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1 Introduction

In Newtonian paradigm, physical laws govern the evolution of dynamical degrees of freedom
with respect to one universal time. Einstein’s theory of relativity demotes time from the
absolute status in two ways. First, the notion of simultaneity becomes observer-dependent
for events that are spatially separated, and there is no universal sense of past, present and
future. Second, time evolution is turned into a gauge transformation, and time as a gauge
parameter has no physical meaning by itself [1–4]. One needs to use dynamical variables
as clocks to describe the relative evolution of other degrees of freedom [5–7]. The theory
only predicts correlations among dynamical degrees of freedom.

In quantum gravity, choosing clocks boils down to dividing the kinematic Hilbert space
into a sub-Hilbert space for clocks and the rest for the ‘true’ physical degrees of freedom.
In general relativity, while there is no preferred coordinate system, there is still a preferred
way of identifying a sub-Hilbert space for each local clock. This is because the theory is
covariant only under the transformations that preserve the integrity of local sites. Under
diffeomorphism, points in space are permuted, but the quantum information stored at a
point is never spread over multiple points. The preferred set of local kinematic Hilbert
spaces is invariant under diffeomorphism, and each local clock variable is chosen from one
of the local Hilbert spaces.
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Requiring that physical laws are covariant only under the local Hilbert space-preserving
transformations may be too restrictive in quantum gravity that has no predetermined
notion of locality. In priori, one partitioning of Hilbert space is no better than others.
Furthermore, the fact that locality is a dynamical concept in quantum gravity obscures the
distinction between local and non-local transformations. Consider a unitary transformation
that mixes local Hilbert spaces associated with multiple sites. For states in which those
sites are within a short-distance cutoff scale, the transformation can be regarded as local in
space, and we may gauge it as an internal symmetry. However, it is no longer local for other
states in which the sites affected by the transformation are macroscopically apart. Once we
gauge general unitary transformations that do not preserve local kinematic Hilbert spaces,
the preferred Hilbert space decomposition is lost.

In this paper, we examine consequences of having no preferred Hilbert space decompo-
sition in a recently proposed model of quantum gravity [8]. In the model, geometric degrees
of freedom are collective variables of underlying quantum matter [9–11]. In the absence of
a predetermined Hilbert space decomposition, there exists a greater freedom in how clock
variables are identified within the kinematic Hilbert space. Instead of choosing local clock
variables from predetermined local Hilbert spaces, in this theory local Hilbert spaces are
identified from a choice of clock variables. In other words, the notion of local site is derived
from clocks. A set of local observers who use a particular set of local clocks constructs a
geometry based on the pattern of entanglement present across the local Hilbert spaces as-
sociated with the clocks. Inasmuch as patterns of entanglement depend on partitioning of
the total Hilbert space, one state can exhibit different geometries with different choices of
local clocks. The spacetime that emerges with respect to one choice of clocks is in general
different from the spacetime that arises with respect to another set of local clocks. The
purpose of the paper is to show that the spacetimes that emerge from different choices of
local clocks can exhibit different dimensions, signatures, topologies and geometries.

The rest of the paper is organized as follows. In section 2, we review the theory
introduced in ref. [8] as it forms the basis of the present work. In the review, the gauge
symmetry, the constraint algebra, and the way an emergent geometry is identified from the
underlying microscopic degrees of freedom are emphasized as they are the key ingredients
needed in this paper. Section 3 is the main part of the present paper. The objectives of
this section are two-folded. The first is to identify a set of clock variables to construct
spacetime from the correlation between the clock variables and the remaining physical
degrees of freedom in the semi-classical limit. The second is to examine how different choices
of local clocks leads to different spacetimes. In section 3.1, a procedure that generates
gauge invariant states from a set of first-class constraints is discussed. In section 3.2, the
gauge constraints are solved to identify the constraint surface in the semi-classical limit.
Section 3.3 discusses a gauge fixing prescription that introduces clock variables and the
associated local Hilbert spaces. The section also discusses how the correlation between
the remaining physical degrees of freedom and the local clocks determines an emergent
spacetime. In section 3.4, two schemes that use different sets of local clocks are applied to
one physical state, and extract the spacetimes that emerge from those choices. Section 4
is a summary with open questions.

– 2 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
4

2 Review: a model of quantum gravity with emergent spacetime

In this section, we review the model introduced in ref. [8]. We recap the main results that
are needed in this paper, and refer the readers to the original paper for details.

• Kinematic Hilbert space

The fundamental degree of freedom is a real rectangular matrix with M rows and L

columns with M � L� 1: ΦA
i with A = 1, 2, . . . ,M and i = 1, 2, . . . , L. The row (A)

labels flavour, and the column (i) labels sites. The full kinematic Hilbert space H is
spanned by the set of basis states,

{∣∣Φ〉∣∣∣−∞ < ΦA
i <∞ with 1 ≤ A ≤M, 1 ≤ i ≤ L

}
,

where
∣∣Φ〉 ≡ ⊗i,A∣∣ΦA

i

〉
, and

∣∣ΦA
i

〉
is the eigenstate of Φ̂A

i. The inner product between
basis states is

〈
Φ′
∣∣Φ〉 =

∏
i,A δ

(
Φ′Ai − ΦA

i

)
.

• Flavour (Global) symmetry

The global symmetry is O(M). It rotates the flavour index acting as a left multiplication
on Φ: Φ → OΦ, where O ∈ O(M). The generator of the O(M) flavour symmetry is
T̂õ = 1

2 tr
{(

Φ̂Π̂− Π̂T Φ̂T
)
õ
}
, where Φ̂ represents the operator valuedM×Lmatrix, Π̂ is

the conjugate momentum that is an L×M matrix, and õ is a realM×M anti-symmetric
matrix.

• Frame

A frame is a decomposition of the total kinematic Hilbert space into a direct product
of local Hilbert spaces. For example, H can be written as

H = ⊗iHi, (2.1)

where Hi is the local Hilbert space spanned by
{
⊗A
∣∣ΦA

i

〉}
at site i. The frame can be

rotated with SL(L,R) transformations that act as right multiplications on Φ: Φ→ Φg,
where g ∈ SL(L,R). New basis states defined by

∣∣Φ) ≡ ∣∣Φg〉 have the same inner
product,

(
Φ
∣∣Φ′) =

∏
I,A δ

(
Φ′AI − ΦA

I

)
. This allows us to write

∣∣Φ) = ⊗A,I
∣∣ΦA

I

)
. The

Hilbert space H′I spanned by
{
⊗A
∣∣ΦA

I

)}
forms a local Hilbert space for site I in the

rotated frame, and the kinematic Hilbert space can be decomposed as

H = ⊗IH′I . (2.2)

In general, a state that is unentangled in one frame has non-trivial inter-site entangle-
ment in another frame.

