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1 Introduction

Photon self-energy operator Π(s) =
∑
n

(
α
π

)n Πn(s) is a fundamental physical quantity
of quantum electrodynamics. It is an important ingredient of many physically relevant
calculations. One-loop result Π1(s) is presented in many QED textbooks (see, e.g., [1]), and
the two-loop contribution Π2(s) has been calculated long ago by Källen and Sabry in ref. [2].
The three-loop contribution also appears in many applications, see, in particular, refs. [3–5].
Some calculations require knowing this object with very high precision. Kinoshita and
Lindquist have derived 6-fold parametric representation for the renormalized three-loop
photon self-energy in a dedicated work [6]. Except for this computationally quite expensive
representation, no exact analytical representation for Π3(s) has been derived so far. Baikov
and Broadhurst [3] have derived a simple Padè approximation for this operator using a few
terms of the asymptotic expansions near 3 special points: s = 0, 4m2,∞ (m is the electron
mass). The precision of this approximation has been estimated indirectly, by comparing
the contribution of the 3-loop polarization operator to 4-loop gµ − 2. The conservative
estimate of this precision given by Baikov and Broadhurst was as high as 0.002 percent
for this case. This declared precision is quite remarkable and it would be interesting to
compare the exact result with the approximate one in a more direct way. In particular, we
are concerned about the impact of the second threshold s = 16m2 which becomes relevant
starting from three loops.

In the present paper we make an important step towards analytic calculation of the
3-loop polarization operator. Namely, we derive the analytic expressions for all master
integrals which are required for the calculation of the spectral density ρ(s) = =Π3(s+i0)/π.
Thanks to Cutkosky rules, this spectral density is expressed via bipartite cuts of a specific
set of three-loop massive diagrams depicted in figure 1.

Classifying the cuts by the number of massive and massless lines that are cut, we
have (2, 0), (2, 1), (2, 2), and (4, 0) cuts, where (k, l) denotes the cut with k massive and l
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Figure 1. Diagrams contributing to 3-loop photon self energy in QED.

massless lines being cut. The non-polylogarithmic integrals appear only in (4, 0) cuts due
to the presence of three-loop cut banana graph among the master integrals. Fortunately, all
(4, 0) cuts are free from divergences of both ultraviolet and infrared origin, and, therefore,
can be calculated exactly in d = 4. In ref. [7] we have presented a set of the master
integrals sufficient for this purpose. The master integrals have been expressed via iterated
integrals with all weights but one being the rational functions. We have presented also the
expressions in terms of one-fold integrals with integrands expressed via complete elliptic
integrals and generalized polylogarithms.

We calculate below the master integrals for the remaining cuts (2, 0), (2, 1), and (2, 2).
We express the exact results for these cuts via iterated integrals with all weights being
rational. These iterated integrals are, therefore, expressible in terms of Goncharov’s poly-
logarithms. Besides the application to the photon self-energy, these master integrals enter
the total cross sections of one-photon electron-positron annihilation to muons or to hadrons
at NNLO.

For the (4, 0) cut we write the results of ref. [7] in terms of similar iterated integrals,
with the right-most weight expressed via complete elliptic integrals. We provide explicit
expressions for the asymptotics of the obtained integrals, including those from (4, 0) class,
near thresholds and in the high-energy limit.

Our calculation follows the standard path:

1. IBP reduction.1 Constructing differential equations for master integrals.

2. Reduction of the differential equations to ε-form.

3. Fixing boundary conditions from threshold asymptotics.

4. Constructing solution in terms of iterated integrals.

2 Prototypes, LiteRed bases and boundary conditions

As it was already mentioned in the Introduction, our calculation strategy for polylogarith-
mic master integrals is based on the reduction of a differential system to ε-form [8, 9]. In

1For the IBP reduction we use LiteRed package, refs. [11, 12].
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Figure 2. Prototypes for master integrals of (2, 0) cuts.

the case of finite non-polylogarithmic master integrals we use instead the notion of ε-regular
basis [7]. In what follows we will use j for the column of LiteRed master integrals and J
for the canonical or ε-regular basis.

Having reduced the system of differential equations for polylogarithmic master integrals
to ε-form the latter can be easily solved in terms of Goncharov’s polylogarithms and the
solution for initial LiteRed master integrals can be written as

j(β) = e−3εγET (β)J(β) = T (β)Pexp
[
ε

∫ β

0
S(t)dt

]
L · c , (2.1)

where β =
√

1− 4/s, T is the transformation matrix to the canonical basis, and S is the
matrix entering differential equations system for the canonical master integrals

∂βJ(β) = εS(β)J(β), (2.2)

c is the column of the coefficients in threshold asymptotic expansions of the LiteRed master
integrals, and L is a rational matrix depending on ε.

The reduction to ε-form, the choice of the coefficients c, and the determination of the
corresponding “adapter” matrix L is made with the help of Libra package [10].

It appears that all required families of integrals can be conveniently described using
the following nine “denominators”:

D1 = 1−l22, D2 = 1−l23, D3 =−(l2−l3)2 , D4 =−(l1−l2)2 , D5 = 1−l21,
D6 = 1−(q−l3)2 , D7 = 1−(q−l1)2 , D8 = 1−(q−l1+l2−l3)2 , D9 = 1−(q−l2)2 . (2.3)

(2, 0) cuts. In the case of (2, 0) cuts all LiteRed master integrals belong to one of
the three prototypes shown in figure 2. As the two first prototypes differ only by one
denominator, we use one LiteRed basis for them. Namely, we have

jcut20
n1...,n9 = (2π)2

2πd/2

∫
ddl1d

dl2d
dl3

(iπd/2)2
δ(n5−1)(−D5)δ(n7−1)(−D7)∏9

k=1,k 6∈{5,7}(Dk − i0)nk
(2.4)

jcut20a
n1...,n9 = (2π)2

2πd/2

∫
ddl1d

dl2d
dl3

(iπd/2)(−iπd/2)
δ(n1−1)(−D1)δ(n9−1)(−D9)∏9
k=1,k 6∈{1,9}(σkDk − i0)nk

, (2.5)
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where one of n8, n9 is necessarily non-positive in the first family and n8 6 0 in the second.
We also use notation σk = −1 if k ∈ {4, 5, 7} and σk = 1 otherwise. The denominators are
defined in eq. (2.3).

