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1 Introduction and summary

The dS/CFT correspondence postulates that wavefunctions on (d+1)-dimensional de Sitter
space are equivalent at the future infinity to generating functions of the dual CFT in d

dimensions [1]. In momentum space (along the CFT direction), it claims that1

Ψ[φ̄] = exp
[1

2

∫
ddk

(2π)d 〈OkO−k〉
′ φ̄kφ̄−k +O(φ̄3)

]
, (1.1)

where Ψ[φ̄] is the wavefunction of a bulk scalar field φ, φ̄ is its boundary value, and Ok
is the dual CFT operator. We focus on bulk free theories, so that we neglect the O(φ̄3)
terms in the wavefunction. This provides a famous dS/CFT dictionary:

〈φk(τ∗)φ−k(τ∗)〉′ = −
1

2 Re 〈OkO−k〉′
, (1.2)

where τ∗ is a late time the wavefunction is evaluated. For example, two-point functions of
light scalars with the mass 0 ≤ m < d

2H in the superhorizon regime −kτ∗ � 1 read

〈φk(τ∗)φ−k(τ∗)〉′ ∝ (−τ∗)d(−kτ∗)−2ν with ν =

√
d2

4 −
m2

H2 , (1.3)

1Primed correlators are defined by 〈. . .〉 = (2π)dδd(
∑

i
ki)〈. . .〉′.
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AdS/CFT m2/H2
AdS > −d2

4 + 1 −d2

4 < m2/H2
AdS < −d2

4 + 1 m2/H2
AdS < −d2

4

∆+ ∆+ > d
2 + 1 d

2 < ∆+ < d
2 + 1 ∆+ = d

2 + iµAdS

∆− ∆− < d
2 − 1 d

2 − 1 < ∆− < d
2 ∆− = d

2 − iµAdS

Table 1. AdS scalars have two modes with the asymptotic behavior φ ∼ z∆± near the AdS
boundary, where ∆± = d

2 ±
√

m2

H2
AdS

+ d2

4 . Canonical quantization in AdS shows that the mode
φ ∼ z∆ has a finite energy only when ∆ > d

2 − 1, which coincides with the unitarity bound in the
dual CFT. When the mass squared is below the BF bound m2 < −d2

4 H
2
AdS, there appears tachyonic

instability. Also, in this regime, the dual CFT operator has a complex conformal dimension ∆± =
d
2 ± iµAdS with µAdS =

√
− m2

H2
AdS
− d2

4 , which is prohibited by unitarity in the dual CFT.

where H is the Hubble constant, i.e., inverse of the de Sitter radius. This can naturally
be identified with the inverse of two-point functions of the dual CFT operator with the
scaling dimension ∆ = d

2 + ν.
The purpose of this paper is to revisit the dictionary (1.2) for heavy scalars in the

principal series. In contrast to light fields, heavy fields oscillate outside the cosmological
horizon and so do their two-point functions:

〈φk(τ∗)φ−k(τ∗)〉′ ∝ (−τ∗)d
∣∣∣1 + e−πµeiα(µ)(−kτ∗)2iµ

∣∣∣2 with µ =

√
m2

H2 −
d2

4 , (1.4)

where α(µ) is a mass-dependent phase factor. At least naively, it is hard to identify them
with inverse of (a real part of) conformal two-point functions. To our knowledge, most of
the dS/CFT literature [1–45] including higher spin holography and holographic inflation
have focused on light fields, and so this issue has not been well addressed.2 However, such
heavy fields are inevitable once we consider UV completion of the bulk theory. In this
paper, we demonstrate that they should be interpreted as two-point functions on a cyclic
RG flow generated by double-trace deformations, similarly to the AdS tachyon with the
mass squared below the Breitenlohner-Freedman (BF) bound [47].

Before proceeding to details of the discussion, it is convenient to summarize our re-
sults in the connection with the story in AdS/CFT (see also table 1). For this purpose,
let us recall boundary conditions for quantization of scalar fields on AdS [48–50]. First,
when the mass squared m2 is in the range m2 > (−d2

4 + 1)H2
AdS, the unique admissi-

ble boundary condition is the Dirichlet boundary condition that kills the mode with the
asymptotic behavior,

φ ∼ z∆− , ∆± = d

2 ±
√

m2

H2
AdS

+ d2

4 , (1.5)

where HAdS is inverse of the AdS radius and z is the scale direction of the Poincare co-
ordinate (z = 0 is the AdS boundary). For −d2

4 H
2
AdS < m2 < (−d2

4 + 1)H2
AdS, on the

2See however, ref. [46] for recent discussion on heavy fields in dS2/CFT1, which made an attempt toward
a possible holographic interpretation of the de Alfaro, Fubini and Furla model of conformal mechanics.
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dS/CFT m2/H2 < 0 d2

4 > m2/H2 > 0 m2/H2 > d2

4

∆+ ∆+ > d d
2 < ∆+ < d ∆+ = d

2 + iµ

∆− ∆− < 0 0 < ∆− < d
2 ∆− = d

2 − iµ

Table 2. Scalar fields on dS have two modes with the asymptotic late time behavior φ ∼ (−τ)∆± ,
where ∆± = d

2 ±
√

d2

4 −
m2

H2 for m2 < d2

4 H
2 and ∆± = d

2 ± iµ for m2 > d2

4 H
2. Unitary representa-

tions on de Sitter space are classified into the principal series m2 > d2

4 H
2 and the complementary

series 0 < m2 < d2

4 H
2. In contrast to the AdS/CFT case, the time direction in the bulk is not along

the CFT direction, so that unitarity in the bulk does not imply that in the would-be dual CFT.
In particular, for the principal series, the dual CFT operator has a complex conformal dimension,
similarly to AdS scalars with the mass squared below the BF bound.

other hand, there are two possible boundary conditions essentially because the two modes
φ ∼ z∆± carry a finite energy. In particular, one may employ a mixed boundary condition
that kills the mode φ ∼ z∆+ . It is known that the CFT dual to the mixed boundary con-
dition is related to the CFT dual to the Dirichlet boundary condition through an RG flow
induced by double-trace deformations [51–55].3 Note that, as is known as the BF bound,
tachyonic instability appears in the mass range m2 < −d2

4 H
2
AdS. Correspondingly, the dual

CFT operator has a complex conformal dimension, which violates unitarity.
Now let us get back to the dS story. First, let us recall that in the computation of dS

correlators, we do not impose any boundary condition at the future infinity, but rather we
impose boundary conditions deep inside the horizon alone. This reflects the closed time
path nature of the in-in formalism (the Schwinger-Keldysh formalism). On the other hand,
the dS/CFT dictionary equates dS wavefunctions at late time with generating functions of
the would-be dual CFTs. While we normally employ the Dirichlet boundary condition for
the computation of wavefunctions, there is no a priori reason for this: a different choice
of boundary conditions simply means a different representation of wavefunctions, so that
in contrast to the AdS case, there is no physical criterion to select boundary conditions.
Indeed, in the context of higher spin dS/CFT [12, 21], one may consider two different
boundary conditions dual to the free Sp(N) model and the critical Sp(N) model, which
are interpolated via an RG flow induced by double-trace deformations [21]. See also ref. [22]
for double-trace deformations in dS/CFT with bulk scalars in the complementary series.

