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Abstract: In this paper, we explore the open string amplitude’s dual role as a space-time
S-matrix and a 2D holomorphic CFT correlation function. We pursue this correspondence
in two directions. First, beginning with a general disk integrand dressed with a Koba-
Nielsen factor, we demonstrate that exchange symmetry for the factorization residue of
the amplitude forces the integrand to be expandable on SL(2,R) conformal blocks. Fur-
thermore, positivity constraints associated with unitarity imply the SL(2,R) blocks must
come in linear combinations for which the Virasoro block emerges at the “kink” in the
space of solutions. In other words, Virasoro symmetry arises at the boundary of consistent
factorization. Next, we consider the low energy EFT description, where unitarity mani-
fests as the EFThedron in which the couplings must live. The existence of a worldsheet
description implies, through the Koba-Nielsen factor, monodromy relations which impose
algebraic identities amongst the EFT couplings. We demonstrate at finite derivative or-
der that the intersection of the “monodromy plane” and the four-dimensional EFThedron
carves out a tiny island for the couplings, which continues to shrink as the derivative order
is increased. At the eighth derivative order, on a three-dimensional monodromy plane,
the intersection fixes the width of this island to around 1.5% (of ζ(3)) and 0.2% (of ζ(5))
with respect to the toroidally compactified Type-I super string answer. This leads us to
conjecture that the four-point open superstring amplitude can be completely determined
by the geometry of the intersection of the monodromy plane and the EFThedron.
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1 Introduction

String theory amplitudes can be viewed as living in the intersection of two sets of consis-
tency conditions: on the one hand they are subject to the usual analyticity constraints of
the space-time S-matrix, on the other, as two-dimensional CFT correlators they must have
a consistent operator product expansion (OPE). At four-points both sets of consistency
systems are amenable to a bootstrap analysis, where a spectacular modern revival has been
seen for the CFT bootstrap [1] (for a review see [2–4]), and more recently for scattering
amplitudes [5–10].
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The interplay between space-time factorization and the structure of the worldsheet
integrand has been one of the major undertones in new formulations of field theory and
string theory scattering amplitudes. Indeed, the Cachazo-He-Yuan (CHY) [11–13] formu-
lation of massless scattering amplitudes are given as an integral over the moduli space of a
Riemann sphere, where the “scattering equation” ensures that space-time factorization is
projected into worldsheet factorization. In the modern representation of open string ampli-
tudes, where it is written as a product of a field-theory amplitude with its α′ corrections, as
demonstrated for the superstring [14–16] as well as bosonic and heteorotic strings [17, 18],
it can be viewed as a UV completion of solutions to consistent massless factorization. Even
more recently, consistent massless factorization that extrapolates between the α′ → 0 limit
and finite α′ naturally led to the realization of stringy canonical forms whose generalization
are not necessarily string theory amplitudes [19]. This leads us to ask: must a worldsheet
representation that enjoys unitary massless and massive factorization be necessarily given
by a CFT four-point function that respects the full Virasoro symmetry?

On the other hand, UV unitarity leads to non-trivial bounds on the low energy ef-
fective field theory (EFT) couplings. This was famously explored for the positivity of the
leading four-derivative coupling stemming from the optical theorem in [20]. Extensions
to higher order derivatives, and away from the forward limit, were explored in subsequent
works [21–24], with a complete geometric definition identified as the EFThedron [25]. These
are general unitarity constraints that do not require the presence of a worldsheet.1 Thus
it is then natural to seek out features of the worldsheet that has a distinctive projection in
the EFThedron.

In this paper, we wish to study the projection in both directions. The arena is the
following ansatz for an open string amplitude

A(s, t) ∼
∫ 1

0
dz zα

′2k3·k4(1− z)α′2k2·k3f(z) , (1.1)

where f(z) is some function such that z∆f(z) is analytic near z = 0 for some finite ∆, and ki
are d-dimensional momenta. We use s = −(k1+k2)2, t = −(k1+k4)2, and u = −(k1+k3)2,
so that A(s, t) ≡ A(1234) is an ordered amplitude with only s and t channel poles. Im-
portantly, we will proceed by being completely agnostic about the world sheet theory, and
any specific form of f(z). Instead, in the first part of the paper we will derive the global
conformal invariance as well as Virasoro symmetry of the worldsheet theory as contained
by f(z), by imposing exchange symmetry and unitarity of the space time S-matrix.

In the other direction, we will again start from a general f(z), and study the low energy
expansion of eq. (1.1). By imposing unitarity constraints and the monodromy relations im-
plied by the Koba-Nielsen factor zα′2k3·k4(1 − z)α′2k2·k3 , we will find that the low energy
expansion must match the open string amplitude. Demanding eq. (1.1) satisfies monodromy
relations amounts to generalizing f(z) to gain non-trivial s, t dependence, while not sourc-
ing any non-trivial monodromy. This can be viewed as the amplitude for the vacuum state
of the compactified string on a product geometry R1,d−1 ⊗M , where M is compact. A
canonical example will be toroidal compactification of flat space string amplitude.

1They were recently studied in the context of string amplitudes in [26].
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Note that even though eq. (1.1) might seem to severely limit the space of EFT’s we
can consider, in fact any general EFT can be embedded in that form with a suitable choice
for f(z). For example, choosing an s− t symmetric polynomial:

f(z) =
∑
i=0

caz
a(1− z)a (1.2)

We can perform the integral to obtain

A(s, t) =
∑

ck
Γ[α′s+ a]Γ[α′t+ a]

Γ[α′(s+ t) + 2a] (1.3)

Expanding this at low energy in the α′ → 0 limit we obtain

A(s, t) = c0

(1
s

+ 1
t

)
α′−1 +

(
c1 + c2

6 + c3
30 + . . .

)
+O(α′) (1.4)

and so we can express any general EFT of the type

A(s, t) =
∑

gk,qs
k−qtq (1.5)

simply by solving for the coefficients ca. Practically, the Koba-Nielsen factors act as a
UV dressing that can be applied to any EFT in order to control its high energy behavior.
However, as is well known that the “intercept” a in eq. (1.2) is severely constrained by
unitarity. Thus we expect that by combining eq. (1.1) with the constraints from the
EFThedron, the space for allowed f(z) and hence EFT coefficients, are severely constrained.

Space-time constraints on the worldsheet. We first consider constraints on the func-
tion f(z) imposed by the fact that A(s, t), as a space-time S-matrix, must factorize in a
way that is consistent with unitarity and Lorentz symmetry. The latter implies that the
residue must be expandable on the Gegenbauer polynomials2

Res[A(s, t)]
∣∣∣∣
s→m2

=
∑
`

C`
Gd` (cos θ)
s−m2 , (1.6)

while the former implies linear and quadratic bounds on C`. In particular, labeling the
mass of the external legs as i1, i2, i3 and i4, unitarity implies

• (i) C` is symmetric under i1 ↔ i2, i3 ↔ i4 exchange.

• (ii) C` must be positive when i1 = i4 and i2 = i3.

• (iii) For distinct masses, the C`’s satisfy the Schwarz inequality:

C`(i1, i2, i2, i1)C`(i3, i4, i4, i3)− (C`(i1, i2, i3, i4))2 ≥ 0 . (1.7)
2Recall that the Gegenbauer polynomials are orthogonal polynomials that form irreducible representa-

tions of SO(d−1). They are given by the following generating function

1
(1− 2r cos θ + r2)

d−3
2

=
∑
`

r`Gd` (cos θ) .
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Figure 1. The plot for the allowed solution for an ansatz for χ4 (2.41) under (ii) and (iii). For
illustrative purposes we have set (a1, a4) to the Virasoro block value (a1 = 9880, a4 = 5), and
plotted a2, a3. The lines denote the boundaries carved out by (iii) as a function of the space-time
dimension. The point in the figure is the Virasoro value.

Since z∆f(z) is analytic near the origin, the singularity of the amplitude arises from when
the exponents of the Koba-Nielson factor become negative integers. This allows us to easily
extract the s-channel factorization residues and consider the consequences of the above
constraints on the power series coefficients of f(z). We find that (i) alone is sufficient to
show that f(z) must be given by linear combinations of SL(2,R) global conformal blocks,
expressed as hypergeometric functions of the type 2F1(∆,∆, 2∆, z). Conditions (ii) and
(iii) impose further constraints. In particular, we will show that for these constraints to
hold for arbitrary positive external masses, the global blocks whose conformal dimensions
differ by integers must be grouped into a new function of the form:

z∆
2F1(∆,∆, 2∆, z) +

∞∑
q=1

χqz
∆+q

2F1(∆+q,∆+q, 2∆+2q, z) , (1.8)

with their relative coefficients χq bounded by (ii) and (iii). Using this criteria we find
that χi with i = 1, 2, 3 can be completely determined as the solution that saturates the
bounds in (ii) and (iii). For χ4 where things become more subtle, we can plot the allowed
region and demonstrate that the Virasoro block lives at the kink of the region, as shown
in figure 1. Thus we see that worldsheet Virasoro symmetry emerges at the boundary of
consistent space-time factorization. It remains an interesting open question whether this
allowed region can be further reduced by extra constraints. Assuming further properties
such as unitarity of the CFT, it is known that scale invariance implies conformal invariance.
However, it is not clear for example that the spacetime unitarity we are imposing on the S-
matrix image of this CFT requires the CFT itself to be unitary, and so conformal invariance
is not guaranteed.

Worldsheet image on space-time S-matrix. We then consider the projection of con-
straints in the opposite direction. We ask what is the image of the string worldsheet on the
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S-Matrix? Looking back at eq. (1.1), one consequence is that the Koba-Nielsen factor im-
plies the following monodromy relation amongst amplitudes of different orderings [27–29]:

A (s, u) + eiπsA (s, t) + e−iπuA (t, u) = 0 . (1.9)

Note that it is known that monodromy relations, when combined with the asymptotic
Regge behavior of string amplitudes, are sufficient to completely determine the four-particle
amplitude [30]. In particular, the residue of the four-point amplitude is a single variable
function, whose zeros on the real line can be completely determined by the monodromy
relations. Using the precise form of the asymptotic Regge limit along with the precise
intercept, one can conclude that no other zeros are present and the residue is fixed up to
an overall constant. Note that it is important to impose the linear Regge trajectory. In
fact it is has been shown long ago, that general principles of analyticity, crossing and linear
Regge trajectory for the S-matrix can fix the four-point function to a sum of Veneziano
amplitudes with kinematic dependent coefficients [31–35]. It is important to note that
we will not assume the linear Regge trajectory, in particular its intercept, but merely the
Froissart bound, which is a more general condition.

Here we would like to consider open strings in a more general context, for example
on non-trivial compactified backgrounds. The ground-state scattering amplitude takes the
form of eq. (1.1), with f(z) → f(z, s, t) being the four point function of some compact
CFTs. Note that due to the presence of f(z, s, t), the asymptotic Regge behavior will
deviate from the usual flat space form, in particular in its intercept. Instead we consider
the following assumptions

• (i) The UV completion respects Lorentz invariance and unitarity.

• (ii) There are no tachyonic states.

• (iii) The subtracted amplitude respects the Froissart bound [36].

• (iv) The amplitude satisfies the monodromy relation in eq. (1.9).

