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1 Introduction

Defects are important objects quantum field theory (QFT). They are sensitive to global
aspects not captured by local operators, and can serve as non-local order parameters distin-
guishing different phases. A celebrated example is the area law for Wilson loops in confining
gauge theories in four dimensions. Defects also lead to interesting mathematical structures
such as generalized q-form symmetries [1] and higher group global symmetries [2].

In this paper we study codimension-2 surface defects in five-dimensional superconfor-
mal field theories (SCFTs). We will focus on 5d SCFTs realized by (p, q) 5-brane webs [3, 4]
and study codimension-2 defects, which generalize surface defects in 4d QFTs. Many 5d
SCFTs can be understood as strongly-coupled UV fixed points of gauge theories [5–7], but
the space of theories that can be realized by 5-brane webs and other string theory con-
structions is much broader. Aspects of higher symmetries in 5d were discussed recently
in [8], and a classification program for defects in generic dimensions was initiated in [9].
Here we will use the holographic duals for 5d SCFTs engineered by (p, q) 5-brane webs,
constructed in [10–13], as tool to study defects realized by D3-branes ending on the 5-
brane webs [14–20]. We will study conformal and non-conformal defects, and obtain the
defect contribution to the SCFT free energy on S5 for conformal defects. We hope this
will be a starting point for fruitful interplay between AdS/CFT and field theory methods
like supersymmetric localization in the study of these surface defects.

From a holographic perspective, defects with a small number of degrees of freedom
compared to the degrees of freedom of the ambient SCFT are particularly accessible. They
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can be realized through probe branes [21], whose backreaction can be neglected at leading
order in the planar limit.1 A distinguished class of defects in conformal field theories
are conformal defects, which preserve a conformal sub-algebra, SO(p + 1, 2) for a p + 1
dimensional defect, of the full conformal algebra of the ambient CFT. In superconformal
field theories this may be enhanced to a superconformal sub-algebra. For conformal defects
the dual probe branes wrap an AdSp subspace in the background geometry. The same probe
brane embedding can then be used to describe planar defects in flat space and spherical
defects in the ambient CFT on a sphere, depending on the coordinates chosen for the
AdS factor in the background geometry. More general defects can be obtained by using
operators localized on the defect to trigger “defect RG flows”, leading to a breaking of the
defect conformal symmetry to the isometries preserved by the defect.

We will identify D3-brane embeddings describing superconformal defects in 5d SCFTs
engineered by (p, q) 5-brane webs. The D3-branes wrap AdS4 in the AdS6 part of the
holographic duals and are localized at a distinguished point in the internal space. We
will obtain the contribution of the defects to the SCFT free energy on S5 from the brane
on-shell action. We will also study more general non-conformal defects, realizing RG flows
triggered by defect-localized operators for planar surface defects. The D3-branes still wrap
an AdS4 in the background geometry, but the position in the internal space now changes
along the radial coordinate, thus breaking the AdS4 isometries corresponding to defect
conformal transformations.

The paper is organized as follows: in section 2 we review the construction of 5d SCFTs
with surface defects using 5-brane webs with D3-branes. In section 3 we identify the holo-
graphic representation of the surface defects and find explicit solutions for supersymmetric
conformal and non-conformal probe D3-brane embeddings. We also discuss the defect con-
tribution to the free energy. We conclude in section 4. The probe brane BPS conditions
are derived in appendix A.

2 D3-brane surface defects in 5-brane webs

We briefly review aspects of 5-brane webs [4] that will be relevant and discuss surface
defects realized by D3-branes, to guide the holographic discussion of surface defects in the
next section.

Supersymmetric configurations of (p, q) 5-branes, where we denote D5-branes by (1, 0)
and NS5-branes by (0, 1), can be realized if all branes extend along the (01234) directions
and are at an angle in the (56) plane such that p∆x5 = q∆x6 (with the axion-dilaton scalar
τ = i). General planar junctions of (p, q) 5-branes at a point in the (56)-plane then define
5d SCFTs with 8 Poincaré and 8 superconformal supersymmetries. The SU(2) R-symmetry
is realized by rotations in the remaining (789) directions.

The Coulomb branch of the SCFT is realized by resolving the 5-brane junction at a
point into a 5-brane web, while mass deformations are realized by moving the external
5-branes relative to each other. This can often be used to obtain an effective description
of the SCFT as a gauge theory. Our focus will be on the fixed-point SCFTs, described by

1Examples of fully backreacted solutions describing superconformal defects can be found e.g. in [22–25].
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Figure 1. From left to right: one-sided conformal defect, one-sided non-conformal defect, two-sided
conformal defect, two-sided non-conformal defect. The black lines represent 5-branes in the (56)
plane; the 5-brane junction has been resolved slightly for illustrative purposes. The vertical blue
line represents a D3-brane, with the part above/below the (56) plane shown as solid/dashed line.

5-brane junctions at a point, but to highlight the features of the SCFTs we will nevertheless
show resolved webs in the figures (e.g. in figures 2(a), 4(a), 5(a), which show the (56) plane).

0 1 2 3 4 5 6 7 8 9

D5-brane × × × × × ×

NS5-brane × × × × × ×

(p, q) 5-brane × × × × × angle
[p, q] 7-brane × × × × × × × ×

D3-brane × × × ×

More general SCFTs can be realized by including in addition 7-branes extending in the
(01234) and (789) directions [26]. An example is shown in figure 7(a) below, and the brane
orientations are summarized in the table above.

Our main interest are codimension-2 surface defects in the 5d SCFTs engineered by
5-brane junctions, which can be realized by adding D3-branes that end on the 5-brane
web. The D3-branes extend along 3 of the 5 field theory directions, say (012), and one
of the directions which none of the 5-branes extend into, say (7). Various examples of
such configurations were studied e.g. in [3, 14–20]. From the field theory perspective these
defects can be understood as extra degrees of freedom coupling to the 5d SCFT at the
intersection point of the 5-brane junction and the D3-brane. They can also be obtained
from RG flows with vortex configurations on the Higgs branch [14].

