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Abstract: We propose a new approach to explore the neutral-current non-standard neu-
trino interactions (NSI) in atmospheric neutrino experiments using oscillation dips and
valleys in reconstructed muon observables, at a detector like ICAL that can identify the
muon charge. We focus on the flavor-changing NSI parameter εµτ , which has the maximum
impact on the muon survival probability in these experiments. We show that non-zero εµτ
shifts the oscillation dip locations in L/E distributions of the up/down event ratios of
reconstructed µ− and µ+ in opposite directions. We introduce a new variable ∆d repre-
senting the difference of dip locations in µ− and µ+, which is sensitive to the magnitude as
well as the sign of εµτ , and is independent of the value of ∆m2

32. We further note that the
oscillation valley in the (E, cos θ) plane of the reconstructed muon observables bends in the
presence of NSI, its curvature having opposite signs for µ− and µ+. We demonstrate the
identification of NSI with this curvature, which is feasible for detectors like ICAL having
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excellent muon energy and direction resolutions. We illustrate how the measurement of
contrast in the curvatures of valleys in µ− and µ+ can be used to estimate εµτ . Using these
proposed oscillation dip and valley measurements, the achievable precision on |εµτ | at 90%
C.L. is about 2% with 500 kt·yr exposure. The effects of statistical fluctuations, systematic
errors, and uncertainties in oscillation parameters have been incorporated using multiple
sets of simulated data. Our method would provide a direct and robust measurement of εµτ
in the multi-GeV energy range.
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1 Introduction and motivation

The phenomenon of neutrino oscillations has now been well-established, from measurements
at the solar, atmospheric, reactor as well as accelerator experiments with short and long
baselines [1]. Neutrino oscillations are the consequences of mixing among different neutrino
flavors and non-degenerate values of neutrino masses, with at least two neutrino masses
nonzero. However, neutrinos are massless in the Standard Model (SM) of particle physics,
and therefore, physics beyond the SM (BSM) is needed to accommodate nonzero neutrino
masses and mixing. Many models of BSM physics suggest new non-standard interactions
(NSI) of neutrinos [2], which may affect neutrino production, propagation, and detection in
a given experiment. The possible impact of these NSI at neutrino oscillation experiments
have been studied extensively, for example see refs. [3–14]. In this paper, we propose a new
method for identifying NSI at atmospheric neutrino experiments which can reconstruct
the energy, direction, as well as charge of the muons produced in the detector due to
charged-current interactions of νµ and ν̄µ.
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We shall focus on the neutral-current NSI, which may be described at low energies via
effective four-fermion dimension-six operators as [2]

LNC−NSI = −2
√

2GF εfαβ,C (ν̄αγρPLνβ) (f̄γρPCf) , (1.1)

where GF is the Fermi constant. The dimensionless parameters εfαβ,C describe the strength
of NSI, where the superscript f ∈ {e, u, d} denotes the matter fermions (e: electron, u:
up-quark, d: down-quark), and the indices α, β ∈ {e, µ, τ} refer to the neutrino flavors.
The subscript C ∈ {L,R} represents the chiral projection operator PL = (1 − γ5)/2 or
PR = (1 + γ5)/2. The hermiticity of the interactions demands εfβα,C = (εfαβ,C)∗.

The effective NSI parameter relevant for the neutrino propagation through matter is

εαβ ≡
∑

f=e,u,d

(
εfLαβ + εfRαβ

) Nf

Ne
≡

∑
f=e,u,d

εfαβ
Nf

Ne
, (1.2)

where Nf is the number density of fermion f . In the approximation of a neutral and
isoscalar Earth, the number densities of electrons, protons, and neutrons are identical,
which implies Nu ≈ Nd ≈ 3Ne. Thus,

εαβ ≈ εeαβ + 3 εuαβ + 3 εdαβ . (1.3)

In the presence of NSI, the modified effective Hamiltonian for neutrino propagation through
matter is

Heff = 1
2E U

 0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

U † + VCC

 1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 , (1.4)

where U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix that parametrizes neu-
trino mixing, and ∆m2

ij ≡ m2
i − m2

j are the mass-squared differences. The quantity
VCC ≡

√
2GFNe is the effective matter potential due to the coherent elastic forward scat-

tering of neutrinos with electrons inside the medium via the SM gauge boson W . Thus,
the effective potential due to NSI would be (VNSI)αβ =

√
2GFNe εαβ . For antineutrinos,

VCC → −VCC, U → U∗, and εαβ → ε∗αβ .
In the present study, we suggest a novel approach to unravel the presence of flavor-

changing neutral-current NSI parameter εµτ , via its effect on the propagation of multi-GeV
atmospheric neutrinos and antineutrinos through Earth matter. We choose εµτ as the NSI
parameter to focus on, since it can significantly affect the evolution of the mixing angle θ23
and the mass-squared difference ∆m2

32 in matter [15], which in turn would alter the survival
probabilities of atmospheric muon neutrinos and antineutrinos substantially [16, 17]. In
general, εµτ can be complex, i.e. εµτ ≡ |εµτ |eiφµτ . However, in the disappearance channels
νµ → νµ and ν̄µ → ν̄µ that dominate in our analysis,1 εµτ appears only as |εµτ | cosφµτ
at the leading order [18]. Thus, a complex phase only changes the effective value of εµτ

1The appearance channels νe → νµ and ν̄e → ν̄µ also contribute to the muon events in our analysis,
however these channels are not affected by εµτ to leading order [18].
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Experiment
90% C.L. bounds

Convention in [21–23] Our convention [10–12, 24, 25]
IceCube [21] −0.006 < ε̃µτ < 0.0054 −0.018 < εµτ < 0.0162
DeepCore [22] −0.0067 < ε̃µτ < 0.0081 −0.0201 < εµτ < 0.0243
Super-K [23] |ε̃µτ | < 0.011 |εµτ | < 0.033

Table 1. Existing bounds on εµτ at 90% confidence level. Note that the bounds presented in [21–
23] are on ε̃µτ that is defined according to the convention VNSI =

√
2GFNd ε̃µτ , while we use the

convention VNSI =
√

2GFNe εµτ (εµτ is defined in eq. (1.2)). Since Nd ≈ 3Ne in Earth, the bounds
in [21–23] on ε̃µτ have been converted to the bounds on εµτ , using εµτ = 3 ε̃µτ , as shown in the
third column.

to a real number between −|εµτ | and +|εµτ | at the leading order. We take advantage of
this observation, and restrict ourselves to real values of εµτ in the range −0.1 ≤ εµτ ≤ 0.1.
From the arguments given above, this covers the whole range of complex values of εµτ with
|εµτ | ≤ 0.1.

Based on the global neutrino data analysis in [19], where the possible contributions to
NSI from only up and down quark have been included, the bound on |εµτ | turns out to
be |εµτ | < 0.07 at 2σ confidence level. A phenomenological study to constrain εµτ using
preliminary IceCube and DeepCore data has been performed in [20]. The existing bounds
on εµτ from various neutrino oscillation experiments are listed in table 1. An important
point to note is the energies of neutrinos involved in these measurements: the IceCube
results are obtained using high energy events (> 300GeV) [21], the energy threshold of
DeepCore is around 10GeV [22], while the Super-K experiment is more efficient in the
sub-GeV energy range [23].

The proposed 50 kt magnetized Iron Calorimeter (ICAL) detector at the India-based
Neutrino Observatory (INO) [26, 27] would be sensitive to multi-GeV neutrinos, since it
can efficiently detect muons in the energy range 1–25GeV. Note that the MSW reso-
nance [2, 28, 29] due to Earth matter takes place for neutrino energies around 4–10GeV, so
ICAL would also be in a unique position to detect any interplay between the matter effects
and NSI. Another important feature is that ICAL can explore physics in neutrinos and
antineutrinos separately, unlike Super-K and IceCube/DeepCore. The studies of physics
potential of ICAL for detecting NSI have shown that, using the reconstructed muon mo-
mentum, it would be possible to obtain a bound of |εµτ | < 0.015 at 90% C.L. [24] with
500 kt·yr exposure. When information on the reconstructed hadron energy in each event
is also included, the expected 90% C.L. bound improves to |εµτ | < 0.010 [25]. The results
in [24, 25] are obtained using a χ2 analysis with the pull method [16, 30, 31].