• Gauge symmetry

In the limit that the size of matrix becomes large, the sites can collectively form a
space manifold. We identify the emergent geometric degrees of freedom from the mi-
croscopic degree of freedom based on the algebra that gauge constraints obey. Just as
the momentum and Hamiltonian constraints generate spacetime diffeomorphism in gen-
eral relativity, the present theory comes with generalized momentum and Hamiltonian
constraints.
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1. Generalized momentum

The SL(L,R) group that rotates frame is taken as the gauge group that generalizes
the spatial diffeomorphism in the general relativity. The generalized momentum
operator that generates SL(L,R) is

Ĝy = tr
{
Ĝy
}
, (2.3)

where Ĝ is an operator valued rank 2 traceless tensor given by Ĝij = 1
2

(
Π̂i

AΦ̂A
j +

Φ̂A
jΠ̂i

A

)
− 1

2L

(
Π̂k

AΦ̂A
k + Φ̂A

kΠ̂k
A

)
δij , and y is a traceless L × L real matrix

called the shift tensor. Under the SL(L,R) transformation, Φ̂ and Π̂ transform as
e−iĜy Φ̂ eiĜy = Φ̂gy and e−iĜy Π̂ eiĜy = g−1

y Π̂, where gy = e−y.

2. Generalized Hamiltonian

The Hamiltonian constraint is written as

Ĥv = tr
{
Ĥv
}
, (2.4)

where Ĥ is an operator valued rank 2 symmetric tensor given by Ĥ ij = 1
2

[(
−Π̂Π̂T +

α̃
M2 Π̂Π̂T Φ̂T Φ̂Π̂Π̂T

)ij
+
(
−Π̂Π̂T + α̃

M2 Π̂Π̂T Φ̂T Φ̂Π̂Π̂T
)ji]

, α̃ is a constant parameter

of the theory, and v is an L×L real symmetric matrix called the lapse tensor.
Under the SL(L,R) transformation, v transforms as e−iĜy Ĥv e

iĜy = Ĥv′ , where
v′= (g−1

y )T vg−1
y with gy = e−y.

3. Constraint Algebra

The generalized momentum and Hamiltonian constraints satisfy the first-class
quantum algebra:

[
Ĝij , Ĝ

k
l

]
= iAiknjlm Ĝmn,[

Ĝij , Ĥ
kl
]

= iBikl
jmn Ĥ

mn,[
Ĥ ij , Ĥkl

]
= iĈijklnm Ĝmn + i

M
D̂ijkl
nm Ĥmn, (2.5)
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where

Aiknjlm = δkj δ
i
mδ

n
l − δilδkmδnj ,

Bikl
jmn = δkj δ

il
mn + δljδ

ki
mn,

Ĉijklnm = −4α̃
[
Ûn(jÛ i)[lδk]

m − Ûn[lÛk](jδi)m

]
+ 4α̃2

[
−(ÛQ̂)(j

[mÛ
{l[nÛn

′]k}δ
i)
m′] + Û (j[n(Q̂Û) {k[m′Û

n′]i)δ
l}
m]

+ Û (j[n(ÛQ̂){l[mÛ
n′]i)δ

k}
m′] − Û

{l[nÛn
′]k}(Q̂Û) (i

[m′δ
j)
m]

+ 1
M2

(
MÛ (j[nÛn

′]{kδ
l}
[mδ

i)
m′] + (M + 2)Û (j[nÛ{li)δ

n′]
[mδ

k}
m′]

+ 2Û (j[nÛn
′]i)δ

{l
[mδ

k}
m′] − 2Û (j{kÛ l}[nδ

n′]
[mδ

i)
m′]

− 2Û (j{kÛ [n′n]δ
l}
[mδ

i)
m′] − 2Û (ij)Û{k[nδ

n′]
[mδ

l}
m′]

)]
δm
′

n′ ,

D̂ijkl
nm = −4iα̃

(
Ûklδijnm − Û ijδklnm

)
(2.6)

with Û = 1
M (Π̂Π̂T ), Q̂ = 1

M (Φ̂T Φ̂) and δklij = 1
2

(
δki δ

l
j + δliδ

k
j

)
. While Aiknjlm and

Bikl
jmn are constant tensors, Ĉijklnm and D̂ijkl

nm are operator valued structure function.
In the expression for Ĉijklnm , each pair of indices in (i, j), [n, n′], [m,m′], {k, l} are
understood to be symmetrized. In the large M limit, Aiknjlm, Bikl

jmn, Ĉ
ijkln
m , D̂ijkl

nm ∼
O(1), and the term that is proportional to Ĥmn in

[
Ĥ ij , Ĥkl

]
is sub-leading.

Eq. (2.5) is the exact commutator that remains well-defined at the quantum level.
In the large M limit, the algebra reduces to the one that includes the hypersurface
embedding algebra of the general relativity. This plays the key role in identifying
the emergent geometry in this model.

• Emergent geometry

A coordinate system is a mapping r : i→ ri from the set of sites in a frame to a manifold
M with a region Ri 3 ri assigned to site i (see figure 1). In the large L limit in which
the image of sites is dense in M, Eq. (2.5) induces an algebra on M. The generators of
the induced algebra include the Weyl generator (D), the momentum density (Pµ), the
Hamiltonian density (H) and generators for higher spin gauge transformations. Since v
transforms as a rank 2 symmetric tensor under SL(L,R) , one can always choose a frame
in which v is diagonal. In this frame, the Hamiltonian constraint can be written as

Ĥv =
∫
dr H(r)θv(r). (2.7)

Here H(ri) = V −1
i Ĥ ii is the Hamiltonian density, Vi is the coordinate volume of Ri,

and θv(ri) = vii is the lapse function. Ĝij is now viewed as a bi-local operator defined
on M. It can be expanded in the relative coordinate as

Ĝij = Ĝii +
∂Ĝij
∂rµj

∣∣∣∣∣
j=i

(rµj − r
µ
i ) + . . . , (2.8)

– 5 –
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r

M

i

ri
Ri

Figure 1. A coordinate system is a mapping from the set of sites in a frame into a manifold M.
ri represents the image of site i, and Ri is a simply connected region allocated to site i such that
ri ∈ Ri, M = ∪iRi and Ri ∩Rj = ∅ for i 6= j.

where the ellipsis represents higher derivative terms. This leads to

Ĝy =
∫
dr
(
D(r)ζy(r) + Pµ(r)ξµy (r) + . . .

)
, (2.9)

where the derivative expansion is shown to the first order that includes the momen-
tum density. Here D(ri) = V −1

i Ĝii and Pµ(ri) = V −1
i

∂Ĝi j
∂rµj

∣∣∣∣
j=i

are the Weyl generator

and the momentum density, respectively. ζy(ri) =
∑
j y

j
i and ξµy (ri) =

∑
j y

j
i(r

µ
j − r

µ
i )

represent the Weyl parameter and the shift vector, respectively.

