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Abstract: The perturbative approach to quantum field theories has made it possible
to obtain incredibly accurate theoretical predictions in high-energy physics. Although
various techniques have been developed to boost the efficiency of these calculations, some
ingredients remain specially challenging. This is the case of multiloop scattering amplitudes
that constitute a hard bottleneck to solve. In this paper, we delve into the application of a
disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient
computation of such objects by opening the loops to nondisjoint trees. We study the
multiloop topologies that first appear at four loops and assemble them in a clever and
general expression, the N4MLT universal topology. This general expression enables to open
any scattering amplitude of up to four loops, and also describes a subset of higher order
configurations to all orders. These results confirm the conjecture of a factorized opening
in terms of simpler known subtopologies, which also determines how the causal structure
of the entire loop amplitude is characterized by the causal structure of its subtopologies.
In addition, we confirm that the loop-tree duality representation of the N4MLT universal
topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably
more stable numerical implementation of multiloop scattering amplitudes.
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1 Introduction

The impressive progress in the understanding of the fundamental building blocks of Nature
is due to the ability to extract theoretical predictions from Quantum Field Theories. The
perturbative framework has proven to be extremely efficient for that purpose, nevertheless,
the continuous effort to reach better predictions has revealed critical challenges. The
main bottleneck to automate higher perturbative orders is the study of vacuum quantum
fluctuations associated to Feynman loop diagrams. These mathematical objects exhibit a
complex behaviour of physical and unphysical singularities, which prevents straightforward
numerical calculations. Likewise, the high luminosity achieved by collider machines such
as the CERN’s LHC [1] and future colliders [2–9] is pushing the precision frontier towards
even more accurate theoretical predictions and better understanding of the behaviour of
such quantum objects.

Nowadays, predictions ranging from next-to-leading to even next-to-next-to-next-to
leading order have been calculated for several processes of interest at high energy collid-
ers [10–17]. Since the numerical evaluation of integrals at multi-loop level requires a careful
treatment of singularities, new methods need to be proposed to achieve better theoretical
predictions.

The loop-tree duality (LTD) [18–24] features a manifest distinction between physical
and unphysical singularities at integrand level [25, 26], opening an alternative framework
to perform more efficient calculations. This knowledge was crucial for developing the
four dimensional unsubtraction (FDU) [27–30], which allows to combine real and virtual
corrections into a single numerically-stable integral. As other methods proposed in the
literature [31–39], FDU is aimed at performing most of the calculations directly in the
four physical dimensions of the space-time. Additionally, the LTD formalism posses others
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features that convert it into a promising technique for tackling higher-order computations.
For instance, the number of integration variables in numerical implementations is inde-
pendent of the number of external legs [40–44]. On top of that, LTD efficiently provides
asymptotic expansions [45–48], and it also constitutes a promising strategy towards local
renormalization approaches [49].

It was recently conjectured in ref. [24] that LTD straightforwardly leads to extremely
compact and manifestly causal representations of scattering amplitudes to all orders. This
pattern was explicitly proven for a series of multiloop topologies, the maximal loop topology
(MLT), next-to-maximal (NMLT) and next-to-next-to-maximal (N2MLT) that are charac-
terized by L+1, L+2 and L+3 sets of propagators, respectively, with each set categorized
by the dependence on a specific loop momentum or a linear combination of the L indepen-
dent loop momenta. Remarkably, their analytic dual representations are inherently free of
unphysical singularities, and the causal structure can be interpreted in terms of entangled
causal thresholds [50].

In this work, we extend the application of LTD to a collection of multiloop topologies
that first appear at four loops, and also include nonplanar diagrams. All these topologies
are unified and their LTD representation describes at once the opening of any four-loop
scattering amplitude to nondisjoint trees.