Here, (ii, iii) are necessary for the employment of the EFThedron constraints, which we will
discuss shortly. The last assumption corresponds to f(z, s, t) sourcing no extra monodromy.
These conditions will be implemented from the EFT point of view, manifested as constraints
for the EFT couplings. Taking the low energy limit and expanding the amplitude in
Mandelstam invariants

A(s, t)|s,t�1 = (massless poles) +
∑
k,q≥0

gk,qs
k−qtq , (1.10)

the monodromy relation imposes algebraic identities between the EFT couplings gk,q, which
importantly can also be amongst couplings of different mass dimensions. For instance, it
fixes g0,0 = π2

6 , or g3,1 = 2g3,0 − π2

6 g1,0. The remaining free parameters, like g1,0 or g3,0,
define the “monodromy plane” in the space of EFT couplings.
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On the other hand, UV unitarity, Lorentz invariance and locality also constrain the
space of allowed couplings to be inside the EFThedron [25]. Thus the image of the world-
sheet inside the EFThedron is given by its intersection with the monodromy plane. Re-
markably, we find that the intersection gives just a tiny allowed region for the independent
EFT couplings. We will consider the EFThedron for four-dimensional space-time. For
example, up to k = 4 (eight derivative order), the monodromy plane is three-dimensional
and parameterized by g1,0, g3,0 and g4,1. Applying EFThedron constraints on this space,
we obtain a finite intersection region displayed in gray in figure 2. The region is drastically
reduced by requiring it to be uplifted into the k = 6 geometry, for the cases when the
four-dimensional monodromy plane intersects with the EFThedron. It is instructive to
compare the width of the reduced red region to toroidally compactified type-I superstring
amplitude. We find the coefficients must lie within a narrow region of the string result:

gmax
1,0 − gmin

1,0

gstring
1,0

= 1.20667− 1.18890
ζ(3) ≈ 1.5% ,

gmax
3,0 − gmin

3,0

gstring
3,0

= 1.03808− 1.03594
ζ(5) ≈ 0.2% ,

gmax
4,1 − gmin

4,1

gstring
4,1

= 0.05699− 0.03560
(π6 − 630ζ(3)2)/1260) ≈ 52.8% . (1.11)

Applying all k = 7 and one k = 8 constraints, using the FindInstance function in Math-
ematica we were able to further shrink to the region in figure 12b. In fact, by setting
(g1,0, g3,0, g4,1) to string values (ζ(3), ζ(5), (π6 − 630ζ(3)2)/1260), we can search for solu-
tions to the k = 7 EFThedron constraints using FindInstance, obtaining the following
values:

(g5,0, g6,1, g7,0, g7,2) = (1.00834, 0.00862, 1.00202, 0.00035) , (1.12)

which match to the known string values up to four digits:(
ζ(7), π8

7560−ζ(3)ζ(5), ζ(9), 180ζ(3)3 − 2π6ζ(3)− 27π4ζ(5)− 540π2ζ(7) + 10080ζ(9)
1080

)
= (1.00835, 0.00865, 1.00201, 0.00032) . (1.13)

This analysis leads us to the conjecture that:

The geometry of intersection between the monodromy plane and the EFThe-
dron yields the four-point massless amplitude of toroidally compactified Type-I
superstring.

Note that this also implies that deviation from the superstring result must imply
non-trivial monodromy factor arising from the four-point function of the compact CFT.
We repeat the monodromy and unitarity study on one of such variation: the bicolour
monodromy relation u

sA (s, u)+eiπsA (s, t)+e−iπu tsA (u, t) = 0, and achieve results similar
to the single color amplitude.

– 6 –
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Figure 2. The gray region represents the three-dimensional intersection of the monodromy plane
and EFThedron at eighth derivative order. The red region represents the region that can be
projected from the four-dimensional geometry that would appear at ninth derivative order.

This paper is organized as follows. In section 2 we discuss the emergence of global
conformal and Virasoro blocks from unitarity. Extra details are presented in appendix A
and B. In section 3 we move on to review the monodromy relations and the EFThedron. In
section 3.1 we first solve the monodromy condition perturbatively, and extract the relations
imposed between different physical parameters, the monodromy plane. In section 3.2 we
then review the EFThedron, the positive geometry in which EFT parameters must exist
in order to satisfy unitarity and locality. In section 4 we apply EFThedron considerations
on the remaining free parameters of the monodromy plane, and demonstrate how consid-
ering higher and higher order cyclic polytopes and Hankel matrices drastically reduces the
allowed physical space, apparently converging to the open string amplitude. Appendix C
contains the equivalent discussions for bi-color theory, while appendix D contains extra nu-
merical checks of the conjecture. We end with conclusions and future directions in section 5.

2 Consistent factorization and the emergence of Virasoro symmetry

In this section we ask the following question: suppose we have a four-point scalar amplitude
that takes the form

A(s, t) =
∫ 1

0
dz zα

′2k3·k4(1− z)α′2k2·k3f(z) , (2.1)

where α′ is a normalization scale and we assume f(z) is such that z∆f(z) is analytic near
z = 0 for some finite ∆. We will not assume that f(z) arises from the four-point function of
a CFT, but aim to derive it. The form of (2.1) can be motivated from several fronts. Firstly,
the kinematic dependence is completely contained in the Koba-Nielsen factor, which leads
to exponential softness at s,−t� 1 à la Gross and Mende [37] (see [38] for open strings),
as well as a linear trajectory for s, t� 1, which was shown to be universal in [39]. Secondly,
one can consider this as an ansatz for the scattering of the vacuum state in d-dimensions,
for string theory compactified on R1,d−1 ⊗Mdc−d, where dc is the critical dimension.

– 7 –
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Since the kinematic dependence is all in the Koba-Nielsen factor, the amplitude can
only develop singularities when this factor diverges, i.e. at the boundary of the integration
region z = 0, 1. In other words, we will only have s and t-channel singularities, implying
that the amplitude has a prescribed ordering. This motivates us to re-express (2.1) as

A(s, t) =
∫ 1

0
dz z−s+i3+i4−2(1− z)−t+i2+i3−2f(z) , (2.2)

where we denote the mass of each leg as m2
a = ia − 1, where the −1 at this point is just

convention. Note that we have set α′ = 1. We can extract the residue of the s-channel
singularity by writing f(z) as a series with generic real exponents in the neighborhood of
z = 0, which without loss of generality we write as

f(z) =
∑
p

cpz
p−i3−i4 (2.3)

This can be viewed as a sum of “dilatation blocks” weighed by coefficients cp. For each
individual block, the integral∫ 1

0
dz z−s−2(1− z)−t+i2+i3−2zp , (2.4)

will have s-channel poles at p− 1, p, p+ 1, · · · . This suggests that we collect the dilatation
blocks that differ by integer exponents into a subset. To this end we consider

fp(z) = zp−i3−i4D{ia}, D{ia} = 1 + v1z + v2z
2 + · · · = 1 +

∞∑
i=1

viz
i . (2.5)

Note that the relative coefficients vi are understood to be functions of {ia, p}.
The s-channel residue is then given by evaluating the integral in (2.2) as a contour

integral around z = 0 for fixed s. We see that the s-channel singularity appears at s =
n+p−1, where n is a non-negative integer, and the residue is given by

dn

dzn
(1− z)t+i2+i3−2D{ia}

∣∣∣∣
z=0
≡ Resn(t) . (2.6)

Since A(s, t) is a d-dimensional scalar scattering amplitude, we expand the residue
function Resn(t) in the Gegenbauer polynomial basis. This can be done by first converting
t to the center of mass scattering angle via:

cos θ = (s+m2
1 −m2

2)(s+m2
4 −m2

3)− 2s(m2
1 +m2

4 − t)√
(s−m2

1 −m2
2)2 − 4m2

1m
2
2

√
(s−m2

3 −m2
4)2 − 4m2

3m
2
4

. (2.7)

On the residue s is set to s = n+p−1. Using this we can expand the residue on the
d-dimensional Gegenbauer polynomials Gd` (cos θ):

Resn(cos θ) =
∑
`

C(n)
` K`Gd` (cos θ) , (2.8)

– 8 –
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C(n)
` `=0 `=1 `=2 `=3

n=0 1 0 0 0

n=1 − (−i1+i2+p)(i3−i4+p)
2p +v1

1
2(−3+d) 0 0

n=2 Appendix A − (i2−i1)(i3−i4+p+1)+(p+1)(i3−i4+p)
4(d−3)(p+1) + 1

2(d−3)v1
1

4(d−3)(d−1) 0

Table 1. The explicit coefficient C(n)
` of Resn(t) in eq. (2.6) for n = 0, 1, 2.

where K is a kinematic factor given as:

K =

√
(n+p−m2

1−m2
2−1)2−4m2

1m
2
2

√
(n+p−m2

3−m2
4−1)2−4m2

3m
2
4

n+p−1 . (2.9)

In general the coefficients C(n)
` will be given in terms of {ia, d, p}, and vi. For fixed n,

C(n)
` are non-vanishing for ` ≤ n, and they depend on vi with i ≤ n−`. Take Resn(t) in

eq. (2.6) up to n=2 for example, expanding onto the Gegenbauer basis in eq. (2.8) leads
to coefficients C(n)

` listed in table 1.3

Now since the residue function Resn(t) must have an interpretation as the factorization
of the four-point amplitude into the product of three-point amplitudes, it should have an
equivalent representation as

Resn(t) =
∑
`

gi1i2` kµ1
12 k

µ2
12 · · · k

µ`
12 Pµ1µ2···µ`;ν1ν2···ν` k

ν1
34 k

ν2
34 · · · k

ν`
34g

i3i4
` , (2.10)

where kµ12 = kµ1 −k
µ
2 and Pµ1µ2···µ`;ν1ν2···ν` is a degree ` polynomial in ηµν , that is symmetric

and traceless in {µ} and {ν} separately. This implies the following constraints on the
coefficients C(n)

` ,

• (i) Under i1 ↔ i2, i3 ↔ i4 exchange, C(n)
` is symmetric.

• (ii) For i1 = i4 and i2 = i3, C(n)
` must be positive.

• (iii) For i1 6= i2 6= i3 6= i4, the C(n)
` s satisfy the following quadratic Schwarz inequality:

C(n)
` (i1, i2, i2, i1)C(n)

` (i3, i4, i4, i3)−
(
C(n)
` (i1, i2, i3, i4)

)2
≥ 0 . (2.11)

The inequality (iii) arises from the fact that C(n)
` should admit a representation as

C(n)
` (i1, i2, i2, i1) =

∑
a

gai1i2gai1i2 = |~gi1i2 |2

C(n)
` (i1, i2, i3, i4) =

∑
a

gai1i2gai3i4 = ~gi1i2 · ~gi3i4

C(n)
` (i3, i4, i4, i3) =

∑
a

gai3i4gai3i4 = |~gi3i4 |2 , (2.12)

3At n = 0 we only have C(0)
0 , which is simply a constant proportional to f(0).

– 9 –
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where gaij is the coupling constant of some spin-` state a coupled to states i and j. Note
that the equality is satisfied if the a = 1, i.e. the intermediate state is unique, or if there is
a degeneracy and all the states couple with the same coupling.

Since C(n)
` is defined with respect to the Gegenbauer polynomial, constraints (ii) and

(iii) are dimension dependent. A Gegenbauer polynomial Gd1
` (cos θ) can be positively

expanded on Gd2
` (cos θ) when d1 > d2, therefore the space carved out by (ii) with d1 must

be inside that of d2. For (iii), note that while eq. (2.12) implies eq. (2.11), the inverse
is not true. Thus for an S-matrix to be consistent in d1 dimensions, constraint (iii) must
hold for all d2 < d1. Thus it is necessary to compare and combine constraints of distinct
dimensions. Because C(n)

` is a function of the vi, the above conditions are now translated
into constraints on the function fp(z). In other words, if the integral formula in (2.1) is
to yield a consistent space-time S-matrix, the power series of fp(z) must satisfy an infinite
series of constraints!

In the following, we will demonstrate that condition (i) implies each fp(z) must be the
global conformal block4

fp(z) = zp−i3−i42F1(p+(i2−i1), p+(i3−i4), 2p, z) , (2.13)

while (ii) and (iii) further require that the global blocks that differ by integer dimensions
must be combined into further subsets:

fp(z) +
∑
q=1

χqfp+q(z) , (2.14)

with the Virasoro blocks living at the “boundary” of this subset. This is summarized in
figure 3.

