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1 Introduction

Recently, [1] identified a new celestial current corresponding to Low’s subleading soft theo-
rem in electromagnetism. There, the current could be expressed in terms of the boundary
values of the gauge potential at null infinity, but at one order subleading in a large radius
expansion compared to the current [2] corresponding to the leading soft theorem. In this
note, we examine the analogous computations for gravity in harmonic gauge. We find that
the subleading soft graviton mode that appears in the superrotation charge [3], the 2D
stress tensor for 4D gravity [4], and the spin memory observable [5] can also be neatly
recast in terms of a difference between boundary values of the metric. The relevant metric
component is h(0)

zz , which is subleading to the radiative data where the superrotation Gold-
stone mode appears, h(−1)

zz . We hope that rewriting the generator of inhomogeneous shifts
in the superrotation Goldstone mode in terms of a boundary difference of h(0)

zz will help to
bridge the gap between our understanding of the leading supertranslation example [6] and
recent studies of the ∆ = 2 Goldstone mode in [7].

2 Setup

We consider linearized gravity in four dimensions. In this section we set up Einstein’s
equations in harmonic gauge, impose boundary conditions on the metric perturbations,
and identify the residual symmetries allowed by these boundary conditions.
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2.1 Linearized gravity in harmonic gauge

We consider perturbations gµν = ηµν +hµν − 1
2ηµνη

αβhαβ around a flat background metric

ds2 = ηµνdx
µdxν = −du2 − 2dudr + 2r2γzz̄dzdz̄, (2.1)

and impose the harmonic gauge condition

∇µhµν = 0, (2.2)

where hµν is the trace-reversed perturbation. In this gauge, the linearized Einstein equa-
tions are

�hµν = −16πGTµν . (2.3)

Harmonic gauge leaves unfixed a set of residual diffeomorphisms ξ that obey �ξ = 0.
Coordinate expansions of the Einstein equations, harmonic gauge condition, and residual
diffeomorphisms are in appendix A.

2.2 Boundary conditions

We choose falloffs of the matter stress tensor Tµν consistent with a massless scalar field
(see also [8, 9]). This corresponds to

Guu ∼ O(r−2), Gur ∼ O(r−4), Grr ∼ O(r−4),
GuA ∼ O(r−2), GrA ∼ O(r−3), GAB ∼ O(r−1).

(2.4)

These asymptotics for the stress tensor can be consistently captured by a metric with the
following boundary behavior

huu ∼ O(r−1 log r), hur ∼ O(r−1 log r), hrr ∼ O(r−1 log r),
huA ∼ O(log r), hrA ∼ O(log r), hAB ∼ O(r log r).

(2.5)

Note that in harmonic gauge, logarithmic r-dependence is required for a consistent solution
of the linearized Einstein equations with matter in four dimensions.

We write a large-r mode expansion and solve the Einstein equations and the harmonic
gauge condition order-by-order in r. These expansions are written out in appendix A.
Throughout, we denote the term in the metric expansion with coefficient 1

rn by the super-
script (n) and the term in the expansion with coefficient log r

rn by a tilde with superscript
(n). We will use the same notation for the modes of other fields in what follows.

The residual diffeomorphisms for harmonic gauge are parameterized by the free data

{ξu(1)(u, z, z̄), ξr(1)(u, z, z̄), ξA(2)(u, z, z̄)}. (2.6)

These are the modes of ξµ which can have arbitrary u-dependence, and solutions to 2ξ = 0
can be found by recursively solving (A.8)–(A.9) starting from these modes. As detailed in
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appendix B, we can use these arbitrary functions of (u, z, z̄) in (2.6) to perform residual
gauge fixing and arrive at the stronger falloffs

huu =
∞∑
n=2

h
(n)
uu

rn
+
∞∑
n=1

h̃
(n)
uu log r
rn

, hur =
∞∑
n=2

h
(n)
ur

rn
+
∞∑
n=2

h̃
(n)
ur log r
rn

,

hrr =
∞∑
n=3

h
(n)
rr

rn
+
∞∑
n=3

h̃
(n)
rr log r
rn

, huA =
∞∑
n=1

h
(n)
uA

rn
+
∞∑
n=1

h̃
(n)
uA log r
rn

,

hrA =
∞∑
n=1

h
(n)
rA

rn
+
∞∑
n=2

h̃
(n)
rA log r
rn

, hAB =
∞∑

n=−1

h
(n)
AB

rn
+
∞∑
n=0

h̃
(n)
AB log r
rn

.