The commutators between D, Pµ and H are completely determined from eq. (2.5). To
the leading order in 1/M and the derivative expansion, the commutators read

[∫
drζ1(r)D(r),

∫
drζ2(r)D(r)

]
= 0,[∫

drξµ(r)Pµ(r),
∫
drζ(r)D(r)

]
= i

∫
drLξζ(r)D(r),[∫

drζ(r)D(r),
∫
drθ(r)H(r)

]
= 2i

∫
drζ(r)θ(r)H(r),[∫

drξµ1 (r)Pµ(r),
∫
drξν2 (r)Pν(r)

]
= i

∫
drLξ1ξ

µ
2 (r)Pµ(r),[∫

drξµ(r)Pµ(r),
∫
drθ(r)H(r)

]
= i

∫
drLξθ(r)H(r),[∫

drθ1(r)H(r),
∫
drθ2(r)H(r)

]
= i

∫
dr
(
F̂ ν(r)D(r)+ĜµνPµ(r)

)
(θ1∇νθ2−θ2∇νθ1) ,

(2.10)

where Lξ represents the Lie derivative with respect to the vector field ξ, and F̂ ν(rm)

– 6 –
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and Ĝµν(rm) are given by

F̂ ν(rm) = 1
2
∑
i,k,n

Ĉiikknm (rνk − rνi ) , (2.11)

Ĝµν(rm) = 1
2
∑
i,k,n

Ĉiikknm (rµn − rµm) (rνk − rνi ) . (2.12)

The momentum and Hamiltonian densities obey an algebra that generalizes the hyper-
surface deformation algebra of the general relativity [12, 13], provided that the metric
is identified as the symmetric part of Ĝµν ,

ĝµν(rm) = −S4
∑
i,k,n

Ĉiikknm

[
(rµn − rµm) (rνk − rνi ) + (rνn − rνm)

(
rµk − r

µ
i

)]
, (2.13)

where S is the signature of the spacetime direction translated by the Hamiltonian con-
straint. The overall sign of the spacetime metric can be chosen either way. In the rest
of the paper, we choose the convention in which S = −1. F̂ ν(r) and the anti-symmetric
part of Ĝµν represent additional collective fields that generalize the hyper-surface de-
formation algebra of general relativity.

The contravariant metric in eq. (2.13) is given by a second moment of Ĉiikknm , which
measures a multi-point correlation in the system. If the range of entanglement and
correlation is large in the coordinate distance, the second moment becomes large ac-
cordingly, which results in a small proper distance between points in space. The metric
identified from the constraint algebra naturally captures the intuition that two sites
that are strongly entangled are physically close [14–23]. On the other hand, the metric
captures only a specific pattern of entanglement, and there also exist non-geometric
entanglements. For example, there exist finely tuned states in which two points that are
infinitely far still have O(M) entanglement through other channels such as the higher-
order moments of Ĉiikknm [8]. In this sense, EPR is strictly ‘bigger’ than ER in the
present theory [24].

States for which there exist coordinate systems with well-defined metric in the large
M and L limit form a special set of states, and are referred to have local structures.
For a state with a classical local structure, there exists a coordinate system associated

with a well-defined manifold such that
〈
ĝµν

〉
≡
〈

Ψ
∣∣ĝµν∣∣Ψ〉〈
Ψ
∣∣Ψ〉 is invertible and smooth on

the manifold, and
〈 (
ĝµν −

〈
ĝµν

〉)2 〉 → 0 in the large M and L limit. The dimension,
topology and geometry of the manifold are properties of state.

Ĥv in eq. (2.4) is a non-local Hamiltonian as a quantum operator, but it is relatively
local [25] in the following sense.1 Suppose

∣∣Ψ〉 has a local structure in a frame. To this
state, Ĥv with a lapse tensor diagonal in that frame acts as a local Hamiltonian to the
leading order in the large M limit, that is,

Ĥv

∣∣Ψ〉 ≈ ĤΨ
eff
∣∣Ψ〉, (2.14)

1We note that this is different from the relative locality introduced in ref. [30].

– 7 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
4

where ĤΨ
eff is a Hamiltonian that is local in the manifold associated with the local

structure of
∣∣Ψ〉. The discrepancy between Ĥv and ĤΨ

eff in eq. (2.14) is sub-leading in
1/M . This can be understood by writing the Hamiltonian with the lapse tensor v = I as

Ĥv ≈ −Π̂i
AΠ̂i

A + α̃

M2
〈
Π̂i

AΠ̂j
A

〉
Φ̂B

jΦ̂B
k

〈
Π̂k

AΠ̂i
A

〉
, (2.15)

where all repeated indices are summed over. In the large M limit, the fluctuation of
Π̂i

AΠ̂j
A is small, and the replacement of the operator with its expectation value is valid

to the leading order in the large M limit. The second term in the Hamiltonian can
be viewed as a hopping term between sites j and k whose hopping amplitude is pro-
portional to the expectation value of

〈
Π̂i

AΠ̂j
A

〉〈
Π̂k

AΠ̂i
A

〉
in a state. If the two-point

function
〈
Π̂i

AΠ̂j
A

〉
is short-ranged as a function of ri − rj in a manifold, the Hamilto-

nian effectively behaves as a local Hamiltonian in the manifold. The Hamiltonian acts
in a state-dependent manner to the leading order in the large M limit, and the local
properties of the effective Hamiltonian are inherited from the state [26].

3 Clocks and emergent spacetime

3.1 Gauge invariant states

The physical Hilbert space is given by the set of gauge invariant states that satisfy

Ĥv

∣∣χ〉 = 0, Ĝy
∣∣χ〉 = 0 (3.1)

for any lapse tensor v and shift tensor y. A gauge invariant state can be constructed
by projecting an arbitrary state to the physical Hilbert space. The projection can be
implemented with a series of gauge transformations applied to an initial trial state

∣∣χ〉 as
∣∣0χ〉= lim

Z→∞

∫
Dv

∫
Dy e

−iε
(
Ĥ
v(1)+Ĝ

y(1)

)
e
−iε
(
Ĥ
v(2)+Ĝ

y(2)

)
. . .e

−iε
(
Ĥ
v(Z)+Ĝ

y(Z)

)∣∣χ〉, (3.2)

where ε is a non-zero constant,
∫
Dv ≡

∫ ∏Z
l=1Dv

(l) and
∫
Dy ≡

∫ ∏Z
l=1Dy

(l) denote the
sum over all possible combinations of the lapse and shift tensors.2 The resulting state is
gauge invariant if it does not vanish (see appendix A).

Although the momentum and Hamiltonian constraints are invariant under the O(M)
flavour symmetry, a gauge invariant state may spontaneously break the global symmetry
to a smaller group. To simplify the problem of extracting the dynamical information
from gauge invariant states, it is convenient to focus on a sector with a definite flavour
symmetry group. Let us denote the set of all states (gauge invariant or not) that respect
the global symmetry Γ ⊂ O(M) as VΓ. Basis states of VΓ can be labeled by a set of
collective variables. The bigger Γ is, the less collective variables are needed to span VΓ.
If Γ is too big, there are too few kinematic collective variables to support non-trivial
physical degrees of freedom after the gauge degrees of freedom are removed. One simple

2While eq. (3.2) is equivalent to the state obtained by one projection,
∫
DvDy e−i(Ĥv+Ĝy)∣∣χ〉, eq. (3.2)

is more convenient to use in the path integral formalism by taking small ε limit.
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choice of Γ that supports a minimal number of non-trivial physical degrees of freedom is
Γ∗ = SfL × O(N/2) × O(N/2) with N = M − L [8]. Here SfL is the permutation group
acting on the first L flavours. Two O(N/2) groups generate flavour rotations within the
remaining two sets of N/2 flavours. Basis states for VΓ∗ can be written as