2 Loop-tree duality

A generic L-loop scattering amplitude with N external legs, {pj}N , is encoded in the
Feynman representation as an integral in the Minkowski space of the L loop momenta,
{`s}L, over the product of Feynman propagators, GF (qi) = (q2

i−m2
i+ı0)−1, and numerators

given by the Feynman rules of the specific theory,

A(L)
N (1, . . . , n) =

∫
`1,...,`L

A(L)
F (1, . . . , n) , (2.1)

with
A(L)
F (1, . . . , n) = N ({`s}L, {pj}N )GF (1, . . . , n) . (2.2)

The integration measure in dimensional regularization [51, 52] reads∫
`s

= −ıµ4−d
∫

dd`s
(2π)d , (2.3)

with d the number of space-time dimensions. In eq. (2.2), we have introduced a shorthand
notation to denote the product of Feynman propagators of one set that depends on a
specific loop momentum or the union of several sets that depend on independent linear
combinations of the loop momenta, i.e.

GF (1, . . . , n) =
∏

i∈1∪...∪n
(GF (qi))ai , (2.4)

with ai arbitrary powers. It is important to remark that from now on the powers ai will
appear only implicitly. Also, the LTD representations that will be presented do not require
to detail the internal configuration of each set.
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The LTD representation is obtained by integrating out one degree of freedom per loop
through the Cauchy residue theorem. This results in a modification of the infinitesimal
complex prescription of the Feynman propagators [18], that needs to be considered carefully
to preserve the causal structure of the amplitude. In the context of multiloop scattering
amplitudes, the LTD representation is written in terms of nested residues [24]

A(L)
D (1, . . . , r;r+1, . . . ,n) =−2πı

∑
ir∈r

Res(A(L)
D (1, . . . , r−1;r, . . . ,n), Im(η ·qir )< 0) , (2.5)

starting from

A(L)
D (1; 2, . . . , n) = −2πı

∑
i1∈1

Res(A(L)
F (1, . . . , n), Im(η · qi1) < 0) , (2.6)

where A(L)
F (1, . . . , n) is the integrand in the Feynman representation, eq. (2.2). The Cauchy

countours are always closed on the lower half plane such that the poles with negative
imaginary components are selected. This is implemented through the future-like vector η
that selects which components of the loop momenta are integrated. The usual choice is
ηµ = (1,0), which is equivalent to integrate out the loop energies and has some advantages
because the remaining integration domain is Euclidean. The LTD representations presented
in the following are, however, independent of the coordinate system.

The internal structure of A(L)
F is implicitly specified via the overall tagging of the

different sets of internal momenta. In eq. (2.5), all sets before the semicolon are linearly
independent and each of them contains one propagator which has been set on shell, while all
propagators belonging to sets after the semicolon remain off shell. The sum over all possible
on-shell configurations in A(L)

D is understood through the sum of residues. For example,
the LTD representation of the multi-banana or MLT topology has the very compact and
symmetric form [24]

A(L)
MLT(1, . . . , L+ 1) =

∫
`1,...,`L

L+1∑
i=1
A(L)
D (1, . . . , i− 1, i+ 1, . . . , L+ 1; i) . (2.7)

The bars in eq. (2.7) indicate a reversal of momentum flow, qis = −qis , which is necessary
to preserve causality. More details can be found in refs. [24, 50, 53].

3 The N4MLT universal topology

In this work, we study the multiloop topologies that appear for the first time at four loops.
They are characterized by multiloop diagrams with L + 4 and L + 5 sets of propagators.
According to the classification scheme in ref. [24], they correspond to the next-to-next-
to-next-to maximal loop topology (N3MLT) and next-to-next-to-next-to-next-to maximal
loop topology (N4MLT). Actually, N4MLT embraces in a natural way all Nk−1MLT con-
figurations, with k ≤ 4.

This arrangement allows to restrict the overall assessment to the N4MLT family that
consists of three main topologies. These topologies were checked with QGRAF [54] and are
shown in figure 1. Two of them are planar and one is nonplanar. Nicely, we observe the
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Figure 1. Diagrams of the N4MLT family. The diagram on the l.h.s. corresponds to the t channel,
the diagram on the center is the s channel and the diagram on the r.h.s. corresponds to the u
channel. An arbitrary number of external particles (not shown) are attached.

similarity of these topologies with the insertion of a four-point subamplitude with trivalent
vertices into a larger topology. Therefore, in order to achieve a unified description the three
N4MLT topologies are interpreted as the t-, s- and u-kinematic channels, respectively, of
a universal topology.