2.1 Global blocks from exchange symmetry

The exchanging symmetry of C(n)
` under i1 ↔ i2, i3 ↔ i4 imposes constraints on the form of

vi, as seen in table 1. We will begin by assuming that vn takes the following factorized form:

vn = F(i1, i2, p)F(i3, i4, p)
G(p) . (2.15)

4Note that there is an extra factor of z−i3−i4 , compared to the usual definition of global blocks, associated
with the prefactors of the four-function which are partially canceled by the Koba-Nielsen factor. This can
be traced back to the original form prior to SL(2,R) gauge fixing:

A(s, t) =
∫ 1

0
dz3

∏
i<j

z
2ki·kj

ij

(
z14
z24

)i2−i1 ( z14
z13

)i3−i4
zi1+i2

12 zi3+i4
34

∑
p

Cpz
p

2F1(p+(i2−i1), p+(i3−i4), 2p, z) .

Taking (z1, z2, z3, z4) = (∞, 1, z, 0) and including the gauge fixing factor we find

(∞)2(m2
1−i1+1)

∫ 1

0
dz3 z

α′2k3·k4 (1− z)α
′2k2·k3

∑
p

Cpz
p−i3−i4

2F1(p+(i2−i1), p+(i3−i4), 2p, z) .

The factor ∞ drops out if we have m2
1 − i1 + 1 = 0, which is the expected relation between the mass and

the SL(2,R) conformal dimension m2 = h− 1.
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Dilatation block
• Dilatation block: f(z) = zp−i3−i4

∑
n
vnzn

• Assume ansatz: vn = F(i1,i2,p)F(i3,i4,p)
G(p) .

Global block

• Global block: f(z) from above is fixed as global block in eq. (2.24):
f(z) = zp−i3−i4 2F1(p+(i2−i1), p+(i3−i4), 2p, z).
Since global blocks violate Constraint (ii) (see figure 4), consider linear
combination of global blocks:

f(z)=
∑

a=0 χaz
p−i3−i4+a2F1((p+a)+(i2−i1), (p+a)+(i3−i4), 2(p+a), z)

• Assume further ansatz: χa = F(i1,i2,p)F(i4,i3,p)
G(p) .

Sum of global blocks • Saturating the Constraints (ii),(iii) forces χ1, χ2, χ3 to exactly match
the expansion of the Virasoro block χa = ua, given in eq. (2.37):

Vi1,i2,i3,i4 =
∑

a=0
uaz

p−i3−i4+a
2F1((p+a)+(i2−i1), (p+a)+(i3−i4), 2(p+a), z),

• There is no χ4 saturating the bound for all positive ia. Constraints
(ii),(iii) carve out χ4 solution space in figures 5, 6. We see coefficient
u4 from the expansion of the Virasoro block is located at a kink of the
allowed space.

Virasoro block

Constraint (i)

Constraints (ii)(iii)

At the kink

Figure 3. Starting with the expression in eq. (2.2) and (2.5), constraint (i) forces the dilatation
block to combine into global blocks. Imposing (ii) and (iii) requires the global blocks to be further
combined, with the Virasoro blocks appearing at special “kinks” of the allowed space.

This form is motivated by the fact that it is associated with the product of two three-point
functions. Note that the kinematic part of (2.10) suggests that for spin-` exchange the
residue is further symmetric under sole i1 ↔ i2 exchange for ` ∈ even and anti-symmetric
for ` ∈ odd (and similarly for i3 ↔ i4). However, this conclusion is too hasty, as the cou-
pling constants can also introduce compensating transformation properties, as in the case
of structure constants of non-abelian algebra fabc. In light of this, we will only require that
the residue has definite parity under the combined exchange i1 ↔ i2 and i3 ↔ i4.

Let us begin with v1, which appears by itself in the n=1 scalar coefficient C(1)
0 and

n=2 spin-1 coefficient C(2)
1 in table 1. Beginning with the ansatz

v1 = (a1i+ a2i2 + a3p+ a4i
2
1 + a5i

2
2 + a6i1i2)(a1i4 + a2i3 + a3p+ a4i

2
4 + a5i

2
3 + a6i3i4)

a7 + a8p+ a9p2 ,

(2.16)
by simply solving

C(1)
0 (i1, i2, i3, i4)− C(1)

0 (i2, i1, i4, i3) = C(2)
1 (i1, i2, i3, i4)− C(2)

1 (i2, i1, i4, i3) = 0 , (2.17)

and requiring definite parity, we find a unique solution:

v1 = (−i1 + i2 + p)(i3 − i4 + p)
2p . (2.18)
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Note that this leads to C(1)
0 = 0 and

C(2)
1 = −(i1−i2)(i3−i4)

4(d−3)p(1+p) , (2.19)

i.e. C(2)
1 is antisymmetric under i1 ↔ i2, i3 ↔ i4 exchange respectively. We will come back

to this property shortly.
Moving on to v2, we begin with the ansatz

v2 = F(i1, i2, p)F(i3, i4, p)
(b1 + b2p+ b3p2) , (2.20)

F(i1, i2, p) = a1i
2
1+a2i

2
2+a3p

2+a4i1i2+a5i1p+a6i2p+a7i1+a8i2+a9p+a10 . (2.21)

Using v1 in eq. (2.18), once again solving

C(2)
0 (i1, i2, i3, i4)− C(2)

0 (i2, i1, i4, i3) = 0 , (2.22)

while requiring that C(2)
0 has definite parity under individual exchange leads to

v2 = (−i1 + i2 + p)(−i1 + i2 + p+ 1)(i3 − i4 + p)(i3 − i4 + p+ 1)
4p(2p+ 1) . (2.23)

This pattern continues, at each n, the symmetric property of the scalar coefficient C(n)
0

algebraically leads to a unique solution for vn.
It is straightforward to see that the expressions (2.18) and (2.23) precisely match the

z expansion of the global conformal block, given for example in [40]:

zp−i3−i42F1(p+(i2−i1),p+(i3−i4),2p,z) = (2.24)

= zp−i3−i4
(

1+ (−i1+i2+p)(i3−i4+p)
2p z+ (−1+i2+p)(1−i1+i2+p)(i3−i4+p)(1+i3−i4+p)

4p(1+2p) z2
)

Thus we see that when interpreted as a space-time scattering amplitude, exchange symme-
try of the residue directly leads to f(z) in (2.2) to be given by a sum over SL(2,R) global
conformal blocks!

We have concluded that if the residue is to respect exchange symmetry, the “dilatation
blocks” must be linearly combined into an SL(2,R) global conformal block. We now move
on to the factorization constraints (ii) and (iii) in (2.11). Let us consider the simplest case
where i1 = i2 = i3 = i4 = h. We display the four dimensional coefficient C(2)

0 for the
global block zp−2h

2F1(p, p, 2p, z) as a function of (p, h) in figure 4. We can see that there
are regions of conformal dimension both for the external (h) and internal (p) that violate
positivity bounds. In general, at order n, the spin n coefficient derived from the global block
will automatically satisfy the factorization constraints (ii) and (iii) in (2.11), but cease to
do so when ` < n. This suggests that one must further consider linear combinations of
global blocks, which we now turn to.

– 12 –



J
H
E
P
0
4
(
2
0
2
1
)
1
9
5

Figure 4. The scalar coefficient C(2)
0 associated with the global conformal block (p, h). We see

that there are regions of (p, h) where the coefficient becomes negative, thus violating unitarity.

2.2 Non-negativity and the Virasoro block

We have seen that given a global block, for identical external states the residue coefficients
can easily violate positivity. To remedy the situation, we consider linear combinations of
global blocks. Note that since for any global block of conformal dimension p, the s-channel
singularity occurs at s = n+p−1 with n ∈ integer, we must consider linear combinations
of blocks whose dimensions differ by integers. Thus we will be considering the following
linear combination:

fp(z) =
∑
a=0

χaz
p−i3−i4+a

2F1((p+ a) + (i2 − i1), (p+ a) + (i3 − i4), 2(p+ a), z) , (2.25)

where χ0 = 1 and in general χa can be a function of {i1, i2, i3, i4, p, d}. Note that as the
coefficients C(n)

` are d dependent, their positivity will translate to the d dependence for
χa. Taking linear combinations of global blocks has the interpretation of taking linear
combinations of SL(2,R) primaries, and thus the coefficients χa should once again take on
factorized form reflecting their OPE nature. We therefore introduce an ansatz for χa of
the form:

χa = F(i1, i2, p)F(i4, i3, p)
G(p) . (2.26)

We will be looking for polynomial solutions to F(i, j, p) that are of lowest degree in i, j.
Next, we impose the factorization constraints in (2.11) (ii), (iii)

(ii) C(n)
` (i1, i2, i2, i1) > 0 , (2.27)

(iii) C(n)
` (i1, i2, i2, i1)C(n)

` (i3, i4, i4, i3)− (C(n)
` (i1, i2, i3, i4))2 ≥ 0 , (2.28)

which will carve out the solution space for χa. Remarkably, we will find that the Virasoro
block lives on the boundary of the solution space!

Let us analyze the constraints one order n at a time. Recall that for fixed n we have
C(n)
` with ` ≤ n.
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Order n = 1. Up to n=1, we have spin-0 and spin-1 coefficients (C(1)
0 , C(1)

1 ), and only
the scalar coefficient depends on χ1, given as:

C(1)
0 = χ1(i1, i2, i3, i4, p) . (2.29)

Now we ask if the scalar coefficient can saturate the bound in (2.28), for all positive external
dimensions (i1, i2, i3, i4). We find that a large family of solutions exists, of the form:

χ1 = (i1 − i2)(i4 − i3)F(p) . (2.30)

The solution is minimal in the sense that it is lowest degree in external dimensions. With
the above, (2.27) becomes:

C(1)
0 (i1, i2, i2, i1) = (i1 − i2)2F(p) ≥ 0 . (2.31)

Thus the “boundary” of (2.27) and (2.28) corresponds to F(p) = 0 = χ1.

Order n = 2. At n=2, while we have spins up to 2, χ2 only appears in the scalar
coefficient C(2)

0 . We will set χ1 = 0 and write down a minimal ansatz for χ2 in appendix B.
We find that simply requiring the scalar coefficient to satisfy the equality in (2.28) for all
external dimensions,

C(2)
0 (i1, i2, i2, i1)C(2)

0 (i3, i4, i4, i3)− (C(2)
0 (i1, i2, i3, i4))2 = 0 , ∀i1, i2, i3, i4 ≥ 0 (2.32)

while respecting (2.27), the χ2 ansatz in (B.1) is reduced to one parameter function in
ansatz space. The parameter will further restrict when we considering the positivity con-
straint at higher order n. It will be uniquely fixed and give us:

χ2 = (−3(i1−i2)2+(i1+i2)+2p(i1+i2)+(p−1)p)(−3(i4−i3)2+(i4+i3)+2p(i4+i3)+(p−1)p)
2(1+2p)(26−d+42p−2dp+16p2) .

(2.33)
All the detail can be found in appendix B.

Order n = 3. Let us now move to n=3, where we again begin with the scalar coefficient
C(3)

0 . The minimal ansatz for χ3 is given in appendix B. Setting χ1 = 0 and χ2 to (2.33),
once again by imposing (2.27) and equality in (2.28) for C(3)

0 ,

C(3)
0 (i1, i2, i2, i1)C(3)

0 (i3, i4, i4, i3)− (C(3)
0 (i1, i2, i3, i4))2 = 0, ∀i1, i2, i3, i4 ≥ 0 (2.34)

the ansatz for χ3 can be completely fixed up to the ratio of parameters. The positivity
in (2.27) for higher order coefficient will further restrict the ratio into fixed value and
we have:

χ3 =−(i1−i2)(i3−i4)(−i1+i21−i2+i22−2i1i2+p−i1p−i2p)(−i3+i23−i4+i24−2i3i4+p−i3p−i4p)
2p(p+1)(p+2)(28−d+19p−dp+3p2) .