∣∣s, t1, t2〉 =
∑
P∈SfL

∫
DΦ e

i

[
√
N
∑L

a,a′=1 s
i
aP

a
a′Φ

a′
i+
∑L+N

2
b=L+1 t

ij
1 ΦbiΦ

b
j+
∑L+N

c=L+N
2 +1

tij2 ΦciΦ
c
j

]∣∣Φ〉,
(3.3)

where s, t1, t2 are collective variables that label the basis states; s is L×L matrix and t1, t2
are L × L symmetric matrices. In eq. (3.3), all repeated site indices (i, j) are understood
to be summed over from 1 to L. Due to the sum over the flavour permutations P ∈ SfL in
eq. (3.3),

∣∣s, t1, t2〉 =
∣∣sP, t1, t2〉 for P ∈ SfL.

s transforms as s → gs under SL(L,R), and as s → sO under O(L) ⊂ O(M), where
g ∈ SL(L,R) and O ∈ O(L). An invertible s breaks SL(L,R) down to the subgroup,
I = {sPs−1∣∣P ∈ SfL with detP = 1}. This follows from (sPs−1)s = sP ∼ s. The
unbroken gauge group is related to the even site-permutation group through a similarity
transformation. Therefore, s acts as a Stueckelberg field that breaks the generalized spatial
diffeomorphism to the discrete permutation group. On the other hand, tij1 and tij2 are bi-
local fields that generate inter-site entanglement. The mutual information between sites i
and j for state in eq. (3.3) is proportional to −N

∑
c

|tijc |2

Imtiic Imt
jj
c

ln |tijc |2

Imtiic Imt
jj
c

to the leading
order in the small tijc limit [27]. Geometry is determined from the connectivity formed by
these bi-local fields. Generic choices of tijc would break SL(L,R) completely. If tijc depends
only on ri − rj in a coordinate system, the global translational symmetry in the manifold
remains unbroken.

General states in VΓ∗ can be written as∣∣χ〉 =
∫
DsDt1Dt2

∣∣s, t1, t2〉χ(s, t1, t2), (3.4)

where χ(s, t1, t2) is a wavefunction of the collective variables. In eq. (3.4), the integrations
over s, t1, t2 are defined along the real axis of each component of the matrices. If we choose
the initial state

∣∣χ〉 from VΓ∗ , it follows that
∣∣0χ〉 ∈ VΓ∗ in eq. (3.2) because Ĝ and Ĥ

are invariant under the O(M) favour rotation. Therefore, eq. (3.2) can be represented as
a path integration over s, t1, t2 and their conjugate variables. By taking the small ε limit
after the large Z limit is taken first, eq. (3.2) can be written as∣∣0χ〉 =

∫
Ds(0)Dt(0)

∫
DsDtDqDpDvDy

∣∣s(∞), t
(∞)
1 , t

(∞)
2
〉
eiS χ(s(0), t

(0)
1 , t

(0)
2 ). (3.5)

Here S is the action for the collective variables and their conjugate momenta,

S = N

∫ ∞
0

dτ tr
{
−q∂τs− pc∂τ tc − v(τ)H[q(τ), s(τ), p1(τ), t1(τ), p2(τ), t2(τ)]

− y(τ)G[q(τ), s(τ), p1(τ), t1(τ), p2(τ), t2(τ)]
}
. (3.6)
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H and G are the induced Hamiltonian and momentum constraints, respectively,

H[q, s, p1, t1, p2, t2] = −U + α̃UQU +O

( 1
N

)
, (3.7)

G[q, s, p1, t1, p2, t2] =
(
sq + 2

∑
c

tcpc − i
M

2N I

)
. (3.8)

Here U ij =
(
ssT +

∑2
c=1 [4tcpctc − itc]

)ij
and Qij =

(
qT q + p1 + p2

)
ij
. q is a L×L matrix

that is conjugate to s. p1 and p2 are symmetric L × L matrices conjugate to t1 and t2,
respectively. While s, t1 and t2 represent the ‘sources’, the conjugate variables represent
the corresponding operators, qa i = 1√

N
Φa

i with 1 ≤ a ≤ L, p1,ij = 1
N

∑L+N/2
b=L+1 Φb

iΦb
j

and p2,ij = 1
N

∑M
c=L+N/2+1 Φc

iΦc
j [8]. In total, there are Dk = 2L2 +2L(L+1) kinematic

phase space variables. Dx ≡
∏∞
l=1Dx

(l) and x(τ) = x(l) with τ = lε for x = s, q, tc, pc, v, y.
τ is the parameter that labels the evolution of dynamical variables along gauge orbits.

All gauge invariant states have an infinite norm with respect to the inner product of the
underlying Hilbert space. The non-normalizability of gauge invariant states is attributed
to the fact that gauge orbits defined in the infinite-dimensional kinematic Hilbert space
are non-compact [8]. This is fine because the dynamical variables include both clocks and
physical degrees of freedom, and a gauge invariant state encodes the information about
an entire spacetime history. In the large N limit with L � 1, the path integration in
eq. (3.5) is well approximated by the saddle-point approximation. In this paper, we study
the classical dynamics of the theory in the semi-classical limit. In particular, we identify
a set of local clocks from the dynamical variables, and construct a spacetime from the
correlation between the clocks and the remaining dynamical variables. We will see that
different choices of local clocks lead to different spacetimes.

3.2 Constraint surface

From now on, we denote the saddle-point configuration as {q, s, t1, t2, p1, p2}, using the
same collective variables that appear in the path integration. As an initial state in
eq. (3.2), we consider a semi-classical state in which both the collective variables and
their conjugate momenta are well defined. An example is the gaussian wavepacket consid-
ered in ref. [8]. Let us denote a semi-classical state whose collective variables are peaked
at {q, s, p1, t1, p2, t2} as

∣∣Ψq,s,p1,t1,p2,t2

〉
. Because of the permutation symmetry SfL in Γ∗,∣∣Ψq,s,p1,t1,p2,t2

〉
=
∣∣ΨPq,sPT ,p1,t1,p2,t2

〉
for any P ∈ SfL. To the leading order in 1/N , the

application of the gauge transformation results in

e−iε(Ĥv+Ĝy)∣∣Ψq,s,p1,t1,p2,t2

〉
≈ e−iεN tr{H[q,s,p1,t1,p2,t2]v+G[q,s,p1,t1,p2,t2]y}∣∣Ψq′,s′,p′1,t

′
1,p
′
2,t
′
2

〉
,

(3.9)
where x′ = x + ε

{
x, tr {Gy}

}
PB

+ ε
{
x, tr {Hv}

}
PB

for x = {q, s, t1, t2, p1, p2}, and

{A,B}PB =
(
∂A
∂qαi

∂B
∂siα
− ∂A

∂siα

∂B
∂qαi

)
+ δklij

(
∂A
∂pc,ij

∂B
∂tklc
− ∂A

∂tklc

∂B
∂pc,ij

)
is the Poisson bracket. In

the large N limit, the semi-classical initial state survives the projections in eq. (3.2) only
if the collective variables and conjugate momenta satisfy the momentum and Hamiltonian
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constraints classically,

tr
{(

sq + 2
∑
c

t̃cpc

)
y

}
= 0, (3.10)

tr {(−U + α̃UQU) v} = 0 (3.11)

for arbitrary traceless matrix y (shift tensor) and symmetric matrix v (lapse tensor).3

Here t̃c = tc − i
8pc in terms of which U is written as U =

(
ssT +

∑
c

[
4t̃cpct̃c + 1

16p
−1
c

])
.

Eqs. (3.10) and (3.11) give rise to Dc = (L2 − 1) + L(L+1)
2 constraints.