(2.7)

2.3 Residual symmetries

We now consider the full set of residual diffeomorphisms that preserve the gauge-fixed
falloffs (2.7). Since the arbitrary u dependence of (2.6) has been removed by our residual
gauge choice in appendix B, we expect ξ to be parameterized by functions of (z, z̄). In
appendix C we show that the residual diffeomorphisms have the following large-r behavior

ξu = u

2D
AYA + f +O(r−2 log r)

ξr = − r

2D
AYA −

u

2D
AYA + 1

2D
2f +Hr−1

+
(
u

4D
2[D2 + 2]f − E

)
r−1 log r +O(r−2 log r)

ξB =Y B −DB
(
u

2D
AYA + f

)
r−1 +

(
u

2D
B[D2 + 2]f + V B

)
r−2 +O(r−3 log r).

(2.8)

Here the free data are

{f(z, z̄), Y z(z), H(z, z̄), E(z, z̄), V A(z, z̄), . . .} (2.9)

with Y z̄(z̄) = Y z and the ellipsis denotes integration constants that appear at each sub-
leading order when recursively solving (A.8)–(A.9).1

The leading terms parameterized by f(z, z̄) and Y z(z) correspond to supertranslations
and superrotations, respectively. These are the only modes of ξµ that contribute to a
non-zero charge at null infinity [10], with linear terms given by [11]

Q̂
I+
−
ξ = − 1

4πG

∫
I+
−

d2z
√
γ

[(
f + 1

2uDAY
A
)
γzz̄C

(1)
uz̄zr −

1
2Y

zC(3)
zrru −

1
2Y

z̄C
(3)
z̄rru

]
, (2.10)

where the leading modes of the Weyl tensor components are

C
(1)
uz̄zr = lim

r→∞
rCuz̄zr C(3)

zrru = lim
r→∞

r3Czrru. (2.11)

These correspond to the Weyl scalars Ψ0
2 and Ψ0

1, respectively, in the Newman-Penrose
formalism [12], up to a rescaling due to tetrad normalization for our celestial sphere metric.

1Since the residual diffeomorphisms are parameterized by u-independent functions, any further gauge
fixing would only be able to fix certain metric components at one value of u, and will not further modify
the large-r falloffs in (2.7).
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For reference, (2.10) is the linear part of (3.2) of [11] (see (4.4) of [3] and (2.4) of [5] for
expressions for the Weyl tensor components in terms of the mass and angular momentum
aspects appearing in [11]).

The above residual diffeomorphism (2.8) produces the following inhomogeneous shifts
in the leading modes of the chiral part of the sphere metric

δh(−1)
zz = −uD3

zY
z − 2D2

zf, δh(0)
zz = u[D2 − 2]D2

zf + 2DzVz. (2.12)

Note that the u-independent early and late time behavior of h(0)
zz both shift under the

residual diffeomorphism parameterized by VA(z, z̄). As in the electromagnetic case [1],
the subleading soft theorem will correspond to a difference in the boundary values of this
subleading-in-r mode h(0)

zz of the sphere metric.

3 Conservation law

In what follows, we will work in units where 8πG = 1. Using the Einstein equations and
the harmonic gauge condition, we find that the Weyl tensor modes in (2.11) evaluate to

γzz̄C
(1)
uz̄zr = 1

2 h̃
(1)
uu −

1
2D

z̄Dz̄h
(−1)
z̄z̄ + 1

6γ
zz̄T

(1)
zz̄ (3.1)

and
∂uC

(3)
zrru = −T (2)

uz −
1
2D

z̄T
(1)
zz̄ −

1
2Dzh̃

(1)
uu + 1

2DzD
z̄Dz̄h

(−1)
z̄z̄ . (3.2)

To investigate the superrotation charge in (2.10), we consider the contribution at a fixed
point on the celestial sphere2∫

du∂u(C(3)
zrru + uDz̄C

(1)
uz̄zr) = −

∫
duT (2)

uz + 1
2

∫
duDzu∂uh̃

(1)
uu

− 1
2

∫
duDzD

z̄Dz̄u∂uh
(−1)
z̄z̄ − 1

2

∫
duDz̄T

(1)
zz̄

+ 1
6

∫
duDz̄∂u(uT (1)

zz̄ ).

(3.3)

Stress tensor conservation gives

∂uT
(4)
rr = −γABT (1)

AB, (3.4)

and since Trr vanishes at the boundaries of I+, we find that the u-integral of the trace of
T

(1)
AB vanishes. Using T (2)

uu = ∂uh̃
(1)
uu and evaluating the boundary terms gives

(
C(3)
zrru + uDz̄C

(1)
uz̄zr

)∣∣∣I+
+

I+
−

=−
∫
du

(
T (2)
uz −

1
2uDzT

(1)
uu

)
− 1

2

∫
duDzD

z̄Dz̄u∂uh
(−1)
z̄z̄ .