In this work we use AdS/CFT to study supersymmetric defects realized by D3-branes
in 5d SCFTs. That is, the ambient QFT is at the conformal fixed point. If the position
of the D3-brane in the (89) plane is fixed, the D3-brane preserves a U(1) subgroup of the
R-symmetry corresponding to rotation in the (89) plane. All D3-branes studied below
preserve this U(1) symmetry. We will distinguish between one-sided and two-sided defects:
for one-sided defects the D3-brane ends on the 5-brane junction. For a conformal defect
the D3-brane is located in the (56) plane at the point of the 5-brane junction (figure 1(a)).
Non-conformal defects can be realized by D3-branes ending on one of the external 5-branes
away from the junction point, with the separation from the junction point introducing a
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mass parameter, see figure 1(b). For two-sided conformal defects, two D3-branes are joined
at the point of the 5-brane junction from opposite sides (figure 1(c)). More general mass
deformations can in that case be obtained by arbitrarily moving the complete D3-brane
away from the junction point in the (56) plane (figure 1(d)). These features will be reflected
in the discussion of probe D3-branes in the next section.

3 D3-brane surface defects in AdS6 × S2 × Σ

We briefly review the Type IIB supergravity solutions describing (p, q) 5-brane junctions,
constructed in [10–12], and then discuss D3-brane embeddings describing surface defects.

The AdS6 solutions are defined in terms of locally holomorphic functions A± on a
Riemann surface Σ with boundary. The geometry is a warped product of AdS6 and S2

over Σ, with the S2 collapsing on the boundary of Σ. The Einstein-frame metric, complex
two-form C(2), and axion-dilaton scalar B = (1 + iτ)/(1− iτ) are given by

ds2 = f2
6 ds

2
AdS6 + f2

2 ds
2
S2 + 4ρ2 |dw|2 , B = ∂wA+ ∂w̄G −R∂w̄Ā−∂wG

R∂w̄Ā+∂wG − ∂wA−∂w̄G
,

C(2) = 2i
3

(
∂w̄G∂wA+ + ∂wG∂w̄Ā−

3κ2T 2 − Ā− −A+

)
volS2 , (3.1)

where w is a complex coordinate on Σ and ds2
AdS6

and ds2
S2 are the line elements for

unit-radius AdS6 and S2, respectively. The metric functions read

f2
6 =
√

6GT , f2
2 = 1

9
√

6G T−
3
2 , ρ2 = κ2

√
6G
T

1
2 , (3.2)

and we have

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− −A−∂wA+ ,

G = |A+|2 − |A−|2 + B + B̄ , T 2 =
(1 +R

1−R

)2
= 1 + 2|∂wG|2

3κ2 G
. (3.3)

Explicit expressions for the functions A± will be given below. The differentials ∂A± gen-
erally have poles at isolated points r` on the boundary of Σ, at which 5-branes with charge
(p`, q`) emerge, with (p`, q`) given in terms of the residues of ∂A± by

Res
w=r`

∂wA± = 3
4α
′(±q` + ip`) . (3.4)

This allows to identify the associated 5-brane junction. Solutions for 5-brane junctions with
7-branes in addition have punctures with SL(2,R) monodromy in the interior of Σ [13].

3.1 D3-brane embeddings

We now discuss probe D3-branes embedded into the Type IIB AdS6 solutions, of a form
appropriate to describe surface defects. We choose AdS6 coordinates such that

ds2
AdS6 = dr2 + e2r

(
dxµdxµ + dy2

1 + dy2
2

)
, (3.5)
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where µ = 0, 1, 2 are the field theory directions in which the defect should extend and
(y1, y2) is the plane transverse to the surface defect. From the field theory perspective
there is a geometric SO(2) symmetry corresponding to rotations in the plane transverse to
the surface defect. This symmetry should be preserved by the D3-brane, which thus has
to be located at a fixed position in the (y1, y2) plane. The worldvolume coordinates can be
chosen as (r, xµ).

The isometries of the S2 in the background solution represent the SU(2) R-symmetry
of the 5d SCFT, and we will consider only embeddings which preserve a U(1) subgroup
of the R-symmetry. This forces the position of the D3-brane on the S2 to be constant
across the embedding. For a defect preserving 3d Poincaré symmetry, the only remaining
freedom is then the position on Σ, and the entire embedding is characterized by one complex
embedding function w(r). The induced metric for such an embedding is

gαβdξ
αdξβ =

(
f2

6 + 4ρ2∂rw∂rw̄
)
dr2 + e2rdxµdxµ , (3.6)

and the action for the D3-brane becomes

SD3 = TD3

∫
dr d3x f3

6 e
3r
√
f2

6 + 4ρ2|w′|2 , T−1
D3 = (2π)3α′

2
. (3.7)

The equation of motion resulting from this action is a complex second-order non-linear or-
dinary differential equation for w(r). However, we are interested in supersymmetric defects
and the BPS condition is more tractable. The derivation is spelled out in appendix A, and
results in the condition

κ2w′ = ∂w̄G . (3.8)

As also shown in the appendix, this condition implies the equation of motion following
from (3.7). As appropriate for a D3-brane, the BPS equation is invariant under Type IIB
SL(2,R) transformations, since κ2 and G are separately invariant. The solutions flow along
the gradient of G in Σ, as dictated by (3.8), and generic embeddings of this form preserve
3d N = 2 supersymmetry.

Embeddings preserving defect conformal symmetry, i.e. the SO(2, 3) isometries of the
AdS4 parametrized by (r, xµ), have w′ = 0. The induced metric on the D3-brane is that
of AdS4 and the position on Σ is a constant. The BPS condition (3.8) reduces to

∂w̄G = 0 . (3.9)

The D3-brane thus is at an extremal point of G, which we denote as w = wc. Such
points are also extrema of f6 (and f2), so that the D3-brane extremizes its action.2 As
shown in appendix A the embeddings preserve eight of the sixteen supersymmetries of the
background, and realize the sub-superalgebra C(3) of F (4) [27] (see also table 1 of [28]).
The on-shell action for these embeddings can be evaluated using that ∂wG = 0 implies
T = 1, such that f4

6 = 6G. This leads to

SD3 = 6TD3 VolAdS4 G|w=wc . (3.10)
2For the solutions discussed below G has a unique maximum in Σ. We are not aware of solutions with

more than one maximum.
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So far we have worked with Poincaré AdS6. However, for the embeddings with defect
conformal symmetry one can do a conformal transformation to global AdS6 coordinates,
to describe an S3 defect in the 5d SCFT on S5. The renormalized volume of global AdS4
is given by VolAdS4 = 2

3 VolS3 with VolS3 = 2π2, and with these values the on-shell action
in (3.10) yields the contribution of the defect described by the D3-brane to the free energy
of the SCFT on S5.