(2.35)
Before moving on to n=4, let us compare (χ1, χ2, χ3) in (2.33) and (2.35) to the

Virasoro block expansion on the global blocks [40]:

Vi1,i2,i3,i4 =
∞∑
a=0

uaz
p−i3−i4+a

2F1((p+a)+(i2−i1),(p+a)+(i3−i4),2(p+a),z) , (2.36)
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where

u0 = 1
u1 = 0

u2 = (i1−3i21+i2−3i22+6i1i2−p+2i1p+2i2p+p2)(i3−3i23+i4−3i24+6i3i4−p+2i3p+2i4p+p2)
2(1+2p)(c+2cp+2p(−5+8p))

u3 =− (i1−i2)(i3−i4)(−i1+i21−i2+i22−2i1i2+p−i1p−i2p)(−i3+i23−i4+i24−2i3i4+p−i3p−i4p)
2p(p+1)(p+2)(cp+c+3p2−7p+2) . (2.37)

We find that χi = ui where the central charge is set to c = 26−d. Thus we see that the
Virasoro symmetry emerges at the boundary of the constraints in (2.27), (2.28)!

Order n = 4. At n=4 a new phenomenon occurs. We find that by setting χi = ui with
i = 1, 2, 3, there are no solutions for χ4 for which the equality in (2.28) when applied to C(4)

0
is saturated for all positive external dimensions. To see this, let us simplify the problem
to the vacuum block, p = 0, and set i1 = i2 = i, i3 = i4 = j. In this case a general ansatz
for χ4 is given as:

χ4 = g(i)g(j)
a1d2 + a2d+ a3

, (2.38)

where g(i) is some polynomial. The boundary of the constraint in (2.28) becomes

C(4)
0 (i, i, i, i)C(4)

0 (j, j, j, j)− (C(4)
0 (i, i, j, j))2 = 0 , ∀i, j ≥ 0 . (2.39)

With (2.38) the scalar coefficient takes the form

C(4)
0 = 49(i2+j2)

8(d2−1) +(7(5d−142))(i+j)
48(d2−1) +d(9d−490)+6704

384(d2−1) + 189ij(i+j)
d3−26d2−d+26

− (2(d+28))i2j2

d3−26d2−d+26+ (d(d+680)−19166)ij
30(d−26)(d−1)(d+1) + g(i)g(j)

a1d2+a2d+a3
. (2.40)

It is straightforward to see that there are no polynomial solutions for g(i) that satisfy (2.39).
Thus there are no linear combinations of the global blocks that can saturate (2.28), so the
true boundary is no longer given by the equality.

To seek the boundary, we begin with the following minimal ansatz:

χ4 = (i+ a4i
2)(j + a4j

2)
a1d2 + a2d+ a3

. (2.41)

For Virasoro block these parameters would be:

a4 = 5, a1 = 25
2 , a2 = −705, a3 = 9880 . (2.42)

Now (2.39) becomes:

C(4)
0 (i, i, i, i)C(4)

0 (j, j, j, j)− (C(4)
0 (i, i, j, j))2 =

= (i−j)2

(d−26)2(d−1)2(d+1)
(
f0(j, d)+f1(j, d)i+f2(j, d)i2

)
> 0 , ∀i, j ≥ 0 (2.43)
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Figure 5. Solution space (a1, a2, a3) for ansatz (2.41).(a4 which we didn’t plot here was fixed in
d = 14 positivity condition.) This diagram is carved out by inequalities (2.45) corresponding to
different dimensions, with d = 3, 24, 25 shown here. In each dimension, the saturated inequality is
a two-dimensional plane. The Virasoro point lives on the intersection of these planes.

where fi(j, d)’s are polynomial functions j with maximal degree 2. Since positivity rests
on the sign of the last parenthesis, we can consider the space in {ai} carved out by the
requirement that the polynomial inside can at most have a single root, so that it is never
negative.5 For example in d = 14, the discriminant of i in the last parenthesis of (2.43) is:

f1(j, d)2 − 4f0(j, d)f2(j, d) = (a4 − 5)2F(j, a1, a2, a3, a4) . (2.44)

Importantly, for any value of {a1, a2, a3, a4} the function F will always have regions in j

for which it is positive, implying the existence of solutions for which (2.43) is negative.
This tells us that a4 = 5.

For the remaining coefficients, lets us see the image of (2.43) in (a1, a2, a3) space. With
a4 = 5, (2.43) yields the following inequalities:

d = 3 : 0 < 9a1 + 3a2 + a3 ≤ 15755/2 ,
d = 24: 0 < 576a1 + 24a2 + a3 ≤ 160 ,
d = 25: 0 < 625a1 + 25a2 + a3 ≤ 135/2 . (2.45)

The carved out region is displayed in figure 5, where we have displayed the region as well
as the respective hyperplane implied by the above inequalities. One can see from the figure
that the Virasoro coefficients are set at a kink in the boundary. To make the last property
manifest, let us consider a two-dimension sub-plane in figure 5 defined by a1 = 9880, as
shown in figure 6. Then the Virasoro point is at the kink defined by the intersection of the
constraints d = 3 and 25.

In summary, by considering the boundary carved out by the factorization conditions
in (2.27) and (2.28), we find that the Virasoro block sits at unique special points on these
boundaries.

5Of course for specific i, j, C(4)
0 (i, i, i, i)C(4)

0 (j, j, j, j)−(C(4)
0 (i, i, j, j))2 may vanish. The previous discussion

with regards to the boundary is about vanishing for all positive (i, j).
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d=3

d=10

d=15
d=20

d=25

Virasoro

12.40 12.45 12.50 12.55 12.60 12.65 12.70

-710

-708

-706

-704

-702

-700

a2

a
3

Figure 6. Solution space (a2, a3) for ansatz (2.41) with a1 fixed as Virasoro block(a1 = 9880).
The lines denote the boundaries carved out by (2.11) (iii) in space-time dimension d = 3 ∼ 25. The
point in the figure is the a2, a3 correspond to Virasoro block.

3 Review of monodromy relations and the EFThedron

3.1 The monodromy plane

The monodromy relation for amplitudes of massless external states:

A (2134) + eiπsA (1234) + e−iπuA (1324) = 0 , (3.1)

is a common feature shared by all flat-space open string amplitudes for identical external
states. In fact when combined with the asymptotic form of the Regge limit, the above
relation is sufficient to completely fix the four-point amplitude [30]. In particular, using
the monodromy relations, one can fix the residue of anyone of the factorization channel to
a single variable function with the real zeros fixed. If one further assumes that all residues
match the form of the asymptotic Regge limit of the amplitude under s ↔ t exchange,
which for the Tachyon amplitude takes the form ts+1 as t → ∞, then this determines
that there are no complex zeros and hence the residue is completely fixed up to an overall
normalization. While it is not a priori clear that individual residues match the Regge
asymptotics, we do expect that monodromy relations should imply stringent constraints
when combined with unitarity.

The relation eq. (3.1) reflects the fact that the corresponding worldsheet integrand is
permutation invariant, and it is only the ordering of the integration regions that charac-
terizes the distinct orderings of the amplitude.6 For general string compactification, the
monodromy around z = 0, 1,∞, might deviate from the flat space counter-part. Assum-
ing that the resulting monodromy is universal, i.e. it is simply an overall prefactor, the
corresponding variation for (3.1) will be

A (2134) + eiπ(s+as)A (1234) + e−iπ(u+au)A (1324) = 0 . (3.2)
6For example the Lovelace-Shapiro amplitude:

A(LS) (1234) = g2 Γ
(

1
2 − s

)
Γ
(

1
2 − t

)
Γ (−s− t)

will not satisfy the above monodromy relations since the external states are not identical [41].
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Note that the monodromy relation, along with two other ones from permutations 1 ↔ 2
and 1 ↔ 3, result in 6 real conditions. Since we only have three independent amplitudes,
A (1234), A (2134), and A (1324),7 in order for there to be a non-trivial solution we can
only have as = at = au = 0, 2

3 ,
4
3 . To see this, we note that for there to be a solution the

6 linear constraints from 3 different monodromy relations must degenerate to at most 2.
Therefore there can be only one independent monodromy relation. In other words, the three
different monodromy relations must be proportional to each other and this proportionality
requirement fixes as = at = au = 0, 2

3 ,
4
3 .

It is instructive to see how such deformed monodromy arrises upon compactification
of flat space string amplitudes. Consider the compactification of the Tachyon amplitude in
bosonic string theory, with the 26 dimensional momenta denoted as Ki (with α′K2

i = 1).

A(26D) (1234) = 1
Vol

∫ 4∏
i=1

dzi

4∏
j<i=2

(zi − zj)2α′Ki·Kj . (3.3)

By decomposing the momenta into d and 26− d components, Ki = (ki, qi) with k2
i = 0, we

obtain the compactified d-dimensional amplitude as:

A(4D) (1234) = 1
Vol

∫ 4∏
i=1

dzi

4∏
j<i=2

(
(zi − zj)2α′ki·kj (zi − zj)2α′qi·qj

)
. (3.4)

Note that the above is permutation invariant under {zi, ki} ↔ {zj , kj} only if all qi · qj ’s
are equal. The mass shell condition

2α′ (q1 · q2 + q1 · q3 + q1 · q4) = −2α′
(
k2

1 −K2
1

)
= 2 , (3.5)

then fixes 2α′qi · qj to 2
3 , which leads to an additional phase of 2

3π or 4
3π. Such “twisted

monodromy relations” (3.2) result in amplitudes without massless poles. Indeed expanding
in α′, the leading order identity is:

AIR (2134) + e2iπ/3AIR (1234) + e4iπ/3AIR (1324) = 0 , (3.6)

which indicates that the leading order amplitude AIR can only be a constant. While such
amplitudes are potentially interesting objects to study, we will be focusing on four-point
amplitudes where massless poles are present, thus we will restrict ourselves to the standard
monodromy relation (3.1). Generalizing to the twisted case is straightforward.

The monodromy relation (3.1) imposes restrictive constraints on the amplitude. First
of all, it implies integer spectrum of the theory, which is evident by looking at the imaginary
part of the four-point monodromy relation sin (πs)A (1234) = sin (πu)A (1324) The s-
channel and u-channel poles must be paired with the zeros in the respective sine factors for
this identity to hold for all values of s, t, u, while all zeros of the sine function are located
at integer values. Although very powerful, we will not make use of this fact, which is
left to future studies. More importantly for us, the monodromy relations imply nontrivial

7With the cyclic invariance A (1234) = A (4123) and reflection symmetry A (1234) = A (4321) any
four-point amplitude with arbitrary order of 1, 2, 3, 4 can be identified with one of the three.
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mixing relations of couplings at different derivative order, which will be the focus of this
subsection. Note that in the low energy limit, these relations turn into the field theory
Kleiss-Kuijif and Bern-Carrasco-Johansson relations [42, 43].