Now we solve these constraints to remove Dc kinematic variables. The momentum
constraint in eq. (3.10) is readily solved by expressing s in terms of t̃c, pc and q as

s =
(
βI − 2

∑
c

t̃cpc

)
q−1 (3.12)

for any constant β. For U 6= 0, the Hamiltonian constraint in eq. (3.11) is equivalent to

αUQ = I. (3.13)

Plugging eq. (3.12) into eq. (3.13), we obtain a quadratic matrix equation for t̃1,

t̃1A
2t̃1 + t̃1B +BT t̃1 + C = 0, (3.14)

where A = 2
√
p1q−1(q−1)T p1 + p1,4 B=2p1q

−1(q−1)T (2p2t̃2−β), C=(2t̃2p2−β)q−1(q−1)T

(2p2t̃2 − β) + 4t̃2p2t̃2 + 1
16(p−1

1 + p−1
2 )− 1

α̃Q
−1. The solution to eq. (3.14) is written as

t̃1 = −A−2B +A−1O
√
BTA−2B − C, (3.15)

where O is an orthogonal matrix that should be chosen so that t̃1 is symmetric. For every
orthogonal matrix O that satisfies

−A−2B +A−1O
√
BTA−2B − C = −BTA−2 +

√
BTA−2B − COTA−1, (3.16)

eq. (3.15) is a solution to eq. (3.13). In general, eq. (3.16) admits a discrete set of solutions
because it contains L(L−1)

2 equations with the same number of unknowns. If A,B,C can
be simultaneously diagonalized, O = diag(±1,±1, . . .) gives the solutions in the diagonal
basis. At least locally in the phase space, the generalized momentum and Hamiltonian
constraints are solved by expressing s and t̃1 in terms of {β, q, p1, t̃2, p2}. This results in
the (Dk −Dc)-dimensional constraint surface on which the gauge constraints are satisfied
classically.

3.3 Gauge fixing

Because the constraints obey the first-class algebra, the gauge orbits generared by H and
G from an initial state in the constraint surface remain within the constraint surface. The

3Otherwise, the fast phase oscillation in eq. (3.9) results in the destructive interference upon integrating
over v and y.

4The square root of a symmetric matrix can be defined as follows. A real symmetric matrix X can be
written as X = OXDXO

T
X , where DX is a diagonal matrix and OX is an orthogonal matrix. Its square

root is given by
√
X = OXD

1/2
X OTX .
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Figure 2. Each sheet represents a Dc-dimensional gauge manifold embedded in the (Dk − Dc)-
dimensional constraint surface. Any two configurations within a gauge manifold can be transformed
to each other through gauge transformations. Different choices of the shift and lapse tensors generate
different gauge orbits within a gauge manifold as represented by arrows in the figure.

equation of motion for the gauge orbit reads

∂τ t̃c = −4t̃cvt̃c − α̃UvU + 1
16

1
pc
v

1
pc
− yt̃c − t̃cyT ,

∂τpc = 4pct̃cv + 4vt̃cpc + pcy + yT pc,

∂τs = −2α̃UvUqT − ys,
∂τq = 2sT v + qy, (3.17)

where y(τ) and v(τ) are the shift and lapse tensors, respectively. Because the shift and
lapse tensors comprise Dc independent gauge parameters, the set of configurations gen-
erated from the gauge transformations with all possible choices of y and v forms a Dc-
dimensional gauge manifold (see figure 2). Configurations within a gauge manifold are
physically equivalent, and only L(L + 1) + 2 variables are left to distinguish one gauge
manifold from another. These are the physical degrees of freedom. To isolate the physical
degrees of freedom, we need to fix the gauge associated with the shift and lapse tensors.
This amounts to choosing a set of local clocks and a coordinate system relative to which
the dynamical correlation of the remaining physical degrees of freedom is expressed.

3.3.1 Fixing the shift tensor
The momentum constraint generates SL(L,R) transformations. If eq. (3.17) is evolved for
parameter time τ1 with v = 0, one obtains

t̃c(τ1) = g(τ1)−1t̃c(0)(g(τ1)−1)T ,
pc(τ1) = g(τ1)T pc(0)g(τ1),
s(τ1) = g(τ1)−1s(0),
q(τ1) = q(0)g(τ1), (3.18)
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T1
T2

T3
. . .

I

II

Figure 3. Two stages of gauge transformations that bring an arbitrary initial state to a final state
that satisfies the gauge fixing condition in eq. (3.21). In the first stage of gauge transformation
(stage I), an initial state is transformed so that the gauge fixing condition, q = qdgf is enforced on
q. In the second stage of gauge transformation (stage II), the state obtained from the first gauge
transformation is brought to the final form in eq. (3.21). The one-parameter family of configurations,
denoted as the big red arrow, with varying pd = T1, T2, . . . describes a spacetime history, where pd

plays the role of time.

where g(τ1) = P̄τe
∫ τ1

0 dτy(τ) ∈ SL(L,R) . P̄τ orders the matrix multiplication so that edτy(τ)

with smaller τ are placed to the left of the terms with larger τ . For q with det q ≥ 0, the
choice of

g(τ1) = qd(0) q(0)−1gf , (3.19)

with qd(0) = [det q(0)]1/L and gf ∈ SL(L,R) leads to

q(τ1) = qd(0) gf . (3.20)

For a given gf , eq. (3.20) completely fixes the gauge freedom associated with SL(L,R)
: g(τ1) in eq. (3.19) is the only element in SL(L,R) that satisfies eq. (3.20). This gauge
fixing amounts to locking site indices (columns) with reference to the flavour indices (rows).
We refer to the frame in which q = qd gf as gf -frame. The path that connects an initial
configuration to the one that satisfies eq. (3.20) is denoted as path I in figure 3.

3.3.2 Fixing the lapse tensor

In priori, there is no preferred frame, and any gf can be used in eq. (3.20). Here, we
choose a frame in a clock-dependent way. It is natural to use p1 as our clock variables.
Because both p1 and the lapse tensor have the same number of variables, the freedom
associated with the lapse tensor can be fixed with a gauge condition imposed on p1 up to
a potential discrete ambiguity. With p1 chosen as the clock variable, selecting a particular
p1 along with eq. (3.20) corresponds to choosing a moment of time. Being a symmetric
matrix, p1 can be fixed with L(L+1)

2 gauge fixing conditions. We take L eigenvalues of p1 as
the readings of local clocks defined at each site in a frame. The other L(L−1)

2 components
encode the information on the frames in which p1 is diagonal. Since the clocks do not create
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inter-site entanglement in the frames in which p1 is diagonal,5 we choose gf in eq. (3.20) so
that p1 is diagonal in the gf -frame.6 Therefore, specifying a moment of time requires not
only the readings of L local clocks but also the information on which part of the kinematic
Hilbert space is being used as L local clocks.

Here, the clocks play dual roles. First, the clocks provide a preferred frame dynamically.
For different states of the clock, we use different frames to decompose the total kinematic
Hilbert space into local Hilbert spaces. In this sense, the notion of local sites is provided
by the clocks. Second, the clocks provide a physical time relative to which the evolution of
other dynamical variables is tracked. The correlation between p1 and other degrees of free-
dom describes the time evolution of the physical degrees of freedom relative to the clocks.