An interpretation for the non-conformal embeddings described by (3.8) can be obtained
by analyzing the behavior near the conformal boundary of AdS6. With a Fefferman-
Graham radial coordinate z = − ln r, such that the boundary is at z = 0, the BPS equation
becomes −κ2z∂zw = ∂w̄G. At the boundary of AdS6 the embedding approaches that of
a conformal defect. The mass of fluctuations in the real and imaginary parts of w can
be obtained by expanding (3.8) around the conformal embedding, using that (3.9) implies
A+ − Ā− = 0 (since κ2(A+ − Ā−) = ∂w̄Ā−∂wG − ∂wA+∂w̄G and κ2 > 0 in the interior of
Σ). This shows that the leading behavior of both fluctuations near the conformal boundary
is linear in z. Fluctuations in the real and imaginary parts of w thus correspond to a pair
of defect operators with scaling dimensions ∆ = 2 in standard quantization and ∆ = 1
in alternative quantization. The non-conformal embeddings we will discuss below describe
defect RG flows triggered by combinations of these two relevant deformations.

The general BPS equation (3.8) can be integrated to obtain an implicit expression for
the embedding function w(r). To that end, we note that (3.8) implies

d

dr

[
er
(
A+(w(r))−A−(w(r))

)]
= 0 . (3.11)

Integrating both sides leads to

A+(w(r))−A−(w(r)) = me−r , (3.12)

where m is a complex parameter encoding the mass parameters associated with the two
relevant deformations discussed above. The conformal embedding corresponds to m = 0.
The Type IIB SL(2,R) transformations are induced by SU(1, 1) ⊗ C transformations of
A±, spelled out in (5.12) of [10]. Under these transformations the combination A+ −
A− transforms by an overall factor, such that SL(2,R) transformations of the condition
in (3.12) only transform the mass parameter.

3.2 TN and YN theories

We start with the TN and YN theories. The 5d TN theories introduced in [29] are realized
by junctions of N D5, N NS5 and N (1, 1) 5-branes (figure 2(a)). The YN theories of [30]
correspond to a junction of 2N NS5 branes, N (1, 1) 5-branes and N (1,−1) 5-branes
(figure 4(a)). The functions A± and G realizing holographic duals for these theories were
given explicitly in [31], as

ATN± = 3N
8π [± ln(w − 1) + i ln(2w) + (∓1− i) ln(w + 1)] ,

AYN± = 3N
8π [(±1 + i) ln(w − 1) + (±1− i) ln(w + 1)∓ 2 ln(2w)] , (3.13)

– 6 –
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Figure 2. Left: brane web for the 5d TN theory. Center: supergravity solution represented on
the disc. The (red,blue) curves show lines of constant (NF1, ND1). Right: the blue curves show the
(ND1, NF1) charges along curves of constant radius on the disc, the edges of the triangle correspond
to the poles. The D3-brane embeddings are: w1 with positive/negative mass in magenta/green, w2
with positive/negative mass in brown/yellow and w3 with positive/negative mass in cyan/purple.

where w is a complex coordinate on the upper half plane and 2πα′ = 1. The poles on
∂Σ are at w ∈ {0,±1}, and encode the charges of the 5-brane junction via (3.4). The
two supergravity solutions are related by a combination of SL(2,R) transformation and
rescaling of the charges, as discussed in [30]. The free energies obtained holographically
were matched to field theory computations in [32, 33].

Since the equation governing the D3-brane embedding is invariant under SL(2,R)
transformations, the solutions for the D3-brane embeddings in TN and YN can be discussed
together. The functions G for TN and YN/√2 are given by

GTN = GYN/√2
= 9

8π2N
2D

( 2w
w + 1

)
, (3.14)

where D is the Bloch-Wigner function defined by

D(u) = Im [Li2(u) + ln(1− u) ln |u|] . (3.15)

Since G depends on N only through the overall coefficient in (3.14), the D3-brane BPS
equation in (3.8) is independent of N .

We start with the embedding describing conformal defects. With constant w, (3.8) has
one solution. The solution and the on-shell action obtained from (3.10) are given by

wc = i√
3
, SD3 = 27

8π3N
2 VolAdS4 Im Li2

(
eiπ/3

)
. (3.16)

One can do a conformal transformation to global AdS6 coordinates, with the D3-brane
embedding unchanged, to describe an S3 defect in the 5d SCFT on S5. The action in (3.16)
with VolAdS4 as below (3.10) then gives the contribution of an S3 defect to the free energy
on S5 for the TN and YN/√2 theories. The orientation of the D3-brane in the (789) direction
in the notation of section 2 corresponds to the position of the probe D3-brane on S2. A
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two-sided defect, as in figure 1(c), can be realized by adding a second probe D3-brane on
the antipodal point on S2.

Non-conformal embeddings can be obtained by inverting (3.12). Using the explicit
expression for A± for the TN theory in (3.13), the real and imaginary parts of (3.12)
lead to

ln
∣∣∣∣w − 1
w + 1

∣∣∣∣2 = m1e
−r , ln

∣∣∣∣ 2w
w + 1

∣∣∣∣2 = m2e
−r , (3.17)

where m1 and m2 are, respectively, related to the real and imaginary part of m in (3.12)
by rescaling. The general solution in Σ, with Fefferman-Graham radial coordinate z, is
given by

w =
em1z − 1− i

√
4em1z − (em1z − em2z + 1)2

em2z − 2em1z − 2 , z = e−r . (3.18)

This is a family of curves which connect the conformal point wc to points on the boundary
of Σ, reaching the boundary when the square root vanishes.

