ αi/α1, i = 3, 4, 5. With respect to charged-lepton mass ratios, the model best-fit
point is found to correspond to max(BG) ' 0.85.

Up to an overall normalisation K, the light neutrino mass matrix is instead given by:

Mν ' K ε


0 0 g̃3

0 0 g̃2g̃3

g̃3 g̃2g̃3 2i
√

2
3 g̃

2
3

 (4.4)

at leading order in |ε|, where g̃i ≡ gi/g1, i = 2, 3. Note that the smallness of |ε| does not
constrain the Mν contribution to the mixing matrix, which depends only on the couplings
gi, and large mixing angles are allowed.

From the form ofMν it is clear that, in the limit of unbroken SUSY, there is a massless
neutrino, even though N c is a triplet. This follows from the modular-symmetric superpo-
tential, which implies the proportionality of the first two columns of Y, reducing its rank
and therefore the rank of Mν . The neutrino masses thus read

m1 = 0 , m2,3 '
√

2
3 K g̃

2
3

(√
1 + 3(1 + g̃2

2)
2g̃2

3
∓ 1

)
|ε| , (4.5)

and imply the ε-independent prediction

r = m2
2 −m2

1
m2

3 − (m2
1 +m2

2)/2 '
6 + 6g̃2

2 + 8g̃2
3 − 4

√
6
(
1 + g̃2

2
)

+ 4g̃2
3 |g̃3|

3 + 3g̃2
2 + 4g̃2

3 + 6
√

6
(
1 + g̃2

2
)

+ 4g̃2
3 |g̃3|

, (4.6)

which, by taking into account the 1σ range for r in table 3, isolates a viable region in
the plane of coupling constants. We show this region in the plane of g2/g3 and g1/g3
in figure 4. Contours refer to a Barbieri-Giudice measure of fine-tuning for the ratio of
neutrino mass-squared differences, given by max{|∂ ln r/∂ ln g̃2|, |∂ ln r/∂ ln g̃3|}. At the
model best-fit point, it has an acceptable value of 2.9. Additionally, the 3σ ranges for g̃2,3
are not especially narrow.

The result of the fit of this S′4 model is summarised in the last column of table 5. The
viable region in the τ plane corresponds to a neutrino spectrum with NO and is located
very close to τsym = ω, as can be seen from the magnified plot on the right side of figure 5.
The annular form of the region is explained by the fact that the phase of (τ − ω) has no
effect on the observables, as it enters only through ε and its effects are suppressed by the
smallness of |ε|. Therefore, in the regime τ ' ω this model is effectively described by 8
rather than 9 parameters.

In summary, in the vicinity of the symmetric point, i.e. for small |ε|, this model can
naturally lead to the observed charged-lepton mass hierarchies, see eq. (4.3). The neutrino
mass-squared difference ratio r is, in this region, insensitive to ε and depends only on the
two ratios g̃2,3 of neutrino couplings, see eq. (4.6). Furthermore, it is not especially sensitive
to these couplings. Finally, since light neutrino masses vanish in the symmetric point, the
symmetric limit allows for a generic mixing matrix (case 4 of section 4.1). Therefore, the
fit is not expected to be tuned in a way that compensates some ‘wrong PMNS’ symmetric
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Figure 4. Values of the neutrino Yukawa couplings of the S′4 model with τ ' ω which, when
eq. (4.6) is applicable, allow to reproduce the ratio r at 1σ (green). Contours refer to a Barbieri-
Giudice measure of fine-tuning (see text). The yellow star shows the location of the best-fit point
for this model.

prediction. In fact, we have numerically verified that sending τ → ω (ε→ 0) has almost no
effect on the values of mixing angles. This can be understood by considering, in turn, each of
the contributions to the mixing matrix. The rotation to the mass basis in the neutrino sec-
tor, on the one hand, is independent of ε in the region of interest, see eq. (4.4), and thus has
a well-defined limit as ε→ 0 (it is unchanged) even though light neutrinos become massless.
This rotation depends only on the ratios g̃2,3 of neutrino couplings. On the other hand, one
can check that the charged-lepton rotation arising from the diagonalisation of MeM

†
e , with

M †e given in eq. (4.2), also has a well-defined limit as ε → 0 even though two of the three
charged leptons become massless. This limiting form closely matches the rotation obtained
for finite, non-zero ε, and depends only on the ratios α̃3,4,5 of charged-lepton couplings.
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Model Section 3.4.1 (A′5) Section 3.4.2 (S′4) Section 4.2 (S′4)

