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1 Introduction

The production of a pair of isolated highly-energetic photons in proton-proton collisions,
pp→ γγ+X, represents an important class of processes for the physics programme at the
Large Hadron Collider (LHC) and at future hadron colliders. Among many relevant as-
pects, pairs of prompt photons (diphotons) constitute an irreducible background to various
Standard Model (SM) and Beyond Standard Model (BSM) processes, most prominently
Higgs boson production in its H → γγ decay channel. Indeed, with the increase of collision
energy, the diphoton invariant mass distribution can provide a powerful tool to search for
heavy resonances decaying to pairs of photons [1, 2], while its transverse momentum distri-
bution offers a unique probe to investigate their properties. It is therefore crucial to provide
an accurate theoretical description of the production of a pair of photons recoiling against
hard Quantum Chromodynamics (QCD) radiation, across a vast spectrum of energies.

At the technical level, the theoretical description of the production of a pair of photons
with large transverse momentum is non trivial for several reasons. An obvious one is that
it requires computation of 2 → n scattering amplitudes with n ≥ 3 for various partonic
channels relevant at a specific perturbative order. In particular, at leading order (LO) the
process receives contribution from three partonic sub-channels, qq̄ → gγγ, qg → qγγ, and
q̄g → q̄γγ, where the second and third channels can be obtained as crossings of the first.
The loop-induced gluon-fusion process gg → gγγ, instead, contributes formally only at
next-to-next-to-leading-order (NNLO).

The mathematical complexity of loop corrections to the scattering amplitudes above
is the main reason why pp→ γγ + jet is currently known only up to next-to-leading-order
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(NLO) QCD [3, 4]. Calculation of cross section and differential distributions for pp →
γγ+jet through NNLO QCD requires the computation of two-loop amplitudes for qq̄ → gγγ

and its crossings, together with an efficient subtraction scheme to organise and cancel the
infrared (IR) divergences between real and virtual contributions. In recent years, a lot of
progress has been achieved on both fronts. On the IR subtraction side, several schemes
have been developed which are able to handle NNLO QCD corrections to the production of
a colour singlet plus one QCD jet [5–11]. On the amplitude side, equally impressive results
have been achieved. The first two-loop 2 → 3 scattering amplitudes for the production of
three jets and three photons in leading-colour QCD have been computed [12–23]. Together
with the developments on the IR subtraction side, this has made it possible to provide the
first NNLO studies for production of three photons at the LHC [24, 25].

The breakthrough in the calculation of the relevant massless 2 → 3 scattering ampli-
tudes has become possible, on one hand, due to development of more powerful techniques
for the solution of integration-by-parts identities (IBPs) [26–28] which include new algo-
rithms for their analytical solution [29–38] and the use of finite fields arithmetic [39–43],
and, on the other, due to completion of the calculation of all relevant master integrals
(MIs) in terms of a well understood class of functions [44–48]. This has been achieved by
the use of the method of differential equations [49–55] augmented by the choice of a canon-
ical basis [56, 57]. Alternative approaches to the reduction of two-loop amplitudes based
on ideas from the one-loop generalised-unitarity program as well as finite field arithmetic
have also been very successful [12, 17, 18, 31, 58].

In this paper, we consider the calculation of two-loop QCD corrections to the produc-
tion of a diphoton pair and a jet for the partonic channels qq̄ → gγγ and qg → qγγ, based
on a Feynman diagrammatic approach. We demonstrate how the use of new algorithms for
the reduction of loop integrals and multivariate partial fraction decomposition allows us to
compute these two-loop corrections in a rather straightforward way and to produce very
compact and efficient numerical implementations for them. While it is common practice
to compute helicity amplitudes for multi-loop processes, the case of diphoton production
plus jet does not require us to keep track of the polarisations of the external photons. We
therefore expect it to be sufficient for near-term phenomenological applications to consider
the interference of the two-loop amplitudes with the corresponding tree-level amplitude,
summed over colours and polarisations. We will show that, also in this case, very compact
results can be obtained, similar to what can be achieved for comparable helicity ampli-
tudes. Together with the recently computed three-loop QCD corrections to diphoton pro-
duction [59], these amplitudes also provide an essential ingredient towards the calculation
of pp→ γγ in N3LO QCD.

The rest of the paper is organised as follows. In section 2 we describe the processes
and their kinematics. In section 3 we illustrate the general structure of the scattering
amplitudes, and in particular of the interference terms contributing to the squared ampli-
tude. Technical aspects of the diagrammatic calculation, the integral reductions and the
multivariate partial decompositions are presented in section 4. In section 5 we describe
our renormalisation and infrared subtraction procedures which define the final form of the
results. In section 6 we discuss how we optimise our analytic results by using a minimal set
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of rational functions, and in section 7 we present their implementation in a C++ numerical
code. We finally draw our conclusions in section 8.