Embeddings with a simple form in the upper half plane, which follow a circle or straight
line connecting the point wc = i/

√
3 to one of the poles, can be found from the fact that

G is invariant under reflection across the imaginary axis: if the initial departure from the
conformal point wc has vanishing real part this is preserved along the flow, leading to the
solutions (3.18) with m1 = 0,

w1(z) = i√
4e−m2z − 1

. (3.19)

The supergravity solution further has a Z3 group of SL(2,R) transformations of the upper
half plane which can be combined with Type IIB SL(2,R) transformations to form sym-
metries of the solution. Since the D3-brane BPS condition is invariant under Type IIB
SL(2,R) transformations, this leads to two related branches of solutions connecting wc to
the other two poles,

w2(z) = 1 + w1(z)
1− 3w1(z) , w3(z) = 1 + w2(z)

1− 3w2(z) . (3.20)

These D3-brane embeddings resemble the string embeddings discussed in [30]. The form of
the embeddings is not symmetric in m2 → −m2: for m2 < 0 the D3-brane reaches all the
way into the IR region of AdS6, where z →∞, without reaching the pole on the boundary
of Σ. For m2 > 0, on the other hand, the D3-brane reaches a regular point on the boundary
of Σ at m2z = ln 4.

As the D3-brane reaches the boundary of Σ, it can not just end at the corresponding
value of the AdS6 radial coordinate z: since the D3-brane does not wrap any part of the
internal space, one can not obtain a smooth worldvolume without boundary by shrinking
an internal cycle. However, since the S2 in which the D3-brane is localized at a point
collapses on the boundary of Σ, one can connect the embedding to a second D3-brane,
described by the same profile w(r) but located at the antipodal point of S2. Together they
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Figure 3. General D3-brane embeddings for TN . Generic embeddings reach the boundary of Σ
at regular points. Only the fine-tuned ones approach the poles. On the right in the charge lattice,
where the edges represent the poles. Generic embeddings approach the corners, the fine-tunes ones
approach the edges.

form a smooth D3-brane worldvolume, with the branches at the two antipodal points of S2

corresponding to the two branches of the two-sided defects in figure 1. In the UV region of
AdS6, where z is small, the two D3-branes are close to the conformal embedding on Σ. As
one moves into the IR region of AdS6 both branches approach the boundary of Σ, where
they meet for zm2 = ln 4. At that point they disappear from the AdS6 perspective.

In summary, mass deformations withm2 < 0 can be realized for one-sided defects in the
sense of figure 1. They can also be realized for two-sided defects, which simply corresponds
to adding a second embedding at the antipodal point of S2. Mass deformations with
m2 > 0 can only be realized for two-sided defects in the sense of figure 1 with two branches
of D3-brane embeddings, and the mass deformations completely gap the defect in the IR.
This realizes brane configurations of the type shown in figure 1(d).

The embeddings are illustrated in figures 2(b) and 2(c) for the TN solution. Figure 2(b)
illustrates the supergravity solution with Σ mapped to the unit disc with coordinate u via

√
3w − i√
3w + i

= e−iπ/4u . (3.21)

This maps the Z3-symmetric point w = i/
√

3 to the center of the disc. The poles of ∂A±,
where the 5-brane stacks are located, are indicated as solid circles on the boundary, and
the phase of u in (3.21) is chosen such that the locations of the poles roughly line up
with the external 5-brane stacks in the brane web in figure 2(a).3 As shown in [31] by
considering Wilson loops represented by different D3-brane embeddings, each point of Σ
can be identified with a face of the associated 5-brane web. Namely, each point on Σ can
be assigned coordinates (ND1, NF1) given by

NF1 + iND1 = 4
3
(
A+ + Ā−

)
. (3.22)

3For 3-pole solutions one could choose the mapping such that the poles precisely reflect the angles of
the external 5-branes in the brane web, as done in [31]. This is not possible in general.
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Figure 4. Left: brane web for the YN theory. Center: supergravity solution on the disc, with
(ND1, NF1) charges for the YN solution and the D3-brane embeddings color-coded as in figure 2.
Right: D3-brane embeddings in the space of (ND1, NF1) charges carved out by curves of constant
radius on the disc.

These coordinates translate to coordinates on the brane web, with ND1 labeling the faces
in the horizontal direction and NF1 labeling the faces in the vertical direction. The space of
charges carved out when moving along Σ is shown by the blue closed curves in figure 2(c),
which correspond to curves of constant radius on the disc. The points in the triangle
correspond to the closed faces of the brane web in figure 2(a), and the shape represents the
associated Newton polygon.

In figure 2(b) curves of constant ND1/NF1 are shown in red/blue. The defect embed-
dings are the straight lines connecting the center of the disc to boundary points, with each
branch shown in a different color. The lines ending at the poles describe non-conformal
D3-brane defects that reach into the IR region of AdS6 — these embeddings never actually
reach the poles. The lines ending at regular boundary points represent a pair of embeddings
at antipodal points of the S2 which are joined at the boundary of Σ, and describe two-sided
defects. These embeddings describe defects that are gapped in the IR. Figure 2(c) shows
how the D3-brane embeddings w1, w2, w3 trace through the (ND1, NF1) coordinates. The
quiver gauge theory deformation of the TN theory is given by

[2]− SU(2)− SU(3)− . . . SU(N − 1)− [N ] . (3.23)

The discrete symmetries of the supergravity solution and brane web do not translate to
simple symmetries of the quiver gauge theory. This will be different for the YN theory.