The three topologies contain L+4 common sets of propagators, and one extra set which
is different for each of them. Each of the first L sets depends on one characteristic loop mo-
mentum `s and the momenta of their propagators have the form qis = `s+kis . The remain-
ing four common sets are established as linear combinations of the loop momenta, explicitly

qi(L+1) = −
L∑
s=1

`s + ki(L+1) , qi12 = −`1 − `2 + ki12 ,

qi123 = −
3∑
s=1

`s + ki123 , qi234 = −
4∑
s=2

`s + ki234 , (3.1)

with kis , ki(L+1) , ki12 , ki123 and ki234 linear combinations of external momenta. The extra sets
are the distinctive key to each of the channels in the universal topology. We identify the mo-
menta of their propagators as different linear combinations of `2, `3 and `4, writing them as

qirs = −`r − `s + kirs , r, s ∈ {2, 3, 4} . (3.2)

To assemble the three N4MLT channels into a single topology, we define the current J
that includes the three different type of sets,

J ≡ 23 ∪ 34 ∪ 24 . (3.3)

Notice that due to momentum conservation, the three subsets cannot contribute to the
same individual Feynman diagram but they all contribute at amplitude level. Relying on
the development of this framework, the Feynman representation of the N4MLT universal
topology can be expressed as

A(L)
N4MLT(1, . . . , L+ 1, 12, 123, 234, J) =

∫
`1,...,`L

A(L)
F (1, . . . , L+ 1, 12, 123, 234, J) . (3.4)
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Figure 2. Diagrammatic representation for the factorized opening of the multiloop N4MLT uni-
versal topology. Only the on-shell cut of the last MLT-like subtopology with reversed momentum
flow is shown.

The dual opening of this topology fulfills a factorization identity in terms of convoluted
subtopologies, similar to those presented in ref. [24] for NMLT and N2MLT, i.e.

A(L)
N4MLT(1, . . . , L+ 1, 12, 123, 234, J)

= A(4)
N4MLT(1, 2, 3, 4, 12, 123, 234, J)⊗A(L−4)

MLT (5, . . . , L+ 1)

+A(3)
N2MLT(1 ∪ 234, 2, 3, 4 ∪ 123, 12, J)⊗A(L−3)

MLT (5, . . . , L+ 1) . (3.5)

The convolution symbol indicates that each of the convoluted components is open indepen-
dently, whereas the on-shell conditions from all components act together on the numerator
and the propagators that remain off-shell. An essential constraint to be met by the se-
lected on-shell propagators concerns the non-feasibility of generating disjoint trees in the
dual opening. In order to make the notation more readable, A(L)

Nk−1MLT will refer in the
following to the integrand of the corresponding topology in the LTD representation; inte-
gration over the L loop momenta will be implicitly understood.

The factorization identity in eq. (3.5) is the main result of this paper, and it is the
universal identity that opens any multiloop N4MLT topology to nondisjoint trees. It also
enables to infer the causal structure of the complete topology by exploring the causal
behaviour of its subtopologies. Let us emphasize that this identity is valid regardless
of the internal configuration, i.e. numerators, multiple-power propagators and number of
external particles, because the residue operator is implicitly considered. In addition, since
it properly accounts for all Nk−1MLT configurations with k ≤ 4, it is the only master
expression required to open to nondisjoint trees any scattering amplitude of up to four
loops. Beyond four loops, new topologies arise which, for consistency, will include this
universal topology as a particular case.

A graphical interpretation of the factorization identity is shown in figure 2. The
term A(4)

N4MLT on the r.h.s. of eq. (3.5) considers all possible configurations with four
on-shell propagators in the sets {1, 2, 3, 4, 12, 123, 234, J}, while A(3)

N2MLT in the second
term assumes three on-shell conditions under the constraints explained below. The term
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A(L−4)
MLT (5, . . . , L+ 1) is open according to the MLT opening presented in refs. [24, 53], and

in A(L−3)
MLT (5, . . . , L+ 1) all the momentum flows are reversed and all the sets contain one

on-shell propagator. The reversion is imposed by the fact that, in the absence of propaga-
tors in the sets {12, 123, 234, J}, the master opening in eq. (3.5) should coincide with the
MLT opening.