Re τ −0.47+0.037
−0.096 0.0235+0.0019

−0.002 −0.496+0.009
−0.016

Im τ 3.11+0.26
−0.19 2.65+0.05

−0.04 0.877+0.0023
−0.024

α2/α1 1.33+0.20
−0.18 −7.43+2.76

−12.2 —

α3/α1 3.07+0.21
−0.15 2.76+5.27

−1.33 2.45+0.44
−0.42

α4/α1 — — −2.37+0.36
−0.3

α5/α1 — — 1.01+0.06
−0.06

g2/g1 −0.0781+0.0228
−0.0346 −0.407+0.0002

−0.0003 1.5+0.15
−0.14

g3/g1 0.57+0.0023
−0.0017 0.321+0.02

−0.043 2.22+0.17
−0.15

vd α1, GeV 0.404+0.303
−0.149 1.73+1.8

−1.15 4.61+1.32
−1.33

v2
u g1/Λ, eV 0.778+1.13

−0.477 42.5+9.88
−5.2 0.268+0.057

−0.063

ε(τ) 0.0998+0.0267
−0.0274 0.0313+0.0021

−0.0022 0.0186+0.0028
−0.0023

CL mass pattern (1, ε, ε4) (1, ε, ε3) (1, ε, ε2)

max(BG) 5.579 0.738 0.848

me/mµ 0.00474+0.00062
−0.0005 0.00479+0.00058

−0.00056 0.00475+0.00061
−0.00052

mµ/mτ 0.0573+0.0111
−0.0137 0.0574+0.0117

−0.013 0.0556+0.0136
−0.0116

r 0.0297+0.0021
−0.0021 0.0298+0.0019

−0.0023 0.0298+0.00196
−0.0023

δm2, 10−5 eV2 7.33+0.39
−0.4 7.38+0.34

−0.44 7.38+0.35
−0.44

|∆m2|, 10−3 eV2 2.47+0.04
−0.04 2.48+0.05

−0.04 2.48+0.05
−0.04

sin2 θ12 0.306+0.036
−0.028 0.301+0.044

−0.034 0.304+0.039
−0.036

sin2 θ13 0.0222+0.0021
−0.0018 0.0223+0.0017

−0.0022 0.0221+0.0019
−0.002

sin2 θ23 0.55+0.044
−0.097 0.548+0.045

−0.107 0.539+0.0522
−0.099

m1, eV 0.0493+0.00041
−0.00046 0.0204+0.00042

−0.00035 0

m2, eV 0.05+0.00037
−0.00042 0.0221+0.0003

−0.00028 0.0086+0.0002
−0.00026

m3, eV 0 0.0542+0.00054
−0.00046 0.0502+0.00046

−0.00043

Σimi, eV 0.0993+0.0008
−0.0009 0.0967+0.0013

−0.001 0.0588+0.0002
−0.0002

|〈m〉|, eV 0.0197+0.002
−0.0031 0.0181+0.0004

−0.0003 0.00144+0.00035
−0.00033

δ/π 1.88+0.37
−0.13 1.44+0.01

−0.01 1±O(10−6)

α21/π 0.91+0.28
−0.09 1.77+0.01

−0.01 0

α31/π 0 1.86+0.02
−0.02 1±O(10−5)

Nσ 0.431 0.649 0.563

Table 5. Best-fit values and 3σ ranges of the parameters and observables for the models discussed
in sections 3.4 and 4.2.
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Figure 5. Allowed regions in the τ plane for the models discussed in sections 3.4 and 4.2 (left).
The region corresponding to the model of section 4.2 is magnified (right). The green, yellow and
red colours correspond to different confidence levels (see legend). Points outside the fundamental
domain, while redundant, are kept for illustrative purposes.

5 Summary and conclusions

We have investigated the possibility to obtain fermion mass hierarchies without fine-tuning
in modular-invariant theories of flavour, which do not include flavons. In these theories,
hierarchical fermion mass matrices may arise solely due to the proximity of the VEV of the
modulus τ to a point of residual symmetry. In our analysis we have considered theories with
flavour symmetry described by a finite inhomogeneous or homogeneous modular group,
ΓN or Γ′N , with N ≤ 5. For N ≤ 5, the finite modular groups ΓN are isomorphic to the
permutation groups Γ2 ' S3, Γ3 ' A4, Γ4 ' S4 and Γ5 ' A5, while the groups Γ′N are
isomorphic to their double covers S′3 ≡ S3, A′4 ≡ T ′, S′4 and A′5.

In the simplest class of such models considered by us, the VEV of the modulus τ is
the only source of flavour symmetry breaking, such that no flavons are needed. Another
appealing feature of the proposed framework is that the VEV of τ can also be the only
source of CP symmetry breaking in the theory [14]. There is no value of τ which preserves
the full modular symmetry. Nevertheless, at certain so-called symmetric points τ = τsym
the modular group is only partially broken, with the unbroken generators giving rise to
residual symmetries. There are only three inequivalent symmetric points in the fundamen-
tal domain of the modular group [19]: τsym = i, τsym = ω ≡ exp(i 2π/3) = − 1/2 + i

√
3/2

(the ‘left cusp’), and τsym = i∞. In these three points, the theories based on ΓN invariance
have respectively ZS2 , ZST3 and ZTN residual symmetries. In the case of the double cover
groups Γ′N , there is an additional ZR2 symmetry that is unbroken for any value of τ [96],
thus enlarging the residual symmetries ZST3 and ZTN by the factor ZR2 , while the ZS2 sym-
metry is enlarged to a ZS4 one. In each of the three symmetric points the standard ZCP