We will be interested in the case where the complete amplitude is proportional to the
leading order in α′ expansion,

A (1234) = S ({ki, εi})A (s, t) = S ({ki, εi})
(
− 1
st

+ · · ·
)
, (3.7)

where S is the universal common factor that is independent of the ordering. This occurs
when we have four-dimensional massless external states, where the prefactor is completely
fixed by the helicity weights, or maximal supersymmetry in general dimensions, where the
external states are in the same multiplet. The monodromy relation (3.1) then becomes

A (s, u) + eiπsA (s, t) + e−iπuA (t, u) = 0 , (3.8)

and the constraint at each derivative order can be explicitly written in terms of Laurent
coefficients of A (s, t). To study the constraint we first write the factor A (s, t) in (3.7) as
an expansion

A (s, t) = − 1
st

+
(
b

s
+ b

t

)
+
(
c
t

s
+ c

s

t

)
+ g00 + (g1,0s+ g1,1t) +

∑
k≥q≥0

gk,qs
k−qtq , (3.9)

then solve for the monodromy constraints imposed by (3.8) order by order in α′. First, one
immediately finds the coefficient for t2n/s must be zero, including b = 0. For c, as we will
demonstrate in the next section, the unitarity constraint will also set it to zero. Thus for
the remainder of the discussion we will solve the monodromy relations with respect to

A (s, t) = − 1
st

+
∑

k≥q≥0
gk,qs

k−qtq . (3.10)

As an example, the solution up to k = 4 is given as:
g00
g1,0 g1,1
g2,0 g2,1 g2,2
g3,0 g3,1 g3,2 g3,3
g4,0 g4,1 g4,2 g4.3 g4,4

 =



π2

6
g1,0 g1,0
π4

90
π4

360
π4

90
g3,0 2g3,0 − π2

6 g1,0 2g3,0 − π2

6 g1,0 g3,0
π6

945 g4,1 − π6

15120 + 2g4,1 g4,1
π6

945

 . (3.11)

We will refer to the above solution as the monodromy plane, defining a subspace in the
EFT couplings where the monodromy conditions are satisfied order by order. Our next
step will be to constrain the remaining parameters with positivity conditions. But first,
let us compare our solution with the actual superstring A (s, t) factor, given by [44]

ASuperstring (s, t) = Γ(−s)Γ(−t)
Γ(1−s−t) = 1

st
exp

∑
n≥2

ζ (n)((−s)n+(−t)n−(−s−t)n)
n

 . (3.12)
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We can confirm that all fixed gk,q coefficients in (3.11) match with the string value after
expressing the even zeta values, ζ (2) = π2

6 , ζ (4) = π4

90 , and so on. In particular, it will be
useful later on to observe that the coefficients g2n,0 are all set to ζ(2n) by monodromy. But
we also observe a correspondence between the remaining independent coefficients and the
monomials of odd zeta values, a pattern that also persists to higher orders, as the string
value of the free parameters on the monodromy plane reads:

g1,0 = ζ (3) , g3,0 = ζ (5) , g4,1 = π6

1260 −
1
2ζ

2 (3) . (3.13)

This is closely related to the fact that only certain linear combinations of the remaining
free parameters survive double copy (we will show the explicit formula in (4.26)), and the
closed superstring amplitude only contains odd zeta values [45, 46].

As we will see, the EFThedron constraints will be able to fix the remaining parameters
to (3.13) with high precision.

3.2 The EFThedron

The unitarity constraint on factorization also leaves its fingerprint on the low energy ampli-
tude, in the form of positivity bounds on the EFT couplings. A precursor of such bounds is
the positivity of the leading four derivative operator derived from optical theorem in [20].
More recently, an infinite set of positivity bounds have been derived by considering the near
forward limit of the low energy expansion, exploiting the positive geometry that arises from
expanding the Gegenbauer polynomials [25]. Here we present a brief review.

Let us consider the low energy limit of an UV complete amplitude. Here, by low energy
we are referring to the limit where the Mandlestam variables are smaller than the scale
set by the UV massive states. For an ordered amplitude, in this limit the amplitude takes
the form:

A(s, t)|s,t�1 = a

st
+ b1

s
+b2
t

+
∑
k,q≥0

gk,qs
k−qtq , (3.14)

where we have set the UV scale to 1, and a, b1, b2 can be some kinematic dependent func-
tions. Cyclic symmetry means that we can identify gk,q = gk,k−q. Note that we have
defined the EFT couplings gk,q from the polynomial expansion of the low energy ampli-
tude. This allows us to define the couplings via a contour integral in the complex s-plane,
with t held fixed:

gk,q = 1
q!
dq

dtq

(
i

2p

∮
ds

sk−q+1A(s, t)
) ∣∣∣∣

t=0
. (3.15)

By deforming the contour, one picks up the residues and discontinuity on the real positive
s-axes (since we do not have u-channel thresholds), arising from

A(s, t)|s→m2 =
∑
`

c`
Gd` (cos θ)
s−m2 , cos θ = 1+ 2t

m2 , (3.16)

where c` ≥ 0. While the above form describes the behavior of the amplitude near tree-
threshold, near the forward limit the same form holds for branch cuts, except that one has
to sum over a continuous spectrum.
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In other words, combining (3.15) with (3.16), we have that the low energy coupling
can be matched to the derivative expansion of the Gegenbauer polynomials as well as the
propagators. Defining the Taylor coefficients v`,q from:

Gd` (1 + δ) =
∑
q=0

v`,qδ
q , (3.17)

at fixed k, fixed mass dimension of the operator, we find:

~gk =
∑


gk,0
gk,1
...

gk,n

 ∈
∑
a

ca ~G`a , ~G` =


v`,0
v`,1
...
v`,n

 , (3.18)

where a labels the spectrum of the UV states and ca > 0. The above implies the n+1
component vector ~gk must lie inside the convex hull of the Gegenbauer vectors ~G`. Impor-
tantly, due to the positivity properties of ~G`, its convex hull is a cyclic polytope, and the
boundary of the hull is constructed by adjacent pairs of ~G`. For example for n = 4, ~gk
being inside the convex hull implies that:

〈~gk, `i, `i+1, `j , `j+1〉 = det
[
~gk, ~G`i , ~G`i+1, ~G`j , ~G`j+1

]
≡ ~gk ·WI ≥ 0 , (3.19)

where we use WI as a short hand notation for the boundary, here given by 〈∗, `i, `i+1, `j ,
`j+1〉. Note that since for any vector ~gk that satisfies the above constraint, rescaling by
a positive constant yields another solution, the geometry of the convex hull is really a
polytope in Pn. For n = odd, we have the same pattern for the boundaries except with an
extra vector ~G0.

We can also consider keeping q fixed while collecting the couplings with distinct k. We
then have:

~gq =
∑


gq,q
gq+1,q

...
gq+n,q

 ∈
∑
a

cavq(xa)q


1
xa
...
xna

 xa = 1
m2
a

. (3.20)

That is, the vector ~gq lives in the convex hull of points on a moment curve, (1, x, x2, · · · , xn).
This is a reflection that fixed q means we are expanding the Gegenbauer polynomial to
fixed order, and collecting the expansion of 1/(s − m2) which gives a geometric series.
Importantly, since we have xa > 0, ~gq really lives in the convex hull of a half moment curve
(1, x, x2, · · · , xn) with x ∈ R+. This implies that the Hankel matrix for the couplings,
defined as the following symmetric matrix:

H =


gk,q gk+1,q · · · gk+n,q
gk+1,q gk+2,q · · · gk+1+n,q

...
... . . . ...

gk+1+n,q gk+2+n,q · · · gk+2n,q

 , (3.21)

will have all non-negative minors.
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Finally, the fact that the expansion in s and t corresponds to a direct product of
geometries is reflected in the following product Hankel matrix constraint:

H =


~gk ·WI ~gk+1 ·WI · · · ~gk+1 ·WI

~gk+1 ·WI ~gk+2 ·WI · · · ~gk+1+n ·WI
...

... . . . ...
~gk+1+n ·WI ~gk+2+n ·WI · · · ~gk+2n ·WI

 , (3.22)

where WI is any one of the cyclic polytope boundaries in Pn.
The space of couplings carved out by the above inequalities is termed the EFThe-

dron [25], which we briefly summarize:

• Cyclic polytope constraints:

n∈ even : 〈~gk, `i, `i+1, `j , `j+1, · · · 〉 ≥ 0 , n∈ odd : 〈0,~gk, `i, `i+1, `j , `j+1, · · · 〉 ≥ 0
(3.23)

where 0 represents ~G0.

• Hankel matrix constraints:

Minor


gk,q gk+1,q · · · gk+n,q
gk+1,q gk+2,q · · · gk+1+n,q

...
...

...
...

gk+1+n,q gk+2+n,q · · · gk+2n,q

 ≥ 0 , (3.24)

• Product Hankel matrix constraints:

Minor


~gk ·WI ~gk+1 ·WI · · · ~gk+1 ·WI

~gk+1 ·WI ~gk+2 ·WI · · · ~gk+1+n ·WI
...

...
...

...
~gk+1+n ·WI ~gk+2+n ·WI · · · ~gk+2n ·WI

 ≥ 0 . (3.25)

4 Intersection of monodromy plane and the EFThedron

In this section, we investigate the allowed space of Laurent coefficients under the combined
constraints following from the monodromy relation (3.8) and unitarity in section 3.2 for
four-point amplitudes in four-dimensional space-time. First we demonstrate that mon-
odromy and positivity of Hankel matrices rule out the t/s and s/t poles that correspond to
vector exchange. Note that since the EFT couplings are defined with an overall prefactor in
eq. (3.7), which behaves as s2, the Froissart bound implies that the EFT couplings gk,q are
subject to EFThedron constraints for k, q ≥ 0.8 Next, we apply the full EFThedron con-
straints on the remaining monodromy plane of the open and closed string EFT amplitudes.

8More precisely the Froisart bound is applicable to the subtracted amplitude, defined as Asub = A +
S({ki,εi})

st
. Both Asub and A share the same EFT expansion.
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4.1 The absence of isolated massless poles

In section 3.1 it was stated that monodromy relations, when combined with unitarity,
enforce the massless pole structure of A (s, t) to be only of the form 1

st . Here we give the
derivation. Starting with the following Laurent expansion of the four-point amplitude:

A (s, t) = − 1
st

+ c

(
t

s
+ s

t

)
+ b

s
+ b

t
+

∑
k≥q≥0

gk,qs
k−qtq . (4.1)

We first impose the monodromy relation to the above, leading to the following solutions
for the couplings up to k = 4:

k = −1 : b = 0
k = 0 : g0,0 = ζ (2) + c

k = 2 : g2,0 = g2,2 = ζ (4)− ζ (2) c

g2,1 = 1
4ζ (4)− ζ (2) c

k = 3 : g3,1 = g3,2 = 2g3,0 − ζ (2) g1,0

k = 4 : g4,0 = g4,4 = ζ (6)− ζ (4) c

g4,2 = − 1
16ζ (6) + 1

4ζ (4) c+ 2g4,1 . (4.2)

Once again one sees that b is set to zero by monodromy relations alone. Furthermore, g2n,0
is solved in terms of c alone and has the following general form:

g2n,0 = ζ (2n+ 2)− ζ (2n) c . (4.3)

We consider the minor of Hankel matrix (3.24):

H1,N×N =


g0,0 g2,0 · · · g2N−2,0
g2,0 g4,0 · · · g2N,0
...

... . . . ...
g2N−2,0 g2N,0 · · · g4N−4,0

 , H2,N×N =


g2,0 g4,0 · · · g2N,0
g4,0 g6,0 · · · g2N+2,0
...

... . . . ...
g2N,0 g2N+2,0 · · · g4N−2,0

 .

(4.4)
The positive condition det(Hi) > 0 up to N = 30 implies the condition −4.24 × 10−6 <

c < 6.81× 10−6, so we can conclude c is asymptotically fixed to zero.
Thus we conclude that we can simply begin with

A (s, t) = − 1
st

+
∑

k≥q≥0
gk,qs

k−qtq , (4.5)

and study the intersection geometry further.