We have 17 master integrals in the first family and 2 additional master integrals in the
second:

#1: j000011101
cut20

#2: j001111100
cut20

#3: j010011101
cut20

#4: j010110110
cut20

#5: j020110110
cut20

#6: j100011110
cut20

#7: j011110101
cut20

#8: j011111100
cut20

#9: j101011110
cut20

#10: j201011110
cut20

#11: j110011101
cut20

#12: j110011110
cut20

#13: j210011110
cut20 #14: j011111101

cut20
#15: j021111101

cut20

#16: j111111110
cut20

#17: j211111110
cut20 #18: j100011101

cut20a

#19: j110011101
cut20a

Here the green lines correspond to the cut propagators, while the red lines correspond to
complex conjugated part of the diagram. Note that the integral jcut20a

100011101 is a complex
conjugate of jcut20

010011101 and we introduce it because it enters the differential equation for
jcut20a

110011101.
Using Libra we have chosen the following constants to fix our boundary conditions:

c =
(
c1(β1−2ε), c2(β1−2ε), c3(β2−4ε), c4(β6−8ε), c4(β1−2ε), c6(β1−2ε), c7(β0),

c8(β2−6ε) , c9(β0), c9(β3−6ε), c11(β3−6ε), c12(β0), c12(β1−4ε), c14(β0),

c14(β1−6ε), c16(β0), c16(β−1−6ε), c18(β2−4ε), c19(β3−6ε)
)ᵀ
,

where ci(βν) denotes the coefficient in front of βν in the threshold asymptotics of i-th
LiteRed master integral. We calculate the required integrals using the expansion-by-
regions method, ref. [13].

Let us present a few examples of calculation of the required coefficients. First, note
that the above master integrals represent either the 2-loop vertex or the product of 1-loop
vertices integrated over 2-particle phase space. The later integration decouples completely
and we have

Φ2 = (2π)2

2

∫
ddl1
πd/2 δ(l

2
1 − 1)δ((q − l1)2 − 1) = π3/2

2Γ(3/2− ε)

(
s

4

)−ε
β1−2ε (2.6)

Noting that it scales as ∼ β1−2ε we immediately conclude that

c7(β0) = c9(β0) = c12(β0) = c14(β0) = c16(β0) = 0 . (2.7)
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To perform the threshold expansion of two-loop vertex integrals we use the expansion-
by-regions method [13] in momentum space. We first ensure that the routing of hard
external momentum goes only through the massive lines of the vertex graph. Then we have
four different regions for each loop momentum l: hard (l0 ∼ 1, |~l| ∼ 1), soft (l0 ∼ β, |~l| ∼
β), potential (l0 ∼ β2, |~l| ∼ β) and ultrasoft (l0 ∼ β2, |~l| ∼ β2). Each of these regions
contributes to some specific powers of the expansion in β and thus to some particular
coefficient ci(βν). For example, consider c14(β1−6ε) coefficient. In this case the 2-loop
vertex part of LiteRed master integral is given by (p2

1 = p2
2 = 1, (p1 + p2)2 = s):

∫
ddl1d

dl2
(iπd/2)2

1
(−l2 · p2 − l22)(2l1 · p1 − l21)(2l2 · p1 − l22)(−l21)(−(l1 − l2)2)

(2.8)

and the required region (soft-potential) contributing to β1−6ε power is given by l1,0 ∼
|~l1| ∼ |~l2| ∼ β, l2,0 ∼ β2. Expanding the integrand in this region to leading power in β, we
express the integrals over l1,0, l2,0 as a sum over residues. The remaining integrals over ~l1
and ~l2 can be conveniently evaluated using alpha-parametrization. Finally, restoring the
2-particle phase space integral we get

c14(β1−6ε) = 22ε−1e2iπεπ4Γ(−4ε)Γ(2ε) sec(πε)
Γ(3/2− 3ε)Γ(3/2− ε)Γ(−ε) . (2.9)

Similarly, a careful inspection of regions gives

c14(β1−4ε) = c16(β−1−6ε) = 0 . (2.10)

It is also instructive to see some details of calculation of c4(β1−2ε) constant, which appears
to be expressible via hypergeometric function 3F2. The required scaling in β in this case
is already provided by 2-particle phase space integral and 2-loop vertex part should be
evaluated at β = 0, which corresponds to hard-hard region in the threshold expansion.
Using alpha parametrization for 2-loop sunset subdiagram we have

c4(β1−2ε) = π3/2Γ(−1+2ε)
2Γ(3/2−ε)

∫ ∞
0

dα2

∫ ∞
0

dα3

∫ ∞
0

dα6δ(1−α2−α3−α6)

×
(
α6 (α2−α3)2 +α2α3 (α2 +α3)

)1−2ε
(α3α6 +α2 (α3 +α6))3(ε−1) . (2.11)

Using Cheng-Wu theorem [14] we replace δ(1 − α2 − α3 − α6) with δ(1 − α2 − α3) and
making the change of variables α2 = x, α3 = 1− x, α6 = x(1− x)y we obtain

c4(β1−2ε) = π3/2Γ(−1 + 2ε)
2Γ(3/2− ε)

∫ 1

0
dx

∫ ∞
0

dy (x(1− x))ε−1(y + 1)3ε−3
(
(1− 2x)2y + 1

)1−2ε

(2.12)
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Figure 3. Prototypes for master integrals of (2, 1) cuts.

Now we use the Mellin-Barnes parametrization

Γ(−1 + 2ε)
((1− 2x)2y + 1)2ε−1 =

i∞∫
−i∞

dτ

2πi
Γ(−1 + 2ε− τ)Γ(τ)eiπτ

(1 + y)−1+2ε−τ (4yx(1− x))τ (2.13)

After this the integrals over x and y can be taken in terms of Γ-functions and we obtain
one-fold Mellin-Barnes representation

c4(β1−2ε) = π5/2

2Γ(3/2− ε)

i∞∫
−i∞

dτ

2πi
4−τeiπτΓ(1− ε)Γ(ε− τ)2Γ(2ε− τ − 1)

sin(πτ)Γ(2ε− 2τ)Γ(−ε− τ + 2) (2.14)

We close the contour of integration to the left and finally obtain

c4(β1−2ε) = π5/222−4εΓ(2ε− 1)
sin(πε)Γ(3− 2ε)Γ

(
ε+ 1

2

) 3F2
(
1, ε, 2ε− 1; 2− ε, ε+ 1

2 ; 1
)
. (2.15)

In a similar way, we have been able to fix all required boundary constants exactly in
ε, with two of them expressed via hypergeometric functions. E.g., we have

c6(β1−2ε) =
π2Γ(ε)

(
3F2

(
1
2 ,1,2ε−1;2−ε,ε+ 1

2 ;1
)

+(1−2ε)3F2
(
1, 3

2−ε,ε;
3
2 ,3−2ε;1

))
22ε−1Γ(3−2ε)(2ε−1)sin(πε) .