2
symmetry may also be conserved [14].
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The indicated residual symmetries play a crucial role in our analysis. In Γ(′)
N modular

invariant theories of flavour the fermion mass matrices are modular forms of a given level
N . As we show, the mass matrices can be strongly constrained in the vicinity of points
of residual symmetries by the properties of the respective modular forms. For each of the
three symmetric points, we have developed the formalism which allows to determine the
degree of suppression of the elements of the fermion mass matrices, and correspondingly,
of their singular values — the fermion masses — in the vicinity of a given symmetric point.
More specifically, our analysis showed that, if ε parameterises the deviation of τ from a
given symmetric point, |ε| � 1, the degree of suppression is given by |ε|l, where l is an
integer and can take values

i) l = 0, 1, . . . , N − 1 in the case of τsym = i∞,

ii) l = 0, 1, 2 if τsym = ω, and

iii) l = 0, 1 when τsym = i.

These results show, in particular, that it is impossible to obtain the charged-lepton and
quark mass hierarchies in the vicinity of the symmetric point τsym = i as a consequence
only of the smallness of |ε|. As we have proven, the specific value of the power l depends
only on how the representations of the fermion fields in the mass term bilinear, denoted for
brevity as ψi and ψcj , decompose under the considered residual symmetry group. We have
derived the decompositions of the weighted irreducible representations of Γ′N (N ≤ 5) under
the three residual symmetry groups, i.e., the residual decompositions of the irreducible
representations (irreps) of Γ′2 ' S3, Γ′3 ' A′4 = T ′, Γ′4 ' S′4 = SL(2,Z4), and Γ′5 ' A′5 =
SL(2,Z5) (they are listed in tables 6–9 in appendix A). The results include also the case of
irreps of ΓN , since they represent a subset of the irreps of Γ′N .

Having these results we proceeded to identify 3× 3 hierarchical fermion mass matrices
where the hierarchical pattern is a result of the proximity of the modulus to a point of
residual symmetry and no massless fermions are present in the spectrum. We analysed
bilinears of the type ψci M(τ)ij ψj , M being the mass matrix, and considered all possible 3-
dimensional representations for the fields ψi and ψcj , i, j = 1, 2, 3. While the representations
of these fields r and rc are in general reducible, we focused on the case where the same
weight is shared between the irreps into which they decompose. The results of this analysis
are given in tables 10–13 of appendix B. These tables summarise, for each of the levels
N ≤ 5, the patterns of the three fermion masses which may arise in the vicinity of the two
potentially viable symmetric points, τsym = ω and i∞, for all (r, rc) pairs of 3-dimensional
representations and all weights k(c). We have found that it is only possible to obtain
hierarchical spectra for a small list of representation pairs, the most promising of which
are collected in table 2 and correspond to the patterns (1, ε, ε2), (1, ε, ε3) and (1, ε, ε4).

Using the developed formalism and the aforementioned results we have performed a
scan searching for phenomenologically viable models of lepton flavour where the charged-
lepton mass hierarchies are a consequence of the described mechanism. The charged-lepton
masses are obtained from their Yukawa interactions, while neutrino masses are generated
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either by the Weinberg operator or within a type-I seesaw UV completion. Aiming at
minimal and predictive models, we have imposed a generalised CP symmetry on the models,
enforcing the reality of coupling constants [14] and restricted the scan to models involving
at most 8 constant parameters (including Re τ and Im τ). Models producing a massless
electron were rejected. Out of the many models thus identified, we have selected only
those which i) are phenomenologically viable in the regime of interest, and ii) produce a
charged-lepton spectrum which is not fine-tuned.

We have found two viable models and both are in the vicinity of τ = i∞. The first
is an A′5 model where the lepton doublets L and charged-lepton singlets Ec are different
triplets of A′5. For this model, the charged-lepton, Dirac-neutrino and N c Majorana mass
terms involve modular forms of weights 4, 5 and 4, respectively. The neutrino masses are
generated by the seesaw mechanism with the gauge-singlet neutrino fields N c furnishing a
doublet of A′5. The predicted charged-lepton mass pattern is (mτ ,mµ,me) ∼ (1, ε, ε4). The
best description of the input data on the charged-lepton and neutrino masses and mixing
(Nσ = 0.43) was found to be obtained for Re τ = −0.47, Im τ = 3.11.

The second viable model found by us is based on S′4 modular symmetry. In this model
the charged-lepton, Dirac-neutrino and N c Majorana mass terms involve modular forms
of weights 4, 3 and 2, respectively. The charged-lepton mass pattern is predicted to be
(mτ ,mµ,me) ∼ (1, ε, ε3). The viable region in the τ plane is centred around τ = 2.65 i.