2 Kinematics and notation

We consider the production of a pair of photons in association with a gluon in quark-
antiquark annihilation

q(p1) + q̄(p2)→ g(p3) + γ(p4) + γ(p5) (2.1)

up to two-loop order in massless QCD, i.e. corrections up to O(α2
s ) relative to the tree-

level. We focus here on the scattering process in the physical region, i.e. a 2→ 3 kinematic
configuration. For simplicity, in what follows, we do not discuss in detail the other partonic
subchannel, qg → qγγ, which can be obtained by crossing symmetry according to

q(p1) + g(p2)→ q(p3) + γ(p4) + γ(p5) . (2.2)

Analytic results for both channels, with the appropriate identification of the external mo-
menta as in eqs. (2.1) and (2.2), are provided in the ancillary files of the arXiv submission
of this paper. Kinematics are fixed by imposing that all external particles fulfil the on-shell
condition p2

i = 0, such that one is left with five independent kinematic invariants, which
we choose to be the five adjacent ones,

s12 = (p1 + p2)2, s23 = (p2 − p3)2, s34 = (p3 + p4)2,

s45 = (p4 + p5)2, s15 = (p1 − p5)2 . (2.3)

Note the relative sign between initial- and final-state momenta reflecting our kinematic
configuration which implies for the physical region s12, s34, s45 > 0 and s23, s15 < 0. All the
other invariants follow by momentum conservation and can be derived from the independent
ones (2.3) via

s13 = s45 − s12 − s23, s14 = s23 − s45 − s15, s24 = s15 − s23 − s34,

s25 = s34 − s12 − s15, s35 = s12 − s34 − s45 . (2.4)

It is also useful to introduce the parity-odd invariant

ε5 = 4iεµνρσpµ1pν2p
ρ
3p
σ
4 , (2.5)

where εµνρσ is the totally anti-symmetric Levi-Civita symbol. The invariant ε5 is related
to the determinant of the Gram matrix Gij through

(ε5)2 = ∆ ≡ detGij = det (2pi · pj) , i, j ∈ {1, . . . , 4} , (2.6)

which reads explicitly

∆ = (s12s23 + s23s34 − s34s45 + s45s15 − s15s12)2 − 4s12s23s34(s23 − s45 − s15) . (2.7)
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As shown in ref. [60], ∆ < 0 in the physical region, and ε5 = ±i
√
|∆|, where the sign

depends on the region of phase space. Since the helicity summed squared matrix elements
we consider are even under a parity transformation, we find it convenient to express our
final results in terms of the quantity

ε̃5 = i
√
|∆| = i|ε5| , (2.8)

which allows to match the default conventions for the master integrals provided in [48]. In
the physical scattering region of (2.1)–(2.2) the invariants are constrained to fulfil [45]

s12 ≥ s34 , s12 − s34 ≥ s45 , 0 ≥ s23 ≥ s45 − s12 , s−
15 ≤ s15 ≤ s+

15 , (2.9)

with

s±
15 = 1

(s12 − s45)2

[
s2

12s23 + s34s45(s45 − s23)− s12(s34s45 + s23s34 + s23s45)

±
√
s12s23s34s45(s12 + s23 − s45)(s34 + s45 − s12)

]
. (2.10)

3 Structure of the scattering amplitude

We start by considering the process in (2.1). Its UV-renormalised scattering amplitude can
be written as

Aa
ij = Ta

ijAµνρε∗µ(p3)ε∗ν(p4)ε∗ρ(p5) = Ta
ijA, (3.1)

where we find it convenient to factor out the SU(3) colour generator Ta
ij , with i and j being

the colour indices of the quark and anti-quark and a the colour index of the gluon in the
adjoint representation. ε∗(p3) is the polarisation vector of the outgoing gluon and ε∗(p4),
ε∗(p5) are the ones of the photons. Clearly, for the qg channel in (2.2) the same applies upon
suitably renaming the external momenta p2 ↔ p3 and ommitting the complex conjugate
for the polarisation vector of the incoming gluon. The amplitude A stripped of the colour
generator Ta is then perturbatively expanded in the strong coupling constant αs as

A = (4πα)Q2
q

√
4παs

(
A0 +

(
αs
2π

)
A1 +

(
αs
2π

)2
A2 +O(α3

s )
)
, (3.2)

with α the fine-structure constant and Qq the electric charge of the quarks in units of
electron charge. The decomposition of (3.2) fixes the normalisation of the expansion terms
Ai. The amplitude squared and summed over colours and polarisations can be expressed as

∑
col,pol

|Aa
ij |2 = C

(
W00 +

(
αs
2π

)
2Re [W01] +

(
αs
2π

)2
(W11 + 2Re [W02]) +O(α3

s )
)
, (3.3)

where we introduced the interference terms

Wij =
∑
pol
A∗
iAj , (3.4)
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and a global factor C, that accounts for colour sums, which is defined as