(3.5)
The Ward identity for the linearized superrotation charge (2.10), which contains a con-
volution of the left-hand side of (3.5) with a CKV Y z, was demonstrated in [3] using the

2If we were not restricted to CKVs this would amount to setting Y z → δ2(z − w), Y z̄ → 0, f → 0.
Equating this to (2.10) requires the boundary condition (3.7).
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subleading soft theorem. When this CKV is specified to the particular complexified form
Y z = 1

w−z , Y
z̄ = 0, the contribution from the second term on the right-hand side of (3.5)

is proportional to the 2D stress tensor for 4D gravity [4]. In S-matrix elements, this term
inserts a subleading soft graviton. This subleading soft graviton mode also appeared in [5]
as the spin memory observable.

So far, we have only performed computations near I+ but an analogous story holds
near I−, and the additional input of a matching condition and falloffs at the boundaries
of null infinity is required to make statements about symmetries of the S-matrix. The
relevant matching conditions for the Weyl tensor components are given in (2.12)-(2.13)
of [5]

C
(1)
uz̄zr

∣∣∣
I+
−

= C
(1)
vz̄zr

∣∣∣
I−+
, ∂[zC

(3)
z̄]rru

∣∣∣
I+
−

= ∂[zC
(3)
z̄]rrv

∣∣∣
I−+
. (3.6)

The analyses [3, 5] looked in particular at spacetimes that start and end in vacuum with
massless matter that enters and exits through past and future null infinity. This amounts
to setting

(
C(3)
zrru + uDz̄C

(1)
uz̄zr

)∣∣∣
I+

+
=
(
C(3)
zrrv + vDz̄C

(1)
vz̄zr

)∣∣∣
I−−

= 0. (3.7)

The matching of the Weyl scalars was used in [3] to recast (3.5) and its past null infinity
counterpart as a conservation law. In the following section we recast the charge in terms of
a difference in the boundary values of h(0)

zz . Then, in section 3.2, we recast the spin memory
observable in the same terms.

3.1 Expression as a boundary difference

We now rewrite the subleading soft graviton mode in terms of a change in the boundary
values of asymptotic data using the Einstein equations in harmonic gauge, which give

− 2T (1)
z̄z̄ = [�hz̄z̄](1) = 2∂uh(0)

z̄z̄ + [D2 − 2]h(−1)
z̄z̄ . (3.8)

Recall from the previous subsection that stress tensor conservation implies that the u-
integral of DzT

(1)
zz̄ vanishes. We note that stress tensor conservation also gives

∂uT
(3)
rz̄ = DBT

(1)
Bz̄ . (3.9)

Then, by taking T (3)
rz̄ to vanish at the boundaries of I+, the u-integral of Dz̄T

(1)
z̄z̄ vanishes

as well. Using also that Dz̄T
(1)
z̄z̄ falls off faster than u−1, we have∫

du u∂uD
z̄[D2 − 2]h(−1)

z̄z̄ = −2
∫
du u∂2

uD
z̄h

(0)
z̄z̄ . (3.10)

A straightforward computation gives

[D2 + 1]DzD
z̄Dz̄h

(−1)
z̄z̄ = DzD

z̄Dz̄[D2 − 2]h(−1)
z̄z̄ . (3.11)
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With this we can rewrite(
C(3)
zrru + uDz̄C

(1)
uz̄zr

)∣∣∣I+
+

I+
−

=−
∫
du

(
T (2)
uz −

1
2uDzT

(1)
uu

)
− [D2 + 1]−1DzD

z̄Dz̄(1− u∂u)h(0)
z̄z̄

∣∣∣I+
+

I+
−

.

(3.12)

Note the appearance of the operator (1− u∂u), as in electromagnetism [1]. This subtracts
off the linear u-growth in h(0)

z̄z̄ . At early and late times, the matter stress tensor vanishes
and using (2.12) we can describe the asymptotic behavior of the metric perturbations near
I+
± as

h
(−1)
z̄z̄,± = −uD3

z̄ Ŷ
z̄(z̄)− 2D2

z̄ f̂
±(z, z̄), h

(0)
z̄z̄,± = u[D2− 2]D2

z̄ f̂
±(z, z̄) + 2Dz̄V̂

±
z̄ (z, z̄). (3.13)

The notation is intended to reflect that used for the residual vector field V A and super-
translation Goldstone mode f(z, z̄) of [13] (denoted C(z, z̄) there, see also [6]), with the
carat emphasizing the distinction that such a diffeomorphism would shift both the I+

+ and
I+
− values of the respective quantities but would not affect the difference between their

boundary values. We have also allowed for a superrotation parameterized by Ŷ z̄(z̄), which
is in the kernel of the differential operators acting on h