Both the A′5 and S′4 viable models were found to require a certain amount of fine-
tuning when describing the neutrino masses and mixing. The presence of fine-tuning in
the neutrino sector is explained by the necessity to introduce large corrections to the
symmetric-limit PMNS matrix. Addressing the problem of fine-tuning in the neutrino
sector, we have found that a modular-symmetric model of lepton flavour with hierarchical
charged-lepton masses is expected to be free of fine-tuning16 if it satisfies at least one of
four conditions (see section 4.1). Two of the conditions were formulated earlier in ref. [118]
for arbitrary flavour symmetry groups.

We have constructed a viable model based on S′4 modular symmetry in the vicinity
of τ = ω, which is free of fine-tuning in both the charged-lepton and neutrino sectors. It has
altogether nine parameters. The neutrino masses are generated via the seesaw mechanism.
The charged-lepton mass pattern is predicted to be (mτ ,mµ,me) ∼ (1, ε, ε2). The model
predicts, in particular, δ ' π and m1 ' 0. We have found also other viable non-fine-tuned
S′4 models which, however, predict δ ' 0.

For the three lepton flavour models constructed, we collect in table 5 the best-fit values
and 3σ allowed ranges of i) Re τ , Im τ and the superpotential parameters, of ii) the charged-
lepton masses and neutrino mass and mixing observables used as input in the statistical
analysis of the models, and of iii) the predicted lightest neutrino mass, the Dirac and
Majorana CPV phases, the sum of the neutrino masses and effective neutrinoless double
beta decay Majorana mass.

16In other words, it is possible to have a PMNS matrix which is close to the observed one even in the
symmetric limit, i.e., such that either none of its entries vanish, or only the (13) entry vanishes as ε→ 0.
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The results obtained in the present article show, in particular, that the requirement
of absence of fine-tuning in both the charged lepton and neutrino sectors in lepton flavour
models based on modular invariance is remarkably restrictive. It is hoped that using this
requirement it might be possible to identify not more than a few, if not just one, modular-
invariant models providing a simultaneous, viable and appealing solution to both the lepton
and quark flavour problems.

Note added. While this work was in its conclusion, ref. [119] appeared on the arXiv in
which the authors investigated the possibility to generate the charged-lepton mass hierarchy
in the vicinity of the symmetric point τsym = i. The two models presented in ref. [119]
are restricted to level N = 3. In these scenarios, the electron is massless by construction,
me = 0, and me 6= 0 is expected to arise either through SUSY breaking or from a dim-6
operator. The ratios me/mτ and mµ/mτ are then associated to independent parameters
and not to different powers of the same expansion parameter, as is the case of our work.
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A Residual group decompositions

The multiplets of Γ′N are ‘weighted’, i.e. are described by a pair (r, k).17 At a symmetric
point these multiplets decompose into 1-dimensional representations of the corresponding
residual symmetry group. In this appendix we present the decompositions of Γ′N multiplets
(N ≤ 5) under the three residual groups of interest (tables 6–9). As seen in section 2.2,
these are ZS4 , ZST3 × ZR2 and ZTN × ZR2 .

Before proceeding, let us comment on the ZR2 factors in ZST3 ×ZR2 and in ZTN×ZR2 . While
kept as part of the residual symmetry group definition in this appendix, they have been
omitted in the main text of section 3.2. To understand why they can be ignored without
loss of generality, note that a direct product Zn × Z2 ≡

〈
a, b |an = b2 = 1, ab = ba

〉
has 2n

irreps 1±k , k = 0, . . . , n− 1, which are simply given as products of the Zn and Z2 irreps:

1±k : ρ(a) = exp
(

2πik
n

)
, ρ(b) = ±1 . (A.1)

17As in [96], we denote with a hat representations r for which ρr(R) = −1.
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r ZS4 (τ = i) ZST3 × ZR2 (τ = ω) ZT2 × ZR2 (τ = i∞)

1 1k 1±k 1±0

1′ 1k+2 1±k 1±1

2 1k ⊕ 1k+2 1±k−1 ⊕ 1±k+1 1±0 ⊕ 1±1

Table 6. Decompositions of ‘weighted’ (r, k) multiplets of Γ′2 ' S3 under the residual symmetry
groups. Irrep subscripts should be understood modulo n, where n = 4, 3 in the first and second
columns, respectively. Upper (lower) signs correspond to even (odd) values of k.

r ZS4 (τ = i) ZST3 × ZR2 (τ = ω) ZT3 × ZR2 (τ = i∞)

1 1k 1±k 1±0

1′ 1k 1±k+1 1±1

1′′ 1k 1±k+2 1±2

2̂ 1k+1 ⊕ 1k+3 1∓k ⊕ 1∓k+1 1∓0 ⊕ 1∓1

2̂′ 1k+1 ⊕ 1k+3 1∓k+1 ⊕ 1∓k+2 1∓1 ⊕ 1∓2

2̂′′ 1k+1 ⊕ 1k+3 1∓k ⊕ 1∓k+2 1∓0 ⊕ 1∓2

3 1k ⊕ 1k+2 ⊕ 1k+2 1±k ⊕ 1±k+1 ⊕ 1±k+2 1±0 ⊕ 1±1 ⊕ 1±2

Table 7. Decompositions of ‘weighted’ (r, k) multiplets of Γ′3 ' A′4 = T ′ under the residual
symmetry groups. Irrep subscripts should be understood modulo n, where n = 4, 3 in the first and
second columns, respectively. Upper (lower) signs correspond to even (odd) values of k.