The wide range of neutrino energies and baselines available in atmospheric neutrino
experiments offer an opportunity to study the features of “oscillation dip” and “oscillation
valley” in the reconstructed µ− and µ+ observables, as demonstrated in [32]. These features
can be clearly identified in the ratios of upward-going and downward-going muon events
at ICAL. If the muon neutrino disappearance is solely due to non-degenerate masses and
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non-zero mixing of neutrinos, then the valley in both µ− and µ+ is approximately a straight
line. The location of the dip, and the alignment of the valley, can be used to determine
∆m2

32 [32]. These features may undergo major changes in the presence of NSI, and can act
as smoking gun signals for NSI.

The novel approach, which we propose in this paper, is to probe the NSI parameter εµτ
based on the elegant features associated with the oscillation dip and valley, both of which
arise from the same physics phenomenon, viz. the first oscillation minimum in the muon
neutrino survival probability. For the oscillation dip feature, we note that non-zero εµτ
shifts the oscillation dip location in opposite directions for µ− and µ+. We demonstrate
that this opposite shift in dip location due to NSI can be clearly seen in the µ− and
µ+ data by reconstructing Lrec

µ /Erec
µ distributions, thanks to the excellent energy and

direction resolutions for muons at ICAL. We develop a whole new analysis methodology to
extract the information on εµτ using the dip locations. For this, we define a new variable
exploiting the contrast between the shifts in reconstructed dip locations, which eliminates
the dependence of our results on the actual value of ∆m2

32. For the oscillation valley
feature, we notice that the valley becomes curved in the presence of non-zero εµτ , and the
direction of this bending is opposite for neutrino and antineutrino. We then demonstrate
that this opposite bending can indeed be observed in expected µ− and µ+ events. We
propose a methodology to extract the information on the bending of the valley in terms of
reconstructed muon variables, and use it for identifying NSI.

In section 2, we discuss the oscillation probabilities of neutrino and antineutrino in the
presence of non-zero εµτ , and discuss the shifts in the dip locations as well as the bending of
the oscillation valleys in the survival probabilities of νµ and ν̄µ. In section 3, we investigate
the survival of these two striking features in the reconstructed Lrec

µ /Erec
µ distributions and

in the (Erec
µ , cos θrec

µ ) distributions of µ− and µ+ events separately at ICAL. In section 4,
we propose a novel variable for identifying the NSI, which is based on the contrast in the
shifts of dip locations in µ− and µ+. This variable leads to the calibration of εµτ , and is
used to find the expected bound on εµτ from a 500 kt·yr exposure of ICAL. In section 5, we
come up with a new procedure for determining the alignment of the oscillation valley and
estimating the value of ∆m2

32 in the absence of NSI, which we extend to the NSI analysis
in section 6. Here, we measure the contrast in the curvatures of the oscillation valleys in
µ− and µ+ in the presence of NSI, and use it for determining the expected bound on εµτ
from the valley analysis at ICAL. Finally, in section 7, we summarize our findings and
offer concluding remarks.

2 Oscillation dip and valley in the presence of NSI

In the limit of θ13 → 0, and the approximation of one mass scale dominance scenario
[∆m2

21L/(4E)� ∆m2
32L/(4E)] and constant matter density, the survival probability of νµ

when traveling a distance Lν is given by [16]

Pνµ→νµ = 1− sin2 2θeff sin2
[
ξ

∆m2
32Lν

4Eν

]
, (2.1)
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sin2 2θ12 sin2 θ23 sin2 2θ13 |∆m2
32| (eV2) ∆m2

21 (eV2) δCP Mass Ordering
0.855 0.5 0.0875 2.46× 10−3 7.4× 10−5 0 Normal (NO)

Table 2. The benchmark values of oscillation parameters that we use in the analysis. Normal mass
ordering corresponds to m1 < m2 < m3.

where

sin2 2θeff = | sin 2θ23 + 2β ηµτ |2
ξ2 , (2.2)

ξ =
√
| sin 2θ23 + 2β ηµτ |2 + cos2 2θ23 , (2.3)

and
ηµτ = 2Eν VCC εµτ

|∆m2
32|

, (2.4)

where β ≡ sgn(∆m2
32). That is, β = +1 for normal mass ordering (NO), and β = −1 for

inverted mass ordering (IO).
In the limit of maximal mixing (θ23 = 45◦), eq. (2.1) reduces to the following simple

expression [17]:

Pνµ→νµ = cos2
[
Lν

(
∆m2

32
4Eν

+ εµτVCC

)]
. (2.5)

We further find that the correction due to the deviation of θ23 from maximality,
χ ≡ θ23 − π/4, is second order in the small parameter χ, and hence can be neglected.
Here, one notes that the NSI parameter εµτ primarily modifies the wavelength of neutrino
oscillations. It also comes multiplied with VCC, which increases at higher baselines inside
the Earth’s matter. Thus, the modification in νµ survival probabilities due to NSI varies
with the baseline Lν (or neutrino zenith angle cos θν).

2.1 Effect of εµτ on the oscillation dip in the Lν/Eν

In figure 1, we present the survival probabilities of νµ and ν̄µ as functions of Lν/Eν , for two
fixed values of cos θν (i.e. cos θν = −0.4,−0.8), and for three values of the NSI parameter
εµτ (i.e. εµτ = +0.1, 0.0,−0.1). The other benchmark values of the oscillation parameters
are given in table 2.

Figure 1 also indicates the sensitivity ranges for the atmospheric neutrino experiments
Super-K, ICAL, and IceCube. Note that these ranges are different for cos θν = −0.4
and −0.8, which correspond to Lν around 5100 km and 10200 km, respectively. While
calculating these Lν/Eν ranges, the energy ranges chosen are those for which the detectors
perform very well: we use the Eν range of 100MeV–5GeV for Super-K [33], 1–25GeV
for ICAL [26], and 100GeV–10 PeV for IceCube [34]. Note that these ranges are only
indicative. The following observations may be made from the figure.

• For log10[Lν/Eν ] in the range of [0–1.5], the survival probabilities of both νµ and
ν̄µ are observed to be suppressed in the presence of non-zero εµτ . This is because,
although the oscillations due to neutrino mass-squared difference do not develop for
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Figure 1. The survival probabilities of νµ and ν̄µ as functions of log10(Lν/Eν) in left and right
panels, respectively. The black lines correspond to εµτ = 0 (standard interactions: SI), whereas
red and blue lines are with εµτ = 0.1, and −0.1, respectively. The neutrino direction taken in
upper (lower) panels is cos θν = −0.4 (−0.8). The horizontal bands shown here are the indicative
Lν/Eν ranges that these detectors are well-suited for. We consider normal mass ordering, and the
benchmark oscillation parameters given in table 2.

such small value of Lν/Eν , i.e. ∆m2
32Lν/Eν � 1, the disappearance of νµ is possible

due to the LνεµτVCC term, which can be high for large baselines (for core passing
neutrinos, VCC is large). For example, log10[Lν/Eν ] = 1 may correspond to Lν = 5000
km and Eν = 500GeV, so that ∆m2

32Lν/Eν ≈ 0.025. However, for this baseline, the
average density of the Earth is ρ ≈ 3.9 g/cc, and hence for εµτ = 0.1, we have
LνεµτVCC ≈ 0.93, which takes the oscillation probability away from unity. The effect
of NSI at such small Lν/Eν is energy-independent, and can be seen at detectors like
IceCube [21] due to its better performance at high energy. Note, however, that in
the high energy limit, the νµ survival probability depends only on the magnitude of
εµτ (eq. (2.5)). As a result, it may be difficult for IceCube to determine sgn(εµτ ), if
indeed |εµτ | turns out to be nonzero.
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• As we go to higher value of log10[Lν/Eν ] (> 2), the term containing neutrino mass
splitting becomes comparable to the LεµτVCC term in eq. (2.5), and the competi-
tion between these two terms leads to an energy dependence. When the oscillations
due to the mass splitting are the dominating contribution, the change in oscillation
wavelength due to non-zero εµτ results in a shift of the oscillation minima towards
left or right side (lower or higher values of Lν/Eν , respectively), depending on the
amplitude of εµτ and its sign. The direction of shift in the dip location depends on
whether it is neutrino or antineutrino (since the sign of VCC for them are opposite),
and on the neutrino mass ordering. This effect on the shift in the dip location is
discussed in next paragraph in detail. This region is relevant for Super-K, INO, and
most of the long-baseline experiments.