(2.16)
We have checked that a few leading terms of ε-expansion of ca+bε

i constants calculated here
can be reproduced from the results of 2-loop vertex diagrams calculation presented in [15].

(2, 1) cuts. All LiteRed master integrals for (2, 1) cuts belong to two prototypes in
figure 3. They are defined as

jcut21
n1...,n9 = (2π)3

2
(
πd/2)2

∫
ddl1d

dl2d
dl3

iπd/2

∏
k∈{1,4,7} δ

(nk−1)(−Dk)∏9
k=1,k 6∈{1,4,7}(Dk − i0)nk

, (2.17)
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where one of n5, n9 is necessarily non-positive and Dk are defined in eq. (2.3). We have 22
master integrals:

#1: j100100110
cut21

#2: j200100110
cut21

#3: j101101100
cut21

#4: j102101100
cut21

#5: j101102100
cut21

#6: j110100110
cut21

#7: j120100110
cut21

#8: j110101100
cut21

#9: j210101100
cut21

#10: j101101110
cut21

#11: j101102110
cut21

#12: j201101110
cut21

#13: j101111100
cut21

#14: j110100111
cut21

#15: j120100111
cut21

#16: j110101110
cut21

#17: j110102110
cut21

#18: j111101100
cut21 #19: j111111100

cut21
#20: j121111100

cut21

#21: j111111110
cut21

#22: j121111110
cut21

We fix boundary conditions by calculating the following coefficients in the threshold asymp-
totics of the LiteRed master integrals:

c=
(
c1(β0), c1

(
β5−6ε

)
, c3(β0), c3

(
β2
)
, c3
(
β7−10ε

)
, c6(β0), c6

(
β6−8ε

)
, c8
(
β6−8ε

)
,

c8
(
β1−2ε

)
, c10(β0), c10

(
β2
)
, c10

(
β3−6ε

)
, c13(β0), c14(β0), c15

(
β1−6ε

)
,

c16(β0), c16
(
β3−6ε

)
, c18(β0), c19(β0), c20

(
β−6ε−1

)
, c21(β0), c21

(
β−6ε−1

))ᵀ
. (2.18)

among which only four are nonzero:

c1
(
β5−6ε

)
= π5/221−2ε csc(πε)

(ε−1)Γ
(

7
2 −3ε

) , c3
(
β7−10ε

)
= π221−2εe2iπεεΓ(3−4ε)Γ(−ε)Γ(2ε−1)

Γ
(

9
2 −5ε

)
Γ
(

3
2 −ε

) ,

c6
(
β6−8ε

)
=
π3/221−4εeiπεΓ(1−ε)2Γ

(
ε− 1

2

)
iΓ(4−4ε) , c8

(
β6−8ε

)
=
π24−εeiπεΓ(1−ε)Γ

(
ε− 1

2

)
iΓ
(

7
2 −3ε

) . (2.19)

It is remarkable that the differential equations for (2, 1)-cut master integrals are the
only ones which have singularity at s = 1. Consequently the (2, 1)-cut master integrals can
not be expressed via harmonic polylogarithms because they involve Goncharov’s polylog-
arithms with letters ±

√
3i.

(2, 2) cuts. All LiteRed master integrals for (2, 2) cuts belong to three prototypes in
figure 4. They are defined via two LiteRed bases

jcut22
n1...,n9 = (2π)4

2
(
πd/2)3

∫
ddl1d

dl2d
dl3

∏
k∈{1,3,4,8} δ

(nk−1)(−Dk)∏9
k=1,k 6∈{1,3,4,8}(Dk − i0)nk

, (2.20)

jcut22a
n1...,n9 = (2π)4

2
(
πd/2)3

∫
ddl1d

dl2d
dl3

∏
k∈{3,4,5,6} δ

(nk−1)(−Dk)∏9
k=1,k 6∈{3,4,5,6}(Dk − i0)nk

, (2.21)
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Figure 4. Prototypes for master integrals of (2, 2) cuts.

where one of n5, n9 is necessarily non-positive for the first basis and n9 6 0 for the second.
The functions Dk are defined in eq. (2.3). We have 15 master integrals:

#1: j101100010
cut22

#2: j201100010
cut22

#3: j102100010
cut22

#4: j101100011
cut22

#5: j101101110
cut22

#6: j101102110
cut22

#7: j201101110
cut22

#8: j111100011
cut22

#9: j111111110
cut22

#10: j121111110
cut22 #11: j011111100

cut22a #12: j011111110
cut22a

#13: j021111110
cut22a

#14: j111111110
cut22a

#15: j211111110
cut22a

We fix boundary conditions by calculating the following coefficients in the threshold asymp-
totics of the LiteRed master integrals:

c =
(
c1(β0), c1

(
β2
)
, c1

(
β9−10ε

)
, c4

(
β1−2ε

)
, c5(β0), c5

(
β2
)
, c5

(
β3−6ε

)
, c8(β0), c9(β0),

c9
(
β−6ε−1

)
, c11

(
β2−6ε

)
, c12(β0), c12

(
β1−6ε

)
, c14(β0), c14

(
β−6ε−1

) )ᵀ
. (2.22)

The only nonzero constant is

c1
(
β9−10ε

)
= − 2π7/2 csc(2πε)Γ(2− 2ε)

Γ
(

11
2 − 5ε

)
Γ
(

3
2 − ε

)2
Γ(2ε− 1)

. (2.23)

(4, 0) cuts. All LiteRed master integrals for (4, 0) cuts belong to two prototypes in
figure 5. They are defined as

jcut40
n1...,n9 = (2π)4

2
(
πd/2)3

∫
ddl1d

dl2d
dl3

∏
k∈{1,6,7,8} δ

(nk−1)(−Dk)∏9
k=1,k 6∈{1,6,7,8}(Dk − i0)nk

, (2.24)
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Figure 5. Prototypes for master integrals of (4, 0) cuts.

where one of n5, n9 is necessarily non-positive. We find 13 master integrals:

#1: j100001110
cut40

#2: j200001110
cut40

#3: j300001110
cut40

#4: j100001111
cut40

#5: j101011110
cut40

#6: j102011110
cut40 #7: j101101110

cut40
#8: j201101110

cut40

#9: j101102110
cut40

#10: j110001111
cut40

#11: j120001111
cut40

#12: j111111110
cut40

#13: j121111110
cut40

Boundary conditions are fixed by the threshold asymptotics of the first integral (phase
space of four massive particles).