C = (4π)3α2αs(N2 − 1)Q4
q . (3.5)

Note that all colour and helicity degrees of freedom are summed over in (3.3) rather than
performing an average for the initial states. The perturbative corrections to the expansion
coefficients for the amplitudes Ai, and to their interferences Wij , can be decomposed in
terms of their colour and electroweak factors which can be expressed as polynomials in

CA = N, CF = N2 − 1
2N , nγf = 1

Qq

nf∑
i

Qi, nγγf = 1
Q2
q

nf∑
i

Q2
i , (3.6)

where CA and CF are the quadratic Casimirs for the colour group SU(N), (N = 3 for
QCD), and nf is the number of (massless) quarks running in closed fermionic loops. The
factors nγf and nγγf correspond to the number of quarks, weighted with their electric charge,
running in closed fermion loops, with one and two external photons attached to, respec-
tively. The coefficients of various powers of the factors in (3.6) constitute gauge-invariant
subsets of the final result, thus it is natural to decompose the amplitude in terms of them.

Within the prescription of (3.4)–(3.5), the LO result W00 is a rational function of
invariants only, while the tree with one-loop interference admits the decomposition

W01 = CAW(1)
01 + CFW(2)

01 + nγγf W
(3)
01 + nfW

(4)
01 . (3.7)

The last contribution is introduced by the renormalisation procedure, see section 5 for
details. The tree-two loop interference has a richer structure, which we decide to organise as

W02 =
10∑
i=1

ciW(i)
02 , (3.8)

with the individual colour factors given by

c1 = C2
A, c2 = CACF , c3 = C2

F , c4 = CAnf ,

c5 = CFnf , c6 = nγγf nf , c7 = CAn
γγ
f , c8 = CFn

γγ
f ,

c9 = (8CF − 3CA)nγf , c10 = n2
f , (3.9)

where c9 arises from a contraction of type dabcdabc and c10 follows again from ultraviolet
(UV) renormalisation. A selection of representative diagrams contributing to each colour
structure is shown in figure 1, where diagram (i) contributes to the factor ci and the colour
factor c10 follows from diagrams of type (9) as well. Eventually, one can then expand the
polynomial in N for c1,2,3 and write

C2
AW

(1)
02 + CACFW(2)

02 +W(3)
02 = N2W̃(1)

02 + W̃(2)
02 + 1

N2 W̃
(3)
02 , (3.10)

where W̃(1)
02 is the leading colour (LC), W̃(2)

02 is the next-to-leading colour (NLC) and W̃(3)
02

is the next-to-next-to-leading colour (NNLC) contribution. The expression in terms of
Casimir operators can always be recovered through the set of identities

N2 = C2
A, 1 = C2

A − 2CACF ,
1
N2 = C2

A − 4CACF + 4C2
F . (3.11)
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Figure 1. Examples of two-loop diagrams which contribute to the various colour factors in (3.9).

In this paper we will focus on the calculation of the LC contribution W̃(1)
02 and the three

fermionic contributions W(i)
02 , i = 4, 5, 6, which can be obtained by considering only the

planar two-loop diagrams.

4 Diagrammatic calculation and integral reductions

We perform our calculation in conventional dimensional regularisation (CDR) [61, 62],
working in d = 4 − 2ε dimensions. UV and IR singularities will then manifest as poles in
the regulator ε.

In order to compute the coefficients W00, W01 and W02, we start by producing all
relevant Feynman diagrams with QGRAF [63]. We find 6 diagrams at tree level, 80 di-
agrams at one loop and 1716 diagrams at two loops. We use FORM [64] to manipulate
the diagrams, interfere them with their tree-level counterparts and perform the relevant
Lorentz and Dirac algebra. Starting at two loops, it is particularly convenient to group the
diagrams depending on the graph they can be mapped to, before performing all symbolic
manipulations. This allows us to avoid repeating expensive operations multiple times. Af-
ter this step is complete, we can express our two-loop interfered amplitude in terms of scalar
Feynman integrals drawn from two different integral families. We define the integrals as

I fam
n1,...,n11 = e2εγE

∫ 2∏
i=1

(
ddki
iπd/2

)
1

Dn1
1 . . . Dn11

11
, (4.1)

where γE ∼ 0.5772 is the Euler constant and, following the notation of [45, 46], we define
the two families in table 1.