(−1)
z̄z̄ in (3.5) and so will not affect

the conclusions that follow regarding the memory effect.3 We thus have

DzD
z̄Dz̄(1− u∂u)h(0)

z̄z̄

∣∣∣I+
+

I+
−

= [D2 + 1]DzDzV̂
z
∣∣∣I+

+

I+
−

, (3.14)

which finally gives

(
C(3)
zrru + uDz̄C

(1)
uz̄zr

)∣∣∣I+
+

I+
−

=−
∫
du

(
T (2)
uz −

1
2uDzT

(2)
uu

)
−DzDzV̂

z
∣∣∣I+

+

I+
−

. (3.15)

We have rewritten the soft part of the superrotation charge as a difference in the boundary
values of in V̂A. As in the discussion following (3.5), one can also use the matching (3.6)
and boundary conditions (3.7) to recast the difference in V̂A in terms of stress tensor fluxes.
The soft part of the charge, given in (5.13) of [3], is

Q+
S (Y z, Y z̄ = 0) = 1

2

∫
I+

√
γd2zduY zDzD

z̄Dz̄u∂uh
(−1)
z̄z̄ =

∫ √
γd2zY zDzDzV̂

z
∣∣∣I+

+

I+
−

,

(3.16)

where we have complexified the superrotations. In particular we find

TCFT
ww = 2iQ+

S

(
Y z = 1

w − z
, Y z̄ = 0

)
(3.17)

as mentioned above. This soft charge generates an inhomogeneous shift in the News tensor
(∂uh(−1)

zz in our notation)

[Q+
S , h

(−1)
zz ] = iuD3

zY
z. (3.18)

3As long as we consider asymptotically flat solutions without snapping cosmic strings [14], there will be
no transition between differently superrotated vacua (hence we drop a ± superscript for Ŷ z̄).
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Acting on the vacuum, the soft charge inserts a soft graviton rather than leaving it invariant,
providing a notion of Goldstone bosons within the context of asymptotic symmetries and
soft theorems (see [15]). For the supertranslation case, [6] introduced a symplectic pairing
between the Goldstone mode and a conjugate soft mode, which [7] cast in the conformal
basis [16]. [7] also proposed the superrotation analog of the Goldstone mode, whose shift
is parameterized by Y A. From (3.18) we see that ∆V̂A is related to the conjugate of the
Goldstone mode.

In the supertranslation case, the symplectically paired modes are C(z, z̄) and N(z, z̄)
of [6], where C(z, z̄) parameterizes the supertranslation Goldstone mode and N(z, z̄) pa-
rameterizes the difference in boundary values. Both are at radiative order. Here, in the
superrotation case, the difference in boundary values of h(0)

zz and constant-in-u Goldstone
mode ∂uh(−1)

zz are separated by an order of r. We leave the detailed study of the symplectic
pairing to future work.4

3.2 Spin memory

In [5], the spin memory observable was defined5 to be an accumulated time delay ∆+u

between two counter-propagating light beams for a BMS detector arranged in a ring with
circumference 2πL

∆+u = 1
2πL

∫
du

∮
C
(Dzh(−1)

zz dz +Dz̄h
(−1)
z̄z̄ dz̄). (3.19)

By Stokes’s theorem, this is proportional to a surface integral of the curl Im[D2
zh

zz(−1)]
over the region bounded by C. This curl has the nice feature of projecting out the linearly
growing piece in the radiative metric (3.13). The expression for ∆+u was shown to be
equal to

∆+u = − 1
π2L

Im
∫
DC
d2wγww̄

∫
d2z∂z̄G(z;w)

[
C(3)
zrru

∣∣∣I+
+

I+
−

+
∫
I+
duT (2)

uz

]
(3.20)

where we have introduced the Green’s function [5]

G(z;w) = log sin2 Θ
2 , sin2 Θ(z, w)

2 ≡ |z − w|2

(1 + ww̄)(1 + zz̄) (3.21)

4Note that here the ∆V̂A that appears in our recasting of the soft graviton mode has a priori no
restrictions, while the superrotated vacua are parameterized only by holomorphic Y z(z). It suggests that a
thorough analysis of the appropriate symplectic pairing will connect to an ongoing question in the literature
of whether superrotations should be enhanced to Diff(S2) [17] (see also [18] for an alternate proposal). This
involves a modification of the boundary falloffs but allows one to invert the soft theorem from the Ward
identity. On the other hand there may be a more natural way of projecting onto the part of ∆V̂A that
provides the natural symplectic partner to the superrotation Goldstone mode, which we hope to address in
future work.