It is instructive to compare the role of clocks in general relativity and the present theory.
In general relativity, the four-dimensional spacetime can be sliced into different stacks of
three-dimensional spatial manifolds, depending on the choice of the lapse function. To
specify a moment of time across the system, one has to fix the lapse function by imposing
a gauge fixing condition on a scalar function in space. The scalar function at each position
in space plays the role of an internal clock at that position. In the present theory, one
needs to specify both frame and diagonal elements of p1 in that frame to define a moment
of time. In other words, one has to specify both the local Hilbert spaces and the readings
of local clocks in the chosen local Hilbert spaces. A moment of time chosen in one frame
does not correspond to a moment of time in another frame unless p1 takes diagonal forms
in both frames. This is illustrated in figure 4.

The dynamical information of the theory is encoded in the correlation between the
clocks and the remaining physical degrees of freedom. The state of physical degrees of
freedom given as a function of state of the clocks is a prediction of the theory. To extract
this correlation, we impose the following gauge fixing conditions on q and p1,

q = qd gf , p1 = pd I, (3.21)

where gf ∈ SL(L,R) and qd, pd are real variables. p1,ii serves as the local clock at site i in
the gf -frame. Here, the gauge is chosen so that all local clocks run uniformly. In general,
one could choose a non-uniform gauge condition such as p1,ij = pd,iδij . After the gauge
fixing in eq. (3.21), what is left is the L(L+1)+2 physical degrees of freedom: {p2, t̃2, qd, β}.
We now ask how the physical degrees of freedom evolve as functions of pd. This describes
the spacetime that emerges for the set of clocks localized in the gf -frame. Since β is a
constant of motion along the gauge orbit [8], we will focus on the evolution of p2, t̃2, qd.

From the discussion in section 3.3.1, we already know that the first condtion in
eq. (3.21) can be readily imposed through an SL(L,R) transformation. To impose the
second condition in eq. (3.21), the configuration {t̃c(τ1), pc(τ1), s(τ1), q(τ1)} in eq. (3.18)
with q(τ1) = qd(τ1)gf and a generic p1(τ1) is further evolved with the equation of motion

5Because p1,ij = 1
N

∑L+N/2
b=L+1 Φb iΦb j , off-diagonal elements of p1 generate inter-site entanglement.

6There always exist frames in which p1 is diagonal. Suppose that p1 = X in the gf -frame, where X is a
general L× L symmetric matrix. Under a frame rotation, q′ = qdgfg and p′1 = gTXg, where g ∈ SL(L,R).
One can always choose g such that p′1 = pdI, where pd is a real number. Now the clock takes the diagonal
form in the g′f -frame, where g′f = gfg.
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(a)

(b)

Figure 4. (a) In theories with a preferred set of local Hilbert spaces such as general relativity, a
moment of time is determined if a clock variable in each fixed local Hilbert space is specified. The
length of the arrow at each site represents the time at that site. The correlation between other
physical degrees of freedom and the local clocks describes a time evolution from left to right in
the figure. (b) In the present theory, the notion of local Hilbert spaces is determined by frame.
A frame is specified by L vectors that form a parallelepiped, where each vector represents a local
site. Once a frame is fixed, a local clock can be defined at each site. In this figure, the set of solid
(black) arrows represent a moment of time defined by a set of local clocks in one frame, and the
set of dashed (blue) arrows represent a moment of time defined by local clocks in another frame.
The length of each arrow denotes the reading of the local clock at the corresponding site. The
spacetimes that emerge for different sets of local clocks are in general different.

in eq. (3.17). During this evolution, the shift and lapse tensors are chosen so that p1 at
τ2 > τ1 satisfies eq. (3.21). To make sure that the gauge fixing condition for q is maintained
along the evolution, the shift is chosen to be

y = −2q−1sT v + 2〈q−1sT v〉I, (3.22)

where 〈A〉 ≡ 1
L tr {A}. This guarantees that q is proportional to gf at all τ irrespective

of the lapse tensor. To transform p1(τ1) to the desired form of p1(τ2) = pdI, we write the
equation of motion for p1 as

∂τp1 = wp1 + p1w
T , (3.23)

where w = v[4t̃1 − 2s(q−1)T ] + 2〈q−1sT v〉I, and choose v(τ) such that

w(τ)p1(τ) + p1(τ)wT (τ) = 2pdI − p1(τ1)− p1(τ) (3.24)

for τ1 ≤ τ ≤ τ2. Eq. (3.24) is a set of L(L+1)
2 linear equations for v(τ) at each τ , and admits

a unique solution in general. It is straightforward to show that with this choice of the lapse
tensor p1(τ2) = pdI at τ2 = τ1 + ln 2. This is denoted as path II in figure 3.
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For a given initial state, the physical variables obtained at τ2 depend on pd and gf .
Therefore, the physical variables at τ2 can be written as{

p2(pd; gf ), t̃2(pd; gf ), qd(pd; gf )
}
. (3.25)

Within the constraint surface, the spatial metric in eq. (2.13) is given by [8]

gµν = −2α̃
∑
l,n

UnlU lm
(
rµnmr

ν
lm + rνnmr

µ
lm

)
(3.26)

with rµnm = rµn − rµm to the leading order in 1/N . Consequently, eq. (3.26) gives the
spatial metric gµν(r, pd; gf ) that depends on space (r) and time (pd) in the gf -frame. The
correlation between the spatial metric and the physical clocks describes a spacetime that
emerges for the set of observers who use local clocks chosen in the gf -frame.

For some pd, there may be no lapse and shift tensors that brings the initial state to the
one that satisfy the gauge fixing condition in eq. (3.21). It is also possible that a constant
p1 surface intersects with a gauge orbits multiple times. In this case, p1 can not be used as
a time variable globally [2, 3]. Here we don’t attempt to find a global time variable. We
will be content with the fact that p1 serves as a set of clocks locally in the phase space.

3.4 Multi-fingered internal time

The fact that one can choose any gf ∈ SL(L,R) in eq. (3.21) encodes the freedom in
choosing a frame in which local clocks are defined. Under a rotation of frame, a state in
a local Hilbert space can be transformed to a linear superposition of states that belong to
multiple local Hilbert spaces. As a result, one state can exhibit different local structures
in different frames. To illustrate this through a concrete example, let us consider a semi-
classical state with

p2,ij = p0δix,jxδiy ,jy+ε
(
δ(ix−jx)√

L
,1+δ(ix−jx)√

L
,−1
)
δiy ,jy , t̃2 = 0, p1 = I, q= I. (3.27)

Here, the site index i with i = 1, 2, . . . , L is labeled in terms of a pair of indices, (ix, iy),
where ix, iy = 1, 2, . . . ,

√
L.7 (x)√L = x mod

√
L. s and t̃1 are determined from eqs. (3.12)

and (3.15). Because eq. (3.27) has the translational invariance under (ix, iy)→ (ix + 1, iy)
for each iy, all collective variables can be simultaneously diagonalized. Among the possible
solutions in eq. (3.15), we choose the branch with O = +I. In eq. (3.27), the bi-local
collective variable p2 connects site (ix, iy) with sites (ix ± 1, iy). On the other hand, there
is no entanglement between sites with different iy to the leading order in 1/M . Therefore,
the state has an one-dimensional classical local structure. It describes

√
L copies of one-

dimensional manifold with the periodic boundary condition as is shown in figure 5(a).
This state breaks SL(L,R) down to the discrete translation (ix, iy) → (ix + 1, iy) and the
permutation group that interchanges iy.