The factorization identity in eq. (3.5) has been first tested by explicitly computing
the nested residues on the l.h.s. for specific internal configurations, and then confronting
the result with the unfolding (according to the known expressions of the corresponding
subtopologies) of the Ansatz on the r.h.s., which is motivated by the graphical interpreta-
tion. In order to prove that eq. (3.5) holds for an arbitrary number of loops, we decomposed
the N4MLT into two parts: the upper part in the l.h.s. of figure 2 containing the current
J , which encodes the novel topological complexity arising in this class of diagrams, and
the lower one, which represents a known MLT-like component. The LTD representation of
the topological complexity part is computed at four loops for each configuration described
by the current J , or equivalently, by considering the MLT-like sector as a single internal
line. Then, we just need to rely on the MLT formula presented in eq. (2.7) to complete the
calculation and obtain the all-order expression.

We have to mention certain arbitrariness in the expression (3.5) due to the freedom in
the order of the nested application of the Cauchy residue theorem. Although there are at
least L! possibilities, all potential LTD representations are, however, equivalent and lead
to the same causal expression in terms of dual propagators [50] (see section 4).

The four-loop subtopology in eq. (3.5) is opened as well through a factorization identity
which is written in terms of known subtopologies,

A(4)
N4MLT(1, 2, 3, 4, 12, 123, 234, J) = A(4)

N2MLT(1, 2, 3, 4, 12, 123, 234)⊗A(0)(J)

+
∑
s∈J
A(4)
D (1, 2, 3, 4, 12, 123, 234, s) , (3.6)

The diagrammatic representation of eq. (3.6) is depicted in figure 3. The first term on the
r.h.s. of eq. (3.6) consists of a four-loop N2MLT subtopology and describes dual trees where
all the propagators with momenta in J remain off shell, corresponding to the first diagram
on the r.h.s. of figure 3. The second term on the r.h.s. of eq. (3.6) collects contributions
where propagators in either 23, 34 or 24 are set on shell. These dual trees are therefore
specific to the t, s and u channels, whose explicit expressions are presented below. We use
the bold symbol s to clearly indicate that these contributions are those containing on-shell
propagators in the J-sets.

The three-loop subtopology on the r.h.s. of eq. (3.5) is also opened in terms of known
subtopologies through the factorized identity

A(3)
N2MLT(1 ∪ 234, 2, 3, 4 ∪ 123, 12, J) = A(3)

NMLT(1 ∪ 234, 2, 3, 4 ∪ 123, 12)⊗A(0)(J)

+
∑
s∈J
A(3)
D (1, 2, 3, 4, 12, 123, 234, s) , (3.7)

which has a similar structure to eq. (3.6). The diagrammatic representation of eq. (3.7) is
depicted in figure 4. Similarly to figure 3, the first diagram on the r.h.s. of figure 4, which
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1
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1

12
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4 234
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Figure 3. Diagrammatic representation of the four-loop subtopology
A(4)

N4MLT(1, 2, 3, 4, 12, 123, 234, J). The dashed lines and bold labels indicate that propaga-
tors in the J-sets are set on shell in either of the two momentum flows.

represents the first term on the r.h.s. of eq. (3.7), is a three-loop NMLT subtopology and
all the propagators in J are off shell, while the remaining three diagrams are specific to
each of the three channels. The NMLT subtopology is made up of 7 subsets of momenta
grouped into 5 sets as follows {1 ∪ 234, 2, 3, 4 ∪ 123, 12}. This construction prevents, for
example, that propagators in the sets 1 and 234 are set on shell simultaneously.