5The observable (3.19) was designed to cleanly extract part of the radiative data insensitive to super-
translation vacuum transitions. An additional center of mass (CM) memory effect has been proposed by [19]
which requires the subtraction of a certain null matter flux. While this makes any measurement of the CM
memory somewhat indirect, we point out that the manipulations of the previous section can still be applied.
In particular (3.10) and (3.15) indicate that ∆V̂A should capture the CM memory; however, one is tasked
with projecting out the first term in (3.13), which requires a knowledge of the supertranslation vacuum
transition.
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which obeys

∂z∂z̄G(z;w) = 2πδ2(z − w)− 1
2γzz̄. (3.22)

Now from (3.15), we have

∫
I+
du 2D[z̄T

(2)
z]u = −2D[z̄C

(3)
z]rru −Dz̄DzDzV̂

z +DzDz̄Dz̄V̂
z̄
∣∣∣I+

+

I+
−

, (3.23)

where the curl projects out the
∫
uDzT

(2)
uu in (3.15). We thus have

∆+u = 1
π2L

Im
∫
DC
d2wγww̄

∫
d2z∂z∂z̄G(z;w)DzV̂

z
∣∣∣I+

+

I+
−

= 2
πL

Im
∫
DC
d2wγww̄

[
DwV̂

w − 1
4π

∫
d2zγzz̄DzV̂

z
] ∣∣∣I+

+

I+
−

= 1
iπL

∫
DC
d2w[DwV̂w̄ −Dw̄V̂w]

∣∣∣I+
+

I+
−

(3.24)

using the fact that the integral of a curl over the full z-sphere vanishes to kill the contri-
bution from the second term in (3.22). Using

d2w = dx ∧ dy = i

2dw ∧ dw̄, (3.25)

Eq. (3.24) is beautifully recast as

∆+u = 1
2πL

∮
C
V̂Adx

A
∣∣∣I+

+

I+
−

. (3.26)

We learn that spin memory measures the change between early and late time values of the
contour integral of the subleading soft mode V̂ A that we have identified in this note.6
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A Asymptotic expansions

In components, the linearized Einstein equations �hµν = −16πGTµν have right-hand side

�huu =
(
∂2
r − 2∂r∂u −

2
r

(∂u − ∂r) + 1
r2D

2
)
huu

�hur =
(
∂2
r − 2∂r∂u −

2
r

(∂u − ∂r) + 1
r2D

2
)
hur + 2

r2 (huu − hur)−
2
r3D

AhuA

�hrr =
(
∂2
r − 2∂r∂u −

2
r

(∂u − ∂r) + 1
r2D

2
)
hrr −

4
r3D

AhAr

+ 4
r2 (hur − hrr) + 2

r4 γ
CBhCB

�huA =
(
∂2
r − 2∂r∂u + 1

r2D
2
)
huA −

1
r2huA −

2
r
∂A(huu − hur)

�hrA =
(
∂2
r − 2∂r∂u + 1

r2D
2
)
hrA −

5
r2hrA + 4

r2huA −
2
r
∂A(hur − hrr)−

2
r3D

ChCA

�hAB =
(
∂2
r − 2∂r∂u + 2

r
(∂u − ∂r) + 1

r2D
2
)
hAB

− 2
r
DA(huB − hrB)− 2

r
DB(huA − hrA) + 2γAB(huu − 2hur + hrr). (A.1)

We expand the components of the harmonic gauge condition ∇µhµν = 0 as

∇µhµu = −∂uhur − ∂r(huu − hur)−
2
r

(huu − hur) + 1
r2D

AhuA

∇µhµr = −∂uhrr − ∂r(hur − hrr)−
2
r

(hur − hrr) + 1
r2D

AhrA −
1
r3 γ

ABhAB

∇µhµA = −∂uhrA − ∂r(huA − hrA)− 2
r

(huA − hrA) + 1
r2D

BhAB.

(A.2)

The residual diffeomorphisms ξµ that preserve the harmonic gauge condition obey �ξµ = 0,
which is (

∂2
r − 2∂r∂u −

2
r

(∂u − ∂r) + 1
r2D

2
)
ξu = 0(

∂2
r − 2∂r∂u −

2
r

(∂u − ∂r) + 1
r2D

2
)
ξr −

2
r3D

AξA + 2
r2 (ξu − ξr) = 0(

∂2
r − 2∂r∂u + 1

r2D
2
)
ξA −

1
r2 ξA −

2
r
∂A(ξu − ξr) = 0.