3 Results

The results of our calculation in its full length are presented in the supplementary material
attached to this paper. Let us describe briefly the content of these files:

Data/weights — file with definition of weights. The function f entering the some weights
is defined in eq. (A.4) (see description of Data/frules40 below).

Data/jtoGraphkl — file containing graphs for the LiteRed master integrals for the cut
(k, l).

Data/jtoJkl — substitution rules for the LiteRed master integrals in terms of the
canonical/ε-regular basis.

Data/Mkl — matrix in the right-hand side of the differential system ∂sJ = MJ .

Data/Tkl — transformation matrix to ε-form/ε-regular basis.

cskl — substitution rules for the coefficients of threshold asymptotic expansion used to
fix the boundary conditions.
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Data/JtoIIkl — substitution rules for the canonical/ε-regular basis in terms of the iter-
ated integrals defined below.

Data/Jthrkl— substitution rules for the threshold asymptotics of the canonical/ε-regular
basis. Note that the (4, 0) cut has threshold at s = 16, in contrast to (2, l) cuts.

Data/Jhighkl — substitution rules for the high-energy asymptotics of the canonical/ε-
regular basis.

Data/IItoG — file containing substitution rules for the iterated integrals in terms of
Goncharov’s polylogarithms.

Data/JtoN40 — file containing the substitution rules for the numerical evaluation of the
non-polylogarithmic master integrals for (4, 0) cut.

Data/IIrtoLeft40 — “unshuffling” rules for moving r0, r1, r2, r3, and r̃3 to the left-most
position.

Data/frules40 — definition of function f , eq. (A.4), and its differentiation rule.

masters-results.nb — this is the exemplary Mathematica notebook showing the usage
of the above data files.

Note that in the supplementary material we have chosen to present the ε-expansions of
the canonical/ε-regular master integrals rather than those of LiteRed master integrals.
The reason is that it appears to be beneficial to first substitute in the cross section
(or spectral density) the later via the former and then to substitute the expansions for
canonical/ε-regular integrals. Doing it this way one avoids unnecessary loss of the higher
orders in ε.

One more remark is in place here. In most physical applications the master integrals
calculated in the present paper enter in the sum with their mirrored counterpart, which
corresponds to complex conjugation. Therefore, only the real part of the results presented
here is relevant for such applications (spectral density is one of them).

For expository and reference purposes we present the leading terms of ε-expansion of
the LiteRed master integrals in the appendix.

4 Asymptotics

Now let us describe in some details the calculation of the threshold and high energy asymp-
totics of the master integrals. The polylogarithmic master integrals for the (2, 0), (2, 1) and
(2, 2) cuts were expressed in terms of Goncharov’s polylogarithms of argument β and thus
the calculation of their asymptotic expansions proceeds along the same lines. At threshold
(s = 4 or β = 0) the expansion is particularly simply. All one needs to do is to expand
the integrand in a power series and integrate term-wise. The corresponding results up to
O(β5) can be found in the accompanying files Jthr2*. To obtain the expansion in the high
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energy limit we first rewrite polylogarithms in β in terms of polylogarithms of argument
1− β using recursively the following transformation

G(a1, . . . , ak, β) = G(a1, . . . , ak, 1) +
∫ 1−β

0

dt

t− (1− a1)G(a2, . . . , ak, 1− t) . (4.1)

To expand the resulting polylogarithms of argument 1 − β we again expand under the
integral sign. The high-energy expansions up O(1/s5) can be found in accompanying
files Jhigh2*.

The asymptotic expansions for non-polylogarithmic master integrals for (4, 0) are cal-
culated somewhat differently. First, we use the shuffling relations to rewrite the expressions
for master integrals in terms of iterated integrals with transcendental kernels appearing only
in the last integration. The inner integrals are then expressed via classical polylogarithms.2

As a particular example let us consider the following element of ε-regular basis:

Jcut40
06 (s) = 1

2I ( l2r̃3| s)− I (r3| s) . (4.2)

Using the shuffling relations we move the transcendental weights rk to the left:

Jcut40
06 (s) = −I(r3|s) + 1

2I(l2|s)I(r̃3|s)− 1
2I(r̃3, l2|s) (4.3)

and rewrite the inner polylogarithmic integrals in terms of classical polylogarithms:

Jcut40
06 (s) = −I(r3|s)− 1

2 ln
(

12
s−4

)
I(r̃3|s) + 1

2I
(
r̃3 ln

(
12
s−4

) ∣∣∣s) . (4.4)

Now, we have a one-fold integral representation, whose threshold (at s = 16) asymptotics
can be easily found by Taylor expanding its integrand at s = 16 and performing trivial
integration. To find its high-energy asymptotics it is convenient to use the identity3

∫ s

16
dsf(s) =

∫ ∞
16

dsf(s)−
∫ ∞
s

dsf(s) (4.5)

The first term here is some constant which is difficult to determine by explicit analytical
evaluation of the integral. Therefore, we use the numerical approach to recognize this
constant as a rational combination of (alternating) multiple zeta values using PSLQ algo-
rithm [18]. In the second term we can safely perform Taylor expansion of the integrand
at large s and take the remaining integral term-wise. Note that this approach requires to
recognize exactly one constant for each integral, independently on the chosen expansion
order in 1/s. The asymptotics of other master integrals can be computed along the same
lines and the results can be found in the accompanying files Jthr(4,0) and Jhigh(4,0).

We have checked that the obtained asymptotic expansions are consistent with numer-
ical values of the corresponding integrals in the threshold and the high-energy regions.

2For this purpose we use the HPL package [16, 17].
3Note that this identity is not literally applicable to most of the integrals under consideration because

the first term in eq. (4.5) diverges at large s. In this case we subtract from the integrand several terms of
its high-energy asymptotics.
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5 Conclusion

In this paper we have presented the results for the master integrals entering the three-loop
spectral density of photon self energy in QED. The non-polylogarithmic master integrals
have been considered earlier in our work [7]. Here we have calculated the remaining integrals
which are expressible via Goncharov’s polylogarithms. We used the differential equation
method [19–23] and the possibility to reduce the corresponding differential systems to ε-
form [8, 9]. Given the available algorithms and tools, in particular, the recently published
Mathematica package Libra [10], the reduction to ε-form appears to be very simple. We
have chosen to fix the boundary conditions at the threshold point. We used Libra to
determine which asymptotic coefficients have to be calculated in order to fix the boundary
conditions. A somewhat more involved step was the calculation of required coefficients
using the expansion by regions method [13]. We have managed to calculate all required
coefficients exactly in ε. This fact, given the found transformations to ε form, allows one to
easily obtain even more terms of ε expansion if needed. To verify obtained expressions we
used numerical approach based on sector decomposition method [24–30] as implemented
in Fiesta [31].