More general embeddings (3.18) are shown in figure 3. The general picture is that, for
generic choices of the phase of m1 + im2, the D3-brane embedding reaches the boundary
of Σ at a regular point, so that it has to be combined with a second branch to form a
two-sided defect. There are three distinguished choices of the phase for which the defect
approaches the boundary of Σ at a pole, so that a one-sided embedding can be realized
and extends all the way into the IR. This mirrors the discussion of section 2, where the
one-sided embeddings can only be moved along specific directions in the (56) plane in
which the external 5-branes of the junction extend, while two-sided D3-brane defects can
be moved arbitrarily into the (56) plane.
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For the YN solution the D3-brane embeddings take the same form in Σ, though the
brane web and gauge theories are different. The brane web and supergravity solution are
shown in figure 4. The YN theories have two S-dual gauge theory deformations that differ
in their form. The one corresponding to the brane web in figure 4(a) is given by

[2]− SU(2)− . . .− SU(N − 1)− SU(N)±1 − SU(N − 1)− . . .− SU(2)− [2] . (3.24)

Along the first/second ellipsis the rank of the gauge groups increases/decreases in steps
of one, and the central node has a Chern-Simons term. The quiver is symmetric under
reflection across the central node, and this symmetry is realized in the supergravity solution
as reflection across the vertical diameter of the disc in figure 4(b). The form of the D3-
brane embeddings suggests that the mass deformation described by w1 is symmetric under
reflection of the quiver across the central node. The Chern-Simons term explains the lack
of symmetry under m2 → −m2.

3.3 +N,M and XN,M theories

The +N,M theories are realized by intersections of N D5 and M NS5-branes (figure 5(a)),
and were studied already in [4]. The XN,M theories of [30] correspond to intersections of
N (1,−1) 5-branes and M (1, 1) 5-branes. Similar to the relation between the TN and
YN theories, the supergravity solutions are related by a combination of Type IIB SL(2,R)
transformations and charge rescaling. The functions A± are

A+N,M
± = 3

8π [iN (ln(2w − 1)− ln(w − 1))±M (ln(3w − 2)− lnw)] ,

AXN,M± = 3
8π [(±1 + i)M (ln(3w − 2)− lnw) + (±1− i)N (ln(w − 1)− ln(2w − 1))] ,

(3.25)

where w is a complex coordinate on the upper half plane. The poles where the external
5-branes emerge are at w ∈ {0, 1

2 ,
2
3 , 1}. Due to the SL(2,R) relation between the solutions,

the functions G are closely related. For +N,M and XN/
√

2,M/
√

2 [31]

G+N,M = GXN/√2,M/
√

2
= 9

8π2NM

[
D

(3w − 2
w

)
+D

(
w

2− 3w

)]
. (3.26)

The free energy obtained from the supergravity solution was matched to field theory com-
putations in [32, 33] for the +N,M theory and in [31] for XN,N .

Since N and M only appear as combined overall factor in (3.26), the D3-brane BPS
equation (3.8) is independent of N and M . The embedding describing a conformal defect
with constant w(r) can again be obtained from (3.9). The solution wc and the on-shell
action for +N,M and XN/

√
2,M/

√
2 are given by

wc = 3 + i

5 , SD3 = 27C
4π3 MN VolAdS4 , (3.27)

where C ≈ 0.916 is Catalan’s constant. With the renormalized volume of AdS4 as given
below (3.10) this yields the contribution of an S3 defect to the free energy of the SCFTs
on S5.
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Figure 5. Left: brane web for the +N,M theory. Center: supergravity solution on the disc, with
curves of constant NF1, ND1 in red, blue. The D3-brane embedding w1 is shown in yellow, w2 in
green, w3 in purple, w4 in cyan. Right: (ND1, NF1) along curves of constant radius on the disc and
the D3-brane embeddings.

Non-conformal defects are obtained by inverting (3.12). With the expressions for A±
for the +N,M theory, the real and imaginary parts of (3.12) lead to

ln
∣∣∣∣3w − 2

w

∣∣∣∣ = m1e
−r , ln

∣∣∣∣2w − 1
w − 1

∣∣∣∣ = m2e
−r . (3.28)

Solving for w(r) leads to the general form of the embeddings

w = 2
3− iem1z−i sin−1(cosh(m1z) tanh(m2z))

, z = e−r . (3.29)

These are again curves connecting the conformal point wc to points on the boundary of Σ.
The form of the embeddings is symmetric in m1 → −m1 and m2 → −m2.

The solutions again simplify for flows along curves that are invariant under discrete
symmetries of the background solution. Concretely, one can use an SL(2,R) transformation
on the upper half plane to map the poles to {−1, 0, 1,∞} and then find embeddings along
the imaginary axis. This corresponds to m2 = 0 in (3.29) and leads to

w1 = 2
3− iem1z

. (3.30)

These embeddings connect the point wc to the two D5-brane poles. In the IR the embed-
dings w1 approach the D5-brane poles on Σ but never reach them, so that the D3-branes
extend all the way into the IR region of AdS6. In figure 5(b) these embeddings correspond
to the horizontal yellow line. They describe one-sided defects in the sense of section 2 with
the D3-branes displaced from the junction point along the D5-branes. A second family of
solutions can be obtained from w1 by an SL(2,R) transformation of the upper half plane
which cyclically permutes the positions of the poles. This leads to the solutions (3.29) with
m1 = 0,

w2 = 1− 1
2 + iem2z

. (3.31)
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Figure 6. More general D3-brane embeddings for +N,M . Generic embeddings reach the boundary
of Σ at regular points, only w1/2 approach the poles. On the right in the (ND1, NF1) charges, where
the edges represent the poles. Generic embeddings approach the corners, the embeddings w1/2
approach the edges.

These embeddings correspond to mass deformations of the conformal defect that are S-dual
to the mass deformations leading to the embeddings w1; they connect the point wc to the
NS5-brane poles. In figure 5(b) they correspond to the green horizontal line.

Two more simple solutions correspond to the diagonal lines in figure 5(b). They can
be obtained by performing SL(2,R) transformations of the upper half plane that map the
poles to locations that are symmetric with respect to reflection across the imaginary axis,
and then making an ansatz for imaginary embeddings. This corresponds to m1 = ±m2
in (3.29), leading to

w3/4 = 4
6± 1∓ e2m1z − i

√
6e2m1z − e4m1z − 1

. (3.32)

In figure 5(b) the purple line shows w3 and the cyan line w4. The solutions w3 and w4
reach the boundary at 2|m1|z = ln(3 + 2

√
2). They do not extend all the way into the IR

region of AdS6 and have to be combined with a second branch of the same embedding on
the antipodal point on S2, to form a two-sided defect in the sense of section 2.