(A.3)

As noted above, logarithmic-in-r modes are required for a consistent solution of the lin-
earized Einstein equations with matter in four dimensions. In terms of the modes that
appear in (2.7), the asymptotic expansion of the Einstein equations is

[�huu](n) = 2(n− 2)∂uh(n−1)
uu + [D2 + (n− 2)(n− 3)]h(n−2)

uu

+ (5− 2n)h̃(n−2)
uu − 2∂uh̃(n−1)

uu

[�hur](n) = 2(n− 2)∂uh(n−1)
ur + [D2 + (n− 2)(n− 3)− 2]h(n−2)

ur

+ 2h(n−2)
uu − 2DAh

(n−3)
uA + (5− 2n)h̃(n−2)

ur − 2∂uh̃(n−1)
ur
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[�hrr](n) = 2(n− 2)∂uh(n−1)
rr + [D2 + (n− 2)(n− 3)]h(n−2)

rr + 4
(
h(n−2)
ur − h(n−2)

rr

)
− 4DAh

(n−3)
rA + 2γABh(n−4)

AB + (5− 2n)h̃(n−2)
rr − 2∂uh̃(n−1)

rr

[�huA](n−1) = 2(n− 2)∂uh(n−2)
uA + [D2 + (n− 3)(n− 2)− 1]h(n−3)

uA

− 2∂A
(
h(n−2)
uu − h(n−2)

ur

)
+ (5− 2n)h̃(n−3)

uA − 2∂uh̃(n−2)
uA

[�hrA](n−1) = 2(n− 2)∂uh(n−2)
rA + [D2 + (n− 3)(n− 2)− 1]h(n−3)

rA

− 2∂A
(
h(n−2)
ur − h(n−2)

rr

)
− 2DBh

(n−4)
AB + 4(h(n−3)

uA − h(n−3)
rA )

+ (5− 2n)h̃(n−3)
rA − 2∂uh̃(n−2)

rA

[�hAB](n−2) = 2(n− 2)∂uh(n−3)
AB + [D2 + (n− 2)(n− 3)− 2]h(n−4)

AB

− 2
(
DAh

(n−3)
uB −DAh

(n−3)
rB +DBh

(n−3)
uA −DBh

(n−3)
rA

)
+ 2γAB

(
h(n−2)
uu − 2h(n−2)

ur + h(n−2)
rr

)
+ (5− 2n)h̃(n−4)

AB − 2∂uh̃(n−3)
AB . (A.4)

The expansion for the Einstein equations with log coefficients is

[�h̃uu](n) = 2(n− 2)∂uh̃(n−1)
uu + [D2 + (n− 2)(n− 3)]h̃(n−2)

uu

[�h̃ur](n) = 2(n− 2)∂uh̃(n−1)
ur + [D2 + (n− 2)(n− 3)− 2]h̃(n−2)

ur

+ 2h̃(n−2)
uu − 2DAh̃

(n−3)
uA

[�h̃rr](n) = 2(n− 2)∂uh̃(n−1)
rr + [D2 + (n− 2)(n− 3)]h̃(n−2)

rr

+ 4
(
h̃(n−2)
ur − h̃(n−2)

rr

)
− 4DAh̃

(n−3)
rA + 2γABh̃(n−4)

AB

[�h̃uA](n−1) = 2(n− 2)∂uh̃(n−2)
uA + [D2 + (n− 3)(n− 2)− 1]h̃(n−3)

uA

− 2∂A
(
h̃(n−2)
uu − h̃(n−2)

ur

)
[�h̃rA](n−1) = 2(n− 2)∂uh̃(n−2)

rA +
[
D2 + (n− 3)(n− 2)− 1

]
h̃

(n−3)
rA

− 2∂A
(
h̃(n−2)
ur − h̃(n−2)

rr

)
− 2DBh̃

(n−4)
AB + 4(h̃(n−3)

uA − h̃(n−3)
rA )

[�h̃AB](n−2) = 2(n− 2)∂uh̃(n−3)
AB + [D2 + (n− 2)(n− 3)− 2)]h̃(n−4)

AB

− 2
(
DAh̃

(n−3)
uB −DAh̃

(n−3)
rB +DBh̃

(n−3)
uA −DBh̃

(n−3)
rA

)
+ 2γAB

(
h̃(n−2)
uu − 2h̃(n−2)

ur + h̃(n−2)
rr

)
.

(A.5)

We can also expand the harmonic gauge conditions

[∇µhµu](n) = −∂uh(n)
ur + (n− 3)

(
h(n−1)
uu − h(n−1)

ur

)
+DAh

(n−2)
uA

−
(
h̃(n−1)
uu − h̃(n−1)

ur

)
[∇µhµr](n) = −∂uh(n)

rr + (n− 3)
(
h(n−1)
ur − h(n−1)

rr

)
+DAh

(n−2)
rA − γABh(n−3)

AB

−
(
h̃(n−1)
ur − h̃(n−1)

rr

)

– 10 –
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[∇µhµA](n−1) = −∂uh(n−1)
rA + (n− 4)

(
h

(n−2)
uA − h(n−2)

rA

)
+DBh

(n−3)
BA

−
(
h̃

(n−2)
uA − h̃(n−2)

rA

)
. (A.6)

The harmonic gauge condition at logarithmic order is

[∇µh̃µu](n) = −∂uh̃(n)
ur + (n− 3)

(
h̃(n−1)
uu − h̃(n−1)

ur

)
+DAh̃

(n−2)
uA

[∇µh̃µr](n) = −∂uh̃(n)
rr + (n− 3)

(
h̃(n−1)
ur − h̃(n−1)

rr

)
+DAh̃

(n−2)
rA − γABh̃(n−3)

AB

[∇µh̃µA](n−1) = −∂uh̃(n−1)
rA + (n− 4)

(
h̃

(n−2)
uA − h̃(n−2)

rA

)
+DBh̃

(n−3)
BA .