Turning back into eqs. (3.6) and (3.7) in a more detailed way, the first terms on the
r.h.s. of both equations are composed of dual contributions where all the propagators in
J remain off shell. These J-propagators act as spectators in relation to the opening of
the accompanying subtopology, and can eventually be replaced by a contact interaction to
deduce the opening rule of these contributions.

Specifically, the four-loop N2MLT subamplitude in eq. (3.6) is represented by

A(4)
N2MLT(1, 2, 3, 4, 12, 123, 234) = A(3)

NMLT(1, 2, 3, 12, 123, 234)⊗A(1)
MLT(4, 234) (3.8)

+
[
A(2)

MLT(1, 2, 12) +A(2)
MLT(1, 3)

]
⊗A(2)

MLT(4, 234)

+
[
A(2)

MLT(123, 3, 12) +A(2)
MLT(2, 123)

]
⊗A(2)

MLT(4, 234) .

All the MLT subamplitudes that involve a number of loops equal to the number of sets
require to set on shell propagators in all the sets. The rest of NMLT and MLT subtopologies
are open according to known expressions [24]. To simplify the presentation, we have omitted
in eq. (3.8) the explicit reference to the sets with all their propagators off shell; for instance,
the element A(2)

MLT(1, 3)⊗A(2)
MLT(4, 234) must be interpreted as

A(2)
MLT(1, 3)⊗A(2)

MLT(4, 234) = A(4)
D (1, 3, 4, 234; 2, 12, 123) . (3.9)

This notation will be used in the following; the omitted sets are understood to be off shell.
The three-loop NMLT subtopology in eq. (3.7) is generated from 7 subsets clustered

as {1 ∪ 234, 2, 3, 4 ∪ 123, 12} and its LTD representation is

A(3)
NMLT(1 ∪ 234, 2, 3, 4 ∪ 123, 12) = A(2)

MLT(1 ∪ 234, 2, 12)⊗A(1)
MLT(3, 4 ∪ 123)

+A(1)
MLT(1 ∪ 234, 2)⊗A(2)

MLT(3, 4 ∪ 123), (3.10)
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123
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34

+

1

12
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123 3

4
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24

Figure 4. Diagrammatic representation of the three-loop subtopology A(3)
N2MLT(1 ∪ 234, 2, 3, 4 ∪

123, 12, J). The dashed lines and bold labels indicate that propagators in the J-sets are set on shell
in either of the two momentum flows.

where the first term is a convolution of two MLT subtopologies, and in the second term all
the propagators in the set 12 are off shell.

3.1 The t channel

The second terms in eqs. (3.6) and (3.7) distinguish the dual configurations arising for
each of the three channels when propagators with momenta in J are set on shell. We
begin analyzing the dual terms related exclusively to the topology known as t channel from
figure 1 (left). There is one four-loop subtopology

A(4)
D (1,2,3,4,12,123,234,23)=

[(
A(2)

MLT(123,3,12)+A(2)
MLT(2,123)

)
⊗A(1)

D (23) (3.11)

+
(
A(2)

MLT(1,2,12)+A(2)
MLT(1,3)

)
⊗A(1)

D (23)
]
⊗A(1)

MLT(4,234),

and one three-loop subtopology

A(3)
D (1,2,3,4,12,123,234,23) =

[
A(2)

MLT(4∪123,3,12)+A(2)
MLT(2,4∪123)

]
⊗A(1)

D (23) (3.12)

+
[
A(2)

MLT(1∪234,2,12)+A(2)
MLT(1∪234,3)

]
⊗A(1)

D (23) ,

that contribute to eqs. (3.6) and (3.7), respectively. Notice that both expressions, eq. (3.11)
and eq. (3.12), contain on-shell propagators in the set 23, and we have contributions with
the original momentum flow, 23, and the reversed one 23.
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3.2 The s channel

In order to obtain the terms that characterize the s channel shown in figure 1 (center), we
set on shell a propagator in the set 34. The four-loop subtopology is given by

A(4)
D (1, 2, 3, 4, 12, 123, 234,34) (3.13)

=
[
A(3)

NMLT(1, 2, 3, 12, 123) +A(3)
MLT(3, 123, 234)

+A(2)
MLT(1, 2, 12)⊗A(1)

D (4) + A(1)
MLT(3 ∪ 4, 123)⊗A(2)

MLT(12, 234)
]
⊗A(1)

D (34)

+
[
A(1)

MLT(3 ∪ 4, 123)⊗A(2)
MLT(1, 234) + A(1)

MLT(1, 2 ∪ 234)⊗A(2)
MLT(4, 123)

]
⊗A(1)

D (34) .