In this notation, 1+
0 is the trivial irrep. The representation under Z2 is just a sign and

does not affect the reality/complexity of a representation. Hence real irreps are 1+
0 , 1−0

and, for even n, 1+
n/2, 1−n/2 (one also has (1±k )∗ = 1±n−k). Since M(τ) in the bilinear of

eq. (3.1) is a function of τ alone, it is R-even. The fields ψ and ψc are then constrained to
carry the same R-parity, i.e. transform with the same sign under ZR2 . Fields in unhatted
representations r — for which ρr(R) = 1 — are even (odd) under ZR2 if k is even (odd),
while the opposite happens for hatted representations. Keeping this in mind, one can omit
the ZR2 factor and ignore the superscript signs in the following tables.

Finally, notice that a ZR2 factor is hidden in the residual ZS4 , as S2 = R. Fields
transforming under ZS4 as 10 or 12 are R-even while fields transforming as 11 or 13 are
R-odd. Requiring that ψ and ψc carry the same R-parity implies that one effectively works
with ZS4 /ZR2 ' Z2, which is why it is generic to consider ρ̃ci ρ̃j = ±1 in section 3.1.2.
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r ZS4 (τ = i) ZST3 × ZR2 (τ = ω) ZT4 × ZR2 (τ = i∞)

1 1k 1±k 1±0

1̂ 1k+1 1∓k 1∓3

1′ 1k+2 1±k 1±2

1̂′ 1k+3 1∓k 1∓1

2 1k+2 ⊕ 1k 1±k+1 ⊕ 1±k+2 1±0 ⊕ 1±2

2̂ 1k+1 ⊕ 1k+3 1∓k+1 ⊕ 1∓k+2 1∓1 ⊕ 1∓3

3 1k+2 ⊕ 1k ⊕ 1k 1±k ⊕ 1±k+1 ⊕ 1±k+2 1±1 ⊕ 1±2 ⊕ 1±3

3̂ 1k+1 ⊕ 1k+1 ⊕ 1k+3 1∓k ⊕ 1∓k+1 ⊕ 1∓k+2 1∓0 ⊕ 1∓1 ⊕ 1∓2

3′ 1k+2 ⊕ 1k+2 ⊕ 1k 1±k ⊕ 1±k+1 ⊕ 1±k+2 1±0 ⊕ 1±1 ⊕ 1±3

3̂′ 1k+1 ⊕ 1k+3 ⊕ 1k+3 1∓k ⊕ 1∓k+1 ⊕ 1∓k+2 1∓0 ⊕ 1∓2 ⊕ 1∓3

Table 8. Decompositions of ‘weighted’ (r, k) multiplets of Γ′4 ' S′4 = SL(2,Z4) under the residual
symmetry groups. Irrep subscripts should be understood modulo n, where n = 4, 3 in the first and
second columns, respectively. Upper (lower) signs correspond to even (odd) values of k.
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r
ZS 4

(τ
=
i)

ZS
T

3
×

ZR 2
(τ

=
ω

)
ZT 5
×
ZR 2

(τ
=
i∞

)

1
1 k

1± k
1± 0

2̂
1 k

+
1
⊕

1 k
+

3
1∓ k
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1
⊕

1∓ k
+

2
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B Possible hierarchical patterns

In this appendix we list the hierarchical patterns which may arise in the vicinities of the
two symmetric points of interest (see main text). We consider in turn the finite modular
groups Γ′2 ' S3, Γ′3 ' A′4 = T ′, Γ′4 ' S′4 = SL(2,Z4), and Γ′5 ' A′5 = SL(2,Z5) (tables 10–
13). We have focused on 3-dimensional (possibly reducible) representations (r, rc) entering
the bilinear (3.1). Dependence on the weights k(c) may only arise for τ ∼ ω and through
the combination K = k + kc, modulo 3. One can see from tables 6–9 that if one of the 3d
multiplets (say ψ) entering the bilinear is not a sum of 3 singlets, then its decomposition
under the ZST3 residual symmetry includes all possible singlets, 10, 11, and 12, indepen-
dently of the weight k. In such cases, hierarchies are independent of weights since a change
in kc can be absorbed by a change in k in their sum.