In this paper, we study a similar problem for heavy scalars in the principal series. First,
we point out that for heavy fields, a mixed boundary condition gives a natural identification
of dS wavefunctions with generating functions of the would-be dual CFTs. In particular,
QFTs dual to wavefunctions with the Dirichlet boundary condition are their double-trace
deformations, similarly to the AdS story mentioned earlier. Another property characteristic
to heavy fields on dS is that the RG flow generated by double-trace deformations is cyclic,
simply because the dual CFT operator has a complex conformal dimension (see table 2).

3The RG induced by double-trace deformations is also discussed in [56–58] in the context of Wilsonian
holographic renormalization group.
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This situation is analogous to AdS tachyons which violate the BF bound: recall that dS
and AdS are related via the analytic continuation H2 → −H2

AdS together with double
Wick rotations. Therefore, AdS scalars corresponding to dS scalars in the principal series
m2/H2 > d2

4 have the mass squared m2/H2
AdS < −d2

4 , which violates the BF bound.
Such fields are prohibited in the standard AdS/CFT, but ref. [47] argued that they are
acceptable in nonrelativistic AdS/CFT and studied their relation to RG limit cycles. In
dS/CFT, essentially the same situation appears even without considering nonrelativistic
setups, simply by taking heavy fields in the bulk which are inevitable when we consider
UV completion of the bulk theory.

Besides, based on these observations on dS wavefunctions, we provide a dictionary
between dS two-point functions and CFT two-point functions of the form,

〈φk(τ∗)φ−k(τ∗)〉′ = −(−τ∗)2d 〈OkO−k〉
′
M+〈OkO−k〉′M−

〈OkO−k〉′M+ + 〈OkO−k〉′M−
, (1.6)

where 〈OkO−k〉′M± are two-point functions in QFTs dual to wavefunctions with mixed
boundary conditions. The subscripts ± are associated to the time ordered and anti-time
ordered integration contours in the in-in formalism (see section 2 for details). For light
scalars in the complementary series, 〈OkO−k〉′M± coincide with conformal two-point func-
tions by themselves. On the other hand, for heavy scalars in the principal series, they
coincide with conformal two-point functions up to analytic terms which can be subtracted
by local counterterms in a similar manner to holographic renormalization in the AdS/CFT
context [59, 60]. This provides a new dS/CFT dictionary applicable when mixed boundary
conditions are employed.

The rest of the paper is organized as follows: in section 2, we demonstrate that dS
wavefunctions with mixed boundary conditions are naturally identified with generating
functions of the would-be dual CFTs. Then, we show that wavefunctions with the Dirichlet
boundary conditions are dual to their double-trace deformations. In section 3, we provide
a dS/CFT dictionary (1.6) applicable when the mixed boundary conditions are employed.
We conclude in section 4 with discussion of our results. Some technical details are given
in appendix.

2 Wavefunctions on de Sitter space

In this section we revisit holographic interpretation of dS wavefunctions, mainly focusing
on heavy scalars in the principal series. First, we show that for heavy fields, wavefunc-
tions evaluated with mixed boundary conditions are naturally identified with a generating
function of the would-be dual CFT. Then, we demonstrate that wavefunctions evaluated
with the Dirichlet boundary conditions are identified with generating functions of QFTs on
a cyclic RG flow obtained by double-trace deformations. For comparison, we also discuss
mixed boundary conditions for light fields at the end of the section, following ref. [22].

2.1 Dirichlet boundary conditions

We begin by the Dirichlet boundary problem on de Sitter space, which is normally used to
calculate dS correlators directly from the wavefunction. Let us consider a free scalar φ on

– 4 –
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τ*
τ

C+

C−
Figure 1. Time integration contours C±: the path integral measure in the in-in formalism is given
by exp(i

∫
C+−C−

dτ
∫
ddx
√
−gL) = exp(iS+ − iS−), where we defined S± =

∫
C±
dτ
∫
ddx
√
−gL. In

particular, C+ − C− forms a closed time path. We call C+ and C− the time ordered path and the
anti-time ordered path, respectively.

(d+ 1)-dimensional de Sitter space with the unit radius:

S[φ] = −1
2

∫
dd+1x

√
−g
[
(∂µφ)2 +m2φ2

]
= 1

2

∫
dτ

(−τ)d+1

∫
ddk

(2π)d
[
(θτφ−k)(θτφk)− (m2 + k2τ2)φ−kφk

]
. (2.1)

Here and in what follows we use the planar coordinates,

ds2 = −dτ
2 + dx2

τ2 , (2.2)

and work in momentum space along the CFT direction x. Also, θx = x ∂
∂x is the Euler

operator, counting the power in x.
To follow the dynamics on de Sitter space, we use the in-in formalism (the Schwinger-

Keldysh formalism), where the time integral is defined along a closed path. As depicted
in figure 1, the time ordered contour C+ and the anti-time ordered contour C− extend over
(−(1 − iε)∞, τ∗] and (−(1 + iε)∞, τ∗], respectively. Here τ∗ is a late time near the future
boundary. We denote the action defined with each integration contour by

S±[φ] = 1
2

∫
C±

dτ

(−τ)d+1

∫
ddk

(2π)d
[
(θτφ−k)(θτφk)− (m2 + k2τ2)φ−kφk

]
. (2.3)

In this language, the de Sitter wavefunction is defined by

Ψ±D[φ̄] =
∫
φ̄,BD±

[dφ]e±iS±[φ] , (2.4)

where the path integral for Ψ±D[φ̄] is performed with the Dirichlet boundary conditions at
τ = τ∗ and the Bunch-Davies vacuum conditions at the past infinity:

φk(τ∗) = φ̄k , lim
τ→−(1∓iε)∞

φk(τ) = 0 . (2.5)

Here φ̄ is a boundary scalar field. Throughout the paper, we use the semiclassical approx-
imation, under which the wavefunction is evaluated with the on-shell action as

Ψ±D[φ̄] = e±iS
±[φ±] with S±[φ±] = −1

2

∫
ddk

(2π)d
[
(−τ)−dφ±−kθτφ

±
k

]τ∗
τ=−(1∓iε)∞

, (2.6)

– 5 –
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where φ± is a solution of the equation of motion,[
θτ (θτ − d) + (m2 + k2τ2)

]
φ±k = 0 , (2.7)

which satisfies the boundary conditions (2.5). Note that the on-shell Lagrangian vanishes
up to total derivatives and so the on-shell action is localized at the boundaries as usual.