We now discuss the modification of the oscillation dip due to non-zero εµτ . First, using
the approximate expression of νµ survival probability from eq. (2.5), we obtain the value
of Lν/Eν at the first oscillation minimum (or the dip):

Lν
Eν

∣∣∣∣
dip

= 2π
|∆m2

32 + 4εµτVCCEν |
. (2.6)

The above expression may be written by expressing VCC in terms of the line-averaged
matter density2 ρ and taking care of units,

Lν [km]
Eν [GeV]

∣∣∣∣
dip

= π∣∣2.54 ·∆m2
32[eV2]± 7.7× 10−4 · ρ[g/cm3] · Ye · εµτ · Eν [GeV]

∣∣ . (2.8)

Here, a positive sign in the denominator corresponds to neutrinos, whereas a negative sign
is for antineutrinos. This approximation is useful for understanding the shift of dip position
with non-zero εµτ . Let us take the case of neutrino with normal ordering. With positive
εµτ , the denominator of eq. (2.6) increases, thus the oscillation minimum appears at a lower
value of Lν/Eν than that for the SI. On the other hand, with negative εµτ , the oscillation
dip would occur at a higher value of Lν/Eν . These two features can be seen clearly in
the left panels of figure 1. For antineutrinos and the same mass ordering, since the matter
potential has the opposite sign, the shift of oscillation dip is in the opposite direction as
compared to that for neutrinos, given the same εµτ .

Expanding eq. (2.8) to first order in εµτ , one can write

Lν [km]
Eν [GeV]

∣∣∣∣
dip

= π∣∣∣2.54×∆m2
32[eV2]

∣∣∣∓ π×1.19×10−4 ·ρ[g/cm3] ·Ye ·Eν [GeV]
β (∆m2

32)2[eV4]
·εµτ , (2.9)

where β ≡ sgn(∆m2
32), as defined earlier. Here, the negative sign corresponds to neutrinos,

whereas the positive sign is for antineutrino. This indicates that, for small values of εµτ , the
2We can write VCC approximately as a function of matter density ρ

VCC ≈ ±7.6× Ye ×
ρ

1014 g/cm3 eV . (2.7)

Here, Ye = Ne
Np+Nn

is the relative electron number density. In an electrically neutral and isoscalar medium,
Ye = 0.5. The positive (negative) sign is for neutrino (antineutrino).

– 7 –
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shift in the dip location will be linear in εµτ , and will have opposite sign for neutrinos and
antineutrinos, as well as for the two mass orderings. We have checked that for Eν < 25GeV
and typical line-averaged density of the Earth, indeed εµτ < 0.1 is small enough for the
above approximation to hold.

2.2 Effect of εµτ on the oscillation valley in the (Eν , cos θν) plane

In figure 2, we show the oscillograms of survival probabilities for νµ and ν̄µ, in the plane
of neutrino energy and cosine of neutrino zenith angle (cos θν), with NO as the neutrino
mass ordering. We show only upward-going neutrinos (cos θν < 0), since for downward-
going neutrinos (cos θν > 0), the baseline Lν is very small3 and neutrino oscillations do
not develop, making Pµµ ≈ 1.0. The differences observed among the upper, middle, and
lower panels are due to different values of εµτ . A major impact of NSI is observed on
the feature corresponding to the first oscillation minima, seen in the figure as a broad
blue/black diagonal band. We refer to this broad band as the oscillation valley [32]. In
the SI case, the oscillation valley appears like a triangle with straight edges, while in the
presence of NSI, its edges seem to acquire a curvature. The sign of this curvature is opposite
for neutrinos and antineutrinos, as can be seen by comparing the left and right plots of
upper and lower panels of figure 2.

The modification in the oscillation valley due to NSI may be explained from the fol-
lowing relation between Eν and cos θν at the first oscillation minima. We rewrite eq. (2.6)
with Lν ≈ 2R| cos θν |:

Eν |valley ≈
|∆m2

32|
(π/|R cos θν |) − 4β εµτVCC

. (2.11)

Taking care of units and expressing VCC in terms of line-averaged constant matter density
ρ, the above expression may be written as

Eν [GeV]|valley = |∆m2
32[eV2]|

(π/|5.08 ·R[km] · cos θν |) ∓ 3.02× 10−4 · β · εµτ · Ye · ρ[g/cm3] . (2.12)

Here, the negative sign in the denominator corresponds to neutrinos, whereas the positive
sign is for antineutrinos. Putting εµτ = 0 in eq. (2.12) gives the condition of the first
oscillation minima to be Eν = |(5.08/π) · ∆m2

32 · R[km] · cos θν |, and this relation clearly
shows that in the SI case, the minimum of the oscillation valley is a straight line in the
(Eν , cos θν) plane.

Now in the normal mass ordering scenario, if εµτ > 0 in eq. (2.12), then for neutrinos,
Eν increases for a given cos θν as compared to the SI case. As a result, the oscillation val-
ley (the broad blue/black band) bends towards higher values of energies in top left panel.

3The zenith angle θν is related to the baseline Lν by

Lν =
√

(R+ h)2 − (R− d)2 sin2 θν − (R− d) cos θν , (2.10)

where R, h, and d are the radius of Earth, the average height from the Earth surface at which neutrinos
are created, and the depth of the detector underground, respectively. In this study, we use R = 6371 km,
h = 15 km, and d = 0 km. A small change in h and d does not affect the νµ oscillation probabilities
because R� h� d.
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Figure 2. The oscillogram for the survival probabilities in (Eν , cos θν) plane for neutrino and
antineutrino in left and right panels, respectively, with normal mass ordering and the benchmark
oscillation parameters from table 2. The value of εµτ is taken as +0.1, 0 (SI), and -0.1 in top,
middle and bottom panels, respectively.

– 9 –



J
H
E
P
0
4
(
2
0
2
1
)
1
5
9

On the other hand, for antineutrino, the oscillation valley tilts towards lower energies for
εµτ > 0, as can be seen in the top right panel. For negative values of εµτ , the oscillation
valley bends in the opposite direction, for both neutrinos and antineutrinos, as shown in the
bottom panels of figure 2. In the inverse mass ordering scenario, the bending of the oscil-
lation valley will be in the direction opposite to that in the normal mass ordering scenario.

From eqs. (2.9) and (2.12), the shift in the oscillation minima and the bending in the
oscillation valley are in opposite directions for normal and inverted mass ordering. The
effect of εµτ , therefore, depends crucially on the mass ordering. In this paper, we present
our analysis in the scenario where the mass ordering is known to be NO. The analysis
for IO may be performed in an exactly analogous manner. Our results are presented with
the exposure corresponding to 10 years of ICAL data-taking. It is expected that the mass
ordering will be determined from the neutrino experiments (including ICAL) by this time.