Note that for N = 2 the residual symmetry group at τsym = i∞ is ZT2 . Mass matrix
entries are then expected to be either O(1) or O(ε) and, as was the case for τ ' i, one
cannot obtain the sought-after hierarchical patterns from the smallness of ε alone. As such,
only τ ' ω is considered in table 10.

r rc
τ ' ω

k + kc ≡ 0 k + kc ≡ 1 k + kc ≡ 2
2⊕ 1 2⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1)
2⊕ 1 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1)
2⊕ 1′ 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1)
2⊕ 1 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
2⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
2⊕ 1′ 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
2⊕ 1′ 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
2⊕ 1 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
2⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
2⊕ 1′ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
2⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)

1′ ⊕ 1⊕ 1 1′ ⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1′ ⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1⊕ 1⊕ 1 1′ ⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1′ ⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1⊕ 1⊕ 1 1⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)

Table 10. (cont.)
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r rc
τ ' ω

k + kc ≡ 0 k + kc ≡ 1 k + kc ≡ 2
1⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)

1′ ⊕ 1′ ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)

Table 10. Leading-order mass spectra patterns of bilinears ψcψ in the vicinity of the symmetric
point ω, for 3d multiplets ψ ∼ (r, k) and ψc ∼ (rc, kc) of the finite modular group Γ′2 ' S3. Spectra
are insensitive to transposition, i.e. to the exchange ψ ↔ ψc. Congruence relations for k + kc are
modulo 3.

r rc
τ ' ω

τ ' i∞
k + kc ≡ 0 k + kc ≡ 1 k + kc ≡ 2

3 3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 1′′ ⊕ 1′ ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 1′ ⊕ 1⊕ 1 (1, 1, ε2) (1, 1, ε2) (1, 1, ε2) (1, 1, ε2)
3 1′′ ⊕ 1⊕ 1 (1, 1, ε) (1, 1, ε) (1, 1, ε) (1, 1, ε)
3 1′ ⊕ 1′ ⊕ 1 (1, 1, ε) (1, 1, ε) (1, 1, ε) (1, 1, ε)
3 1′′ ⊕ 1′′ ⊕ 1 (1, 1, ε2) (1, 1, ε2) (1, 1, ε2) (1, 1, ε2)
3 1′′ ⊕ 1′ ⊕ 1′ (1, 1, ε2) (1, 1, ε2) (1, 1, ε2) (1, 1, ε2)
3 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, ε) (1, 1, ε) (1, 1, ε) (1, 1, ε)
3 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
3 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
3 1′′ ⊕ 1′′ ⊕ 1′′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)

1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
1′ ⊕ 1⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, ε2) (1, 1, ε2) (1, 1, ε2) (1, 1, ε2)
1′′ ⊕ 1⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, ε) (1, 1, ε) (1, 1, ε) (1, 1, ε)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, ε) (1, 1, ε) (1, 1, ε) (1, 1, ε)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, 1, ε2) (1, 1, ε2) (1, 1, ε2) (1, 1, ε2)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, 1, ε2) (1, 1, ε2) (1, 1, ε2) (1, 1, ε2)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, ε) (1, 1, ε) (1, 1, ε) (1, 1, ε)
1⊕ 1⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
1′ ⊕ 1⊕ 1 1′ ⊕ 1⊕ 1 (1, 1, ε) (1, ε2, ε2) (1, 1, ε) (1, 1, ε)
1′ ⊕ 1⊕ 1 1′′ ⊕ 1⊕ 1 (1, 1, 1) (1, ε, ε2) (1, ε, ε2) (1, 1, 1)
1′ ⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, 1, 1) (1, ε, ε2)
1′ ⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, 1, ε) (1, 1, ε) (1, ε2, ε2) (1, 1, ε)
1′ ⊕ 1⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, ε2, ε2) (1, 1, ε) (1, 1, ε) (1, ε2, ε2)
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1′ ⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, ε, ε2) (1, 1, 1) (1, ε, ε2) (1, ε, ε2)
1′′ ⊕ 1⊕ 1 1′′ ⊕ 1⊕ 1 (1, 1, ε2) (1, 1, ε2) (1, ε, ε) (1, 1, ε2)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1⊕ 1 (1, 1, ε2) (1, ε, ε) (1, 1, ε2) (1, 1, ε2)
1′′ ⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, ε, ε2) (1, 1, 1) (1, ε, ε2) (1, ε, ε2)
1′′ ⊕ 1⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, 1, 1) (1, ε, ε2)
1′′ ⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, ε, ε) (1, 1, ε2) (1, 1, ε2) (1, ε, ε)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, ε, ε) (1, 1, ε2) (1, 1, ε2) (1, ε, ε)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, 1, 1) (1, ε, ε2) (1, ε, ε2) (1, 1, 1)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, 1, 1) (1, ε, ε2) (1, ε, ε2)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, ε2) (1, 1, ε2) (1, ε, ε) (1, 1, ε2)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
1′′ ⊕ 1′′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, ε2, ε2) (1, 1, ε) (1, 1, ε) (1, ε2, ε2)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1 (1, 1, ε) (1, ε2, ε2) (1, 1, ε) (1, 1, ε)
1′′ ⊕ 1′′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, 1, 1) (1, ε, ε2)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′ (1, 1, ε) (1, 1, ε) (1, ε2, ε2) (1, 1, ε)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, 1) (1, ε, ε2) (1, ε, ε2) (1, 1, 1)
1′′ ⊕ 1′′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, ε2) (1, ε, ε) (1, 1, ε2) (1, 1, ε2)