This approach can be applied directly for the master integrals with (2, 0) cuts since
they can be easily related to the onshell vertex diagrams. In the case of (2, 1) and (2, 2) cuts
the existing implementations can not be applied directly due to the presence of infrared
divergences related to phase-space integration and necessity to perform the resolution of sin-
gularities also for these integration variables. Fortunately, this difficulty can be avoided by
considering integrals in sufficiently high dimensions,4 where the integrals become infrared-
finite. The original integrals are then obtained with the use of dimensional recurrence
relations [32]. Note, that in the case of (2, 2) cuts there are no ultraviolet divergent sub-
graphs and the sector decomposition is not required at all. In the case of (2, 1) cuts the
corresponding divergence in parametric representation for one-loop subgraph is factorizes
in terms of the external Γ-function factor while parametric integral itself is convergent. So,
in this case sector decomposition is not required also. In addition, to check the results for
master integrals with (2, 0) cuts we have reproduced the 2-loop vertex diagrams calculation
as presented in [15]. Finally, we have presented results for the threshold and high-energy
asymptotics of the considered master integrals, including non-polylogarithmic master in-
tegrals with (4, 0) cuts, and checked their consistency with the obtained exact results.
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A Leading terms of ε-expansion for LiteRed master integrals

We introduce the following weights

l0(s) = 1
s
, l1(s) = 1

sβ
, l2(s) = 1

s− 4 , l4(s) = 1
s− 1 , (A.1)

rk(s) = f(s)
sβk

θ(s− 16) (k = 0, 1, 2, 3), (A.2)

r̃3(s) = 8β(s+ 2)f(s)
(s− 16)(s− 4)2 θ(s− 16) , (A.3)

where

f(s) = 16(s− 16)
s

[K(1− k−)K(k+)−K(k−)K(1− k+)] , (A.4)

k± = 1
2

[
1±

(
1− 8

s

)√
1− 16

s
+ 16

s

√
1− 4

s

]
, (A.5)

and the iterated integrals

I(wn, . . . w1|s) =
∫

s>sn>...>s1>4

n∏
k=1

dskwk(sk) . (A.6)

(2, 0) cuts

jcut20
000011101 = πβ

ε2 +O(1
ε ), (A.7)

jcut20
001111100 =− πβ

2ε2 +O(1
ε ), (A.8)

jcut20
010011101 =−πβ

ε2 +O(1
ε ), (A.9)

jcut20
010110110 =−πβ

ε2 +O(1
ε ), (A.10)

jcut20
020110110 = πβ

2ε2 +O(1
ε ), (A.11)

jcut20
100011110 =−3(πβ)

2ε2 +O(1
ε ), (A.12)

jcut20
011110101 = πβ

2ε2 +O(1
ε ), (A.13)

jcut20
011111100 = πβ

2ε2 +O(1
ε ), (A.14)

jcut20
101011110 = πβ

2ε2 +O(1
ε ), (A.15)

jcut20
201011110 = 2π3I(l1|s)

3s + 2iπ2I(l1,l1|s)
s − 2πI(l1,l1,l1|s)

s +O(ε1), (A.16)
jcut20

110011101 = πβ
ε2 +O(1

ε ), (A.17)
jcut20

110011110 = πβ
2ε2 +O(1

ε ), (A.18)

jcut20
210011110 = π3I(l1|s)

3s + iπ2I(l1,l1|s)
s − πI(l1,l1,l1|s)

s +O(ε1), (A.19)

jcut20
011111101 = iπ(2π3+2iπ2 ln2+21iζ3)I(l1|s)

2s + 2π3I(l0,l1|s)
3s − π3I(l1,l0|s)

2s + π3I(l1,l1|s)
s − π3I(l1,l2|s)

s

+ 2iπ2I(l0,l1,l1|s)
s − iπ2I(l1,l0,l1|s)

s + iπ2I(l1,l1,l2|s)
s − 2iπ2I(l1,l2,l1|s)

s − 2πI(l0,l1,l1,l1|s)
s

+ πI(l1,l0,l1,l1|s)
s − πI(l1,l1,l2,l1|s)

s + 2πI(l1,l2,l1,l1|s)
s +O(ε1), (A.20)

jcut20
021111101 = 1

ε

(
iπ2I(l1|s)β

(s−4)s −
πI(l1,l1|s)β

(s−4)s + π3β
2(s−4)s

)
+O(ε0), (A.21)
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jcut20
111111110 = 1

ε

(
π2β(π+2i ln2)I(l1|s)

(s−4)s + iπ2βI(l1,l0|s)
(s−4)s + iπ2βI(l1,l2|s)

(s−4)s − πβI(l1,l0,l1|s)
(s−4)s − πβI(l1,l2,l1|s)

(s−4)s

)
+O(ε0), (A.22)

jcut20
211111110 = 1

ε

(
iπ2I(l0|s)

2s2 + iπ2I(l2|s)
2s2 − πI(l0,l1|s)

2s2 + iπ2βI(l1,l0|s)
(s−4)s2 + iπ2βI(l1,l2|s)

(s−4)s2 − πI(l2,l1|s)
2s2

− πβI(l1,l0,l1|s)
(s−4)s2 − πβI(l1,l2,l1|s)

(s−4)s2 + π(−βs2−4βs+4iπ ln2s+2π2s−8iπs−16iπ ln2−8π2+16iπ)
4(s−4)s2

+ πI(l1|s)(2s+π2β+2iπβ ln2−4)
(s−4)s2

)
+O(ε0), (A.23)

jcut20a
100011101 =−πβ

ε2 +O(1
ε ), (A.24)

jcut20a
110011101 = πβ

ε2 +O(1
ε ) (A.25)

(2, 1) cuts

jcut21
100100110 = 1

ε

(
2π(s−1)I(l1|s)

s − 1
2π(s+2)β

)
+O(ε0), (A.26)

jcut21
200100110 = 1

ε

(
πβ− π(s−2)I(l1|s)

s

)
+O(ε0), (A.27)

jcut21
101101100 = 1

ε

(
1
2π(s+2)β− 2π(s−1)I(l1|s)

s

)
+O(ε0), (A.28)

jcut21
102101100 = 1

ε

(
π(s−2)I(l1|s)

s −πβ
)