4.2 Combined constraints

In section 3.2 we showed that unitarity implies two different types of constraints: being
inside the cyclic polytope (3.23), and the positivity of Hankel matrices (3.24), (3.25), which
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we already used in ruling out the s
t and

t
s terms. In the parameter space for all independent

gk,q, these unitary constraints carve out the EFThedron, a positive region bounded by a set
of codimension one surfaces. On the other hand, the monodromy constraint fixes a subset
of gk,q and imposes linear relations among the unfixed ones, therefore defines a lower
dimensional plane, which we call the monodromy plane. The allowed Laurent coefficients
must lie in the intersection of the EFThedron and the monodromy plane. The final shape
of the allowed region can be straightforwardly derived by imposing (3.23), (3.24) and (3.25)
on this hyperplane.

By setting c = 0 in (4.2), we arrive at the following defining relations for the mon-
odromy plane:

k = 0 : g0,0 = ζ (2)
k = 2 : g2,0 = g2,2 = ζ (4)

g2,1 = ζ (4) /4
k = 3 : g3,1 = g3,2 = 2g3,0 − ζ (2) g1,0

k = 4 : g4,0 = g4,4 = ζ (6)
g4,2 = −ζ (6) /16 + 2g4,1 , (4.6)

where we choose g1,0 and g3,0 as the free parameters for the hyperplane with k ≤ 3, and g1,0,
g3,0, and g4,1 for k ≤ 4. In the rest of this section, most of our analysis for constraints will
be carried out in this two-dimensional reduced space for (g1,0, g3,0) and three-dimensional
reduced space for (g1,0, g3,0, g4,1). We will derive and illustrate graphically the region
carved out by increasing order of unitarity constraints and show how the results leads
to our main conjecture. The carving process starts with low order unitarity constraints
(k = 3, 4 respectively for the two and three-dimensional reduced space), in which case
all unitarity constraints are in terms of the reduced space coordinates and can be fully
solved analytically. We then further carve the region by including higher order unitary
constraints, which often involve higher order monodromy free parameters g5,q, g6,q, g7,q,
etc. Our numerical investigation shows that higher order constraints indeed carve out an
increasingly smaller region within the lower order unitarity region.

Note that the space-time dimension needs to be specified at the beginning of the carving
procedure, as the result is dimensional dependent due to the dimensional dependence of the
cyclic polytope (3.23) and product Hankel matrices (3.25). We will focus on amplitudes in
four-dimensional space-time, while the process can be easily replicated for amplitudes in
other dimensions. In general, the carved out region for higher dimensional amplitudes will
lie within the four-dimensional result.

4.2.1 The k = 3 geometry

We will start by considering the unitarity constraints only up to the order k = 3.
First we consider the cyclic polytope constraint for k = 2, which will bound ~g2 =
(1, g2,1/g2,0, g2,2/g2,0). From cyclic symmetry we have g2,1 = g2,2, and so ~g2 is one pa-
rameter vector with 3 components. We have the strongest condition from: 〈~g2 ~G1 ~G2〉 > 0.
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The vector ~G` of the four-dimensional Gegenbauer polynomial G1/2
` (cos θ) reads:

~G1 = (1, 2, 0), ~G2 = (1, 6, 6) . (4.7)

For k= 3, ~g3 = (1, g3,1/g3,0, g3,2/g3,0, g3,3/g3,0) is still a one parameter vector, with 4 com-
ponents. The strongest condition is given by considering the cyclic polytope in one lower
dimension, which means we only keep components g3,q from q= 0 to 2. We use prime to
denote this vector ~g′3 = (1, g3,1/g3,0, g3,2/g3,0) and the extremal condition is: 〈~g′3 ~G1 ~G2〉 > 0.
As a result, the two cyclic polytope constraints are as follows

0 ≤ g2,1
g2,0
≤ 8

3 , 0 ≤ g3,1
g3,0
≤ 6 , . (4.8)

The Hankel matrix constraints up to order k = 3 consist of the positivity of all gk,q,
as well as positivity of the determinants of the following three matrices:

H1 =
(
g0,0 g1,0
g1,0 g2,0

)
, H2 =

(
g1,0 g2,0
g2,0 g3,0

)
, H3 =

(
g1,1 g2,1
g2,1 g3,1

)
, (4.9)

which reduce to the following constraints on the Laurent coefficients

det (H1) = g2,0g0,0 − g2
1,0 > 0 ,

det (H2) = g1,0g3,0 − g2
2,0 > 0 ,

det (H3) = g1,0g3,1 − g2
2,1 > 0 . (4.10)

In the gk,q space of parameters, the monodromy plane is defined by the linear relations
in (4.6). In the subspace of gk,q for k ≤ 3, the monodromy plane is a two-dimensional plane
parameterized by coordinates (x = g1,0, y = g3,0), with explicit coordinate representation:

(g0,0, g1,0, g2,0, g2,1, g3,0, g3,1) = (ζ(2), x, ζ(4), ζ(4)/4, y, 2y − ζ(2)x) . (4.11)

On this plane, positivity of g1,0 and g3,0 translates to positivity of coordinates, and the
space-time dimensional independent part of cyclic polytope constraints (4.8) reduces to a
linear inequality

y >
ζ(2)

2 x , (4.12)

while the dimensional dependent part is trivial, for positive x and y. Finally, the positive
Hankel matrix determinants in (4.10) reduce to the following quadratic constraints on x

and y:

det (H1) = −x2 + ζ(4)ζ(2) > 0 ,
det (H2) = xy − ζ(4)2 > 0 ,

det (H3) = −ζ(2)x2 + 2xy − 1
16ζ(4)2 > 0 . (4.13)

The constraints are demonstrated graphically in figure 7a, and their intersection is mag-
nified in figure 7b, along with a marked point corresponding to the open string solution
of (x, y).
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(a) Hankel matrix and cyclic polytope con-
straints up to k=3.
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(b) The region of intersection and po-
sition of superstring solution.

Figure 7. Region of parameter space carved out by monodromy and EFT plane up to k=3.

4.2.2 The k = 4 geometry

Moving on to k = 4 geometry, we demonstrate the crucial feature that at fixed k, including
Hankel matrices (3.24) constraints of higher order k not only bounds the new degrees
of freedom, it further constrains the low order parameters. For instance, as monodromy
requires g4,0 = ζ (6), we can improve the Hankel matrix constraints for {gk,q|k ≤ 3} by
including the Hankel matrices involving {g4,0}

H4 =

g0,0 g1,0 g2,0
g1,0 g2,0 g3,0
g2,0 g3,0 g4,0

 , H5 =
(
g2,0 g3,0
g3,0 g4,0

)
, H6 =

(
g0,0 g2,0
g2,0 g4,0

)
, (4.14)

which leads to two new constraints on the monodromy plane (4.11):

det (H4) = −4
7ζ(4)x2 + 4

5ζ(2)xy − y2 + 3
25ζ(2)2ζ(6) > 0 , (4.15)

and

det (H5) = ζ(4)ζ(6)− y2 > 0 . (4.16)

Other constraints at order k = 4 arise from the polytope constraint, Hankel matri-
ces containing order 4 parameter g4,1, and the product Hankel matrices. The polytope
constraint (3.23) at k = 4 reads

〈~g4 ~G0 ~Gi ~Gi+1 ~Gj ~Gj+1〉 > 0, ~g4 = (1, g4,1/g4,0, g4,2/g4,0, g4,3/g4,0, g4,4/g4,0) , (4.17)

where ~g4 only has two independent components due to the symmetry gk,q = gk,k−q.
Eq. (4.17) gives rise to more than two hundred inequalities for the variables (g1,0, g3,0, g4,1),
but their intersection simplifies to the following inequality of g4,1

π6

30240 ≤ g4,1 ≤
π6

1512 , (4.18)
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which is compatible with any value of (x, y) = (g1,0, g3,0) and imposes no further constraints
on (x, y)-plane.

The following two Hankel matrices containing g4,1 also lead to nontrivial constraints

H7 =
(
g2,1 g3,1
g3,1 g4,1

)
, H8 =

(
g2,2 g3,2
g3,2 g4,2

)
. (4.19)

In terms of (x, y, z), their positive determinants read

det(H7) > 0 : ζ (4)
4 z − (2y − ζ (2)x)2 > 0 ,

det(H8) > 0 : ζ (4)
(

2z − ζ (6)
16

)
− (2y − ζ (2)x)2 > 0 . (4.20)

Which again compatible with all values for (x, y).
Comparing to the k = 3 case, starting at k = 4, there are new types of constraints (3.25)

arising from product Hankel matrices. At k = 4, there are ten different product Hankel
matrices, whose specific form depends on space-time dimension. Here we only list two of
the ten such product Hankel matrices as examples

Hp,1 =
(
〈~g2 ~G2 ~G3〉 〈~g3 ~G2 ~G3〉
〈~g3 ~G2 ~G3〉 〈~g4 ~G2 ~G3〉

)
, Hp,2 =

(
〈~g2 ~G3 ~G4〉 〈~g3 ~G3 ~G4〉
〈~g3 ~G3 ~G4〉 〈~g4 ~G3 ~G4〉

)
, (4.21)

implying the following conditions:

det(Hp,1) = 41π6 − 75π4x2 − 43200y2 − 720π2(5xy + z) > 0 ,
det(Hp,2) = 64801π6 − 60(845π4x2 + 1590480y2 + 3π2(24440xy + 5203z)) > 0 . (4.22)

Eqs. (4.20) and (4.22) are constraints involving parameters (x, y, z), so the region they carve
needs to be projected to the two-dimensional plane of (x, y). It turns out the projections
of the k = 4 constraints (4.18), (4.20) and (4.22) are either trivial or weaker than previous
constraints. After reduction the intersection of all possible constraints up to k = 4 simplifies
to the intersection of (4.13) and (4.15), which is shown in figure 8a and magnified in
figure 8b. As manifested by figure 8c, the k = 4 allowed region for x, y is notably smaller
than the k = 3 one.

At this stage, k = 4, we are able to fix the coordinates x and y on the monodromy
plane to within 10% accuracy around the actual values of ζ(3) = 1.20 . . . and ζ(5) = 1.03 . . .
respectively. Moreover, the string value appears to be sitting very close the boundary of
the new allowed region.9

We now return to the three-dimensional monodromy plane defined by (x, y, z) =
(g1,0, g3,0, g4,1). Unlike their two-dimensional projection, constraints (4.18), (4.20),

9Note that while the massless bosonic string amplitude, for example [17]

ABosonic(1+, 2+, 3+, 4+) = [12] [34]
〈12〉 〈34〉stu

(
1− 1

s+1−
1
t+1−

1
u+1

) Γ(−s)Γ(−t)
Γ(1− s− t)

also satisfies monodromy relations (3.8), the presence of Tachyon state will automatically result in violation
of the Hankel matrix bound.
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Hankle 1
Hankle 2
Hankle 3
Hankle 4

(a) Reduced result of all constraints up
to k = 4, intersection of H1 ∼ H4.
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ζ(5)
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(b) Point corresponding to the super-
string solution inside the carved region.

k=4

k=3

0.6 0.8 1.0 1.2 1.4

0.8

1.0

1.2

1.4

1.6

x

y

(c) Comparing carved region for k = 4
with region for k = 3.

Figure 8. Region on (x, y)-plane carved out by monodromy and EFThedron up to k=4. For
simplicity we are only showing independent constraints after full reduction.

and (4.22) have nontrivial effect in carving this three-dimensional parameter space. An
illustration for the three-dimensional intersection of all unitary constraints up to order
k = 4, (4.8), (4.13), (4.15) as well as (4.16), (4.17), (4.20), (4.22), is presented in figure 9.
It will serve as a starting data set for further investigations of compatibility with higher
order unitary constraints.