3 Impact of NSI on the event distribution at ICAL

While the effect of NSI on the neutrino and antineutrino survival probabilities was discussed
in the last section, it is important to confirm whether the features present at the probability
level can survive in the observables at a detector, and if they can be reconstructed. Here
is where the response of the detector plays a crucial role. Neutrinos cannot be directly
detected in an experiment, however the charged leptons produced from their charged-
current interactions in the detector contains information about their energy, direction, and
flavor, which can be recovered depending on the nature of the detector.

The upcoming ICAL detector at the India-based Neutrino Observatory (INO) will be
composed of 151 layers of magnetized iron plates; the 50 kt iron acting as the target,
and around 30,000 glass resistive plate chambers as detection elements. The magnetic
field of strength 1.5 Tesla and the time resolution of less than 1 ns [35–37] will enable
ICAL to distinguish µ− from µ+ events in the multi-GeV energy range. In this study, we
generate the charged-current interactions of νµ and ν̄µ, similar to ref. [32], using neutrino
and antineutrino fluxes calculated at the Theni site by Honda et al. [38, 39] and the
neutrino event generator NUANCE [40]. The reconstructed energy (Erec

µ ) and zenith angle
(θrec
µ ) of muons produced in neutrino and antineutrino interactions will be used in the

analysis. The detector properties of ICAL for muons as obtained in ref. [41] using the
ICAL-GEANT4 simulation package, are incorporated. With around 1 km rock coverage
(3800 meter water equivalent), the downward-going cosmic muon background would get
reduced by ∼ 106 [42], most of which will be further vetoed by employing the fiducial
volume cut. We do not consider the muon events induced by tau decay in the detector
since the number of such events is small (∼ 2% of total upward-going muons from νµ
interactions in the energy range of interest [43]), and these are mostly at lower energies
and below the energy threshold of ICAL which is 1GeV.

The quantity Lrec
µ associated with the reconstructed muon direction cos θrec

µ is defined
(similar to eq. (2.10)) as

Lrec
µ ≡

√
(R+ h)2 − (R− d)2 sin2 θrec

µ − (R− d) cos θrec
µ . (3.1)
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Figure 3. The log10[Lrec
µ /Erec

µ ] distributions of µ− and µ+ events in left and right panels, re-
spectively, expected in 10 years at ICAL. The black lines correspond to SI (εµτ = 0), whereas
red and blue lines are for εµτ = 0.1 and -0.1, respectively. The statistical uncertainties shown by
shaded boxes are the root-mean square (rms) fluctuations of 100 independent 10-year data sets.
The solid lines show the mean of these 100 distributions. We consider normal mass ordering, and
the benchmark oscillation parameters given in table 2.

Observable Range Bin width Number of bins

log10

[
Lrec
µ (km)

Erec
µ (GeV)

]
[0, 1] 0.2 5


34

[1, 1.6] 0.06 10
[1.6, 1.7] 0.1 1
[1.7, 2.3] 0.3 2
[2.3, 2.4] 0.1 1
[2.4, 3.0] 0.06 10
[3, 4] 0.2 5

Table 3. The binning scheme of log10[Lrec
µ /Erec

µ ] for µ− and µ+ events.

Note that Lrec
µ is simply a proxy observable, and there is no need to associate it directly

with the distance traveled by the incoming neutrino.

3.1 The Lrec
µ /Erec

µ distributions

Figure 3 presents the log10[Lrec
µ /Erec

µ ] distribution4 of the upward-going µ− and µ+ events
(U, cos θrec

µ < 0) with SI (εµτ = 0) and with SI + NSI (εµτ = ±0.1) expected with 10-year
exposure at ICAL. We include the statistical fluctuation in the number of events by simulat-
ing 100 independent data sets, and calculating the mean and root-mean-square deviation
for each bin. For log10[Lrec

µ /Erec
µ ], we use the same binning scheme as used in ref. [32],

which is shown in table 3. We have a total of 34 non-uniform bins of log10[Lrec
µ /Erec

µ ]
4The values we mention for log10[Lrec

µ /Erec
µ ] throughout the paper are calculated with Lrec

µ in the units
of km and Erec

µ in GeV.
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Observable Range Bin width Number of bins

Erec
µ

[1, 5] 0.5 8

16

[5, 8] 1 3

(GeV)
[8, 12] 2 2
[12, 15] 3 1
[15, 25] 5 2

cos θrec
µ [−1.0, 1.0] 0.1 20

Table 4. The binning scheme adopted for Erec
µ and cos θrec

µ of µ− and µ+ events.

in the range 0–4. The downward-going events (D, cos θrec
µ > 0) are not affected signifi-

cantly by oscillations or by additional NSI interactions. The log10[Lrec
µ /Erec

µ ] distribution
of downward-going µ− and µ+ events is identical to the one shown in the upper panel of
figure [4] in ref. [32], and we do not repeat it here.

Figure 3 clearly shows that the log10[Lrec
µ /Erec

µ ] range of 2.4–3.0 would be important
for NSI studies, since non-zero εµτ has the largest effect in this range. With positive εµτ ,
the number of µ− events is lower as compared to that of SI case, whereas the number
of µ+ events is higher. If εµτ is negative, then the modifications of the number of µ−
and µ+ events are the other way around. As a consequence, if a detector is not able to
distinguish between the µ− and µ+ events, the difference between SI and NSI would get
diluted substantially. The charge identification capability of the magnetized ICAL detector
would be crucial in exploiting this observation.

3.2 Distributions in the (Erec
µ , cos θrec

µ ) plane

In order to study the effect of NSI on the distribution of events in the (Erec
µ , cos θrec

µ ) plane,
we bin the data in reconstructed observables, Erec

µ and cos θrec
µ . We have a total of 16 non-

uniform Erec
µ bins in the range 1–25GeV, and the whole range of −1 ≤ cos θrec

µ ≤ 1 is divided
into 20 uniform bins. The reconstructed Erec

µ and cos θrec
µ are binned with the same binning

scheme as used in [32], and is shown in table 4. For demonstrating event distributions,
we scale the 1000-year MC sample to an exposure of 10 years, and the difference in the
number of events with SI + NSI (|εµτ | = 0.1) and the number of events with SI, for µ−
and µ+ events are shown in figure 4.

From this figure, we can make the following observations.

• The events in the bins with Erec
µ > 5GeV and cos θrec

µ < −0.2 are particularly useful
for NSI searches at ICAL. This is true for both µ− and µ+ events.

• There is almost no difference in the number of events between SI+NSI and SI at
Erec
µ < 5GeV. The events with reconstructed muon energy less than 5GeV do not

seem to be sensitive to NSI due to small NSI-induced matter effects: LνεµτVCC .
∆m2/(2Eν) at small energies.
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Figure 4. The (Erec
µ , cos θrec

µ ) distributions of difference of events between including non-zero NSI
and only SI (εµτ = 0) expected with 500 kt·yr of ICAL. Left and right panels are for µ− and µ+

events, respectively, whereas upper and lower panels correspond to εµτ = 0.1 and −0.1, respectively.
We consider normal mass ordering, and the benchmark oscillation parameters given in table 2.

• As we go to higher energies, the mass-squared difference-induced neutrino oscillations
die down, while the NSI-induced matter effect term LνεµτVCC increases. Therefore,
large effects of NSI are observed at high energies.

• The effect of NSI is also larger at higher baselines, since in this case, neutrinos pass
through inner and outer cores that have very high matter densities (around 13 g/cm3

and 11 g/cm3, respectively), and hence higher values of LνεµτVCC.

• In many of the (Erec
µ , cos θrec

µ ) bins, NSI gives rise to an excess in µ− events and a
deficit in µ+ events, or vice versa. If µ− and µ+ events are not separated, this would
lead to a dilution of information. Therefore, muon charge information is a crucial
ingredient in the search for NSI. We have also seen this feature in the log10[Lrec

µ /Erec
µ ]

distributions of µ− and µ+ events in section 3.1.
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Figure 5. The log10(Lrec
µ /Erec

µ ) distributions of ratio of upward-going and downward-going µ−

(left panel) and µ+ (right panel) events using 10-year data of ICAL. The black lines correspond
to SI (εµτ = 0), whereas red and blue lines are for εµτ = 0.1 and -0.1, respectively. The statis-
tical fluctuations shown by shaded boxes are the root-mean-square deviation of 100 independent
distributions of U/D ratio, each for 10 years, whereas the mean of these distributions are shown by
solid lines. We consider normal mass ordering, and the benchmark oscillation parameters given in
table 2.