+O(ε0), (A.29)

jcut21
101102100 =πI(l0|s)β+2πI(l2|s)β+π(−1−2iπ+2ln2)β+ πsI(l0,l1|s)

2(s−1)

− π(s2−2s+4)I(l1,l0|s)
2(s−1)s − π(s2−2s+4)I(l1,l2|s)

(s−1)s

+ πI(l1|s)(− ln2s2+iπs2−2s2+2ln2s−2iπs+4s−4ln2+4iπ−2)
(s−1)s +O(ε1), (A.30)

jcut21
110100110 = 1

ε

(
1
2π(s+2)β− 2π(s−1)I(l1|s)

s

)
+O(ε0), (A.31)

jcut21
120100110 =− iπ(−iβs+πs−4π)

s +iπ2I(l0|s)+ π(s−2)I(l1|s)
s −πI(l0, l1|s)+O(ε1), (A.32)

jcut21
110101100 = 1

ε

(
1
2π(s+2)β− 2π(s−1)I(l1|s)

s

)
+O(ε0), (A.33)

jcut21
210101100 = 1

ε

(
π(s−2)I(l1|s)

s −πβ
)

+O(ε0), (A.34)

jcut21
101101110 =−1

2πI(l0|s)β−πI(l2|s)β+π(1+iπ−ln2)β+ π(s−2)I(l1,l0|s)
2s + π(s−2)I(l1,l2|s)

s

+πI(l0, l1, l0|s)+2πI(l0, l1, l2|s)+ π(s−1)I(l4,l0,l1|s)
2s − 3π(s−1)I(l4,l1,l0|s)

2s

− 3π(s−1)I(l4,l1,l2|s)
s + πI(l1|s)(2 ln2s−2iπs+s−4ln2+4iπ)

2s

+ 1
2πI(l0, l1|s)(−1−4iπ+4ln2)+ 3iπ(s−1)I(l4,l1|s)(π+i ln2)

s +O(ε1), (A.35)

jcut21
101102110 =πβ− π(s−2)I(l1|s)

s +O(ε1), (A.36)

jcut21
201101110 = 3iπ(π+i ln2)I(l4,l1|s)

s + πI(l4,l0,l1|s)
2s − 3πI(l4,l1,l0|s)

2s − 3πI(l4,l1,l2|s)
s +O(ε1), (A.37)

jcut21
101111100 = 1

ε

(
πβ− π(s−2)I(l1|s)

s

)
+O(ε0), (A.38)

jcut21
110100111 = 1

ε

(
πβ− π(s−2)I(l1|s)

s

)
+O(ε0), (A.39)

jcut21
120100111 = 2πI(l1,l1,l1|s)

s − iπ2I(l1,l1|s)
s +O(ε1), (A.40)

jcut21
110101110 = π(βs+iπs−4iπ)

s − π(s−2)I(l1|s)
s − 2iπ2I(l1,l1|s)

s + 4πI(l1,l1,l1|s)
s +O(ε1), (A.41)
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jcut21
110102110 =− iπ2(s−4)I(l0|s)

s + π(iπβs2−6iπβs+2s+4iπβ−8)I(l1|s)
(s−4)s + π(s−4)I(l0,l1|s)

s

− 2π(s2−6s+4)βI(l1,l1|s)
(s−4)s + π(s−4)I(l2,l1|s)

s − 2iπ(−iβs+π ln2s−4π ln2−π)
s +O(ε1), (A.42)

jcut21
111101100 =−π

2 I(l0|s)β−πI(l2|s)β+π(1+iπ−ln2)β+ 1
2πI(l0, l1|s)+ π(s−2)I(l1,l0|s)

2s

− 2iπ(2π−isβ)I(l1,l1|s)
s + π(s−2)I(l1,l2|s)

s + 8πI(l1,l1,l1|s)
s + πI(l4,l0,l1|s)

2s − 3πI(l4,l1,l0|s)
2s

− 3πI(l4,l1,l2|s)
s + πI(l1|s)(2iπβs+2ln2s−2iπs+s−4ln2+4iπ)

2s + 3iπI(l4,l1|s)(π+i ln2)
s +O(ε1),

(A.43)

jcut21
111111100 = 2iπ2I(l0,l1,l1|s)

s − iπ2I(l1,l0,l1|s)
s − 2iπ2I(l1,l2,l1|s)

s − 4πI(l0,l1,l1,l1|s)
s − πI(l0,l4,l0,l1|s)

2s

+ 3πI(l0,l4,l1,l0|s)
2s + 3πI(l0,l4,l1,l2|s)

s + 2πI(l1,l0,l1,l1|s)
s − 2πI(l1,l1,l1,l0|s)

s − 4πI(l1,l1,l1,l2|s)
s

+ 4πI(l1,l2,l1,l1|s)
s + 3πI(l0,l4,l1|s)(−iπ+ln2)

s + 4iπI(l1,l1,l1|s)(π+i ln2)
s +O(ε1), (A.44)

jcut21
121111100 = πI(l1|s)

4sε2 +O(1
ε ), (A.45)

jcut21
111111110 = 1

ε2

(
iπ2βI(l1|s)

2(s−4)s −
πβI(l1,l1|s)

(s−4)s

)
+O(1

ε ), (A.46)

jcut21
121111110 = 1

ε2

(
iπ(isβ+2π)
4(s−4)s2 + π(−iπβs−2s+2iπβ+8)I(l1|s)

2(s−4)2s2 + π(s−2)βI(l1,l1|s)
(s−4)2s2

)
+O(1

ε ) (A.47)

(2, 2) cuts

jcut22
101100010 = 1

12π(s2+20s+12)β− π(s−1)(s+2)I(l1|s)
s +2πI(l0, l1|s)+O(ε1), (A.48)

jcut22
201100010 =−1

4π(5s+6)β+ π(s2+4s−6)I(l1|s)
2s −2πI(l0, l1|s)+O(ε1), (A.49)

jcut22
102100010 = 1

ε

(
2π(s−1)I(l1|s)

s − 1
2π(s+2)β

)
+O(ε0), (A.50)

jcut22
101100011 =−1

4π(s−6)β+2πI(l1, l1|s)β− π(s−3)I(l1|s)
s −πI(l0, l1|s)+O(ε1), (A.51)

jcut22
101101110 =−2πI(l1, l1|s)β−πβ+ π(s−2)I(l1|s)

s +πI(l0, l1|s)−πI(l0, l0, l1|s)