4.2.3 Peeking from beyond k = 4

Previously, we have seen that by considering k = 4 constraints we further reduce the allowed
region in k ≤ 3. Here we will do the same at higher orders, to further restrict the region for
k = 4. Analytical reduction soon becomes impractical as often times the constraints are of
higher algebraic order, and almost all new constraints needs to be projected. For example,
at order k = 6, we encounter the positive determinant condition for the Hankel matrix

H9 =


g0,0 g1,0 g2,0 g3,0
g1,0 g2,0 g3,0 g4,0
g2,0 g3,0 g4,0 g5,0
g3,0 g4,0 g5,0 g6,0

 , (4.23)
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Figure 9. Region in (x, y, z)-space carved out by monodromy and EFT plane up to k=4. The
marked point corresponded to the super string solution.
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0.98

1.00

1.02

1.04

1.06

x

y

Figure 10. Projection of a subset of k = 6 conditions. The blue region is the solution space carved
out by monodromy and EFThedron up to k = 4. It reduces to red region after projecting all k = 5
constraints and one k = 6 (det(H9) > 0) constraint on x, y.

which is an order 3 inequality of free parameters g1,0 = x, g3,0 = y, and g5,0. The projection
onto the (x, y)-plane is obtained by solving for values of x, y such that there exists a g5,0
for which detH9 > 0, i.e. points that can be uplifted into the k = 5 geometry. Therefore,
for order k = 6 and beyond, for practical reasons, we will carry out the constraints in a
numerical fashion and will only include the most relevant subset.

Our numerical survey reveals that even the inclusion of a subset of order k = 6 con-
straints can give rise to much stronger conditions compared to the projection of k = 4
constraints. We impose compatibility with constraints from the k = 5 cyclic polytope, all
Hankel and product Hankel matrices, as well as one k = 6 matrix H9 (4.23) on points in
the blue region in figure 8b. We are able to rule out most of the region and achieve a much
smaller allowed region, marked in red in figure 10. We plot within the k = 4 lblue region
to manifest the magnitude of this reduction.

We can perform the same scanning for points in figure 9 by imposing compatibility
with det(H9) > 0, as well as all positivity constraints for k = 5. The result is again a more
constrained region, which we show in red in figure 11a. We observe that, by including all
constraints at k = 5 and one at k = 6, we have already fixed the value for (x, y, z) to the
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(a) (b)

Figure 11. Carving the k = 4 region by unitary constraints up to k = 4. The gray region
correspond to k=4 constraints and the red region is carved out by projecting k = 5 and det(H9) > 0
constraint. We can extract the ratio of red region width with respect to actual superstring results
in each (x, y, z) direction: xmax−xmin

xstring ≈ 1.5%, ymax−ymin

ystring ≈ 0.2%, zmax−zmin

zstring ≈ 52.8%.

string value with the following precision:

xmax − xmin

xstring = 1.20667− 1.18890
ζ(3) ≈ 1.5%,

ymax − ymin

ystring = 1.03808− 1.03594
ζ(5) ≈ 0.2%,

zmax − zmin

zstring = 0.05699− 0.03560
(π6 − 630ζ(3)2)/1260) ≈ 52.8% . (4.24)

Extending to k = 8, the reduction of constraints becomes difficult even with a numerical
scan. However, we are able to use the FindInstance function in Mathematica to verify if
a point in the k = 6 allowed region of figure 10 or figure 11a is compatible with k = 7, 8
Hankel matrix constraints. We impose the positivity constraints for all k = 7 Hankel
matrices, and the following k = 8 principal minor H10

det(H10) =


g0,0 g1,0 g2,0 g3,0 g4,0
g1,0 g2,0 g3,0 g4,0 g5,0
g2,0 g3,0 g4,0 g5,0 g6,0
g3,0 g4,0 g5,0 g6,0 g7,0
g4,0 g5,0 g6,0 g7,0 g8,0

 > 0 . (4.25)

The allowed region on the (x, y)-plane and (x, y, z)-plane is now further reduced to the
purple region in figure 12a and figure 12b respectively.

As we find that the allowed regions of Laurent coefficients keep shrinking to the string
value as we impose increasing order of unitarity constraints, we therefore conjecture that the
full four-point open superstring amplitude A (s, t) is uniquely determined by the intersection
geometry of the monodromy plane with the EFThedron.
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1.185 1.190 1.195 1.200 1.205 1.210
x1.0355

1.0360

1.0365

1.0370

1.0375

1.0380

y

(a) Projecting k = 7 and one k = 8
constraint on (x, y).

(b) Projecting k = 7 and one k = 8
constraint on (x, y, z).

Figure 12. Region of parameter space curved out by projecting up to k = 7 and k = 8 constraints.

4.3 Closed string EFT from KLT

Given the monodromy relation of the open string amplitude, the closed string KLT re-
lation [47] (see also [28, 29]) can be viewed as its corollary. Thus once we obtain the
open string EFT, we can straightforwardly carve out the closed string EFT by projection
through the KLT kernel. For example, combining (3.10) and (3.11) the projection through
KLT yields the following:

Mclosed string (s, t) =A(s, t)sin(πs)A(s,−s−t)

= −π
st(s+t)−2πg1,0−2πg3,0

(
s2+st+t2

)
−π

(
π6

630 +g2
1,0−2g4,1

)
(s+t)st+2πg5,0

(
s2+st+t2

)2
+. . . (4.26)

This can be compared to the EFT expansion

M (s, t) = −π
st (s+ t) +

∞∑
i,j=0

Gi,js
i−jti , (4.27)

where the coefficients Gij are linearly related to gi,j :

G0,0 = 2πg1,0, G2,0 =G2,1 =G2,2 = 2πg3,0,

G3,1 =G3,2 =−π
(
π6

630 +g2
1,0−2g4,1

)
, G3,0 =G3,3 = 0

G4,0 =G4,4 = 2πg5,0, G4,1 =G4,4 = 4πg5,0, G4,2 = 6πg5,0 . (4.28)

The shape of the allowed region of independent Gi,j ’s follows from the allowed region of
monodromy free parameters g1,0, g3,0, g4,1, etc. For example, the allowed region for the G0,0,
G2,0 and G3,1 is shown in figure 13, which is a straightforward coordinate transformation
of the region in figure 11a which we used (x, y, z) = (g1,0, g3,0, g4,1).
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Figure 13. Region of parameter space (G0,0, G2,0, G3,1) for closed string in d=26. The gray region
carved out by monodromy and EFT up to k=4 constraints. The red region correspond to projected
k=5 and k=6 condition.

The EFThedron constraint for non-ordered amplitude is much more intricate and not
fully explored. However, in the forward limit, the Hankel matrix positivity is a direct carbon
copy of the color ordered ones. Now the double copy in the forward limit takes the form:

lim
t→0

A (s, t) (πt)A (−s, t)

=

 1
(α′)2 st

+
∞∑

i,j=0
gi,0s

i

 (πt)

 1
(α′)2 (−s) t

+
∞∑

i,j=0
gi,0 (−s)i

 . (4.29)

Only the contribution from odd powers of s survives and the regular terms inM (s, t) read:

−2π
(
g1,0 + g3,0s

2 + g5,0s
4 + . . .

)
. (4.30)

Thus we see that the Hankel positivity of the closed string amplitude is simply a sub-
set of the open string ones, and the KLT kernel can be viewed as a positivity preserving
projection. See also a similar discussion in [26].

5 Conclusions and outlook

In this paper, we study the interplay of consistency conditions for a space-time S-matrix,
and a CFT four-point correlation function. This can be viewed as an initial step towards
an on-shell approach to carving out the string landscape. By considering a worldsheet type
integral representation for the four-point amplitude, we show that consistent factorization
of the S-matrix forces the integrand to be given by linear combinations of SL(2,R) conformal
blocks. Unitarity of the S-matrix for positive conformal weights carves out a subregion
within the space of linear combinations, where we demonstrate that the Virasoro block
appears at a kink in the boundary of allowed solutions. In the cases shown, this criteria
is sufficient to analytically define the Virasoro combination. Thus Virasoro symmetry
emerges from the consistency of the space-time S-matrix.
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Note that a characteristic property of χq, defined as coefficients in the linear combi-
nation of global SL(2,R) blocks for the Virasoro block, is the presence of poles associated
with the null states. If instead we restrict ourselves to a polynomial ansatz, in general
we can only cover a subspace of the allowed region, and it is only when we allow for a
rational ansatz can we reach the boundary. Thus the presence of null state poles is crucial
in putting us on the boundary. It will be interesting to understand more deeply from the
S-matrix point of view the necessity for the presence of these null states.

In the opposite direction, we consider open string correlators with overall monodromy,
which arrises for general flat-space amplitudes. We demonstrate that the resulting mon-
odromy relations allow for three isolated solutions, each enforcing algebraic identities
amongst the low energy couplings. Thus the low energy description of string theory ampli-
tudes corresponds to the intersection of the “monodromy plane” with the EFThedron. For
the monodromy plane that arises for usual flat space amplitudes, we show that the inter-
section space is an isolated island, whose area rapidly converges as higher derivative order
constraints are taken into account. This leads us to conjecture that the four-point open
superstring amplitude is completely fixed by the geometry of the intersection between the
monodromy plane and the EFThedron. This also implies that deviation from the super-
string result must entail modifications to the monodromy relations employed. We present
the result for the same investigation on bicolor monodromy.

Since the intersection geometry is infinite dimensional in nature, it will be desirable to
have a continuous limit description. Note that this is reminiscent of the CFT bootstrap,
where the initial derivative truncation gave way to more efficient analytic functionals [48].
The initial step would be then to have a continuous definition for the Hankel matrix bounds.
A recent proposal of positive functionals is a very promising direction [49].

The constrained space of open string EFT couplings naturally leads to a constrained
space for closed strings couplings through KLT relations. We find that so long as the open
string couplings reside in the EFThedron, the closed string image automatically satisfies
all Hankel-type bounds. However, it is well known that the EFThedron for general permu-
tation invariant theories is much more intricate than the color ordered ones [26]. It will be
interesting in the future to see if the KLT kernel always projects the intersection geometry
of the open string inside the general EFThedron. It is clearly desirable to understand
what statements can be made for the monodromy of general string compactifications, and
study how to modify our approach to cases where instead of universal monodromy, the
open string amplitude is given as sum of blocks with distinct yet understood monodromy
phases. Finally, it was recently shown that the string EFT expansion can be expressed
in terms of just a few modified color-kinematic building blocks [50]. It would be interest-
ing to understand how monodromy relates the color-kinematic solutions at different mass
dimension, and if monodromy-compatible solutions themselves are amenable to a direct
bootstrap procedure.
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A Expanding coefficient

The scalar coefficient in n = 2

C(2)
0 = d(p+1)2

8(d−1) +d(i1−i2)2(i3−i4)2

8(d−1)(p+1)2 −
(p+1)(d−5+d(i1−i2−i3+i4)+2(i2+i3))

4(d−1) ,

+ d

8(d−1)(i21−2i2i1−4i3i1+4i4i1+2i1+i22+i23+i24−2i2+4i2i3−2i3−4i2i4−2i3i4+2i4)

+ 1
4(d−1)(4i3i1−5i1−3i2−3i3+4i2i4−5i4+8)

+ 1
4(d−1)(p+1)(i21((d−2)i3−di4+2)−i1(2i2((d−2)i3−di4+2)+(i3−i4)(di3−di4−d+1))

+i2(i3−i4)((d−2)i3−(d−2)i4−d+1)+i22((d−2)i3−di4+2)+2(i3−i4)2)

+ (i1−i2−p−1)(i3−i4+p+1)
2(p+1) v1+v2 . (A.1)

B Virasoro block

In this appendix, we list the ansatz we used in section 2.2 and show the detail for fixing
ansatz parameters in n=2 and n=3.

n = 2. Ansatz of χ2:

χ2 = (a1i1+a2i2+a3i
2
1+a4i

2
2+a5i1i2+a6p+a7i1p+a8i2p+a9p

2)(i1 → i4, i2 → i3)
(b0+b1d+b2p+b3dp+b4p2+b5dp2+b6p3) . (B.1)

Note that we have allowed the dependence on i1, i2, i3, i4 and p up to at least degree 2
in the numerator, as there are no solutions to (2.27), (2.28) with lower degrees. We find
that simply requiring the scalar coefficient to satisfy the equality in (2.28) for all external
dimensions, while respecting (2.27), the χ2 ansatz in (B.1) is reduced to

χ2 = (3i21+3i22−i2(1+6ap)−i1(1+6ap)−6i1i2+p(−5−3p+6x(3+p)))(i1 → i4, i2 → i3)
(2d(1+6ap)2−4(1+p)(13−6(−7+4a)p+36(−1+a)2p2))) ,

(B.2)
where the variable a is the ratio a = a7/a5. This is constrained to −1.25 ≤ a ≤ 1/3 as we
now see. Note that the coefficient C(2)

0 , with χ2 given in (B.2), becomes:

C(2)
0 = N (i1, i2, p, a)N (i4, i3, p, a)

8(−1+d)(1+p)2(1+2p)(−d(1+6pa)2+2(1+p)(13−6(−7+4a)p+36(−1+a)2p2)) .