(A.7)

The expansion of the harmonic gauge conditions on residual diffeomorphisms is

[�ξu](n) = 2(n− 2)∂uξ(n−1)
u +

[
D2 + (n− 2)(n− 3)

]
ξ(n−2)
u

+ (5− 2n)ξ̃(n−2)
u − 2∂uξ̃(n−1)

u

[�ξr](n) = 2(n− 2)∂uξ(n−1)
r +

[
D2 + (n− 2)(n− 3)− 2

]
ξ(n−2)
r + 2ξ(n−2)

u

− 2DAξ
(n−3)
A + (5− 2n)ξ̃(n−2)

r − 2∂uξ̃(n−1)
r

[�ξA](n−1) = 2(n− 2)∂uξ(n−2)
A +

[
D2 + (n− 2)(n− 3)− 1

]
ξ

(n−3)
A

− 2∂A
(
ξ(n−2)
u − ξ(n−2)

r

)
+ (5− 2n)ξ̃(n−3)

A − 2∂uξ̃(n−2)
A ,

(A.8)

and at logarithmic order is

[�ξ̃u](n) = 2(n− 2)∂uξ̃(n−1)
u +

[
D2 + (n−2)(n−3)

]
ξ̃(n−2)
u

[�ξ̃r](n) = 2(n− 2)∂uξ̃(n−1)
r +

[
D2 + (n−2)(n−3)− 2

]
ξ̃(n−2)
r + 2ξ̃(n−2)

u − 2DAξ̃
(n−3)
A

[�ξ̃A](n−1) = 2(n− 2)∂uξ̃(n−2)
A +

[
D2 + (n−2)(n−3)− 1

]
ξ̃

(n−3)
A − 2∂A

(
ξ̃(n−2)
u − ξ̃(n−2)

r

)
.

(A.9)
Under such a diffeomorphism, the flat background metric components shift as

[δguu](n) = −2∂uξu(n) − 2∂uξr(n)

[δgur](n) = −∂uξu(n) + (n− 1)ξu(n−1) + (n− 1)ξr(n−1) − ξ̃u(n−1) − ξ̃r(n−1)

[δgrr](n) = 2(n− 1)ξu(n−1) − 2ξ̃u(n−1)

[δguA](n−1) = γAB∂uξ
B(n+1) − ∂Aξu(n−1) − ∂Aξr(n−1)

[δgrA](n−1) = −∂Aξu(n−1) − nγABξB(n) + γAB ξ̃
B(n)

[δgAB](n−2) = γBCDAξ
C(n) + γACDBξ

C(n) + 2γABξr(n−1),

(A.10)

and at logarithmic order as

[δg̃uu](n) = −2∂uξ̃u(n) − 2∂uξ̃r(n)

[δg̃ur](n) = −∂uξ̃u(n) + (n− 1)ξ̃u(n−1) + (n− 1)ξ̃r(n−1)

[δg̃rr](n) = 2(n− 1)ξ̃u(n−1)

[δg̃uA](n−1) = γAB∂uξ̃
B(n+1) − ∂Aξ̃u(n−1) − ∂Aξ̃r(n−1)

[δg̃rA](n−1) = −∂Aξ̃u(n−1) − nγAB ξ̃B(n)

[δg̃AB](n−2) = γBCDAξ̃
C(n) + γACDB ξ̃

C(n) + 2γAB ξ̃r(n−1).

(A.11)

– 11 –
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B Residual gauge fixing

The residual diffeomorphisms that preserve harmonic gauge (2.2) are solutions of 2ξµ = 0.
From (A.8)–(A.9) the modes

ξu(1), ξr(1), ξA(2) (B.1)

(note the raised indices) are free data that can have arbitrary (u, z, z̄) dependence and
preserve the boundary conditions (2.5). Subleading-in-r modes are determined recursively
from these using 2ξµ = 0. We use the above free functions to perform residual gauge fixing
that further restricts our class of large-r falloffs from those of (2.5). The Lie derivative of
the metric at the relevant orders of r are given by (A.10)–(A.11)

[δguu](1) = 2[∇uξu](1) = −2∂u(ξu(1) + ξr(1))

[δgur](1) = [∇rξu +∇uξr](1) = −∂uξu(1) − (ξ̃u(0) + ξ̃r(0))

[δguA](0) = [∇uξA +∇Aξu](0) = γAB∂uξ
B(2) − ∂A(ξu(0) + ξr(0)).