The general picture is similar to the one for the TN and YN theories, and illustrated
in figure 6. For generic choices of m1 + im2, the embedding reaches the boundary of Σ
at finite AdS6 radial coordinate, and has to be combined with a second branch on the
antipodal point of S2 to form a regular embedding. The defect degrees of freedom are
gapped in the IR. For discrete choices of the phase of m1 + im2, in this case four, the non-
conformal embeddings approach the poles without ever reaching them, and can describe
one-sided defects. The embedding then reaches all the way into the IR of AdS6 and the
defect contains light degrees of freedom.

The quiver gauge theory deformations of the +N,M junction reflect the Z2 symmetries
in the supergravity solution. The quiver is given by

[N ]− SU(N)− . . .− SU(N)− [N ] , (3.33)

with a total of M − 1 gauge nodes. The S-dual quiver deformation, corresponding to a
ninety degree rotation of the brane web, has the same form but with N and M exchanged.
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Figure 7. Left: brane web for the IM,j theories, with j = 2. Center: supergravity solution on
the disc, with v1 in green, v2 in cyan, and at the center the puncture with two branch cuts along
the horizontal diameter. In the (ND1, NF1) charges on the right the v2 embedding is on the branch
cuts, shown as dashed lines.

The plots in figure 5(c) suggest that the defects described by the embedding w2 correspond
to mass deformations that are symmetric under reflection of the quiver (3.33) across the
central node. Analogous comments hold for the defects described by the embedding w1 in
the S-dual quiver. The analog of figure 5(c) for the XN,M theory follows from a 45 degree
rotation, similarly to the relation between the TN and YN theories before (the horizontal
and vertical axes in figure 5(c) are scaled differently for N 6= M , and the rotation is to be
performed with unrescaled axes).

3.4 IM,j theories

As a last example we consider a 5-brane junction with 7-branes. It is composed of two stacks
of M NS5-branes on a system of 2j D7-branes. The D7-branes are split into two groups
of j D7-branes which have their branch cuts oriented in opposite directions (figure 7(a)).
This is a special case of the +N,M,j,k theories discussed in [34]. Orientifolds, dubbed I±M,j ,
were discussed in [35]. The functions A± can be written as (see (3.4) of [35])

A± = 3M
8π

[
± ln

(1 + iv

1− iv

)
+ j

π

(
Li2(iv)− Li2(−iv)− tanh−1(iv) ln(−v2)

)]
, (3.34)

where v is a complex coordinate on the unit disc. The two poles on the boundary of Σ
corresponding to the external NS5-brane stacks are at v = ±i, and there are 2j D7-branes
at the center of the disc. Half of the D7-branes have their branch cut along the positive
real axis, the other half has their branch cut along the negative real axis. The solutions
have two Z2 symmetries, corresponding to reflection across the real and imaginary axes.
The quiver gauge theory is given by (4.17) of [34] with k = j and 2N = Mj. The free
energy was matched to a field theory computation in [35].

The quantities ∂G = (Ā+ − A−)∂A+ + (A+ − Ā−)∂A− and κ2 feeding into the BPS
equation for the D3-branes are single-valued and both depend on M and j only through
an overall coefficient jM2, so that the D3-brane embeddings are independent of M and
j. The BPS equation for conformal defects (3.9) has one solution. The solution and the
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Figure 8. General D3-brane embeddings for IM,j . Generic embeddings reach the boundary of Σ at
regular points, only v1 and v2 approach the poles. On the right in the space of (ND1, NF1) charges.

on-shell action for the D3-brane evaluated on the solution are given by

vc = 0 , SD3 = 189
32π4 ζ(3) VolAdS4 jM

2 . (3.35)

The conformal defect is thus localized at the center of the disc, on top of the D7-brane
punctures.

Non-conformal embeddings can be obtained from (3.12). With A± in (3.34) the real
and imaginary parts of (3.12) lead to

ln
∣∣∣∣v + i

v − i

∣∣∣∣ = m1e
−r , Im

[
Li2(iv)− Li2(−iv)− i ln(−v2) tan−1(v)

]
= m2e

−r . (3.36)

The form of the embeddings is symmetric in m1 → −m1 and m2 → −m2.
The background solution has two Z2 symmetries corresponding to reflection across the

real and imaginary axes, so there are two distinguished families of embeddings along these
fixed lines. For embeddings along the imaginary axis the BPS equations simplify since the
dilogarithm terms drop out. They correspond to m2 = 0 and can be given explicitly as

v1 = i tanh
(
m1z

4

)
, z = e−r . (3.37)

The embeddings connect the center of the disc to the NS5-brane poles. They describe one-
sided defects and extend all the way into the IR region of AdS6. For embeddings along the
real axis, with v2(r) = v̄2(r), the first equation in (3.36) is trivial, and the second equation
simplifies to

2D(iv2) = m2e
−r , (3.38)

where D is the Bloch-Wigner function defined in (3.15). Since D2(±i) = ±C, where C is
Catalan’s constant, the D3-brane reaches the boundary of Σ, with v2 reaching ±1, when
|m2|e−r = 2C. These embeddings have to be combined with a second branch on the
antipodal point of S2 to form regular embeddings describing two-sided defects.

More general solutions are shown in figure 8. As before, generic embeddings reach
regular points on the boundary of Σ at finite radial coordinate in AdS6, and have to be
combined with a second branch on the antipodal point of S2 to form a smooth worldvolume.
Only the embeddings v1 and v2 approach the poles and describe one-sided defects.
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4 Discussion

We have investigated planar three-dimensional surface defects in 5d SCFTs engineered
by the UV limit of (p, q) 5-brane webs. The surface defects are realized either by D3-
branes ending on the 5-brane junction arising as UV limit of the brane web, or by D3-
branes intersecting the plane in which (p, q) 5-branes are at an angle dictated by their
charges. Conformal defects are realized by D3-branes at the point where the 5-branes form
a junction. For non-conformal defects the D3-branes are displaced from the junction point.
We have identified the holographic representation of the defects as probe D3-branes in
the AdS6×S2×Σ supergravity duals of the 5d SCFTs and studied conformal and non-
conformal defects.