4 Identifying NSI through the shift in oscillation dip location

To study the effect of NSI in oscillation dip, we focus on the ratio of upward-going (U)
and downward-going (D) muon events as the observable to be studied. The up/down event
ratio U/D is defined for cos θrec

µ < 0, as [32]

U/D(Erec
µ , cos θrec

µ ) ≡
N(Erec

µ , −| cos θrec
µ |)

N(Erec
µ , | cos θrec

µ |)
, (4.1)

where the numerator corresponds to the number of upward-going events and the denomina-
tor is the number of downward-going events, with energy Erec

µ and direction | cos θrec
µ |. We

associate the U/D ratio with cos θrec
µ < 0 as well as the corresponding Lrec

µ of upward-going
events. This ratio is expected to serve as the proxy for the survival probabilities of νµ and
ν̄µ at ICAL, since around 98% muon events at ICAL arise from the νµ → νµ oscillation
channel [32].

One advantage of the use of the U/D ratio would be to nullify the effects of systematic
uncertainties like flux normalization, cross sections, overall detection efficiency, and energy
dependent tilt error, as can be seen later. Note that the up-down symmetry of the detector
geometry and detector response play an important role in this.

Figure 5 presents the Lrec
µ /Erec

µ distributions of U/D with εµτ = 0 (SI) and ±0.1, for
an exposure of 10 years at ICAL. The mass ordering is taken as NO. The statistical
fluctuations shown in the figure are the root-mean-square deviation obtained from the
simulations of 100 independent sets of 10 years data. Around log10[Lrec

µ /Erec
µ ] ∼ 2.4–2.6,

we see a significant modification in the U/D ratio due to the presence of non-zero εµτ
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(±0.1), particularly in the location of the oscillation dip. The dip shifts towards left or
right (i.e. to lower or higher values of Lrec

µ /Erec
µ , respectively) from that of the SI case with

non-zero εµτ . This shift for µ− and µ+ events is observed to be in opposite directions,
as is expected from the discussions in section 2.1. For example, for εµτ > 0, the location
of oscillation dip in µ− events gets shifted towards smaller Lrec

µ /Erec
µ values. On other

hand, in µ+ events, the oscillation dip shifts to higher values of Lrec
µ /Erec

µ . For εµτ < 0,
this shift is in the opposite directions. Moreover, as the oscillation dip shifts towards the
higher value of Lrec

µ /Erec
µ , the dip becomes shallower due to the effect of rapid oscillation

at high Lν/Eν . This effect is visible in both, µ− and µ+. It can be easily argued that the
modification in oscillation dips of µ− and µ+ due to non-zero εµτ is the reflection of how
the survival probabilities of neutrino and antineutrino change in the presence of non-zero
εµτ , as expected from eq. (2.6) in section 2.1.

Note that for a neutrino detector that is blind to the charge of muons, the dip itself
would get diluted since different average inelasticities of neutrino and antineutrino events
at these energies would lead to slightly different dip locations in µ− and µ+ distributions.
Moreover, the shift of oscillation dip towards opposite directions in µ− and µ+ events due
to non-zero εµτ would further contribute to the dilution of NSI effects on the dip location.
On the other hand, a detector like ICAL that has the charge identification capability, not
only provides independent undiluted measurements of dip locations in µ− and µ+ events,
but also provides a unique novel observable that can cleanly calibrate against the value of
εµτ , as we shall see in the next section.

4.1 A novel variable ∆d for determining εµτ

Since the oscillation dip locations in the U/D distributions of both, µ− and µ+ events,
shift to lower / higher values of Lrec

µ /Erec
µ depending on the value of εµτ , the dip location

in either of these distributions may be used to estimate εµτ , independently. We have
already developed a dip-identification algorithm [32], where the dip location is not simply
the lowest value of U/D ratio, but takes into account information from the surrounding
bins that have a U/D ratio below a threshold value. The algorithm essentially identifies the
cluster of contiguous bins that have a U/D ratio lower than any surrounding bins, and fits
these bins with a quadratic function whose minimum corresponds to the dip. The value of
log10[Lrec

µ /Erec
µ ] corresponding to this minimum is termed as the dip location. We denote

the dip location for µ− and µ+ events as d− and d+, respectively.
We obtain the calibration of εµτ with the dip locations for µ− and µ+ events separately,

using 1000-year MC data. In the top panels of figure 6, we present the calibration curves
of εµτ with d− (left panel) and d+ (right panel), for three different values of ∆m2

32. The
straight line nature of the calibration curves can be understood qualitatively using eq. (2.6).
For a majority of events (Erec

µ < 25GeV), the εµτVCCEν term is much smaller than ∆m2
32

term, and therefore the linear expansion as shown in eq. (2.9) is valid.
In eq. (2.9), the dominating ∆m2

32 dependence of the dip location is through the first
term. We can get rid of this dependence by introducing a new variable

∆d = d− − d+ , (4.2)
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Figure 6. Upper panels: the calibration of εµτ with the dip location in U/D ratio of µ− (left panel)
and µ+ (right panel) events separately. Lower panel: the calibration of εµτ with difference in dip
location of µ− and µ+. Note that for −0.1 < εµτ < −0.07, the dip location is simply the center
of the log10[Lrec

µ /Erec
µ ] bin with minimum U/D ratio since the fitting is not stable for these values.

We consider normal mass ordering, and the benchmark oscillation parameters given in table 2.

which is expected to be proportional to εµτ , and can be used to calibrate for εµτ . As may be
seen in the bottom panel of figure 6, this indeed removes the dominant ∆m2

32-dependence
in the calibration of εµτ . Note that some ∆m2

32-dependence still survives, which may be
seen in the slightly different slopes of the calibration curves for different ∆m2

32 values.
However, this dependence is clearly negligible, as it appears in eq. (2.9) as a multiplicative
correction to εµτ . We have thus obtained a calibration for εµτ that is almost independent
of ∆m2

32.
Note that εµτ = 0 does not imply ∆d = 0, since different matter effects and differ-

ent inelasticities in neutrino and antineutrino channels cause the dips to arise at slightly
different log10[Lrec

µ /Erec
µ ] values in these two channels even in the absence of NSI.

4.2 Constraints on εµτ from the measurement of ∆d

We saw in the last section that one can infer the value of εµτ in the observed data from
the calibration curve between ∆d and εµτ , independent of the actual value of ∆m2

32. We
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Figure 7. The blue stars and the blue solid line indicate the calibration curve of εµτ against ∆d,
obtained using 1000-year MC data with normal mass ordering. The gray bands show the expected
90% C.L. limits on ∆d (vertical bands), and hence on εµτ (horizontal bands), with 500 kt·yr of
ICAL exposure, when the actual value of εµτ = 0. The light (dark) gray bands show the limits
when the errors on oscillation parameters, and the impact of systematic uncertainties are included
(excluded), as discussed in section 4.2. For fixed-parameter case, we use the benchmark oscillation
parameters given in table 2.

obtain the calibration curve using the 1000-year MC-simulated sample, and show it with
the solid blue line in figure 7.

For estimating the expected constraints on εµτ , we simulate 100 independent sets of
data, each for 10-year exposure of ICAL with the benchmark oscillation parameters as
given in table 2, and εµτ = 0. In figure 7, the range indicated along the x-axis by dark
gray band is the expected 90% C.L. range of the measured value of ∆d, while the range
indicated along the y-axis by the dark gray band is the expected 90% C.L. limit on εµτ .
From the figure, we find that one can expect to constrain εµτ to −0.024 < εµτ < 0.020 at
90% C.L. with 10 years of data.