(B.2)

We are interested in the trace reversed perturbations hµν appearing in gµν = ηµν + hµν −
1
2ηµνh, where

h = hrr − 2hur + 1
r2 γ

ABhAB. (B.3)

Taking into account the harmonic gauge condition

[∇µhµu](1) = −∂uh(1)
ur = 0, [∇µhµr](1) = −∂uh(1)

rr = 0, (B.4)

implies we can find a consistent solution where h(1)
ur = h

(1)
rr = 0. We then see that the

u-dependence of {ξu(1), ξr(1), ξA(2)} allows us to place the following restrictions on our
trace-reversed perturbation

h(1) = γABh
(−1)
AB = 0, δg(1)

uu −
1
2h

(1) = h(1)
uu = 0, δg

(0)
uA = h

(0)
uA = 0. (B.5)

The harmonic gauge condition also implies

[∇µhµA](0) = −∂uh(0)
rA = 0, (B.6)

so that we can consider solutions with h(0)
rA = 0. We can now turn to the large-r modes of

the Einstein equations at orders for which the stress tensor is zero, for example

[�hAB](0) = −2∂uh̃(−1)
AB = 0. (B.7)

Since this mode must be u-independent, we can find a consistent solution where it is
identically zero. Similar considerations for {[�huA](1), [�hrA](1), [�hrr](2), [�hur](2)} al-
low us to restrict to {h̃(0)

uA, h̃
(0)
rA , h̃

(1)
rr , h̃

(1)
ur } = 0. Proceeding to plug in these updated

falloffs into remaining modes of the Einstein tensor that vanish by (2.4), in particular
{[�h̃rA](2), [�h̃rr](3), [�hrr](3)}, we can set {h̃(1)

rA , h̃
(2)
rr , h

(2)
rr } = 0, and we finally arrive at

the falloffs
huu ∼ O(r−2), hur ∼ O(r−2), hrr ∼ O(r−3),
huA ∼ O(r−1), hrA ∼ O(r−1), hAB ∼ O(r),

(B.8)

– 12 –
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and, for the log coefficients,

h̃uu ∼ O(r−1 log r), h̃ur ∼ O(r−2 log r), h̃rr ∼ O(r−3 log r),
h̃uA ∼ O(r−1 log r), h̃rA ∼ O(r−2 log r), h̃AB ∼ O(log r).

(B.9)

C Asymptotic symmetries

We will now consider the set of diffeomorphisms that preserve harmonic gauge as well as
the falloffs (B.8)–(B.9). These falloffs for the trace-reversed perturbation now imply the
same for δgµν because the trace is O(r−2 log r) after our residual gauge fixing. Since the
residual gauge fixing of the previous appendix used up the u-dependence of the free data
for a harmonic vector field to arrive at our final falloffs, we expect our solutions to be
parameterized by data on the celestial sphere, functions of (z, z̄).

We see from the rr components of (A.10)–(A.11) for n < 3, that ξu(n) = 0 and ξ̃u(n) = 0
when n < 2, with the exception of an allowed ξu(0)

ξu = ξu(0) + ξu(2)r−2 + ξ̃u(2)r−2 log r + . . . (C.1)

A similar analysis applied to metric variations, taking into account (B.8) and the trace
condition in (B.5) leads to

ξu = u

2D
AYA + f +O(r−2 log r)

ξr = −r2D
AYA −

u

2D
AYA + 1

2D
2f +Hr−1

+
(
u

4D
2[D2 + 2]f − E

)
r−1 log r +O(r−2 log r)

ξB = Y B −DB
(
u

2D
AYA + f

)
r−1

+
(
u

2D
B[D2 + 2]f + V B

)
r−2 +O(r−3 log r) (C.2)

where

{f(z, z̄), Y z(z), H(z, z̄), E(z, z̄), V A(z, z̄), . . .} (C.3)

and we have labeled the leading terms to conform to the conventional notation used
for supertranslations and superrotations, parameterized by f(z, z̄) and Y z(z). A non-
holomorphic choice for Y z would modify the sphere metric at O(r2). At poles a harmonic
solution can still be found as long as one relaxes our radial falloffs to hold almost everywhere
on the celestial sphere. There thus appear additional u-dependent delta-function supported
terms which will not be relevant to our analysis and we have suppressed them here.

Open Access. This article is distributed under the terms of the Creative Commons
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