+ 2π(s−2)I(l1,l1,l1|s)
s +O(ε1), (A.52)

jcut22
101102110 = 1

ε

(
π(s−2)I(l1|s)

2s − πβ
2

)
+O(ε0), (A.53)

jcut22
201101110 = 4πI(l1,l1,l1|s)

s +O(ε1), (A.54)

jcut22
111100011 =−πβ+ π(s−2)I(l1|s)

s − 4πI(l1,l1,l1|s)
s +O(ε1), (A.55)

jcut22
111111110 = 2πβI(l1,l1|s)

(s−4)sε2 +O(1
ε ), (A.56)

jcut22
121111110 = 1

ε2

(
− 2π(s−2)I(l1,l1|s)β

(s−4)2s2 + πβ
2(s−4)s+ 2πI(l1|s)

(s−4)s2

)
+O(1

ε ), (A.57)

jcut22a
011111100 =

(
−2πI(l1, l1|s)β−πβ+ 2πI(l1|s)

s + π(s−2)I(l0,l1|s)
s + π(s−4)I(l2,l1|s)

s

)
+O(ε1),

(A.58)

jcut22a
011111110 =

(
2πI(l0,l1,l1,l1|s)

s − πI(l1,l1,l0,l1|s)
s − πI(l1,l1,l2,l1|s)

s

)
+O(ε1), (A.59)

jcut22a
021111110 =−πβI(l1,l1|s)

(s−4)sε +O(ε0), (A.60)

jcut22a
111111110 = πβI(l1,l1|s)

(s−4)sε2 +O(1
ε ), (A.61)

jcut22a
211111110 = 1

ε2

(
πI(l1,l1|s)β

(s−4)s2 − πβ
2(s−4)s+ πI(l1|s)

2s2

)
+O(1

ε ) (A.62)
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(4, 0) cuts

jcut40
100001110 = πs(s2+82s−128)f(s)

24(s−16)2 + π(s4−22s3−1152s2+2432s+4096)f ′(s)
288(s−16)

+ 1
288π(s−4)s(s2+40s+64)f ′′(s)+O(ε1), (A.63)

jcut40
200001110 =− 9πf(s)s2

8(s−16)2− 1
96π(s−4)(5s+16)f ′′(s)s

− π(s+2)(3s2−176s+512)f ′(s)
96(s−16) +O(ε1), (A.64)

jcut40
300001110 = π(s2+18s−64)f(s)

8(s−16)2 + π(s+2)(s2−44s+128)f ′(s)
96(s−16)

+ 1
96π(s−4)s(s+4)f ′′(s)+O(ε1), (A.65)

jcut40
100001111 =− 1

96π(s2−26s+64)f ′(s)− 1
96π(s−16)(s−4)sf ′′(s)+O(ε1), (A.66)

jcut40
101011110 =−πI(r2|s)

6s − 1
24πβI(r̃3|s)+ πI(l1,r̃3|s)

12s − π(5s−32)f(s)
4(s−16)2 + π(11s−32)f ′(s)

12(s−16)

− 1
24π(s−4)sf ′′(s)+O(ε1), (A.67)

jcut40
102011110 =− 1

48πβI(r̃3|s)+ π(5s+64)f(s)
8(s−16)2 + π(3s2−122s+320)f ′(s)

48(s−16)

+ 1
16π(s−4)sf ′′(s)+O(ε1), (A.68)

jcut40
101101110 =− 1

24πI(r0|s)+ π(s−2)I(r2|s)
12s + 1

24πβI(r̃3|s)− π(s−2)I(l1,r̃3|s)
24s − π(s2−2s+64)f(s)

24(s−16)2

+ π(11s−32)f ′(s)
12(s−16) − 1

24π(s−4)sf ′′(s)+O(ε1), (A.69)

jcut40
201101110 = πI(r2|s)

6s − πI(l1,r̃3|s)
12s +O(ε1), (A.70)

jcut40
101102110 =− 1

24πβI(r̃3|s)− π(5s−32)f(s)
4(s−16)2 + π(11s−32)f ′(s)

12(s−16) − 1
24π(s−4)sf ′′(s)+O(ε1), (A.71)

jcut40
110001111 =−πI(r2|s)

12s + 1
48πβI(r̃3|s)+ πI(l1,r̃3|s)

24s − π(s+8)f(s)
2(s−16)2 − π(s2−42s+128)f ′(s)

24(s−16)

− 1
24π(s−4)sf ′′(s)+O(ε1), (A.72)

jcut40
120001111 = π(3s−8)βI(r̃3|s)

48(s−4)s + π(5s−8)f(s)
6(s−16)(s−4)s−

1
24πf

′(s)+O(ε1), (A.73)

jcut40
111111110 =−πβI(l1,r0|s)

24(s−4)s + πβI(l1,r2|s)
6(s−4)s −

πβI(l1,l1,r̃3|s)
12(s−4)s +O(ε1), (A.74)

jcut40
121111110 =

(
− πI(r0|s)

24(s−4)s2 + πβI(r1|s)
8(s−4)2s + πI(r2|s)

6(s−4)s2− π(s−16)βI(r̃3|s)
96(s−4)s2 − πβI(l0,r̃3|s)

8(s−4)2s + π(s−2)βI(l1,r0|s)
24(s−4)2s2

− π(s−2)βI(l1,r2|s)
6(s−4)2s2 − πI(l1,r̃3|s)

12(s−4)s2 + π(s−2)βI(l1,l1,r̃3|s)
12(s−4)2s2

)
+O(ε1) (A.75)

– 16 –



J
H
E
P
0
4
(
2
0
2
1
)
1
7
7

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii, Quantum Electrodynamics: Volume 4,
Butterworth-Heinemann (1982).

[2] G. Källén and A. Sabry, Fourth order vacuum polarization, Kong. Dan. Vid. Sel. Mat. Fys.
Med. 29 (1955) 1 [INSPIRE].

[3] P.A. Baikov and D.J. Broadhurst, Three loop QED vacuum polarization and the four loop
muon anomalous magnetic moment, in 4th International Workshop on Software Engineering
and Artificial Intelligence for High-energy and Nuclear Physics, (1995) [hep-ph/9504398]
[INSPIRE].

[4] T. Kinoshita and M. Nio, Sixth order vacuum polarization contribution to the Lamb shift of
the muonic hydrogen, Phys. Rev. Lett. 82 (1999) 3240 [Erratum ibid. 103 (2009) 079901]
[hep-ph/9812442] [INSPIRE].