As a first step to simplify our interference terms, we use Reduze 2 [65, 66] to search
for symmetry relations among the different scalar integrals in the two topologies in table 1
and their crossings. This allows us to substantially reduce the number of different integrals
that we need to reduce to master integrals. First, we collect the integrals that are required
to express the coefficients of any of the colour factors (3.9). We find that after applying the
symmetrisations above, and modulo crossings of the external legs, the interference of the
two-loop amplitude with the tree-level amplitude requires the reduction of 1811 integrals
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Prop. den. Family A Family B
D1 k2

1 k2
1

D2 (k1 + p1)2 (k1 − p1)2

D3 (k1 + p1 + p2)2 (k1 − p1 − p2)2

D4 (k1 + p1 + p2 + p3)2 (k1 − p1 − p2 − p3)2

D5 k2
2 k2

2

D6 (k2 + p1 + p2 + p3)2 (k2 − p1 − p2 − p3 − p4)2

D7 (k2 + p1 + p2 + p3 + p4)2 (k1 − k2)2

D8 (k1 − k2)2 (k1 − k2 + p4)2

D9 (k1 + p1 + p2 + p3 + p4)2 (k2 − p1)2

D10 (k2 + p1)2 (k2 − p1 − p2)2

D11 (k2 + p1 + p2)2 (k2 − p1 − p2 − p3)2

Table 1. Definition of the two integral families used in the calculation. We note that also both
the non-planar hexagon-box and the double-pentagon topologies can be described by family B and
crossings thereof.

in family A and 508 integrals in family B, which include all the integrals required to
compute both the hexagon-box and the double-pentagon topologies. In both families we
need at most rank-5 integrals (up to 5 irreducible scalar products in the numerator). From
this point on, we focus only on the planar colour factors and therefore only on integrals
belonging to family A. We performed their reduction using both Kira [35, 67, 68] and an
in-house implementation, Finred, which employs finite field sampling, syzygy techniques,
and denominator guessing, see [38, 69] for more details. It is worth stressing that the planar
reductions up to rank 5 did not constitute an issue for either program here, and took e.g.
40 hours on 36 cores with Kira and a similar runtime with Finred. The reduction lists for
family A produced in this way are not extremely complicated, with a size of around 390
MB in total. Note that we performed the reduction directly in terms of the pre-canonical
set of master integrals defined in [45]. We stress here that these lists do not include the
crossings necessary to reduce all diagrams.

To arrive at a complete set of reduction identities and to render their inclusion as
simple as possible, we proceed as follows. The integration-by-parts solvers deliver each
integral coefficient as a rational function in a common-denominator representation. We
find it useful to convert the rational functions to a partial fraction decomposed form.
Due to the choice of master integrals, we encounter only irreducible denominator factors
which depend on either d or the kinematic variables. For the d dependence of the rational
functions, a simple univariate partial fraction decomposition is sufficient. In contrast, the
decomposition involving the kinematic denominators is computationally non-trivial. We
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encounter the irreducible denominator factors

{d1, . . . , d25} = {s12, s23, s34, s45, s51, s12 + s23 − s45, s23 − s45 − s51, s23 + s34 − s51,

s12 − s34 + s51, s12 − s34 − s45, s12 + s23, s12 − s34, s23 + s34, s12 − s45,

s23 − s45, s12 + s23 − s34 − s45, s34 + s45, s23 − s51, s34 − s51,

s12 + s23 − s45 − s51, s23 + s34 − s45 − s51, s12 + s51,

s12 − s23 − s34 + s51, s12 − s34 − s45 − s51, s45 + s51}. (4.2)

For them, we employ the MultivariateApart package [69] to perform a multivariate par-
tial fraction decomposition; see also [70–72] for related decomposition techniques. The
decomposition of [69] is based on replacing all irreducible denominator factors dk({sij}) in
a given expression according to

1
dk({sij})

= qk, (4.3)

and reducing the resulting polynomial with respect to the ideal generated by

{d1({sij})q1 − 1, . . . , d25({sij})} (4.4)

using a suitable monomial ordering. Due to the specific structure of our denominator list,
the monomial block ordering of [69] coincides with a lexicographic ordering of the qi be-
fore any sij are considered, which produces a Lĕınartas decomposition [73, 74]. Note that
we included only the local denominators of each coefficient in the initial partial fraction
decomposition. This run took a couple of days and reduced the size of the reduction list
by almost a factor 5, down to around 80 MB. In particular, the reduction in complex-
ity is particularly pronounced for the most complicated rank-5 identities, for which up to
a factor of 40 reduction in size is seen. While it has been known for a long time that
integration-by-parts identities can become substantially simpler even using naive variants
of multivariate partial fraction decompositions, we would like to point out a systematic
study of the impact of these new algorithms on the size of the reduction identities which
has recently appeared in [72]. Starting from these substantially simpler identities, we per-
form the relevant crossings and then a second partial fraction decomposition. The second
partial fraction decomposition employs a global Gröbner basis for the ideal (4.4), taking
into account the denominator factors of all coefficients at once. We emphasize that this
method allows to decompose terms of a sum locally, but still ensures a globally unique
representation of the rational functions in the results. With this multi-step procedure,
we obtained all identities and their crossings in a form suitable for insertion in the dia-
grammatic calculation, while keeping the dimension of the expressions under control at
each step. After insertion of the reduction identities into the interference terms, a final
quick last partial fraction decomposition handles the remaining few additional denominator
factors. In practice, we find the partial fraction decomposition of the original, uncrossed
identities to be the most time-consuming step, which nevertheless could be handled in a
couple of days. The remaining steps to arrive at the reduced and fully partial fractioned
interference terms took a few hours.
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In order to optimize our results for numerical stability, we found it useful to tune our
monomial ordering for the partial fraction decomposition in such a way that spurious poles
and unnecessarily high powers of the denominators are avoided. This choice of ordering
was performed for each colour factor and loop order separately. In this way, we obtained
a rather compact expression for the two-loop interference terms in terms of canonical
master integrals, with full dependence on the space-time dimensions d. As we will see in
section 6, by substituting the explicit results for the master integrals, expanding about
d = 4, subtracting the poles, and properly simplifying the remaining rational functions, we
are able to obtain extremely compact, fully analytic results for the finite remainders of the
interference terms.