The solution φ± is given explicitly by

φ±k (τ) = B±D(k; τ)φ̄k , (2.8)

where B±D are the bulk-to-boundary propagators for each time path. For heavy fields in
the principal series m > d

2 (see section 2.4 for light fields), we have

B+
D(k; τ) =

(−τ)
d
2H

(2)
−iµ(−kτ)

(−τ∗)
d
2H

(2)
−iµ(−kτ∗)

, B−D(k; τ) =
(−τ)

d
2H

(1)
iµ (−kτ)

(−τ∗)
d
2H

(1)
iµ (−kτ∗)

, (2.9)

where we introduced µ =
√
m2 − d2

4 . In the superhorizon regime −kτ∗ ≤ −kτ � 1, the
bulk-to-boundary propagator behaves as

B±D(k; τ) ' (τ/τ∗)
d
2∓iµ

1 + e−πµe±iα(µ)(−kτ)±2iµ

1 + e−πµe±iα(µ)(−kτ∗)±2iµ with eiα(µ) = Γ(−iµ)
22iµΓ(iµ) , (2.10)

where we introduced the mass-dependent phase factor α(µ). Note that B−D is the complex
conjugate of B+

D. Also, for B+
D, the first and second terms in the numerator describe the

positive and negative frequency modes at late time, respectively, and vice versa for B−D. The
factor e−πµe±iα(µ) is nothing but the one appearing in the thermal Bogoliubov coefficients.

Now we evaluate the wavefunction. Substituting the solution (2.8) into eq. (2.6) gives

Ψ±D[φ̄] = exp
[
∓ i

2

∫
ddk

(2π)d (−τ∗)−d
[
θτB±D(k; τ)

]
τ=τ∗

φ̄kφ̄−k

]
' exp

[
∓ 1

2

∫
ddk

(2π)d (−τ∗)−d
(
d

2 i+ µ · 1− e∓πµeiα(µ)(−kτ∗)2iµ

1 + e∓πµeiα(µ)(−kτ∗)2iµ

)
φ̄kφ̄−k

]
. (2.11)

The holographic dictionary then states that

〈OkO−k〉′D± = ∓(−τ∗)−d
[
d

2 i+ µ · 1− e∓πµeiα(µ)(−kτ∗)2iµ

1 + e∓πµeiα(µ)(−kτ∗)2iµ

]
, (2.12)

where 〈OkO−k〉′D± are the two-point functions of the dual QFT operators O and the prime
implies that the delta function for momentum conservation is dropped. Also the subscripts
D and ± specify the boundary condition and the time path. Essentially because of the
oscillatory behavior of the heavy field outside the horizon, it is hard to identify eq. (2.12)
with a conformal two-point function which respects the dilatation Ward-Takahashi iden-

– 6 –
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tity.4 In the rest of the section, we shall demonstrate that it should be identified with a
two-point functions on a cyclic RG flow induced by a double-trace deformation.

2.2 Mixed boundary conditions

Next, we show that wavefunctions with mixed boundary conditions are naturally identified
with CFT generating functions. As we have discussed, in the Dirichlet boundary problem,
the two modes φ ∼ (−τ)

d
2±iµ mix with each other at late time, which was the main ob-

struction to identifying dS wavefunctions with CFT generating functions. Here we employ
the following mixed boundary conditions instead:(

θτ − d
2 − iµ

)
φ±k (τ)

∣∣∣
τ=τ∗

= χ±k , (2.13)

where χ±k are source terms introduced for each time path. Note that χ± are independent of
the boundary scalar fields φ̄ in the Dirichlet boundary problem. The conditions (2.13) kill
the mode φ ∼ (−τ∗)

d
2 +iµ and pick up the mode φ ∼ (−τ∗)

d
2−iµ, which makes it possible to

identify the resulting wavefunctions with CFT generating functions, as we now explain.5

To make the variation problem consistent with the mixed boundary conditions (2.13),
let us modify the action (2.3) as

S±[φ] = S±bulk[φ] + S±bd[φ] ,

S±bulk[φ] = 1
2

∫
C±

dτ

(−τ)d+1

∫
ddk

(2π)d
[
(θτφ−k)(θτφk)− (m2 + k2τ2)φ−kφk

]
,

S±bd[φ] = 1
2

∫
ddk

(2π)d (−τ∗)−d
[(

d

2 + iµ

)
φ−kφk + 2φ−kχ±k

]
τ=τ∗

. (2.14)

The classical solutions satisfying the mixed boundary conditions (2.13) and the Bunch-
Davies conditions are given by

φ±k (τ) = B±M (k; τ)χ±k (2.15)

4Note that there is a freedom to add a local boundary action (or equivalently, total derivative terms in
Lagrangian), which corresponds to renormalization in the dual QFT [59, 60]. At the level of our interest,
this is equivalent with adding a pure imaginary constant to eq. (2.12), but obviously it does not help. Also,
this freedom does not change the wavefunction squared |Ψ|2 and so the result of canonical quantization is
of course reproduced for whatever choice of holographic renormalization scheme:

〈φk(τ∗)φ−k(τ∗)〉′ = (−τ∗)d

2µ · |1 + e−πµeiα(µ)(−kτ∗)2iµ|2

1− e−2πµ .

5One could pick up the other mode by imposing the boundary conditions,(
θτ −

d

2 + iµ
)
φ±k (τ)

∣∣∣
τ=τ∗

= χ±k ,

which can be realized by simply replacing µ→ −µ in the following analysis. Also, one could impose different
boundary conditions for each time path, but we employ the conditions (2.13) for technical simplicity.