The conformal defects preserve half of the supersymmetries of the ambient SCFT. The
embeddings wrap an AdS4 in AdS6 and are localized on S2 and on the Riemann surface Σ.
On Σ they are located at points where the AdS6 and S2 radii are extremal. For the solutions
considered here there is exactly one such extremal point on Σ, and we found one half-BPS
conformal defect described by a probe D3-brane. The planar defects can be mapped to S3

defects in the 5d SCFTs on S5 by a conformal transformation, and we obtained the defect
contribution to the free energy on S5. It would be interesting to study these defects from
the field theory perspective and e.g. reproduce their contribution to the free energy on S5

using supersymmetric localization. It would also be interesting to consider the limit where
the number of D3-branes ending on the 5-brane web becomes large. Such configurations
should be described by AdS4 solutions incorporating the backreaction of the D3-branes on
the 5-brane web. At least certain defects may be described by uplifting AdS4 solutions of
6d gauged supergravity to Type IIB, and it would be interesting to further explore this
for the theories studied here. Related discussions based on the Brandhuber/Oz solution of
massive Type IIA can be found in [36–39].

We also considered non-conformal defects which preserve half of the Poincaré super-
charges of the ambient SCFT and a U(1) R-symmetry, while breaking the conformal super-
symmetries. The defects are described by D3-brane embeddings which wrap (part of) AdS4
in AdS6 but where the location on Σ depends on the AdS4 radial coordinate in Poincare
coordinates. Fluctuations of the D3-brane away from the conformal point on Σ are dual to
a pair of relevant operators, and the non-conformal embeddings describe defect RG flows
triggered by combinations of these operators.

The features of the non-conformal embeddings suggest a natural brane-web interpre-
tation: for special values of the phase of the complex number formed out of the two mass
parameters triggering the flow, the embeddings approach, without ever reaching, one of
the poles on the boundary of Σ, which represent the external 5-branes of the associated
5-brane junction. These embeddings seem to describe D3-branes displaced in the 5-brane
web along one of the external 5-branes. Embeddings for more general values of the phase
can be realized if there are two D3-branes ending from opposite sides on the brane web,
corresponding to two D3-branes on antipodal points of the S2 in the supergravity solution.
These two embeddings reach a generic point on the boundary of Σ at a finite value of the
AdS4 radial coordinate. Since the S2 collapses on the boundary of Σ, the two D3-brane
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embeddings can combine to form a smooth worldvolume without boundary. In the brane
web these embeddings seem to correspond to more general displacements of the entire D3-
brane away from the 5-brane junction, which do not need to be along one of the external
5-branes.

An interesting subject in the context of defect RG flows are RG monotones. It would
be interesting to study the contribution of the non-conformal defects to the entanglement
entropy, which can be done without computing the backreaction of the branes using the
method of [40, 41].
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A D3-brane BPS condition

In this appendix we discuss the BPS conditions for the D3-branes introduced in section 3.1.
The preserved supersymmetries are generated by Killing spinors ε that satisfy [42–44]

Γκε = ε . (A.1)

To evaluate this condition we collect the relevant details on the Killing spinors for the AdS6
solutions. A general Killing spinor is expanded in a basis of AdS6 × S2 Killing spinors as

ε =
∑
η1η2

χη1η2 ⊗ ζη1η2 , χη1η2 = εη1
AdS6

⊗ εη2
S2 , (A.2)

where η1, η2 = ±. One of the Killing spinors, χ++
α , is chosen arbitrarily, and then

χ+−
α = (18 ⊗ γ(2))χ++

α , χ−+
α = (γ(1) ⊗ 12)χ++

α , χ−−α = (γ(2) ⊗ γ(2))χ++
α . (A.3)

The coefficient spinors ζη1η2 are parameterized as

ζ++ =
(
ᾱ

β

)
, ζ−− =

(
−ᾱ
β

)
, ζη1,− = iνη1ζη1,+ . (A.4)

Thus,

ε =
∑
η

(
χη,+ + iνηχη,−

)
⊗ ζη,+ , (A.5)

The explicit form of the S2 and AdS6 Killing spinors was derived in appendix B.1 and B.2
of [10]. The metric and Killing spinors are, with constant spinors εη2

S2,0, ε
η1
AdS6,0,

ds2
S2 = dθ2

2 + sin2θ2 dθ
2
1 , εη2

S2 = exp
(
iη2
2 θ2σ2

)
exp

(
− i2θ1σ3

)
εη2
S2,0 ,

ds2
AdS6 = dr2 + e2rdxµdxµ , εη1

AdS6
= e

η1
2 rγr

(
1 + 1

2x
µγµ (η1 − γr)

)
εη1
AdS6,0 . (A.6)
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A.1 Conformal defect

To find the projection conditions on the Killing spinors it is convenient to start with
conformal defects. For the D3-brane wrapping AdS4, localized at a fixed point in S2 and
Σ, and using complex notation for the Killing spinors,

Γκε = −iΓ0Γ1Γ2Γ3ε

= −i(γrγ0γ1γ2 ⊗ 12 ⊗ 12)ε . (A.7)

The condition we aim to implement is

(−iγr012 ⊗ 12)(εη1
AdS6

⊗ εη2
S2) = λε−η1

AdS6
⊗ ε−η2

S2 , (A.8)

with λ2 = 1. Note that χ−η1,−η2 = (γ(1) ⊗ γ(2))χη1η2 . For x3 = x4 = 0 the γ3, γ4 terms
drop out in the AdS6 Killing spinor in (A.6). Moreover, the matrices multiplying ε±S,0 are
constant on the brane embedding. The relation (A.8) can be realized by constraining the
constant spinor to satisfy

(−iγr012 ⊗ 12)(ε+AdS6,0 ⊗ ε
+
S2,0) = λ(γ(1) ⊗R−1γ(2)R)(ε+AdS6,0 ⊗ ε

+
S2,0) , (A.9)

where R = exp
(
i
2θ2σ2

)
exp

(
− i

2θ1σ3
)
. This is a constant projection condition which

squares to one, and implies (A.8). With (A.5) this leads to

Γκε = λ
∑
η

(
χ−η,− + iνηχ−η,+

)
⊗ ζη,+ , (A.10)

where ζ++ = (ᾱ, β) and ζ−+ = iν(−ᾱ, β). The BPS condition becomes

Γκε− ε = (λ+ 1)
(
χ−− − χ++ + iν(χ−+ − χ+−

)
⊗
(
ᾱ

0

)