5 Renormalisation and infrared factorisation

We work in fully massless QCD and keep the number of light fermion flavours nf generic;
we do not consider any loop corrections due to massive quarks. We perform UV renormal-
isation in the standard MS scheme, which allows one to express renormalised amplitudes
in terms of unrenormalised ones by simply replacing the bare coupling constant αbs with
the running coupling αs(µ2), evaluated at the scale µ2,

αbsµ
2ε
0 Sε = αsµ

2ε
[
1− β0

ε

(
αs
2π

)
+
(
β2

0
ε2
− β1

2ε

)(
αs
2π

)2
+O(α3

s )
]
, (5.1)

where Sε = (4π)εe−εγE , and β0 and β1 denote the first two perturbative orders of the QCD
beta function,

β0 = 11
6 CA −

2
3Trnf , β1 = 17

6 C
2
A −

5
3CATrnf − CFTrnf , (5.2)

with Tr = 1/2. The renormalised interference terms in (3.3) are explicitly obtained as

W01 = S−1
ε Wb

01 −
β0
2εW00,

W02 = S−2
ε Wb

02 −
3β0
2ε S

−1
ε Wb

01 −
(
β1
4ε −

3β2
0

8ε2

)
W00, (5.3)

where with a superscript b we denote bare quantities. After UV renormalisation the results
in (5.3) contain only IR poles. We subtract them according to Catani’s factorisation
formula [75], which makes it possible to reorganise the interference terms as

W01 = I1(ε, µ2)W00 +Wfin
01 ,

W02 = I1(ε, µ2)W01 + I2(ε, µ2)W00 +Wfin
02 , (5.4)

where the action of the operators I1 and I2 produce the complete IR structure of the
renormalised amplitudes. The finite remainders Wfin

01 , Wfin
02 will be the main result of our

paper. Before discussing these in detail, let us show the explicit formulae for the Catani
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operators for the process under consideration.1 By direct calculation it is easy to see that
for the qq̄ channel

I1(ε, µ2) = eεγE

2Γ(1− ε)

[
(CA − 2CF )

( 1
ε2

+ 3
2ε

)(
− µ

2

s12

)ε

−
(
CA

( 1
ε2

+ 3
4ε

)
+ γg

2ε

)((
− µ

2

s13

)ε
+
(
− µ

2

s23

)ε)]
, (5.5)

where γg = β0, and

I2(ε, µ2) = −1
2I1(ε, µ2)

(
I1(ε, µ2) + 2β0

ε

)
+ e−εγE

Γ(1− 2ε)
Γ(1− ε)

(
β0
ε

+K

)
I1(2ε, µ2) + e−εγE

4εΓ(1− ε)H2, (5.6)

where K is universal,

K =
(

67
18 −

π2

6

)
CA −

10
9 Trnf , (5.7)

and H2 is a renormalisation and process-dependent factor, in our case given by

H2 = 2H2,q +H2,g, (5.8)

with H2,q and H2,g which read explicitly [76]

H2,g =
(
ζ3
2 + 5

12 + 11π2

144

)
C2
A+ 20

27T
2
r n

2
f−
(
π2

36 + 58
27

)
CATrnf+CFTrnf , (5.9)

H2,q =
(
−3

8 +π2

2 −6ζ3

)
C2
F +

(
245
216−

23π2

48 + 13ζ3
2

)
CACF +

(
π2

12−
25
54

)
CFTrnf . (5.10)

In order to obtain the corresponding expressions for the qg channel, it is enough to swap
the indices 2↔ 3 in (5.5) and the rest follows.

Since we are working in CDR, we carry out the computation of the LO term W00
retaining exact d dependence and we expand W01 up to O(ε2). This is necessary for the
correct subtraction of the IR poles according to (5.4).