[5] T. Kinoshita and M. Nio, Accuracy of calculations involving α3 vacuum polarization
diagrams: Muonic hydrogen Lamb shift and muon g − 2, Phys. Rev. D 60 (1999) 053008
[hep-ph/9812443] [INSPIRE].

[6] T. Kinoshita and W.B. Lindquist, Parametric Formula for the Sixth Order Vacuum
Polarization Contribution in Quantum Electrodynamics, Phys. Rev. D 27 (1983) 853
[INSPIRE].

[7] R.N. Lee and A.I. Onishchenko, ε-regular basis for non-polylogarithmic multiloop integrals
and total cross section of the process e+e− → 2(QQ̄), JHEP 12 (2019) 084
[arXiv:1909.07710] [INSPIRE].

[8] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[9] R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108
[arXiv:1411.0911] [INSPIRE].

[10] R.N. Lee, Libra: a package for transformation of differential systems for multiloop integrals,
arXiv:2012.00279 [INSPIRE].

[11] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf.
Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[12] R.N. Lee LiteRed2: a major update of LiteRed package for IBP reduction of multiloop
integrals, to be published.

[13] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,
Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

[14] H. Cheng and T.T. Wu, Expanding protons: scattering at high energies, MIT, Cambridge,
MA (1987) [INSPIRE].

[15] R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form-factors at the
two loop level, Nucl. Phys. B 661 (2003) 289 [Erratum ibid. 702 (2004) 359]
[hep-ph/0301170] [INSPIRE].

– 17 –

https://creativecommons.org/licenses/by/4.0/
http://inspirehep.net/record/43924
https://arxiv.org/abs/hep-ph/9504398
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9504398
https://doi.org/10.1103/PhysRevLett.82.3240
https://arxiv.org/abs/hep-ph/9812442
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C82%2C3240%22
https://doi.org/10.1103/PhysRevD.60.053008
https://arxiv.org/abs/hep-ph/9812443
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD60%2C053008%22
https://doi.org/10.1103/PhysRevD.27.853
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD27%2C853%22
https://doi.org/10.1007/JHEP12(2019)084
https://arxiv.org/abs/1909.07710
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.07710
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.1806
https://doi.org/10.1007/JHEP04(2015)108
https://arxiv.org/abs/1411.0911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.0911
https://arxiv.org/abs/2012.00279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.00279
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1145
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9711391
http://inspirehep.net/record/256205
https://doi.org/10.1016/j.nuclphysb.2004.08.009
https://arxiv.org/abs/hep-ph/0301170
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0301170


J
H
E
P
0
4
(
2
0
2
1
)
1
7
7

[16] D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput.
Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

[17] D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012)
846 [hep-ph/0703052] [INSPIRE].

[18] H. Ferguson and D. Bailey, A polynomial time, numerically stable integer relation algorithm,
RNR-91-032 (1992)
[https://www.nas.nasa.gov/assets/pdf/techreports/1991/rnr-91-032.pdf ].

[19] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams
calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[20] A.V. Kotikov, New method of massive Feynman diagrams calculation, Mod. Phys. Lett. A 6
(1991) 677 [INSPIRE].

[21] A.V. Kotikov, Differential equations method: The Calculation of vertex type Feynman
diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].

[22] A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams,
Phys. Lett. B 267 (1991) 123 [Erratum ibid. 295 (1992) 409] [INSPIRE].

[23] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997)
1435 [hep-th/9711188] [INSPIRE].

[24] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent
multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

[25] T. Binoth and G. Heinrich, Numerical evaluation of multiloop integrals by sector
decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [INSPIRE].

[26] T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector
decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].

[27] G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177]
[INSPIRE].

[28] C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals, Comput.
Phys. Commun. 178 (2008) 596 [arXiv:0709.4092] [INSPIRE].

[29] C. Bogner and S. Weinzierl, Blowing up Feynman integrals, Nucl. Phys. B Proc. Suppl. 183
(2008) 256 [arXiv:0806.4307] [INSPIRE].

[30] T. Kaneko and T. Ueda, A Geometric method of sector decomposition, Comput. Phys.
Commun. 181 (2010) 1352 [arXiv:0908.2897] [INSPIRE].

[31] A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support,
Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

[32] O.V. Tarasov, Connection between Feynman integrals having different values of the
space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].

– 18 –

https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.cpc.2005.10.008
https://arxiv.org/abs/hep-ph/0507152
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0507152
https://doi.org/10.1016/j.cpc.2011.11.015
https://doi.org/10.1016/j.cpc.2011.11.015
https://arxiv.org/abs/hep-ph/0703052
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0703052
https://www.nas.nasa.gov/assets/pdf/techreports/1991/rnr-91-032.pdf
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB254%2C158%22
https://doi.org/10.1142/S0217732391000695
https://doi.org/10.1142/S0217732391000695
https://inspirehep.net/search?p=find+J%20%22Mod.Phys.Lett.%2CA6%2C677%22
https://doi.org/10.1016/0370-2693(91)90834-D
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB259%2C314%22
https://doi.org/10.1016/0370-2693(91)90536-Y
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB267%2C123%22
https://arxiv.org/abs/hep-th/9711188
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711188
https://doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004013
https://doi.org/10.1016/j.nuclphysb.2003.12.023
https://arxiv.org/abs/hep-ph/0305234
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0305234
https://doi.org/10.1016/j.nuclphysb.2004.06.005
https://arxiv.org/abs/hep-ph/0402265
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0402265
https://doi.org/10.1142/S0217751X08040263
https://arxiv.org/abs/0803.4177
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.4177
https://doi.org/10.1016/j.cpc.2007.11.012
https://doi.org/10.1016/j.cpc.2007.11.012
https://arxiv.org/abs/0709.4092
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.4092
https://doi.org/10.1016/j.nuclphysBPS.2008.09.113
https://doi.org/10.1016/j.nuclphysBPS.2008.09.113
https://arxiv.org/abs/0806.4307
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.4307
https://doi.org/10.1016/j.cpc.2010.04.001
https://doi.org/10.1016/j.cpc.2010.04.001
https://arxiv.org/abs/0908.2897
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0908.2897
https://doi.org/10.1016/j.cpc.2016.03.013
https://arxiv.org/abs/1511.03614
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.03614
https://doi.org/10.1103/PhysRevD.54.6479
https://arxiv.org/abs/hep-th/9606018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9606018

	Introduction
	Prototypes, LiteRed bases and boundary conditions
	Results
	Asymptotics
	Conclusion
	Leading terms of ep-expansion for LiteRed master integrals