+ (λ− 1)
(
χ−− + χ++ + iν(χ−+ + χ+−

)
⊗
(

0
β

)
. (A.11)

The two choices of projectors lead to the BPS conditions

λ = +1 : α = 0 ,
λ = −1 : β = 0 . (A.12)

These conditions can be further evaluated using the expressions for the Killing spinor
components in (4.9) of [10]. This will be covered by the discussion for more general non-
conformal embeddings below. Embeddings at points satisfying (A.12) preserve half the
background supersymmetries, and realize the sub-superalgebra C(3) of F (4) [27] (see also
table 1 of [28]).
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A.2 Non-conformal defect

Now we consider more general embeddings, where the position on Σ is allowed to depend
on the radial coordinate r of AdS6, such that the embedding is parametrized by a function
w(r). Then

Γκε = −i√
f2

6 + 4ρ2|w′|2
(
f6Γr + 2ρw′Γw + 2ρw̄′Γw̄

)
Γ012ε , (A.13)

where

Γw = γ(1) ⊗ γ(2) ⊗ γw , γw =
(

0 0
1 0

)
, Γw̄ = γ(1) ⊗ γ(2) ⊗ γw̄ , γw̄ =

(
0 1
0 0

)
. (A.14)

With the Killing spinor (A.5) and using the projection condition (A.9) derived for the
conformal defect, this leads to

Γκε = λ√
f2

6 + 4ρ2|w′|2
∑
η

[
f6
(
χ−η,− + iνηχ−η,+

)
⊗ ζη,+

− 2ρ(γ1 ⊗ 12)
(
χη,+ + iνηχη,−

)
⊗
(
w′γw + w̄′γw̄

)
ζη,+

]
.

(A.15)

Now we impose the following condition

γrε
+
AdS6,0 = ε+AdS6,0 ⇒ γrε

−
AdS6,0 = −ε−AdS6,0 . (A.16)

Note that γr commutes with γr012γ(1), so the projection condition on ε+AdS6,0 is compatible
with (A.9). The condition on ε−AdS6,0 follows from ε−AdS6,0 = γ(1)ε

+
AdS6,0. In view of the

explicit form of the AdS6 Killing spinors, this condition implies

ε±AdS6
= e

1
2 rε±AdS6,0 ⇒ γrε

η
AdS6

= ηεηAdS6
. (A.17)

With this relation

Γκε = −iλ√
f2

6 + 4ρ2|w′|2
∑
η

[
f6
(
χ−η,− + iνηχ−η,+

)
⊗ ζη,+

− 2ρ
(
ηχη,+ + iνχη,−

)
⊗
(
w′γw + w̄′γw̄

)
ζη,+

]
. (A.18)

Now we can spell out the components on Σ, using ζ−+ = iνζ−− and the explicit expressions
in (A.4). This leads to

Γκε = λ√
f2

6 + 4ρ2|w′|2

(χ−− − χ++ + iν(χ−+ − χ+−)
)

(f6ᾱ+ 2ρw̄′β)(
χ−− + χ++ + iν(χ−+ + χ+−)

)
(f6β − 2ρw′ᾱ)

 . (A.19)

The spinor itself reads

ε =

(χ++ − χ−− + iν(χ+− − χ−+)
)
ᾱ(

χ++ + χ−− + iν(χ+− + χ−+)
)
β

 . (A.20)

– 19 –



J
H
E
P
0
4
(
2
0
2
1
)
1
3
4

From Γκε = ε we thus conclude that the BPS conditions are

λ
f6ᾱ+ 2ρw̄′β√
f2

6 + 4ρ2|w′|2
= −ᾱ , λ

f6β − 2ρw′ᾱ√
f2

6 + 4ρ2|w′|2
= β . (A.21)

These are two complex equations for one complex function.
Eliminating the square root between the two equations, by multiplying the complex

conjugate of the first equation by β and adding it to the second equation multiplied by α,
leads to

f6αβ + ρw′
(
|β|2 − |α|2

)
= 0 . (A.22)

Solving for w′ and using the result in (A.21) uniformizes the square root, and leads to the
constraint

λ sign(|β|2 − |α|2) = 1 . (A.23)

Note that |β|2− |α|2 = 3νf2, and f2 is non-zero throughout Σ for regular solutions, so this
always leads to a consistent choice for λ.

Now to further evaluating (A.22). Using the expressions for the spinor components
in (4.9) of [10] along with the expression for B leads to

ρ2ᾱ2β̄2 = (∂wG)2

6GT = (∂wG)2

f4
6

. (A.24)

To use this expressions one has to square (A.22), leading to

w′
2 = f2

6α
2β2

9ρ2f2
2

= (∂w̄G)2

9f2
6ρ

4f2
2

= (∂w̄G)2

κ4 . (A.25)

For the last equation the explicit expressions for the metric functions were used. We
thus find

κ2w′ = τ∂w̄G , (A.26)

with τ2 = 1.
We have yet to check the equation of motion resulting from the action in (3.7). Using

the expressions for the metric functions one may write the Lagrangian as

LD3 = 6e3rGT

√
1 + 2κ2

3G |w
′|2 . (A.27)

On the BPS configurations the square root evaluates to T . Thus, upon performing the
variation first and substituting w′ then,

δLD3
δw̄′

= 2τe3r∂w̄G ,
δLD3
δw̄

= 4e3r∂w̄G + 2e3r ∂wG∂2
w̄G

κ2 . (A.28)

From the first equation one concludes

∂r
δLD3
δw̄′

= 2e3r(3τ − 1)∂w̄G + 2e3r ∂
2
w̄G∂wG
κ2 . (A.29)

The equation of motion implies

∂r
δLD3
δw̄′

= δLD3
δw̄

⇒ τ = 1 . (A.30)

Embeddings satisfying (A.26) with τ = 1 thus solve the equation of motion and preserve a
quarter of the background supersymmetries.
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