1⊕ 1⊕ 1 1′ ⊕ 1⊕ 1 (1, 1, ε2) (ε, ε2, ε2) (1, ε, ε) (1, 1, ε2)
1⊕ 1⊕ 1 1′′ ⊕ 1⊕ 1 (1, 1, ε) (1, ε2, ε2) (ε, ε, ε2) (1, 1, ε)
1⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, ε2, ε2) (ε, ε, ε2) (1, 1, ε) (1, ε2, ε2)
1⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, ε, ε) (1, 1, ε2) (ε, ε2, ε2) (1, ε, ε)
1⊕ 1⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (ε, ε2, ε2) (1, ε, ε) (1, 1, ε2) (ε, ε2, ε2)
1⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (ε, ε, ε2) (1, 1, ε) (1, ε2, ε2) (ε, ε, ε2)
1′ ⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1′ (ε, ε2, ε2) (1, ε, ε) (1, 1, ε2) (ε, ε2, ε2)
1′ ⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (1, ε, ε) (1, 1, ε2) (ε, ε2, ε2) (1, ε, ε)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1⊕ 1 (1, ε2, ε2) (ε, ε, ε2) (1, 1, ε) (1, ε2, ε2)
1′′ ⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (ε, ε, ε2) (1, 1, ε) (1, ε2, ε2) (ε, ε, ε2)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (ε, ε, ε2) (1, 1, ε) (1, ε2, ε2) (ε, ε, ε2)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (1, 1, ε) (1, ε2, ε2) (ε, ε, ε2) (1, 1, ε)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1 (1, 1, ε2) (ε, ε2, ε2) (1, ε, ε) (1, 1, ε2)
1′′ ⊕ 1′′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (ε, ε2, ε2) (1, ε, ε) (1, 1, ε2) (ε, ε2, ε2)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′ (1, ε, ε) (1, 1, ε2) (ε, ε2, ε2) (1, ε, ε)
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1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, ε) (1, ε2, ε2) (ε, ε, ε2) (1, 1, ε)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′′ (1, 1, ε2) (ε, ε2, ε2) (1, ε, ε) (1, 1, ε2)
1′′ ⊕ 1′′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′′ (1, ε2, ε2) (ε, ε, ε2) (1, 1, ε) (1, ε2, ε2)

1⊕ 1⊕ 1 1⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)
1⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1′ (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1) (ε2, ε2, ε2)
1⊕ 1⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (ε, ε, ε) (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)

1′ ⊕ 1′ ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (ε, ε, ε) (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)

1′′ ⊕ 1′′ ⊕ 1′′ 1′′ ⊕ 1′′ ⊕ 1′′ (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1) (ε2, ε2, ε2)

Table 11. Leading-order mass spectra patterns of bilinears ψcψ in the vicinity of the symmetric
points ω and i∞, for 3d multiplets ψ ∼ (r, k) and ψc ∼ (rc, kc) of the finite modular group
Γ′3 ' A′4 = T ′. Spectra are insensitive to transposition, i.e. to the exchange ψ ↔ ψc. Congruence
relations for k + kc are modulo 3.

r rc
τ ' ω

τ ' i∞
k + kc ≡ 0 k + kc ≡ 1 k + kc ≡ 2

3 3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε2)
3 3̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε3)
3 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε)
3′ 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3′ 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε3)
3̂ 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε)
3̂ 3̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε2)
3̂ 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3̂′ 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε2)
3 2⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε3)
3 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε)
3 2̂⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε3)
3 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε)
3′ 2⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε)
3′ 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε3)
3′ 2̂⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε)
3′ 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε3)
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3̂ 2⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε3)
3̂ 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε)
3̂ 2̂⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε)
3̂ 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε3)
3̂′ 2⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε)
3̂′ 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε3)
3̂′ 2̂⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε3)
3̂′ 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε)

2⊕ 1 2⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2⊕ 1 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε2)
2⊕ 1 2̂⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (ε, ε, ε)
2⊕ 1 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (ε, ε, ε3)
2⊕ 1′ 2⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2⊕ 1′ 2̂⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (ε, ε, ε3)
2⊕ 1′ 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (ε, ε, ε)

3 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)
3 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε)
3 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε3)
3 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε)
3′ 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε)
3′ 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)
3′ 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε)
3′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε3)
3 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε2, ε3)
3 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)
3 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε3)
3 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
3′ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)
3′ 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε2, ε3)
3′ 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
3′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε3)

2̂⊕ 1̂ 2̂⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε2)
2̂⊕ 1̂ 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2̂⊕ 1̂′ 2̂⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, ε2)
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3̂ 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε3)
3̂ 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε)
3̂ 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε)
3̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)
3̂′ 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε)
3̂′ 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε3)
3̂′ 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)
3̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε)
3̂ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε3)
3̂ 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
3̂ 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)
3̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε2, ε3)
3̂′ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε2)
3̂′ 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε3)
3̂′ 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε2, ε3)
3̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε3)