Since the calibration was found to be almost independent of the actual value of ∆m2
32,

we expect that even if the actual value of ∆m2
32 were not exactly known, the results

will not change. We have confirmed this by generating 100 independent sets of 10-year
exposure, where the ∆m2

32 values used as inputs follow a Gaussian distribution ∆m2
32 =

(2.46 ± 0.03) × 10−3 eV2, in accordance to the range allowed by the global fit [44–46] of
available neutrino data.

We also checked the impact of uncertainties in the values of the other oscillation pa-
rameters. We first simulated 100 statistically independent unoscillated data sets. Then for
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each of these data sets, we take 20 random choices of oscillation parameters, according to
the Gaussian distributions

∆m2
21 = (7.4±0.2)×10−5 eV2 , ∆m2

32 = (2.46±0.03)×10−5 eV2 , (4.3)
sin2 2θ12 = 0.855±0.020 , sin2 2θ13 = 0.0875±0.0026 , sin2 θ23 = 0.50±0.03 , (4.4)

guided by the present global fit [47]. We keep δCP = 0, since its effect on νµ survival
probability is known to be highly suppressed in the multi-GeV energy range [18]. This
procedure effectively enables us to consider the variation of our results over 2000 different
combinations of oscillation parameters, to take into account the effect of their uncertainties.

We do not observe any significant dilution of results due to the variation over oscillation
parameters. This is expected, since (i) solar oscillation parameters ∆m2

21 and θ12 do not
contribute significantly to the νµ survival probability in the multi-GeV range, (ii) the
reactor mixing angle θ13 is already measured to a high precision, (iii) the mixing angle θ23
does not affect the location of the oscillation minimum at the probability level, and (iv)
our procedure of using ∆d (see eq. (4.2)) to determine εµτ minimizes the impact of ∆m2

32
uncertainty, as shown in section 4.1.

In addition, we take into account the five major systematic uncertainties in the neutrino
fluxes and cross sections that are used in the standard ICAL analyses [26]. These five
uncertainties are (i) 20% in overall flux normalization, (ii) 10% in cross sections, (iii) 5%
in the energy dependence, (iv) 5% in the zenith angle dependence, and (v) 5% in overall
systematics. For each of the 2000 simulated data sets, we modify the number of events in
each (Erec

µ , cos θrec
µ ) bin as

N = N (0)(1 + δ1)(1 + δ2)(Erec
µ /E0)δ3(1 + δ4 cos θrec

µ )(1 + δ5) , (4.5)

where N (0) is the theoretically predicted number of events, and E0 = 2GeV. Here,
(δ1, δ2, δ3, δ4, δ5) is an ordered set of random numbers, generated separately for each sim-
ulated data set, with the Gaussian distributions centered around zero and the 1σ widths
given by (20%, 10%, 5%, 5%, 5%). The normalization uncertainties and energy tilt uncer-
tainty are expected to be canceled in the U/D ratio, while the zenith angle distribution
uncertainty affects the upward-going and downward-going events differently, and hence
would be expected to affect the U/D ratio. We explicitly check this and indeed find this
to be true.

When the oscillation parameter uncertainties and all the five systematic uncertainties
mentioned above are included, it is found that the method based on the shift in the dip
locations may constrain εµτ to −0.025 < εµτ < 0.024 at 90% C.L. . The results denoting
the effects of these uncertainties have been shown in figure 7.

5 A new method for determining ∆m2
32 in the absence of NSI

The reconstruction of the oscillation valley using the distributions of the upward-going and
downward-going muons in (Erec

µ , cos θrec
µ ) plane is discussed in detail in ref. [32]. It has been

shown that the alignment of the valley can provide a measurement of ∆m2
32. In this paper,
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Figure 8. The distributions of U/D ratios in (Erec
µ , cos θrec

µ ) plane, for µ− and µ+ events, in
left and right panels, respectively. This is the average of 100 independent simulated data sets,
each for 10-year exposure at ICAL, with εµτ = 0. The white solid and dashed lines correspond
to the contours with fitted U/D ratio equal to 0.4 and 0.5, respectively, obtained after the fitting
of oscillation valley with the function F0 as given in eq. (5.1). The black solid and dashed lines
correspond to log10[Lrec

µ /Erec
µ ] = 2.2 and 3.0, respectively. We consider normal mass ordering, and

the benchmark oscillation parameters given in table 2.

we use an alternative procedure for getting the alignment of the oscillation valley, which
is more robust and more well-motivated as compared to what was used in ref. [32], and
determine the expected precision that the ICAL detector can achieve on the atmospheric
oscillation parameter ∆m2

32, using this method.
Figure 8 shows the distributions of the ratio of upward-going and downward going

events at ICAL in the (Erec
µ , cos θrec

µ ) plane for 10 years of ICAL data. The left and
right panels show the U/D ratios for µ− and µ+ events, respectively. For the sake of
demonstration (in order to reduce the statistical fluctuations in the figure and emphasize
the physics), we show the binwise average of 100 independent data sets, each with 10-year
exposure of ICAL. The blue bands in figure 8 correspond to the reconstructed oscillation
valley. Note that a good reconstruction of the oscillation valley would be an evidence for
the fidelity of the ICAL detector.

To get the alignment of the oscillation valley, we fit the U/D distribution for µ− or µ+

independently with a functional form

F0(Erec
µ , cos θrec

µ ) = Z0 +N0 cos2
(
m0

cos θrec
µ

Erec
µ

)
, (5.1)

where Z0, N0, and m0 are the independent parameters to be determined from the fitting
of U/D distributions. The parameter Z0 quantifies the minimum depth of the fitted U/D
ratio, N0 is the normalization constant, whereas m0 is the slope of the oscillation valley.
Since more than 95% of the events at ICAL are contributed from the νµ → νµ and ν̄µ → ν̄µ
survival probabilities, we expect that the function F0, that resembles eq. (2.5), would be
suitable for fitting the oscillation valley in the (Erec

µ , cos θrec
µ ) plane. Here, the slope m0 can
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Figure 9. The blue stars and the blue lines indicate the calibration curves of ∆m2
32 against m0,

obtained using 1000-year MC data with normal mass ordering. The gray bands represent the 90%
C.L. allowed ranges of m0 (vertical bands), and hence of ∆m2

32 (horizontal bands), with a given
input value of ∆m2

32 = 2.46×10−3 eV2, for an exposure of 10 years at ICAL. The results for µ−

and µ+ events are shown separately, in the left and right panels, respectively. The light (dark) gray
bands show the ranges when the errors on other oscillation parameters and the impact of systematic
uncertainties are included (excluded), as discussed in section 4.2. For fixed-parameter case, we use
the benchmark oscillation parameters given in table 2.

be used directly to calibrate ∆m2
32. The parameters N0 and Z0 also contain information

about the atmospheric mixing parameters, however, they cannot be connected easily to
the determinations of these parameters.

Figure 8 also shows the contour lines for the fitted U/D ratio of 0.4 and 0.5. The contour
lines for µ+ are seen to reproduce the data better than those for µ−. The reason behind
this is the matter effects, which appear in µ− data since the mass ordering is assumed to be
NO here. Note that the fitting function F0 is designed for only the vacuum oscillation, and
we focus only on the region where vacuum oscillation is expected to dominate. In order to
be safe from matter effects, we remove the events with log10[Lrec

µ /Erec
µ ] > 3.0, where the

matter effects are significant. We also discard the events with log10[Lrec
µ /Erec

µ ] < 2.2, since
these would have barely oscillated. The latter cut also gets rid of most of the events near
horizon, where the distance traveled by the neutrinos has large errors. In order to minimize
the data from the bins with clearly large fluctuations, we use another cut on the maximum
value of the U/D ratio. This cut is taken to be U/D < 0.9 for both µ− and µ+ events.