This expression is more involved than the corresponding one in the t channel, because the
loop momentum `4 is now present in three sets, while in the t channel `4 is found in two
sets only.

By contrast, for the three-loop subamplitude we observe a very symmetric structure
which allows to avoid any momentum flow reversion. In this case, we end up with an
expression that only depends on the original momentum flow of the set 34,

A(3)
D (1, 2, 3, 4, 12, 123, 234,34) = A(1)

MLT(1 ∪ 234, 2)⊗A(1)
MLT(3, 4 ∪ 123)⊗A(1)

D (34) . (3.14)

Given the structure of this subtopology, it is manifest that propagators in 12 and 34 cannot
become on shell simultaneously without generating a disjoint tree, as expected from figure 4.

3.3 The u channel

Moving on to the last terms associated to the nonplanar topology known as u channel
(figure 1 (right)), the LTD representation of the four-loop subamplitude with on-shell
propagators in the set 24 reads

A(4)
D (1, 2, 3, 4, 12, 123, 234,24)

=
[
A(3)

NMLT(1, 2, 3, 12, 123) +A(1)
MLT(1, 2 ∪ 4)⊗A(2)

MLT(123, 234)

+ A(1)
MLT(3 ∪ 234, 123)⊗A(2)

MLT(1, 4)
]
⊗A(1)

D (24)

+
[
A(2)

MLT(1, 2, 12)⊗A(1)
MLT(234) +A(3)

MLT(4, 3, 123)

+ A(1)
MLT(3 ∪ 234, 123)⊗A(2)

MLT(4, 12)
]
⊗A(1)

D (24) . (3.15)

This subtopology is also not as compact as the expression for the t channel because `4 is
also present in three different sets. For the three-loop subamplitude, we find,

A(3)
D (1,2,3,4,12,123,234,24) =

[
A(2)

MLT(1∪234,4)+A(2)
MLT(234,123)

]
⊗A(1)

D (24)

+
[
A(2)

MLT(1∪234∪3,2,12)+A(2)
MLT(3,4∪123)

+A(2)
MLT(4∪123,12)+A(2)

MLT(1,123)
]
⊗A(1)

D (24) . (3.16)

All these results are consistent with the absence of disjoint trees. We would like to
comment on the fact that repeated propagators from selfenergy insertions are treated as
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single propagators raised to specific powers and are not considered to generate disjoint
trees when the repeated propagator is set on shell.

Notice that the number of trees in the LTD forest can also be computed through
the combinatorial exercise of selecting, from the full list of sets, all possible subsets of
L elements that cannot generate disjoint trees. For the individual t, s and u channels
the number of terms calculated in this way are 5(8L − 17), 15(3L − 7) and 9(5L − 11),
respectively, and 82L − 187 for the N4MLT universal topology, in agreement with the
number of dual contributions generated by eq. (3.5). The momentum flows of the on-shell
propagators, however, can only be determined through the nested residues.

4 Causal representations

The LTD representation generates in general two kind of singularities, causal thresholds
that can be interpreted in terms of causality, and noncausal thresholds that are unphysical
and cancel among different dual terms [25, 26]. In ref. [24], we conjectured that, in fact, the
LTD representation can be rearranged in such a way that noncausal singularities are man-
ifestly absent in the analytic expression. In this section, we confirm the causal conjecture
for the N4MLT family and present explicit causal representations of selected configurations
that can be described through very compact analytic expressions.