2⊕ 1 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, 1)
2⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2⊕ 1 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε)
2⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
2⊕ 1′ 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2⊕ 1′ 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, 1)
2⊕ 1′ 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
2⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε)
2⊕ 1 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε2)
2⊕ 1 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
2⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε3, ε3)
2⊕ 1′ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε2)
2⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2⊕ 1′ 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε3, ε3)
2⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
2̂⊕ 1̂ 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε)
2̂⊕ 1̂ 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
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2̂⊕ 1̂ 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2̂⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, 1)
2̂⊕ 1̂′ 1′ ⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
2̂⊕ 1̂′ 1′ ⊕ 1′ ⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε)
2̂⊕ 1̂′ 1̂′ ⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, 1)
2̂⊕ 1̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2̂⊕ 1̂ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
2̂⊕ 1̂ 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε3, ε3)
2̂⊕ 1̂ 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε2)
2̂⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2̂⊕ 1̂′ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε3, ε3)
2̂⊕ 1̂′ 1′ ⊕ 1′ ⊕ 1′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (ε, ε, ε3)
2̂⊕ 1̂′ 1̂⊕ 1̂⊕ 1̂ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, 1, ε2)
2̂⊕ 1̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε2)

1′ ⊕ 1⊕ 1 1′ ⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)
1′ ⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, ε2)
1′ ⊕ 1⊕ 1 1̂′ ⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε)
1′ ⊕ 1⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε3)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)
1′ ⊕ 1′ ⊕ 1 1̂′ ⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε3)
1′ ⊕ 1′ ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε)
1⊕ 1⊕ 1 1′ ⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, ε2)
1⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, ε2, ε2)
1⊕ 1⊕ 1 1̂′ ⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε3)
1⊕ 1⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε3, ε3)
1′ ⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, ε2, ε2)
1′ ⊕ 1⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε3, ε3)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, ε2)
1′ ⊕ 1′ ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε3)
1′ ⊕ 1′ ⊕ 1′ 1̂′ ⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε3, ε3)
1′ ⊕ 1′ ⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε3)
1⊕ 1⊕ 1 1⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)
1⊕ 1⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε2, ε2, ε2)
1⊕ 1⊕ 1 1̂⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε)

Table 12. (cont.)
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r rc
τ ' ω

τ ' i∞
k + kc ≡ 0 k + kc ≡ 1 k + kc ≡ 2

1⊕ 1⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε3, ε3, ε3)
1′ ⊕ 1′ ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)
1′ ⊕ 1′ ⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε)
1̂′ ⊕ 1̂⊕ 1̂ 1̂′ ⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, ε2)
1̂′ ⊕ 1̂⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)
1̂′ ⊕ 1̂′ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, ε2)
1̂⊕ 1̂⊕ 1̂ 1′ ⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε, ε3)
1̂⊕ 1̂⊕ 1̂ 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε, ε3, ε3)
1̂⊕ 1̂⊕ 1̂ 1̂′ ⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, ε2, ε2)
1̂⊕ 1̂⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, ε2)
1̂′ ⊕ 1̂⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, ε2)
1̂′ ⊕ 1̂′ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, ε2, ε2)
1̂⊕ 1̂⊕ 1̂ 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε3, ε3, ε3)
1̂⊕ 1̂⊕ 1̂ 1̂⊕ 1̂⊕ 1̂ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε2, ε2, ε2)
1̂⊕ 1̂⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)

1̂′ ⊕ 1̂′ ⊕ 1̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (ε2, ε2, ε2)

Table 12. Leading-order mass spectra patterns of bilinears ψcψ in the vicinity of the symmetric
points ω and i∞, for 3d multiplets ψ ∼ (r, k) and ψc ∼ (rc, kc) of the finite modular group
Γ′4 ' S′4 = SL(2,Z4). Spectra are insensitive to transposition, i.e. to the exchange ψ ↔ ψc.
Congruence relations for k + kc are modulo 3.

r rc
τ ' ω

τ ' i∞
k + kc ≡ 0 k + kc ≡ 1 k + kc ≡ 2

3 3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, ε, ε4)
3′ 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε, ε4)
3′ 1⊕ 1⊕ 1 (1, ε, ε2) (1, ε, ε2) (1, ε, ε2) (1, ε2, ε3)

1⊕ 1⊕ 1 1⊕ 1⊕ 1 (1, 1, 1) (ε2, ε2, ε2) (ε, ε, ε) (1, 1, 1)

Table 13. Leading-order mass spectra patterns of bilinears ψcψ in the vicinity of the symmetric
points ω and i∞, for 3d multiplets ψ ∼ (r, k) and ψc ∼ (rc, kc) of the finite modular group
Γ′5 ' A′5 = SL(2,Z5). Spectra are insensitive to transposition, i.e. to the exchange ψ ↔ ψc.
Congruence relations for k + kc are modulo 3.
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