7We assume that L is the square of a whole number.
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=

(b)

Figure 5. (a) One-dimensional local structure of the state in eq. (3.27). Each dot represents a
site in the I-frame in which q is proportional to the identity matrix. Links between sites represent
non-zero collective variables (p2,ij , t2,ij) that create entanglement between the sites. According
to eq. (2.13), the state in eq. (3.27) gives rise to

√
L decoupled one-dimensional manifolds. (b)

In the go-frame, the state in eq. (3.27) is represented as eq. (3.33). One site (represented as a
square) in the go-frame is composed of sites that belong to three different chains in the I-frame.
As a result, sites are entangled in both x and y directions in the go-frame. To avoid clutter in the
figure, the links are drawn only for the bi-local fields up to O(ζ). For this state, eq. (2.13) gives a
two-dimensional manifold.

3.4.1 Finger 1

In this section, we consider the spacetime that emerges for a set of local observers who use
the diagonal elements of p1 as local clocks in the I-frame. This frame is defined by the
gauge fixing conditions,

q = qd I, p1 = pd I. (3.28)

Since eq. (3.27) satisfies eq. (3.28) with qd = 1 and pd = 1, eq. (3.27) is already on the
desired gauge orbit. To move along the gauge orbit, we take eq. (3.27) as the initial
condition, and evolve it with the lapse and shift tensors that maintain the gauge fixing
conditions in eq. (3.28) along the orbit. We choose the lapse tensor,

v =
(
4t̃1 − 2s(q−1)T

)−1
(3.29)

with the shift tensor given in eq. (3.22). With this choice, the equation of motion for p1
becomes

∂τp1 = 2
[
I + 2

〈
q−1sT

(
4t̃1 − 2s(q−1)T

)−1
〉]
p1, (3.30)

and eq. (3.28) are satisfied along the trajectory. The physical degrees of freedom are also
evolved with the same lapse and shift tensors. This gives the information on how the
physical degrees of freedom are correlated with the clock variable pd. The evolution results
in the spacetime history measured by the clocks that are local in the I-frame.

In the I-frame, it is convenient to introduce the one-dimensional coordinate system,
ri = ix for each decoupled ring. In this coordinate system, p2,ij and t̃ij2 in eq. (3.27)
are short-ranged in ri − rj . Since t̃1 and s are determined from p2, t̃2, q from eqs. (3.12)
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Figure 6. The evolution of qd and g11 as functions of pd that emerge in the I-frame for the initial
condition given by eq. (3.27) with p0 = 1, ε = 0.2 for α̃ = 0.1, β = 0.2 and L = 104. Different
chains remain decoupled throughout the evolution, and g22 = 0 at all time (not plotted here). For
each value of pd within the domain, there are two branches, where one is denoted as thick (red) line
and the other as thin (blue) line in both (a) and (b).

and (3.15), t̃ij1 and
(
s(q−1)T

)ij
also decays exponentially in ri − rj in the one-dimensional

manifold. Accordingly, the lapse tensor vij in eq. (3.29) also decays exponentially in ri−rj .
This guarantees that Ĥv is relatively local in the one-dimensional coordinate system [8].
Consequently, the decoupled chains remain decoupled under the Hamiltonian evolution to
the leading order in 1/M . Furthermore, the Hamiltonian acts as a local one-dimensional
Hamiltonian within each chain [26]. As a result, the emergent spacetime consists of

√
L

identical two-dimensional spacetimes that remain decoupled throughout the evolution.
Figure 6 shows one copy of the two-dimensional spacetimes that is obtained numer-

ically from the initial condition of eq. (3.27). It shows how qd and the ‘spatial’ metric
extraced from eq. (3.26) are correlated with the clock variable, pd. The classical gauge
orbit obtained with eq. (3.29) intersects with a constant p1 surface twice within a finite
range of τ considered in the calculation. This results in two branches of solution for each
value of pd. If the wavefunction for the physical variables are constructed conditionally on
the outcome of a measurement of the clock variable [28], the physical variables at a fixed pd
are in a linear superposition of macroscopically distinct states. The first branch is denoted
as the thick (red) line, while the second branch as the thin (blue) line in figure 6. Near
pd ≈ 0 in the first branch, the space has + signature, which gives rise to a two-dimensional
Lorentzian manifold (in eq. (2.13), the signature of time is chosen to be − as a convention).
As pd increases in the first branch, g11 decreases, which results in an expanding universe.
At a critical pd ≈ 0.68, the spacetime undergoes a phase transition that causes g11 to
vanish. This is a Lifshitz transition where the second derivative of Uk =

∑
i,j e

ik(ri−rj)U ij

with respect to k vanishes at zero momentum.8 Across the critical point, g11 changes the
8According to eq. (2.13), the contravariant metric is given by the second moment of Ĉiikknm . In the

presence of the translational invariance, the uniform metric can be written as gµν = 4α̃
(
∂Uk
∂kµ

∂Uk
∂kν

+

Uk
∂2Uk
∂kµ∂kν

)
k=0

[8]. With the reflection symmetry, ∂Uk
∂kµ

∣∣∣
k=0

= 0, and the metric is given by the second
derivative of Uk.
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sign, and the spacetime becomes Euclidean. At a later time (pd ≈ 1.34), a second Lif-
shitz transition restores the Lorentzian signature. After the second Lifshitz transition, the
space shrinks with increasing pd until it hits ‘the end of time’ around pd ≈ 2.15. At the
end point, the first branch converges with the second branch. In the second branch, the
two-dimensional spacetime stays as a Lorentzian manifold throughout the evolution.

3.4.2 Finger 2

Now, let us describe the spacetime that emerges from the same state in eq. (3.27) for
observers who use a different set of local clocks. The new local clocks are the diagonal
elements of p1 in a different frame. For concreteness, let us choose clocks that are local in
go-frame, where

(go)ij = Aζδixjx

[
δiyjy + ζ

(
δ(iy−jy)√

L
,1 + δ(iy−jy)√

L
,−1
)]
. (3.31)

Here ζ is a constant, and Aζ =
[∏√L

n=1

(
1 + 2ζ cos

(
2πn√
L

))]− 1√
L . The new gauge fixing

conditions read
q = qd go, p1 = pd I. (3.32)

The new choice of clocks leads to a different decomposition of the kinematic Hilbert
space into local Hilbert spaces. In order to extract the spacetime that emerges in this new
frame, we need to apply gauge transformations to eq. (3.27) to enforce the gauge fixing
conditions in eq. (3.32). As explained in sections 3.3.1 and 3.3.2, this is done in two stages.
First, we apply an SL(L,R) transformation to enforce the first gauge fixing condition,
q = qdgo. Under the SL(L,R) transformation that brings q into the form in eq. (3.32), the
collective variables become

p2(τ1) = (go)T p2go, t̃2(τ1) = 0,
p1(τ1) = (go)T p1go, q(τ1) = qdgo. (3.33)