– 7 –
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with the bulk-to-boundary propagators

B+
M (k; τ) =

(−τ)
d
2H

(2)
−iµ(−kτ)

(θτ∗ − d
2 − iµ)

[
(−τ∗)

d
2H

(2)
−iµ(−kτ∗)

] , (2.16)

B−M (k; τ) =
(−τ)

d
2H

(1)
iµ (−kτ)

(θτ∗ − d
2 − iµ)

[
(−τ∗)

d
2H

(1)
iµ (−kτ∗)

] . (2.17)

In the superhorizon regime −kτ∗ ≤ −kτ � 1, they behave as

B+
M (k; τ∗) '− (τ/τ∗)

d
2−iµ

1 + e−πµeiα(µ)(−kτ)2iµ

2iµ , (2.18)

B−M (k; τ∗) '− (τ/τ∗)
d
2 +iµ 1 + e−πµe−iα(µ)(−kτ)−2iµ

2iµ · e−πµe−iα(µ)(−kτ∗)−2iµ

=− (τ/τ∗)
d
2−iµ

1 + eπµeiα(µ)(−kτ)2iµ

2iµ . (2.19)

One can see in eq. (2.18) and the first line of eq. (2.19) that the positive frequency modes
in the denominator of eq. (2.10) are projected out by the boundary conditions. Also, as the
second expression of eq. (2.19) shows, the two bulk-to-boundary propagators match with
each other except for the Boltzmann factor e∓πµ in the numerator.

Now the on-shell action with the solutions (2.15) reads

S±[φ±] = 1
2

∫
ddk

(2π)d (−τ∗)−dφ±−kχ
±
k

∣∣∣∣∣
τ=τ∗

= 1
2

∫
ddk

(2π)d (−τ∗)−dB±M (k; τ∗)χ±k χ
±
−k

= 1
2

∫
ddk

(2π)d (−τ∗)−d
[
e∓πµeiα(µ)(−kτ∗)2iµ + 1

−2iµ

]
χ±k χ

±
−k . (2.20)

Then, the wavefunction Ψ±M [χ±] with the mixed boundary conditions (2.13) reads

Ψ±M [χ±] = e±iS
±[φ±] = exp

[
∓1

2

∫
ddk

(2π)d (−τ∗)−d
e∓πµeiα(µ)(−kτ∗)2iµ + 1

2µ χ±k χ
±
−k

]
.

(2.21)

Hence, the dual QFT two-point functions are given by

〈OkO−k〉′M± = ∓(−τ∗)−d
e∓πµeiα(µ)(−kτ∗)2iµ + 1

2µ . (2.22)

Note that the second term in the numerator is analytic, so that we may eliminate it by
adding an extra boundary term ∼ χ±−kχ

±
k to the action. More explicitly, we define the

renormalized action as

S̃±[φ] = S±bulk[φ] + S̃±bd[φ] ,

S̃±bd[φ] = 1
2

∫
ddk

(2π)d (−τ∗)−d
[ (

d
2 + iµ

)
φ−kφk + 2φ−kχ±k + (2iµ)−1χ±−kχ

±
k

]
τ=τ∗

, (2.23)
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where S±bulk[φ] are given in the second line of (2.14). Note that the newly added countert-
erms do not affect the boundary conditions. As a result, the renormalized wavefunctions
Ψ̃±M [χ±] are given by

Ψ̃±M [χ±] = e±iS̃
±[φ±] = exp

[
∓1

2

∫
ddk

(2π)d
e∓πµeiα(µ)

2µ (−τ∗)−d(−kτ∗)2iµχ±k χ
±
−k

]
. (2.24)

As advertised, the coefficients in the wavefunctions are naturally identified with conformal
two-point functions of the dual operator O with the conformal dimension ∆ = d

2 + iµ:

〈OkO−k〉′CFT± = ∓e
∓πµeiα(µ)

2µ (−τ∗)−d(−kτ∗)2iµ . (2.25)

Note that the dual CFTs are non-unitary since the conformal dimension ∆ is complex.

2.3 Double-trace deformations

We have argued that the renormalized wavefunctions Ψ̃±M [χ±] with the mixed boundary
conditions may be identified with CFT generating functions. In this subsection, we demon-
strate that the wavefunctions Ψ±D[φ̄] with the Dirichlet boundary conditions are identified
with the generating functions of QFTs on a cyclic RG flow induced by double-trace defor-
mations.

To see this, let us first notice that Ψ±D[φ̄] and Ψ̃±M [χ±] are related to each other by

Ψ±D[φ̄] =
∫

[dχ±] Ψ̃±M [χ±] exp
[
∓ i

2

∫
ddk

(2π)d

(
d
2 + iµ

)
φ̄−kφ̄k + 2φ̄−kχ±k + (2iµ)−1χ±−kχ

±
k

(−τ∗)d

]
.

(2.26)

According to the result of the last subsection, we are free to identify Ψ̃±M [χ±] with CFT
generating functions Z±CFT[χ±] as

Ψ̃±M [χ±] = Z±CFT[χ±] =
∫

[dΦ±] exp
[
−S±CFT +

∫
ddk

(2π)dχ
±
−kOk

]
, (2.27)

where we schematically introduced the path integral for the would-be dual CFTs. In
particular, S±CFT are CFT actions and [dΦ±] is the path integral measure. The standard
holographic dictionary says that χ± source the dual CFT operator O. Substituting this
into eq. (2.26) gives a CFT interpretation of the wavefunctions Ψ±D[φ̄]:

Ψ±D[φ̄] =
∫

[dΦ±] exp
[
−S±QFT ∓

i

2

∫
ddk

(2π)d

(
d
2 − iµ
(−τ∗)d

φ̄−kφ̄k ± 4µφ̄−kOk

)]
, (2.28)

where we defined

S±QFT = S±CFT ∓ µ (−τ∗)d
∫

ddk

(2π)dO−kOk . (2.29)
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Note that now φ̄ plays the role of the source.6 Thus the correlation functions of the dual
QFT can be written as

〈 . . . 〉D± =
〈
. . . exp

(
±µ (−τ∗)d

∫
ddk

(2π)dO−kOk

)〉
CFT±

. (2.30)

This shows that the QFTs dual to Ψ±D are obtained by double-trace deformations of the
CFTs dual to Ψ̃±M . Also the corresponding RG flow is cyclic because the double-trace
operator O2 has a conformal dimension d+2iµ, which is also implied by the pure imaginary
scaling of the two-point function (2.25). This is analogous to the AdS case with a bulk
scalar below the BF bound [48].

2.4 Mixed boundary conditions for light fields

For comparison, we discuss mixed boundary conditions for light scalars in the comple-
mentary series 0 ≤ m < d

2 , following ref. [22]. In contrast to the heavy field case, the
wavefunctions evaluated with mixed boundary conditions can be identified with CFT gen-
erating functions and the scalar field sources the shadow operator. For technical simplicity,
we focus on the mass range

√
d2

4 − 1 < m < d
2 in this section. More general cases are dis-

cussed in appendix A. Readers familiar with this topic may safely jump to the next section
after checking eq. (2.45), which will be used when studying dS correlators.