We calibrate for ∆m2
32 by fitting the U/D ratio of 1000-year MC data with input

∆m2
32 values in the range (1.9–3.0) × 10−3 eV2, and obtaining the corresponding value of

m0. The statistical fluctuations are estimated by simulating 100 independent data sets of
10 years for a given input value of ∆m2

32 = 2.46× 10−3 eV2, and fitting for the U/D ratio
independently with eq. (5.1). The 100 values of m0 thus obtained provide the expected
uncertainties on ∆m2

32. In figure 9, the gray bands show the 90% C.L. ranges expected to
be inferred by this method in 10 years. The figure also shows the (small) deterioration in
the 90% C.L. range of ∆m2

32 due to the incorporation of the present uncertainties in the
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oscillation parameters, and all the five systematic errors, as discussed in section 4.2. With
systematic uncertainties and error in other oscillation parameters, we get the expected 90%
C.L. allowed range for ∆m2

32 from µ− events as (2.24–2.82)×10−3 eV2 and from µ+ events
as (2.25–2.75)×10−3 eV2.

An advantage of the method proposed in this section over the original proposal in [32]
is that this is a one-step fitting procedure as opposed to the two-step fitting procedure
therein. Note that the results obtained by this method are also slightly better than the
ones obtained in [32], as the shape of the valley is explicitly fitted to. Moreover, we
can extend this method to measure other characteristics of the oscillation valley, such as
identifying the signature of NSI, which we shall discuss in the next section.

6 Identifying NSI through oscillation valley

So far, we have discussed the characteristics of the oscillation valley in the absence of NSI
(εµτ = 0), and the measurement of ∆m2

32 in this scenario. In this section, we explore the
features of the oscillation valley in the presence of NSI (non-zero εµτ ). We have already
observed in section 2.2 that in the presence of non-zero εµτ , the oscillation valley in the
oscillogram has a curved shape that depends on the extent of εµτ , its sign, and whether one
is observing the µ− or µ+ events. Therefore, the curvature of oscillation valley is expected
to be a useful parameter for the determination of εµτ .

6.1 Curvature of oscillation valley as a signature of NSI

Figure 10 presents the distributions of U/D ratios of µ− and µ+ events separately in the
(Erec

µ , cos θrec
µ ) plane, for two non-zero εµτ values (i.e. ±0.1). For the sake of demonstration

(in order to reduce the statistical fluctuations in the figure and emphasize the physics),
we show the binwise average of 100 independent data sets, each with 10-year exposure of
ICAL. In contrast to the linear nature of oscillation valley with SI (εµτ = 0), the valley is
curved in the presence of NSI. The direction of bending of the oscillation valley is decided
by sign of εµτ as well as whether it is µ− or µ+. An important point to note is that
the nature of curvature of the oscillation valley, that we observed in the (Eν , cos θν) plane
with neutrino variables (see figure 2) with NSI, is preserved in the reconstructed oscillation
valley in the plane of reconstructed muon observables (Erec

µ , cos θrec
µ ). This is due to the

excellent energy and angular resolutions of the ICAL detector for muons in the multi-GeV
energy range.

We retrieve the information on the bending of the oscillation valley by fitting with an
appropriate function, which is a generalization of eq. (5.1). We introduce an additional
free parameter α that characterizes the curvature of the oscillation valley. The function we
propose for fitting the oscillation valley in the presence of εµτ is

Fα(Erec
µ , cos θrec

µ ) = Zα +Nα cos2
(
mα

cos θrec
µ

Erec
µ

+ α cos2 θrec
µ

)
, (6.1)

where Zα, Nα, mα, and α are the free parameters to be determined from the fitting of the
U/D ratio in the (Erec

µ , cos θrec
µ ) plane. Equation (6.1) is inspired by the survival probability
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Figure 10. The distributions of U/D ratio in (Erec
µ , cos θrec

µ ) plane with non-zero |εµτ | (+0.1 in
upper panels and -0.1 in lower panels) as expected at ICAL in 10 years. Left and right panels are
for µ− and µ+ events respectively. The white solid and dashed lines correspond to contours with
fitted U/D ratio equal to 0.4 and 0.5, respectively, obtained after fitting of the oscillation valley with
function Fα (see eq. (6.1)). The black solid and dashed lines correspond to log10[Lrec

µ /Erec
µ ] = 2.2

and 3.1, respectively. We consider normal mass ordering, and the benchmark oscillation parameters
given in table 2.

as given in eq. (2.5). In eq. (6.1), the parameter α enters multiplied with cos2 θrec
µ , where

one factor of cos θrec
µ includes the L dependence of oscillation. The other factor of cos θrec

µ is
to take into account the baseline dependence of the matter potential. While this is a rather
crude approximation, it is sufficient to provide us a way of calibrating εµτ , as will be seen
later in the section. In eq. (6.1), the parameters Zα and Nα fix the depth of valley, whilemα

and α determine the orientation and curvature of oscillation valley, respectively. Therefore,
mα and α together account for the combined effect of the mass-squared difference ∆m2

32
and the NSI parameter εµτ in oscillations.

As in the analysis in section 5, we restrict the range of log10[Lrec
µ /Erec

µ ] to 2.2–3.1, to
remove the unoscillated part (< 2.2) as well as the region with significant matter effects
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(> 3.1). The cut on the U/D value is applied at 0.9. In figure 10, the contours of the fitted
U/D ratio of 0.4 and 0.5, shown with white solid and dashed lines, respectively, clearly
indicate that the function Fα works well to reproduce the curved nature of the oscillation
valley with non-zero εµτ . We see that the oscillation valley for µ− with positive (negative)
εµτ closely resembles that for µ+ with negative (positive) εµτ . This happens due to the
degeneracy in the sign of εµτ and the sign of matter potential VCC — these appear in the
combination εµτVCC in the survival probability expression in eq. (2.5). One can see that for
µ+ (µ−) with εµτ = 0.1 (−0.1), the contour with the fitted U/D ratio of 0.4 is absent. This
is because the valley is shallower in these cases. This feature corresponds to a similar one
observed in figure 5, where the oscillation dip is shallower for µ+ (µ−) with εµτ = 0.1 (−0.1).

6.2 Constraints on εµτ from oscillation valley

We saw in the previous section that the shape of the oscillation valley in the muon observ-
ables is well-approximated by the function in eq. (6.1), with the two parameters α and mα.
Therefore, we propose to use these two parameters for retrieving εµτ . At ICAL, since the
data on µ− and µ+ events are available separately, we can have two independent fits for
the U/D ratios in µ− and µ+ events. This would give us independent determinations of
the parameter pairs (α−,m−α ) and (α+,m+

α ), for µ− and µ+ events, respectively. One can
then get the calibration of εµτ in the plane of α and mα, for µ− and µ+ events, separately.
For other experiments that do not have charge identification capability, there would be a
single calibration curve of εµτ with α and mα, based on the U/D ratio of muon events
without charge information.

Building up on our experience in the analysis of the oscillation dip in the presence of
NSI (see section 4.1), in this analysis of oscillation valley, we use the following observables
that quantify the µ− vs. µ+ contrast in the values of the parameters α and mα:

∆α = α− − α+ , ∆mα = mα− −mα+ . (6.2)

The blue line with colored circles in figure 11 shows the calibration of εµτ in (∆α, ∆mα)
plane, obtained by using the 1000-year MC sample. It may be observed that the calibration
of εµτ is almost independent of ∆mα, and εµτ is almost linearly proportional to ∆α.

In order to estimate the extent to which εµτ may be constrained at ICAL with an
exposure of 10 years, we simulate the statistical fluctuations by generating 100 independent
data sets, each corresponding to 10-year exposure and εµτ = 0. The black dots in figure 11
are the values of ∆α and ∆mα determined from each of these data sets. The figure shows
the results, with the benchmark oscillation parameters in table 2.