A site with coordinate (ix, iy) in the go-frame is composed of a linear superposition of
sites with (ix, iy − 1), (ix, iy), (ix, iy + 1) in the I-frame. Because one site in the go-frame
is delocalized across three neighbouring chains of the I-frame, the chains are no longer
decoupled in the go-frame. Due to the interchain entanglement, eq. (3.33) has a two-
dimensional local structure, as is shown in figure 5(b). Now, we apply the second set
of gauge transformations to enforce the gauge fixing condition for p1. As explained in
section 3.3.2, this is achieved with the lapse tensor that satisfies eq. (3.24) and the shift
tensor given in eq. (3.22). To understand the nature of this second gauge transformation, we
use the two-dimensional coordinate system, ri = (ix, iy). This coordinate system makes the
two-dimensional local structure manifest. In other words, pc,ij , t̃ijc and

(
s(q−1)T

)ij
connect

a site with its neighbours in the two-dimensional manifold, and decay exponentially in
ri−rj . As a result, the lapse tensor vij that satisfies eq. (3.24) also decays exponentially in
ri−rj . This implies that the Hamiltonian acts as a two-dimensional local Hamiltonian along
the gauge orbit that connects eq. (3.33) with the one that satisfies the gauge fixing condition
in eq. (3.32). Therefore, the state obtained at the end of the second gauge transformation at
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Figure 7. The evolution of qd and two components of the metric as functions of pd that emerges
in the go-frame with ζ = 0.1 for the same initial condition used in figure 6. For each value of pd,
there exist two solutions. The first branch is denoted as thick (red) line, and the second branch as
thin (blue) line in all plots.

τ2 also supports a two-dimensional local structure in the go-frame. The physical variables
(qd, p2, t̃2) at τ2 viewed as functions of pd describe a three-dimensional spacetime.

Figure 7 shows the evolution of qd, g11 and g22 as measured against the physical time
pd. The trajectory is obtained numerically using the same initial condition used in figure 6.
Due to the reflection symmetry in each direction in space, g12 = 0. The signature of the
three-dimensional spacetime is give by

(
−, sgn

(
g11) , sgn (g22)). For each choice of pd,

there are two branches of solutions (the first denoted as thick (red) line and the second
denoted as thin (blue) line). The evolution of qd and g11 is more or less the same as
the one obtained in the I-frame. What is new here is that g22 is non-zero and exhibits
a non-trivial dynamics because the state has the two-dimensional local structure. For
each g11 and g22, two Lifshitz transitions occur that flip the signature of each ‘spatial’
direction from + to − and back to +. Because the Lifshitz transitions in the 1 and 2
directions happen at different moments of time, the signature of the spacetime evolves as
(−,+,+)→ (−,−,+)→ (−,+,+)→ (−,+,−)→ (−,+,+) as we start from pd = 0 in the
first branch, move along the direction of increasing pd and continue on the second branch.
In figure 7(d), the intervals with g11g22 < 0 correspond to the spacetime with two time
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directions. This can be generalized to higher dimensions, and we expect that anisotropic
spacetimes close Lifshitz transitions generically exhibit multiple time directions [29].

This example shows that one state can exhibit spacetime manifolds with different di-
mensions, signatures, topologies and geometries in different frames. This is possible because
the enlarged gauge symmetry generated by SL(L,R) can not only permute sites but also
change the very notion of local sites by constructing new sites out of linear superpositions
of old sites.

If one chooses local clocks in an arbitrary frame, the state generally does not retain
any local structure. Even for a state that has a local structure in one frame, a well-defined
spacetime manifold does not emerge if a collection of clocks are chosen in another frame
that is related to the first frame through a non-local transformation.9 The emergence of
a well-defined spacetime hinges both on local structure of the state and on the choice of
local clocks that are compatible with the local structure of the state.

4 Summary and discussion

In this paper, we consider a theory of quantum gravity that does not have a preferred
decomposition of the kinematic Hilbert space into local Hilbert spaces. The theory is
covariant under a gauge symmetry larger than diffeomorphism, where the extra gauge
symmetry includes transformations that mix local kinematic Hilbert spaces. This gives
rise to a greater freedom in choosing a collection of local clocks with respect to which
the evolution of other physical degrees of freedom is tracked. It is shown that dimension,
signature, topology and geometry of spacetime depend on the choice of local clocks. Just
as a gem reveals different facets in different cuts, one state can exhibit different spacetimes
with different choices of clocks. We expect that this is a generic feature of theories that do
not have a preferred Hilbert space decomposition.

Another consequence of the enlarged gauge symmetry is the presence of extra propagat-
ing modes besides the spin 2 gravitational mode. They are represented by the higher-spin
fields associated with the bi-local collective fields. Higher-spin gauge fields are Higgsed in
states that break SL(L,R) to the global translation symmetry, as is the case for the states
considered in section 3.4[8]. It will be of interest to understand the physical spectrum of
the theory.
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9Equivalently, a state that is short-range entangled in one basis can exhibit long-range entanglement if
one chooses non-local basis.
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A Gauge invariance of eq. (3.2)

Here we prove that eq. (3.2) is gauge invariant. We write the set of constraints as
{Ĉ1, Ĉ2, . . . , Ĉn}, where each element represents one component of Ĝij or Ĥkl. Because
Ĝ is traceless and Ĥ is symmetric, n = L2 − 1 + L(L+1)

2 . The associated shift and lapse
tensors are written as n gauge parameters, x = (x1, x2, . . . , xn) ∈ Rn. Eq. (3.2) can be
written as ∣∣0χ〉 =

∫
x∈A

Dx U(x)
∣∣0〉. (A.1)

Here, U(x) = P̄l

[∏∞
l=1 e

−iĈ·x(l)
]
with Ĉ · x ≡

∑n
i=1 Ĉixi. In the definition of U(x), P̄l

orders the unitary operators so that e−iĈ·x(l) with smaller l are placed to the left of the
terms with larger l. Dx ≡

∫ ∏∞
l=1Dx

(l), and A is a set of ordered gauge parameters
A =

{
(x(1), x(2), . . .)

∣∣x(l) ∈ Rn, l = 1, 2, . . . ,∞
}
. ε in eq. (3.2) has been absorbed into the

gauge parameter. Now, we consider a state obtained by applying a gauge transformation
to eq. (A.1), ∣∣0′χ〉 = e−iĈ·x̃

∣∣0χ〉 (A.2)

for x̃ ∈ Rn. Eq. (A.2) can be written as

∣∣0′χ〉 =
∫

x∈A′
Dx U(x)

∣∣0〉, (A.3)

where A′ =
{

(x̃, x(1), x(2), . . .)
∣∣x(l) ∈ Rn, l = 1, 2, . . . ,∞

}
. Now we prove that W ={

U(x)
∣∣x ∈ A} and W ′ =

{
U(x′)

∣∣x′ ∈ A′} are the same. For every element U(x′) ∈ W ′,
there exists x = (x̃, x(1), x(2), . . .) in A such that U(x) = U(x′). This shows that W ′ ⊂W .
Conversely, for every element U(x) ∈W , there exists x′ = (x̃,−x̃, x(1), x(2), . . .) in A′ such
that U(x′) = U(x). This shows that W ⊂ W ′. Therefore, W = W ′. If

∣∣0χ〉 does not
vanish,

∣∣0χ〉 =
∣∣0′χ〉.
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