2.4.1 Dirichlet boundary conditions

First, let us briefly summarize the Dirichlet boundary conditions for light fields, for which
the bulk-to-boundary propagators read

B+
D(k; τ) = (−τ)

d
2H

(2)
ν (−kτ)

(−τ∗)
d
2H

(2)
ν (−kτ∗)

, B−D(k; τ) = (−τ)
d
2H

(1)
ν (−kτ)

(−τ∗)
d
2H

(1)
ν (−kτ∗)

, (2.31)

where we introduced ν =
√

d2

4 −m2. In the superhorizon regime −kτ∗ ≤ −kτ � 1, they
behave as

B±D(k; τ) ' (τ/τ∗)
d
2−ν . (2.32)

Note that the mode ∼ (−τ)
d
2−ν dominates over the other in the superhorizon limit, which

is analogous to the AdS case. Consequently, the bulk-to-boundary operators have a simple
asymptotic behavior (2.32) outside the horizon. Then, the wavefunctions are given by

Ψ±D[φ̄] = exp
[
∓ i2

∫
ddk

(2π)d (−τ∗)−d
[
θτB±D(k; τ)

]
τ=τ∗

φ̄kφ̄−k

]

= exp
[
∓ i

2

∫
ddk

(2π)d (−τ∗)−d

×
((

d

2 − ν
)

+O
(
k2τ2
∗

)
+ e±iπν · 2ν · Γ(−ν)

22νΓ(ν) (−kτ∗)2ν + · · ·
)
φ̄kφ̄−k

]
, (2.33)

6Note that in holographic renormalization, one may add arbitrary local counterterms of the source φ̄ to
the boundary action. The φ̄2 term in eq. (2.28) can be understood as such a counterterm.
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where the first two terms are analytic in (−kτ∗)2 and pure imaginary. The dots stand
for non-analytic terms which are subleading in the limit kτ∗ � 1. When we compute the
wavefunction squared |ΨD|2 = Ψ+

DΨ−D, these pure imaginary terms disappear due to the
projection onto the imaginary part of the action. In addition, we can also eliminate these
analytic terms by adding proper boundary terms to the action.

More explicitly, if we focus on the mass regime
√

d2

4 − 1 < m < d
2 , which corresponds

to 0 < ν < 1, holographic renormalization can be performed as

Ψ±D[φ̄] = exp
[

1
2

∫
ddk

(2π)d

(
〈OkO−k〉′CFTD±φ̄kφ̄−k ∓ i

(d2 − ν)φ̄kφ̄−k
(−τ∗)d

)]
, (2.34)

where the second term is the counterterm. Also we introduced

〈OkO−k〉′CFTD± = ∓i 2νe±iπνΓ(−ν)
22νΓ(ν) (−τ∗)−d+2νk2ν , (2.35)

which can be identified with the conformal two-point function of a primary field with
conformal dimension ∆ = d

2 + ν. Note that for ν > 1, there appear more counterterms,
but the final result (2.35) still remains valid.

2.4.2 Mixed boundary conditions

Next we study mixed boundary conditions:(
θτ −

d

2 + ν

)
φ±k (τ)

∣∣∣
τ=τ∗

= χ±k , (2.36)

which kill the leading mode φ ∼ (−τ∗)
d
2−ν and keep the mode φ ∼ (−τ∗)

d
2 +ν . Together

with the Bunch-Davies conditions, the classical solutions are given by

φ±k (τ) = B±M (k; τ)χ±k (2.37)

with the bulk-to-boundary propagators,

B+
M (k; τ) = (−τ)

d
2H

(2)
ν (−kτ)

(θτ∗ − d
2 + ν)

[
(−τ∗)

d
2H

(2)
ν (−kτ∗)

] , (2.38)

B−M (k; τ) = (−τ)
d
2H

(1)
ν (−kτ)

(θτ∗ − d
2 + ν)

[
(−τ∗)

d
2H

(1)
ν (−kτ∗)

] . (2.39)

In the superhorizon regime −kτ∗ ≤ −kτ � 1, the bulk-to-boundary propagators behave as

B±M (k; τ∗) '
22νΓ(ν)

2νe±iπνΓ(−ν)(−kτ∗)−2ν , (2.40)

where we assumed 0 < ν < 1. To make the variation problem consistent with the modified
mixed boundary conditions (2.36), we add a boundary term to the action (2.3) as follows:

S±bd[φ] = 1
2

∫
ddk

(2π)d (−τ∗)−d
[(

d

2 − ν
)
φ−kφk + 2φ−kχ±k

]
τ=τ∗

. (2.41)
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Thus, the on-shell action reads

S±[φ±] = 1
2

∫
ddk

(2π)d (−τ∗)−d
[

22νΓ(ν)
2νe±iπνΓ(−ν)(−kτ∗)−2ν + · · ·

]
χ±k χ

±
−k , (2.42)

where the dots stand for subleading terms in the limit kτ∗ � 1. The corresponding
wavefunctions Ψ±M [χ±] are

Ψ±M [χ±] = exp
[
± i2

∫
ddk

(2π)d
22νΓ(ν)

2νe±iπνΓ(−ν)(−τ∗)−d(−kτ∗)−2νχ±k χ
±
−k

]
. (2.43)

The coefficient in the wavefunction can be identified with conformal two-point function as

〈OkO−k〉′CFTM± = ±i 22νΓ(ν)
2νe±iπνΓ(−ν)(−τ∗)−d−2νk−2ν , (2.44)

where the operator O has a scaling dimension ∆ = d
2 − ν. This corresponds to the shadow

operator of the CFT operator which appeared in eq. (2.35) in the context of the Dirichlet
boundary problem [21, 22, 51–55, 61, 62]. Notice that in contrast to the heavy field case, no
counterterm ∼ χ2 in the boundary action is needed to have conformal two-point functions.