After UV renormalisation and IR subtraction the one-loop finite remainder takes
the form:

Wfin
01 = CAW(1),fin

01 + CFW(2),fin
01 + nγγf W

(3),fin
01 + nfW

(4),fin
01 , (5.11)

where, as anticipated in section 3, the last term on the right-hand side originates from the
renormalisation and subtraction procedures and it is proportional to the LO result. As for
the two-loop finite remainder, we find it convenient to cast it in the form

Wfin
02 =

3∑
i=1

c̃iW̃(i),fin
02 +

10∑
i=4

ciW(i),fin
02 , (5.12)

1Note that the form of I1 and I2 is dictated entirely by the presence of a qq̄ pair and one gluon as
coloured external states.
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where the colour factors c4,...,10 are the same as defined in (3.9) and we introduced

c̃1 = N2, c̃2 = 1, c̃3 = N−2 . (5.13)

The factors c̃1,2,3 clearly organise the colour tower, while c10 is introduced by UV renor-
malisation and IR subtraction. As we have already argued at the end of section 3, the
coefficients W̃(1),fin

02 , W(4),fin
02 , W(5),fin

02 and W(6),fin
02 entail only planar two-loop corrections.

These four finite contributions constitute the main object of this paper.
A first test that we performed on our results at the analytical level, is that we reproduce

all the ε poles of the renormalised interference terms, at one and two loops, as predicted
by Catani’s factorisation formula in (5.4).

6 Exploiting linear dependencies of rational functions

The LO contribution defined in (3.3) for process (2.1) has a very compact expression,
which, computed in CDR, reads

W00 = 8s12
s14s15s24s25

(
s2

13 + s2
23 + ε(2− ε)(s2

14 + s2
15 + s2

24 + s2
25)

+ 2ε(1− ε)s13s23 + ε(3 + ε)(s14 − s24)(s15 − s25)
)

+
(
3→ 4, 4→ 5, 5→ 3

)
+
(
3→ 5, 5→ 4, 4→ 3

)
, (6.1)

where we kept full ε-dependence and in the last row we denote cyclic permutations of the
indices labelling the kinematic invariants. An equivalent expression holds for process (2.2)
upon replacing 2↔ 3 in the indices labeling the invariants.

Starting already from one-loop, the explicit expression of the interference terms become
too lengthy to be shown here. Therefore, we limit ourselves to describing the functional
form of our results and the approach we adopted to obtain particularly compact expressions.

Both at one and two loops, the finite remainders will be a linear combination of tran-
scendental functions multiplied by rational functions. The physical one-loop finite remain-
ders, i.e. the coefficients of O(ε0), contain only simple logarithms and dilogarithms and
they are free of the parity odd-invariant ε5. At the two-loop order, as well as for the higher
ε powers of the one loop result, the class of transcendental functions needs to be extended
beyond classical polylogarithms and ε5 enters explicitly. We employ the representation in
terms of so-called Pentagon Functions presented in [48].2 Thus we write a generic finite
remainder as

W(m),fin
0n =

∑
k

rk({sij , ε5})fk({sij , ε5}), (6.2)

wherem denotes some given colour factor, n = 1, 2, rk is a rational function of the kinematic
invariants and fk indicates a pentagon function. Equation (6.2) holds formally at LO,
n = 0, as well, upon putting fk = 1. We remind the reader that at this step we represent
each rational function rk in its partial fractions decomposed form. We further stress that

2For further details about the definition and implementation of the pentagon functions see [48].
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the algorithm presented in [69] avoids the presence of spurious denominators, therefore our
final expressions contain all and only the physical denominators of the amplitudes.

Despite that the partial fraction decomposition allows us to obtain rather compact
results already at this level, we find that the representation in (6.2) is not the most compact
representation yet. This is due to the fact that the rational functions rk are not linearly
independent and, in fact, the set of independent rational functions is substantially smaller.
The minimal set of rational functions can be obtained as follows. First of all, in order to
guarantee a globally unique representation of all rational functions, we employ a partial
fraction decomposition with respect to a common Gröbner basis. As a result, each rational
function rk is represented as a polynomial of maximum degree p in the 5 kinematic variables
sij (2.3) and the 25 inverse denominators qi (4.3),

rk =
∑

m1+...+mn≤p
ak,m1...m30Mm1...m30 , where Mm1...m30 ≡ q

m1
1 · · ·q

m25
25 sm26

12 · · ·s
m30
51 (6.3)

and the coefficients ak,m1...m30 are rational numbers. We emphasize that only certain
Mk,m1...m30 occur as irreducible monomials in our partial fractioned results; in practice
it is convenient to enumerate only those. We are interested in determining linear relations
between different rational functions,

0 =
∑
k

bkrk . (6.4)

and employing them to re-express all rk in terms of a linearly independent subset of them.
By inserting the partial fractioned form (6.3) and observing that the monomials Mm1...m30

are independent, we obtain a system of linear relations for the bk,

0 =
∑
k

ak,m1...m30bk (6.5)

for each of the irreducible monomialsMm1...m30 . In our case, there are many more monomi-
als than rational functions, and the system is over-constrained. Nevertheless, many of the
equations turn out to be linearly dependent, allowing us to find a solution to the system in
terms of a basis of independent rational functions. Note that this can be achieved by a row
reduction of a matrix of rational numbers, which can easily be done e.g. with a finite field
solver like Finred. Similarly to what happens for the reduction to master integrals, there is
not a unique solution for the basis of rational functions and a more natural choice can lead
to more compact results for the scattering amplitude. We find that very compact analytic
expressions can be found by simplifying the rational functions for each loop order and colour
factor separately. In practice, we order the rational functions according to the number of
monomials they contain, and at each step we remove the one with the largest number.