It is observed that with a 10-year data, the statistical fluctuations lead to a strong
correlation between the values of ∆α and ∆mα, and we have to employ a two-dimensional
fitting procedure. We fit the scattered points in (∆α, ∆mα) plane with a straight line.
The best fitted straight line is shown by the red color in figure 11, which corresponds to
the average of these points, and indeed passes through the calibration point obtained from
1000-year MC events for εµτ = 0. The 90% C.L. limit on εµτ is then obtained based on
the measure of the perpendicular distance of every point from the red line. The region
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Figure 11. The blue curve with colored circles shows the calibration of εµτ in the (∆α,∆mα)
plane, obtained from 1000-year MC. The black stars are the values of (∆α,∆mα) obtained from
100 independent data sets, each for 10 years data of ICAL, when εµτ = 0. The gray band represents
the expected 90% C.L. region in this plane for a 10-year exposure at ICAL, when εµτ = 0. The
part of the blue calibration line covered by the gray band gives the expected 90% C.L. bounds on
εµτ . We consider normal mass ordering, and the benchmark oscillation parameters given in table 2.

with the gray band in figure 11 contains 90% of the points that are closest to the red
line. The expected 90% C.L. bounds on εµτ can then be determined from the part of the
blue calibration line covered by the gray band. Any value of the pair (∆α,∆mα) that
lies outside the gray band would be a smoking gun signature for nonzero εµτ at 90% C.L.
Figure 11 indicates that if εµτ is indeed zero, our method, as applied at the ICAL detector,
would be able to constrain it to the range −0.022 < εµτ < 0.021 at 90% C.L., with an
exposure of 500 kt·yr.

We explore the possible dilution of our results due to the uncertainties in oscilla-
tion parameters and the five systematic errors, following the same procedure described in
section 4.2. This yields the expected 90% C.L. bounds as −0.024 < εµτ < 0.020, thus
keeping them almost unchanged.

7 Summary and concluding remarks

Atmospheric neutrino experiments are suitable for exploring the non-standard interactions
of neutrinos due to the accessibility to high energies (Eν) and long baselines (Lν) through
the Earth, for which the effect of NSI-induced matter potential is large. The NSI matter
potential produced in the interactions of neutrino and matter fermions may change the
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oscillation pattern. The multi-GeV neutrinos, in particular, offer the advantage to access
the interplay of NSI and Earth matter effects. In this paper, we have explored the impact
of the NSI parameter εµτ on the dip and valley patterns in neutrino oscillation probabili-
ties, and proposed a new method for extracting information on εµτ from the atmospheric
neutrino data.

Detectors like ICAL, that have good reconstruction capability for the energy, direction,
and charge of muons, can reproduce the neutrino oscillation dip and valley patterns in
their reconstructed muon data, from µ− and µ+ events separately. The observables chosen
to reproduce these patterns are the ratios of upward-going (U) and downward-going (D)
events, which minimize the effects of systematic uncertainties. We analyze the U/D ratio
in bins of reconstructed muon observables Lrec

µ /Erec
µ , and in the two-dimensional plane

(Erec
µ , cos θrec

µ ). We show that nonzero εµτ shifts the locations of oscillation dips in the
reconstructed µ− and µ+ data in opposite directions in the Lrec

µ /Erec
µ distributions. At

the same time, nonzero εµτ manifests itself in the curvatures of the oscillation valleys in
the (Erec

µ , cos θrec
µ ) plane, this bending being in opposite directions for µ− and µ+ events.

The direction of shift in the dip location and the direction of the bending of the valley
also depend on the sign of εµτ , as well as on the mass ordering. ICAL, therefore, will be
sensitive to sgn(εµτ ), once we know the neutrino mass ordering. We present our results
in the normal mass ordering scenario, the analysis for the inverted mass ordering scenario
will be exactly analogous.

In the oscillation dip analysis, we introduce a new observable ∆d, corresponding to the
difference in the locations of dips in µ− and µ+ event distribution. We show the calibration
of εµτ against ∆d using 1000-year MC sample at ICAL, and demonstrate that it is almost in-
dependent of the actual value of ∆m2

32. We incorporate the effects of statistical fluctuations
corresponding to 10-year simulated data, uncertainties in the neutrino oscillation param-
eters, and major systematic errors, by simulating multiple data sets. Including all these
features, it is possible to constrain the NSI parameter in the range −0.025 < εµτ < 0.024
at 90% C.L. with 500 kt·yr exposure.

In the oscillation valley analysis, we propose a function Fα that quantifies the cur-
vature (α) and orientation (mα) of the oscillation valley in the (Erec

µ , cosrec
µ ) plane. This

analysis may be performed for the µ− and µ+ events separately, leading to independent
measurements of εµτ . However, we further find that the differences in these parameters for
the µ− and µ+ events are quantities that are sensitive to εµτ , and show the calibration for
εµτ in the (∆α,∆mα) plane using 1000-year MC sample at ICAL. Incorporating the effects
of statistical fluctuations, uncertainties in the neutrino oscillation parameters, and major
systematic errors, the NSI parameter can be constrained in the range −0.022 < εµτ < 0.021
at 90% C.L. with 500 kt·yr exposure.

A special case of the function Fα, with α = 0, corresponds to a valley without any
curvature. It is found that the method of fitting for this function F0 to the U/D ratio in
the (Erec

µ , cosrec
µ ) plane leads to a more robust and precise measurement of the value of

∆m2
32 than the method proposed earlier [32].
Our analysis procedure is quite straightforward and transparent, and is able to capture

the physics of the NSI effects on muon observables quite efficiently. It builds upon the major
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features of the impact of εµτ on the oscillation dip, and identifies the contrast in the shift
in dip locations of µ− and µ+ as the key observable that would be sensitive to NSI. It
exploits the major pattern in the complexity of the two-dimensional event distributions
in the (Erec

µ , cosrec
µ ) plane by fitting to a function approximately describing the curvature

of the valley. The two complementary methods of using the oscillation dips and valleys
provide a check of the robustness of the results. The shift of the dip location and the
bending of the oscillation valley, and survival of these effects in the reconstructed muon
data, are deep physical insights obtained through the analysis in this paper.

Note that, though the dip and the valley both arise from the first oscillation minimum,
the information content in the valley analysis is more than that in the dip analysis. For
example, (a) the features of the valley (like curvature) in figure 10 cannot be predicted
from the shift in the dip as seen in figure 5, and (b) the shift in the dip may have many
possible sources, but the specific nature of bending of the valley would act as the confirming
evidence for NSI. Therefore, physics unravelled from the valley analysis is much richer than
that from the dip.

Note that muon charge identification plays a major role in our analysis. In a detector
like ICAL, the measurement of εµτ is possible independently in both the µ− and µ+ chan-
nels. The oscillation dips and valleys in µ− and µ+ event samples have different locations
and shapes. As a result, the information available in the dip and valley would be severely
diluted in the absence of muon charge identification. But more importantly, the quantities
sensitive to εµτ in a robust way turn out to be the ones that reflect the differences in
the properties of oscillation dips and valleys in µ− and µ+ events. For example, ∆d is
the observable identified by us, whose calibration against εµτ is almost independent of the
actual value of ∆m2

32. For ∆d to be measured at a detector, the muon charge identifica-
tion capability is necessary. The data from ICAL will thus provide the measurement of a
crucial observable that is not possible at other large atmospheric neutrino experiments like
Super-K or DeepCore/ IceCube. At future long-baseline experiment like DUNE, that will
have access to 1–10GeV neutrino energy and separate data sets for neutrino and antineu-
trino, our methodology to probe NSI using oscillation-dip location can also be adopted,
by replacing the U/D ratio with the ratio of observed number of events and the predicted
number of events without oscillations.

We expect that further exploration of the features of the oscillation dips and valleys,
observable at ICAL-like experiments, would enable us to probe neutrino properties in
novel ways.
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