(B.3)
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If one requires the coefficient to be positive when i1 = i4, i2 = i3, then the denominator
must be positive

−d(1+6pa)2+2(1+p)(13−6(−7+4a)p+36(a−1)2p2) ≥ 0 . (B.4)

It is easy to see positivity for positive p in dimensions below d = 26 will bound −1.25 ≤
a ≤ 1/3. We can consider the positivity constraint at higher order n. For example,
the positivity of C(3)

1 will further restrict the region to 0.32 ≤ a ≤ 1/3. As the lower
bound asymptotes to match with the upper bound, fixed at 1/3, being at the boundary
of (2.27), (2.28) uniquely determines χ2 to be:

χ2 = (−3(i1−i2)2+(i1+i2)+2p(i1+i2)+(p−1)p)(−3(i4−i3)2+(i4+i3)+2p(i4+i3)+(p−1)p)
2(1 + 2p)(26− d+ 42p− 2dp+ 16p2) .

(B.5)

n = 3. Ansatz of χ3:

χ3 = − T (i1, i2)T (i4, i3)
b0 + b1p+b2p2+b3p3+b4p4+b5p5+b6d+b7pd+b8p2d+b9p3d+b10p4d

T (i, j) =
(
a1i

2+a2j
2+a3i j+a4i

3+a5i
2 j+a6i j

2+a7j
3+a8i p

+a9jp+a10i
2p+a11j

2p+a12ijp+ a13ip
2+a14jp

2) (B.6)

Setting χ1 = 0 and χ2 to (2.33), once again by imposing (2.27) and equality in (2.28)
for C(3)

0 , the ansatz for χ3 can be completely fixed up to the ratio a = a11/a2, which is
confined to the region −6.58 ≤ a ≤ 1. This range is considerably reduced by considering
the positivity in (2.27) for C(4)

1 , restricting to 0.95 ≤ a ≤ 1. The positivity of C(n)
n−3 in (2.27)

at higher n further pushes the lower bound to 1, thus fixing all the ansatz to:

χ3 = −(i1−i2)(i3−i4)(−i1+i21−i2+i22−2i1i2+p−i1p−i2p)(−i3+i23−i4+i24−2i3i4+p−i3p−i4p)
2p(p+1)(p+2)(28−d+19p−dp+3p2) .

(B.7)

C Bicolor ordered amplitudes

In this section we carry out the analysis for a bi-adjoint effective theory, and show that
monodromy and EFT-hedron constraints imply it must match Z-theory [15, 16].

C.1 BCJ and monodromy plane

Such amplitudes have a doubly-ordered structure of the form A (P|Q), where P,Q are
two permutations of the color indices {1, 2, 3, 4}.

We will impose that the amplitude satisfies BCJ relations with respect to permutations
of the set P,

uA (1324| 1234) = sA (1234| 1234) , (C.1)
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and the monodromy relation with respect to the set Q,

A (1234| 2134) + eiπsA (1234| 1234) + e−iπuA (1234| 1324) = 0 . (C.2)

This is required if the amplitude originates from a worldsheet expression of the following
form

A (P|Q) = −S ({ki, εi})
∫ 1

0
dzP(2)f (zi) z

−2kP(1)·kP(2)
P(2)

(
1− zP(2)

)−2kP(2)·kP(3)

×

(
zP(1) − zP(3)

) (
zP(1) − zP(4)

) (
zP(3) − zP(4)

)
∏4
i=1

(
zQ(i) − zQ(i+1)

) , (C.3)

where f (zi) is a total symmetric function of all zi’s, and has trivial monodromy.
For such bicolor amplitudes satisfying BCJ and monodromy relations there is only one

independent four-point amplitude, all other amplitudes with different orders of the two
sets of indices can be derived by repeated use of the BCJ relation and/or the monodromy
relation. Therefore, as in the single color case, we only need to consider the parameter
space of one amplitude, which we can choose to be the symmetric one A (1234| 1234). This
has the same form as (3.7)

A (1234| 1234) = S ({ki, εi})A (s, t) . (C.4)

First of all, under permutations of the external legs, we have

S ({ki, εi})A (s, t) = A (1234| 1234) , (C.5)
S ({ki, εi})A (u, t) = A (1324| 1324) , (C.6)
S ({ki, εi})A (s, u) = A (2134| 2134) , (C.7)

by unifying the first color order by applying BCJ relation:

u

t
A (2134| 2134) = A (1234| 2134) , (C.8)

u

s
A (1324| 1324) = A (1234| 1324) , (C.9)

and comparing with (C.2), we arrive at

u

s
A (s, u) + eiπsA (s, t) + e−iπu

t

s
A (u, t) = 0 . (C.10)

The Laurent expansion of A (s, t) is

A (s, t) = −
(1
s

+ 1
t

)
+

∑
k≥q≥0

gk,qs
k−qtq , (C.11)
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and by solving the monodromy relation we find the coefficients:


g00
g1,0 g1,1
g2,0 g2,1 g2,2
g3,0 g3,1 g3,2 g3,3
g4,0 g4,1 g4,2 g4.3 g4,4



=


0

ζ (2) ζ (2)
g2,0 2g2,0 g2,0
ζ (4) 5

4ζ (4) 5
4ζ (4) ζ (4)

g4,0 −ζ (2) g2,0 + 3g4,0 −2ζ (2) g2,0 + 4g4,0 −ζ (2) g2,0 + 3g4,0 g4,0 .

 (C.12)

Note that in (C.10) we are in fact solving for the Laurent expansion of (s+ t)A (s, t) for
A (s, t) in (3.8), so the parameters in (C.12) and (3.11) are in one-to-one correspondence
as expected. Naturally the correspondence between monomials of odd zeta values and free
parameters emerges in the bicolor case as well.

C.2 Combined constraints for bicolor ordered amplitude

For the bicolor amplitude (C.11), the Laurent coefficients gi,j are constrained by the combi-
nation of unitarity and monodromy in a similar fashion. In this subsection we will show the
result for the combined constraints on (g2,0, g4,0) = (x, y) up to k=5. As shown in (C.11),
the monodromy constraints read:

k = 0 : g0,0 = 0 ,
k = 1 : g1,0 = g1,1 = ζ (2) ,
k = 2 : g2,1 = 2g2,2 = 2g2,0 ,

k = 3 : g3,0 = g3,3 = ζ (4) , g3,1 = g3,2 = 5
4ζ (4) ,

k = 4 : g4,1 = g4,3 = −ζ (2) g2,0 + 3g4.0 , g4,2 = −2ζ (2) g2,0 + 4g4,0 . (C.13)

Thus the monodromy plane can be identified with the plane spanned by (g2,0, g4,0) =
(x, y). The cyclic polytope (3.23) expanded on the monodromy plane will give us some
non-relevant conditions, which we do not list here. One nontrivial constraint is that the
components of ~g4 should be positive. The positivity of the third component in ~g

(3)
4 =

g4,2/g4,0 can be expanded on the monodromy plane and implies:

g4,2
g4,0

> 0 −→ y

x
>
π2

12 . (C.14)
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kel matrix. We list the strongest condition up
to k=5.
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Figure 14. Region of parameter space for bi-color amplitude carved out by monodromy and
EFT plane.

As we know g5,0 = ζ (6) from monodromy, we can include positive determinant constraints
for Hankel matrices (3.24) containing g5,0

H1 =
(
g1,0 g2,0
g2,0 g3,0

)
, H2 =

(
g2,0 g3,0
g3,0 g4,0

)
, H3 =

(
g2,1 g3,1
g3,1 g4,1

)
(C.15)

H4 =

g1,0 g2,0 g3,0
g2,0 g3,0 g4,0
g3,0 g4,0 g5,0

 , H5 =
(
g3,0 g4,0
g4,0 g5,0

)
, H6 =

(
g1,0 g3,0
g3,0 g5,0

)
. (C.16)

The product Hankel matrices (3.25) are also not relevant in this case. We summarize
all the nontrivial constraints in (C.13), (C.14) and the matrices det (Hi) > 0 in (C.16) in
figure 14a. As in the single color case, the parameters are confined to a small region, shown
in figure 14b.

D Checking a corollary of the main conjecture

Verifying the conjecture becomes computationally difficult at higher orders in k, but we can
test a simpler yet non-trivial corollary, with significant precision. It is a straightforward
consequence of the conjecture that for a EFT amplitude with some of its Laurent coefficients
set equal the string value, the remaining unknown parameters can be fixed by monodromy
and unitarity to the string value as well.

By setting (g1,0, g3,0, g4,1) to their string values (ζ(3), ζ(5), 3/4ζ(6)− 1/2ζ(3)2), we can
search for solutions of the higher order parameters to the k = 7 EFThedron constraints
via FindInstance. We immediately find:

(g5,0, g6,1, g7,0, g7,2) = (1.00834, 0.00862, 1.00202, 0.00035) , (D.1)
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matching the string values up to four digits:(
ζ(7), π8

7560−ζ(3)ζ(5), ζ(9), 180ζ(3)3 − 2π6ζ(3)− 27π4ζ(5)− 540π2ζ(7) + 10080ζ(9)
1080

)
= (1.00835, 0.00865, 1.00201, 0.00032) . (D.2)

The most manageable case of this corollary is when all but one parameter is fixed to
the string value. For example, at k=5 monodromy leaves four independent variables. We
can deform g1,0, and keep the remaining parameters at the superstring value:

g1,0 = ζ(3) + x

g3,0 = ζ(5)

g4,1 = 3
4ζ(6)− 1

2ζ(3)2

g5,0 = ζ(7) , (D.3)

including all higher order k couplings. Our conjecture implies that as we increase the order
of the constraints, x should be bounded closer and closer to zero. We restrict to just using
the following choice of Hankel matrices for simplicity:

Hn =
(
gn,i gn+1,i
gn+1,i gn+2,i

)
, (D.4)

for all i ≤ n, and we impose all entries to be positive, along with det(Hn) > 0. Even
with this drastically reduced set of constraints we find that the value of x quickly becomes
highly constrained:

H5 : −10−4 < x < 10−3 ,

H7 : −10−7 < x < 10−3 ,

H9 : −10−9 < x < 10−6 ,

H11 : −10−11 < x < 10−8 . (D.5)

Another easy test can be done for the case when we deform all ζ(3) → ζ(3) + x,
including any ζ(3)k → (ζ(3) + x)k, for all k. Unlike the first test, this will put bounds on
ζ(3) purely in terms of other zeta values. In this case we also get an increase in precision
with constraint order:

H5 : −10−4 < x < 100 ,

H7 : −10−5 < x < 10−1 ,

H9 : −10−6 < x < 10−2 ,

H11 : −10−7 < x < 10−3 , (D.6)

suggesting we can indeed fix ζ(3) to arbitrary degree.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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