2.4.3 Relation between the two CFTs

Finally, we discuss how the two CFTs dual to the Dirichlet boundary condition and the
mixed boundary condition are related with each other. For this purpose, let us first note
the relation,

Ψ±D[φ̄] =
∫

[dχ±] Ψ±M [χ±] exp
[
∓ i

2

∫
ddk

(2π)d

(
d
2 − ν

)
φ̄−kφ̄k + 2φ̄−kχ±k

(−τ∗)d

]
, (2.45)

which is analogous to eq. (2.26) in the heavy field case. We also identify Ψ±D[φ̄] and Ψ±M [φ̄]
with CFT generating functions Z±CFTD [φ̄] and Z±CFTM [φ̄] as

Ψ±D[φ̄] = Z±CFTD [φ̄] exp
[
∓ i2

∫
ddk

(2π)d
(d2 − ν)φ̄kφ̄−k

(−τ∗)d

]
, (2.46)

Ψ±M [χ±] = Z±CFTM [χ±] , (2.47)

where the second factor on the right hand side of the first equation reflects holographic
renormalization (see discussion around eq. (2.34)). The subscripts D and M indicate that
these CFTs are dual to the Dirichlet and the mixed boundary conditions, respectively.
Then, the relation (2.45) implies that the two CFT generating functions are related with
each other through the Legendre transformation,7

Z±CFTD [φ̄] =
∫

[dχ±]Z±CFTM [χ±] exp
[
∓i
∫

ddk

(2π)d
φ̄−kχ

±
k

(−τ∗)d

]
. (2.48)

7Notice here that the φ̄2 term in eq. (2.45) and eq. (2.46) cancel out each other and then we arrive at a
simple relation (2.48). As we mentioned earlier, for ν > 1, there appear more counterterms in the Dirichlet
boundary problem. Also, the mixed boundary condition (2.36) is modified as we discuss in appendix A.
Accordingly, eqs. (2.45)–(2.46) acquire more counterterms. However, using the results in appendix A, one
can easily show that these counterterms cancel each other out and the relation (2.48) holds even for ν > 1.
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In particular, this directly shows that two-point functions in the two CFTs are inverse of
each other,

〈OkO−k〉′CFTD± = (−τ∗)−2d
(
〈OkO−k〉′CFTM±

)−1
, (2.49)

as we observed earlier. One can also show explicitly that the two CFTs are connected by
an RG flow generated by double-trace deformations [22], generalizing the AdS results in
refs. [51–55] via an appropriate analytic continuation.

3 Correlation functions

We have seen that wavefunctions of heavy fields with Dirichlet boundary conditions can be
interpreted as the generating functions of the dual QFTs that are double-trace deformations
of the CFTs dual to wavefunctions with the mixed boundary conditions. In this section
we use the relation to express equal-time correlation functions on de Sitter space (which
are normally computed with wavefunctions with Dirichlet boundary conditions) in terms
of dual conformal correlators which appear in wavefunctions with the mixed boundary
condition. This provides a dS/CFT dictionary for heavy fields in particular.

3.1 General formula

First, we derive a formula relating equal-time correlation functions on de Sitter space to
the wavefunctions with mixed boundary conditions. Recall that equal-time correlators of
an operator F [φk(τ)] at τ = τ∗ are given by [1]

〈F [φk(τ∗)]〉dS =
∫

[dφ̄]
∣∣∣ΨD[φ̄]

∣∣∣2 F [φ̄k] with
∣∣∣ΨD[φ̄]

∣∣∣2 = Ψ+
D[φ̄]Ψ−D[φ̄] , (3.1)

where F [φk(τ)] is made from products of the field φ at the equal time τ . For example, we
have F [φk(τ)] = φk(τ)φk′(τ) for the computation of two-point functions 〈φk(τ∗)φk′(τ∗)〉dS.

Next, we rewrite Ψ±D in terms of the wavefunctions with mixed boundary conditions.
For the heavy field case, we may consider either Ψ±M or the renormalized version Ψ̃±M dual
to the CFT generating functions. Here we consider the former for convenience. Similarly
to eq. (2.26), Ψ±D and Ψ±M are related to each other as

Ψ±D[φ̄] =
∫

[dχ±] Ψ±M [χ±] exp
[
∓ i

2

∫
ddk

(2π)d

(
d
2 + iµ

)
φ̄−kφ̄k + 2φ̄−kχ±k
(−τ∗)d

]
. (3.2)

The wavefunction squared then reads

∣∣∣ΨD[φ̄]
∣∣∣2 =

∫
[dχ+dχ−] Ψ+

M [χ+]Ψ−M [χ−] exp
[
−i
∫

ddk

(2π)d
(χ+
−k − χ

−
−k)φ̄k

(−τ∗)d

]
, (3.3)

where notice that the φ̄2 terms cancel out when the + and − contributions are multiplied.
Also, essentially because of this type of cancellation, the same relation (3.3) holds in the
light field case too, as one may explicitly check using eq. (2.45) and its ν > 1 generaliza-
tion (A.16). An important point is that both χ+ and χ− are coupled to φ̄, and so Ψ+

M and
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Ψ−M nontrivially mix with each other upon integration over φ̄. This reflects the closed time
path nature of the in-in formalism. For this reason, it is convenient to introduce

χR,k = χ+
k + χ−k

2 , χA,k = χ+
k − χ

−
k . (3.4)

In this language, we write

∣∣∣ΨD[φ̄]
∣∣∣2 =

∫
[dχA] exp

[
−i
∫

ddk

(2π)d
χA,−kφ̄k
(−τ∗)d

] ∫
[dχR] Ψ+

M

[
χR + 1

2χA
]
Ψ−M

[
χR −

1
2χA

]
.

(3.5)

Substituting eq. (3.5) into eq. (3.1) and performing the integration over φ̄, we obtain

〈F [φk(τ∗)]〉dS =
∫

[dχAdφ̄] exp
[
−i
∫

ddk

(2π)d
χA,−kφ̄k
(−τ∗)d

]
F
[
φ̄k
]

×
∫

[dχR] Ψ+
M

[
χR + 1

2χA
]

Ψ−M
[
χR −

1
2χA

]
=
∫

[dχA] δ(χA)F
[
−i(−τ∗)d∂χA,−k

]
×
∫

[dχR] Ψ+
M

[
χR + 1

2χA
]

Ψ−M
[
χR −

1
2χA

]
, (3.6)

where we performed integration by parts over χA at the second equality. In other words,
we have derived the following master formula:

〈F [φk(τ∗)]〉dS = F
[
−i(−τ∗)d∂χA,−k

] ∫
[dχR] Ψ+

M

[
χR + 1

2χA
]

Ψ−M
[
χR −

1
2χA

]∣∣∣∣
χA=0

,

(3.7)

where notice again that the integration over χR nontrivially mixes Ψ+
M and Ψ−M reflecting

the closed time path nature.