This approach makes it possible to drastically reduce the size of the final results. As an
example, for the LC coefficient W̃(1),fin

02 we start with an expression of around 64 MB which,
after moving to a basis of independent rational functions, can be reduced to around 3 MB.
This makes it possible not only to have a more compact result, but, most importantly, a
more efficient and potentially more stable numerical implementation. Clearly, we cannot
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demonstrate that a more compact representation does not exist for a different choice of
independent rational functions. On the contrary, we expect that more compact expressions
could be obtained if one does not insist on using a set of independent kinematics invariants,
see for example eq. (6.1) and ref. [22]. Nevertheless, our current representation is more
than suitable for practical use.

As last a remark, we stress that the procedure above does not produce the minimal
number of rational functions. Indeed, starting from the results simplified according to the
procedure above, we can attempt to further relate rational functions across different colour
structures and different loop orders. In this way, more relations can be found and a minimal
set of rational functions can be identified. We find this second representation particularly
suitable for implementation of the interference terms in a numerical code, as described in
the following section. We provide analytical expressions for various colour factors at the
different loop orders with the arXiv submission of this manuscript.

7 Numerical implementation

We implemented our results in the C++ numerical code aajamp, which we distribute through
the git repository [77]; it can be easily downloaded with

git clone https://gitlab.msu.edu/vmante/aajamp.git

Details on the installation procedure and usage of the package are given in the git repository.
The main purpose of the code is to evaluate the finite remainders W00, allW(i),fin

01 of (5.11)
and W(i),fin

02 of (5.12) for i ∈ {1, 4, 5, 6, 10}. The evaluation of all transcendental functions
in our code, both at one and two-loop level, is handled by the PentagonFunctions-cpp
library of [48, 78, 79]. In order to implement our formulae in an efficient fashion we adopted
the optimised code generation provided by FORM [80].

We then checked the implementation of our LO and NLO results against
OpenLoops 2 [81] and find agreement.

In table 2 we provide benchmark results for a kinematic point in the physical region
defined by

s12 = 157, s23 = −43, s34 = 83, s45 = 61, s15 = −37, µ2 = 100 . (7.1)

To assess the performance of our code, we measured the evaluation time of the NLO
and NNLO results in double precision on a single Intel i7-9750H CPU @ 2.60GHz core
using gcc 9.3.0 for a distribution of physical points in phase space, which we describe in
more detail below. We find an average evalution time of 5.2× 10−2 ms and 1.2 s per phase
space point for the NLO and NNLO contributions, respectively. We note that most of the
evaluation time for a given point is spent on the computation of the pentagon functions.

The aajamp package allows for numerical evaluations in double and quadruple floating-
point precision, i.e. 16 and 32 decimal digits representation. The quadruple precision
evaluation is adapted to follow the strategy of the PentagonFunctions-cpp library, which
utilizes the qd library [82] for higher-precision arithmetic.3 Therefore, aajamp relies on qd

3Strictly speaking the 32 decimal digits representation of qd is based on a double-double arithmetic.
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W(i)
0n qq̄ → gγγ qg → qγγ

W00 5.31483213538515820 5.70333370484282831

W(1),fin
01 20.6589111571951634 −4.61720250742111915

W(2),fin
01 −22.5582575628444708 −12.1699155553812286

W(3),fin
01 0.990965411280490205 −1.87586195456244775

W(4),fin
01 −0.654985891275428056 −0.186734013704948326

W(1),fin
02 109.027607189124197 −12.3348917323658682

W(4),fin
02 −29.2470156809751600 7.70946078306355620

W(5),fin
02 14.1633315227102639 6.45363246183533512

W(6),fin
02 −0.52366019039559053 1.79398590828584226

W(10),fin
02 0.607997053766843543 −0.66761299936404394

Table 2. Benchmark results for the tree-level, one-loop and two-loop interference terms for the
partonic channels qq̄ and qg for the kinematic point in (7.1). Only the real part ofW(i)

0n is presented.

as well. We note that the PentagonFunctions-cpp and qd libraries offer octuple precision,
but we reckon that quadruple precision is sufficient for phenomenological applications.