We consider, in the first place, the multi-loop N3MLT configuration with one internal
propagator in each loop set and five external momenta

A(L)
N3MLT(1, . . . , L+ 4) =

∫
`1,··· ,`L

N ({`s}L, {pj}N )GF (1, . . . , L+ 1, 12, 123, 234) , (4.1)

where the internal momenta are defined in eq. (3.1). Its LTD representation is obtained
through the universal N4MLT expression in eq. (3.5) by considering J as an empty set,
or equivalently, by substituting J by a contact interaction. After computing the nested
residues and adding them all together, the dual representation reads

A(L)
N3MLT(1, . . . , L+ 4) =

∫
~̀1,··· ,~̀L

NN3MLT({q(+)
s,0 , kj,0})

xL+4
(∏13

i=1 λ
+
i λ
−
i

) , (4.2)

where the integrand is a function of the on-shell energies, q(+)
s,0 =

√
q2
s +m2

s − ı0, with
s ∈ {1, . . . , L + 4}, and the energy components of the linear combinations of external
momenta, kj,0. This is an integral in the loop three-momenta with integration measure

∫
~̀

s

= −µ4−d
∫

dd−1`s
(2π)d−1 . (4.3)

The integrand in eq. (4.2) is written in terms of

xL+4 =
L+4∏
s=1

2q(+)
s,0 , (4.4)
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Figure 5. Causal configurations of the N3MLT topology. The λ−
i configurations are obtained by

reversing the momentum flows of the corresponding λ+
i configurations shown here. The set number

5 accounts for all the propagators in the sets 5 to L+ 1.

and the thirteen causal denominators

λ±1 = q
(+)
(1,...,L+1),0 ± kL+1,0 , λ±2 = q

(+)
(1,12,3,4,234),0 ± (k234 − k12)0 ,

λ±3 = q
(+)
(2,4,12,123,234),0 λ±4 = q

(+)
(2,3,123,234,5,...,L+1),0

± (k12 + k234 − k123)0 , ± (k123 + k234 − kL+1)0 ,

λ±5 = q
(+)
(2,3,4,234),0 ± k234,0 ,

λ±6 = q
(+)
(1,2,3,123),0 ± k123,0 , λ±7 = q

(+)
(12,3,4,...,L+1),0 ± (kL+1 − k12)0 ,

λ±8 = q
(+)
(1,4,123,234),0 ± (k234 − k123)0 , λ±9 = q

(+)
(2,12,234,5,...,L+1),0

± (k12 + k234 − kL+1)0 ,

λ±10 = q
(+)
(1,2,12),0 ± k12,0 , λ±11 = q

(+)
(12,3,123),0 ± (k123 − k12)0 ,

λ±12 = q
(+)
(123,4,...,L+1),0 ± (kL+1 − k123)0 , λ±13 = q

(+)
(1,234,5,...,L+1),0 ± (k234 − kL+1)0 , (4.5)

where we have defined q(+)
(α),0 =

∑
i∈α q

(+)
i,0 . As explained in refs. [24, 50], these denominators

are causal because they are constructed from sums of on-shell energies exclusively, and they
represent potential singular configurations in which the momentum flows of the internal
propagators are aligned in the same direction. The causal denominators appear in pairs
because there are two opposite directions to consider for each aligned configuration. A
graphical representation of these causal configurations is shown in figure 5. All other linear
combinations of on-shell energies do not have a physical interpretation in terms of causality,
and are cancelled analytically in the sum over nested residues. As a result, the straight-
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forward application of LTD leads directly to an expression, eq. (4.2), which is manifestly
causal. In addition, the causal expression is independent of the initial flow assigments of the
internal momenta, and of the order of the nested application of the Cauchy residue theorem.