3.2 Two-point functions

We now apply the general formula (3.7) to two-point functions. Suppose that the wave-
functions with mixed boundary conditions are given by

Ψ±M [χ±] = exp
[

1
2

∫
ddk

(2π)d 〈OkO−k〉
′
M±χ

±
k χ
±
−k

]
. (3.8)

Then, we find

ln
[
Ψ+
M

[
χR + 1

2χA
]

Ψ−M
[
χR −

1
2χA

] ]
=
∫

ddk

(2π)d
[ 1

2
(
〈OkO−k〉′M+ + 〈OkO−k〉′M−

)(
χR,k χR,−k + 1

4χA,k χA,−k
)

+ 1
4
(
〈OkO−k〉′M+ − 〈OkO−k〉′M−

)
(χR,k χA,−k + χA,k χR,−k)

]
, (3.9)
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which implies∫
[dχR] Ψ+

M

[
χR + 1

2χA
]

Ψ−M
[
χR −

1
2χA

]

= exp
[

1
2

∫
ddk

(2π)d
〈OkO−k〉′M+〈OkO−k〉′M−
〈OkO−k〉′M+ + 〈OkO−k〉′M−

χA,k χA,−k

]
. (3.10)

Therefore, the de Sitter two-point function reads

〈φk(τ∗)φ−k(τ∗)〉′dS = −(−τ∗)2d 〈OkO−k〉
′
M+〈OkO−k〉′M−

〈OkO−k〉′M+ + 〈OkO−k〉′M−
. (3.11)

This is the holographic dictionary when mixed boundary conditions are employed. Below
we show that this dictionary reproduces the correct two-point functions as it should be.

3.2.1 Heavy fields

Let us begin by the heavy field case:

Ψ±M [χ±] = exp
[

1
2

∫
ddk

(2π)d 〈OkO−k〉
′
M±χ

±
k χ
±
−k

]
, (3.12)

〈OkO−k〉′M± = 〈OkO−k〉′CFT± ∓
(−τ∗)−d

2µ , (3.13)

where the conformal two-point functions are given by

〈OkO−k〉′CFT± = ∓e
∓πµeiα(µ)

2µ (−τ∗)−d(−kτ∗)2iµ . (3.14)

Then, the de Sitter two-point function reads

〈φk(τ∗)φ−k(τ∗)〉′dS = (−τ∗)2d

(
(−τ∗)−d

2µ − 〈OkO−k〉′CFT+

) (
(−τ∗)−d

2µ + 〈OkO−k〉′CFT−

)
〈OkO−k〉′CFT+ + 〈OkO−k〉′CFT−

.

(3.15)

Notice here that the analytic terms in the numerator (which were subtracted by holographic
renormalization) make the expression in terms of conformal two-point functions less simple
compared to the original dictionary (3.11). However, such terms are necessary to reproduce
the correct two-point functions. Indeed, using the expression (3.14), we find8

〈φk(τ∗)φ−k(τ∗)〉′dS = (−τ∗)d

2µ
|1 + e−πµeiα(−kτ∗)2iµ|2

1− e−2πµ , (3.16)

which agrees with the result in canonical quantization.

8It is convenient to use 〈OkO−k〉′CFT+ = −e−2πµ〈OkO−k〉′CFT− in the intermediate step.
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3.2.2 Light fields
Finally, let us consider the light field case:

Ψ±M [χ±] = exp
[

1
2

∫
ddk

(2π)d 〈OkO−k〉
′
M±χ

±
k χ
±
−k

]
, (3.17)

〈OkO−k〉′M± = 〈OkO−k〉′CFTM± = ±i 22νΓ(ν)
2νe±iπνΓ(−ν)(−τ∗)−d−2νk−2ν , (3.18)

where recall that no counterterm term ∼ χ2 in the boundary action was required in the
light field case. Using the dictionary (3.11), we obtain

〈φk(τ∗)φ−k(τ∗)〉′dS = − (−τ∗)2d 〈OkO−k〉
′
CFTM+〈OkO−k〉′CFTM−

〈OkO−k〉′CFTM+ + 〈OkO−k〉′CFTM−

= (−τ∗)d
22νΓ(ν)2

4π (−kτ∗)−2ν , (3.19)

which is consistent with the result of canonical quantization. Notice that de Sitter two-
point functions have the same scaling as the dual CFT two point functions 〈OkO−k〉′CFTM±
which appears in the wavefunctions with mixed boundary conditions.

4 Discussion

In this paper we revisited holographic interpretation of de Sitter wavefunctions for free
scalars. We demonstrated that especially for heavy scalars in the principal series, mixed
boundary conditions provide natural identification of wavefunctions with generating func-
tions of the would-be dual CFTs. In particular, wavefunctions with Dirichlet boundary
conditions are dual to QFTs on an RG flow generated by double-trace deformations. Since
CFT operators dual to heavy fields have complex conformal dimensions, the resultant RG
flow is cyclic. This is in sharp contrast to the light field case, for which double-trace defor-
mations interpolate two CFTs associated with Dirichlet and mixed boundary conditions.
Besides, we provided a new dS/CFT dictionary of two-point functions that are applicable
when mixed boundary conditions are employed.

There are several interesting future directions along the line of the present work. The
first thing to do is to generalize our analysis of wavefunctions with mixed boundary condi-
tions to interacting theories and also to theories with spinning fields. Especially for heavy
fields, mixed boundary conditions manifest conformal symmetry of dual QFT correlators,
which could be useful when studying symmetry and analytic structures of cosmological
correlators in the context of the cosmological collider program (see, e.g., [63–79]). It would
also be interesting to study relations between dS Witten diagrams and AdS Witten di-
agrams based on our findings. More conceptually, our results imply that wavefunctions
defined with Dirichlet boundary conditions are dual to QFTs on RG limit cycles whenever
we take into account heavy fields required by UV completion of gravity in the bulk. It could
be an obstruction to constructing realistic dS/CFT setups in string theory, at least as long
as the standard holographic dictionary is employed. It would be interesting to reconsider
why it is difficult to turn on stringy mass in higher spin dS/CFT from this perspective,
which could be useful in understanding de Sitter space in string theory.
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A Mixed boundary condition for general ν

In section 2.4, we provided the relation between the wavefunctions with the mixed bound-
ary condition and the dual conformal two-point functions by analyzing the asymptotic
(superhorizon) behavior of the bulk-to-boundary propagators. Here we extend the discus-
sion to general values of ν. When ν > 1, the superhorizon limit of the bulk-to-boundary
propagators (2.38) and (2.39) become rather complicated. To see that, we use the series
expansion of the Hankel functions:

H(2)
ν (−kτ) = i

2νΓ(ν)
π

∞∑
n=0

[
an(−kτ)2n−ν + bn(−kτ)2n+ν

]
, (A.1)

H(1)
ν (−kτ) = −i 2νΓ(ν)

π

∞∑
n=0

[
an(−kτ)2n−ν + b̃n(−kτ)2n+ν

]
, (A.2)

where the coefficients an, bn and b̃n are given by

an = (−1)n

22nn!(1− ν)n
, (A.3)

bn = (−1)n

22nn!(1 + ν)n
eiνπΓ(−ν)
22νΓ(ν) , b̃n = (−1)n

22nn!(1 + ν)n
e−iνπΓ(−ν)

22νΓ(ν) (A.4)

with the shifted factorial (x)n = x(x + 1) · · · (x + n − 1). In terms of them, the propaga-
tors (2.38) and (2.39) can be written as

B+
M (k; τ) = (τ/τ∗)

d
2

∑∞
n=0

[
an(−kτ)2n−ν + bn(−kτ)2n+ν]∑∞

n=1 2nan(−kτ∗)2n−ν +
∑∞
n=0(2n+ 2ν)bn(−kτ∗)2n+ν , (A.5)

B−M (k; τ) = (τ/τ∗)
d
2

∑∞
n=0

[
an(−kτ)2n−ν + b̃n(−kτ)2n+ν

]
∑∞
n=1 2nan(−kτ∗)2n−ν +

∑∞
n=0(2n+ 2ν)b̃n(−kτ∗)2n+ν

. (A.6)
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We can now see that when ν > 1, in each denominator, the terms 2nan(−kτ∗)2n−ν with
1 ≤ n ≤ bνc9 dominate over 2νb0(−kτ∗)ν . As a result, in the superhorizon regime −kτ∗ ≤
−kτ � 1, the leading terms of (A.5) and (A.6) become proportional to (−kτ∗)−2, in sharp
contrast with the ν < 1 case. Note that this issue does not appear in the AdS/CFT case
as long as we focus on CFT operators above the unitarity bound ∆ > d

2 − 1, i.e., ν < 1.
In order to regain the desired leading behavior ∼ (kτ∗)−2ν , we need to kill these

unwanted terms, but this forces us to change the boundary conditions. Concretely, we
modify the boundary condition (2.36) in the following manner:(

θτ −
d

2 + ν −
bνc∑
n=1

c±n (−kτ)2n
)
φ±k (τ)

∣∣∣
τ=τ∗

= χ±k , (A.7)

where c±n are real constants. We shall show shortly that c±n can always be chosen to elimi-
nate the unwanted terms in the denominators of (2.38) and (2.39), so that the terms pro-
portional to (−kτ∗)ν become leading again. Under the modification, the bulk-to-boundary
propagators become

B+
M (k; τ) = (−τ)

d
2H

(2)
ν (−kτ)

(θτ∗ − d
2 + ν −

∑bνc
n=1 c

+
n (−kτ∗)2n)

[
(−τ∗)

d
2H

(2)
ν (−kτ∗)

] , (A.8)

B−M (k; τ) = (−τ)
d
2H

(1)
ν (−kτ)

(θτ∗ − d
2 + ν −

∑bνc
n=1 c

−
n (−kτ∗)2n)

[
(−τ∗)

d
2H

(1)
ν (−kτ∗)

] . (A.9)

The coefficients c±n can be determined by employing their recurrence relations. Let us first
look into c+

n . The denominator of (A.8) is expanded as

i
2νΓ(ν)
π

(−τ∗)
d
2

[ ∞∑
n=1

2nan (−kτ∗)2n−ν −
bνc∑
n=0

∞∑
m=1

anc
+
m (−kτ∗)2n+2m−ν

+
∞∑
n=0

(2n+ 2ν)bn (−kτ∗)2n+ν −
bνc∑
n=0

∞∑
m=1

bnc
+
m (−kτ∗)2n+2m+ν

]
. (A.10)

To cancel all terms dominating over 2νb0 (−kτ∗)ν , we impose the following recurrence
relation: for 1 ≤ n ≤ bνc,

2nan − a0c
+
n −

n−1∑
i=1

an−ic
+
i = 0 , (A.11)

where notice that it is independent of bn. Since a0 = 1, this immediately yields c+
1 = 2a1,

with which we can solve the recurrence relation. The solution c+
n is then given b

c+
n = 2nan −

n−1∑
i=1

an−ic
+
i

= 2nan −
n−1∑
i1=1

an−i1

(
2i1ai1 −

i1−1∑
i2=1

ai1−i2c
+
i2

)
9bνc is the floor function, namely the integer k satisfying k ≤ bνc < k + 1.
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...

=
n∑

m=1

∑
i1+i2···+im=n
i1,i2,··· ,im≥1

(−1)m+12i1Ai1i2···im , (A.12)

where we introduced

Ai1i2···im ≡ ai1ai2 · · · aim . (A.13)

The coefficients c−n can be fixed exactly in the same manner: since the unwanted terms
in (A.6) are exactly the same as in (A.5), the recurrence relation for c−n takes exactly the
same form as (A.11). Therefore, we find c−n = c+

n , which we denote by cn for simplicity.
Now, even for ν > 1, in the superhorizon regime, the bulk-to-boundary propagators

behave again as

B±M (k; τ∗) '
22νΓ(ν)

2νe±iπνΓ(−ν)(−kτ∗)−2ν . (A.14)

To make the variation problem consistent with the modified boundary conditions (A.7),
the boundary action must be chosen to be

S±bd[φ] = 1
2

∫
ddk

(2π)d (−τ)−d
[(

d

2 − ν +
bνc∑
n=1

cn(−kτ)2n
)
φ−kφk + 2φ−kχ±k

]
τ=τ∗

. (A.15)

Namely, the modification of the boundary condition forces the extra local counterterms.
As a result, we reproduce the wavefunction (2.43), so that the results we derived in sec-
tion 2.4.2 apply to general value of ν. On the other hand, the modification of the boundary
actions (A.15) affects the relation between the wavefunctions Ψ±D and Ψ±M ,

Ψ±D[φ̄] =
∫

[dχ±] Ψ±M [χ±]

× exp
[
∓ i

2

∫
ddk

(2π)d

(
d
2 − ν +

∑bνc
n=1 c

±
n (−kτ∗)2n)φ̄−kφ̄k + 2φ̄−kχ±k

(−τ∗)d

]
. (A.16)

The summation over n in the exponent, however, cancels out in the wavefunction squared,
thereby yielding the same form (3.3).
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