Although the user can choose at the interface level between a purely double or quadru-
ple arithmetic evaluation, we have implemented a primitive precision control system. This
is motivated by the fact that individual terms appearing in the squared matrix elements can
develop spurious singularities inside the physical phase space, leading to more or less severe
numerical instabilities. These are typically associated with small Gram determinants, or
in our case, with denominators in the rational functions which become small compared
to the typical energy scale of the process. We observe that in our final expressions, the
parity odd invariant ε5 does not appear in any denominator and, correspondingly, small
Gram determinants are not of prior concern. Instead, we focus on small denominators in
the rational functions, which are not associated with a physical singularity, but lead to a
major source of numerical instabilities in the evaluations. Let us stress that, in principle,
also other types of numerical instabilities could arise, but our denominator based analysis
indeed works well in practice, as we will show. Examples of these spurious singularities
arise in events with all particle having a large transverse momentum and entailing collinear
photon pairs or collinear gluon-photon pairs. We therefore find it natural to activate a
quadruple precision evaluation if any of the 25 denominator factors becomes smaller than
a given threshold χ, i.e. if

di < χs12, i ∈ {1, . . . , 25} . (7.2)

The threshold χ can be tuned by the user as detailed in one of the examples in our git
repository. As can be seen in figure 2, this precision-control system significantly improves
the reliability of the numerical evaluations. Here, we assess the level of numerical stability
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−16 −14 −12 −10 −8 −6 −4 −2 0

accuracy Dmin

10−5

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

of
ev

en
ts

qq̄ → gγγ at O(α3
s )

W̃(1),fin
02 dp

W(4),fin
02 dp

W̃(1),fin
02 rescue

W(4),fin
02 rescue

Figure 2. Probability of finding an event with an instability level D defined in (7.3) larger than
Dmin for the two colour factors W(1),fin

02 and W(4),fin
02 . The labels “dp” and “rescue” are described

in the text. Events were generated according to (7.4).

via a rescaling test, i.e. we consider the quantity D defined as

D = log10

∣∣∣∣∣1− ξnW
(i)
02 (ξsij , ξµ2)
W(i)

02 (sij , µ2)

∣∣∣∣∣ , (7.3)

where we perform two evaluations of the colour factorW(i),fin
02 with input kinematics (sij , µ2)

and with the same kinematics rescaled by a factor ξ. The extra factor ξn accounts for the
mass dimensionality of W(i),fin

lm , and in our case we just have n = 1. The definition of
D in (7.3) intuitively provides an indicator for the number of digits one can trust for a
given computation, thus we identify it as our level of instability. In figure 2 we show a
cumulative histogram of phase-space points, which provide an evaluation of W(i),fin

02 with
an instability D larger than Dmin. We plot two selected colour factors, both evaluated in
pure double precision, labelled as “dp”, and with the precision control system activated,
labelled as “rescue” where the threshold χ has been set to 10−4. We stress that only those
points which fulfil the condition in (7.2) are evaluated with higher precision. We generated
105 uniformly distributed events with Rambo [83] subject to the constraints

Ecom = 1 TeV, pT,g > 30 GeV, pT,γ1 > 30 GeV, pT,γ2 > 30 GeV, (7.4)

where Ecom is the energy in rest frame of the colliding partons and pT,i is the transverse
momentum of particle i. One can see that for this ensemble of events, the precision control
system is able to capture and cure the worst instabilities, effectively guaranteeing a very
good level of accuracy. Once again, we stress that a more sophisticated stability system
could be devised in principle, especially in regions of soft or collinear emissions.
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8 Conclusions

In this paper, we presented the calculation of the leading colour and light fermionic two-
loop corrections for the production of two photons and a jet in quark-antiquark annihilation
and quark-gluon scattering. This calculation has been made possible by the combination
of state-of-the-art techniques for the reduction of multiloop Feynman integrals, new ideas
about their representations in terms of multivariate partial fractions, and recent results for
the relevant master integrals. In particular, we have shown how the spin summed inter-
ference between the two-loop and the tree amplitude can be computed from its Feynman
diagrammatic representation, resulting in very compact analytic expressions. We have
checked that our two-loop corrections display the correct pole structure, as first predicted
by Catani for QCD amplitudes at this perturbative order.

In order to demonstrate the flexibility and usability of our result, we have also imple-
mented the tree-level, one-loop and two-loop finite remainders in a C++ library, providing
all ε expansions through to transcendental weight four. Our library links against the
PentagonFunctions-cpp library and allows the user to evaluate the loop corrections in
double and quadruple precision. We have also introduced a simple precision control sys-
tem that allows the code to identify phase space points prone to loss of precision, such that
quadruple precision evaluations are restricted to a minimum. We envisage that the algo-
rithms developed for this calculation can be extended to solve future cutting-edge problems
in the computation of multiloop multileg scattering amplitudes relevant for collider physics
phenomenology.
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