However, the numerator of the integrand, NN3MLT({q(+)
s,0 , kj,0}), is a lengthy polynomial

in the on-shell and external energies. For example, it is a polynomial of degree nine for
the scalar integral. A more suitable causal expression can be obtained by reinterpreting
eq. (4.2) in terms of a number of entangled thresholds equal to the difference between
the number of propagators and the number of loops by, e.g., analytical reconstruction from
numerical evaluation over finite fields [55–57] as defined in ref. [50]. The N3MLT expression
in eq. (4.2) is analytically reconstructed by matching all combinations of four thresholds
that are causally compatible to each other

A(L)
N3MLT(1, . . . , L+ 4) =

∫
~̀1,··· ,~̀L

1
xL+4

∑
σ

Nσ(i1,...,i4)({q
(+)
s,0 , kj,0})

λσ(i1)λσ(i2)λσ(i3)λσ(i4)
, (4.6)

where λσ(i) ∈ {λ±i }i=1,...,13, and the numerators Nσ(i1,...,i4) are of the same polynomial
order as the original numerator in the Feynman representation, e.g., they are constants for
scalar integrals. To simplify the discussion, we will present explicit results only for scalar
integrals because they fully encode all the compatible causal matchings. For example, given
a quadratic numerator, we can use the identity

(qi,0)2GF (qi) = 1 +
(
q

(+)
i,0

)2
GF (qi) . (4.7)

The first term on the r.h.s. generates a scalar integral with one propagator less than the
original integral, while the second term introduces a factor

(
q

(+)
i,0

)2
which is not modified

by the application of the Cauchy residue theorem. Both integrals, however, are described
by the same set of causal thresholds. In general, tensor reduction commutes with LTD and
can be used to deal with tensor integrals.

The explicit expression that we obtain for the scalar N3MLT is very compact:

A(L)
N3MLT(1, . . . , L+ 4) =

∫
~̀1,··· ,~̀L

1
xL+4

[
F (L+4)

(1,5,6,7,10,11,12,13) + F (L+4)
(2,5,7,8,11,12,13,10) (4.8)

+F (L+4)
(3,5,8,9,12,13,10,11) + F (L+4)

(4,5,9,6,13,10,11,12) + L+
(6,10,11)L

−
(8,12,13)

+L−(7,11,12)L
+
(9,13,10) + L+

10L
−
11L

+
12L
−
13 + (λ+

i ↔ λ−i )
]
,

where

F (L+4)
(1,5,6,7,10,11,12,13) = L+

1

(
L+

5 + L−13

) (
L+

(6,10,11) + L+
(7,11,12) + L+

10L
+
12

)
, (4.9)

with
L±i = 1

λ±i
, L±(i,j,k) = L±i

(
L±j + L±k

)
. (4.10)

The function F (L+4) encodes four causal configurations that are obtained by permutation
of the arguments. The number of terms generated by eq. (3.5) scales as 3(8L− 17), i.e. 45
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terms at four loops, while the number of terms generated by eq. (4.8) equals 98 regardless of
the number of loops. The numerical performance of eq. (4.8) is, in addition, a factor 2 to 8
faster than eq. (3.5) at four loops, and even three orders of magnitude faster than eq. (4.2).
We have estimated the numerical performance by comparing the timings of evaluating the
integrands at 1000 random points. Similar relative timing are observed for the rest of the
configurations presented in this paper.

Let us emphasize that the most significant advantage of eq. (4.8) with respect to
eq. (3.5) stems from the core difference between them, the presence or absence of noncausal
singularities. The straightforward application of the nested residue generates multiple
threshold singularities, nevertheless, with a clever analytical rearrangement, the absence
of noncausal singularities is achieved and leads to a causal representation which is more
efficient and stable numerically in all the integration domain. To illustrate the impact of
noncausal singularities, we present in figure 6 the integrand of the dual representation of
the N3MLT vacuum diagram (kj,0 = 0) as a function of the two on-shell energies q(+)

12,0 and
q

(+)
123,0 where the remaining on-shell energies are set at fixed values, q(+)

i,0 = 1 for i = 1, . . . , 5
and q(+)

234,0 = 2. The white lines represent the location of the noncausal thresholds which
arise due to the denominators 1/(q(+)

12,0− q
(+)
i,0 ), 1/(q(+)

123,0− q
(+)
i,0 ) and 1/(q(+)

12,0− q
(+)
123,0± q

(+)
i,0 ).

Additionally, to clarify the meaning of the noncausal thresholds in figure 6 in more detail,
we study one of the singularities by fixing q(+)

123,0 and scanning over q(+)
12,0. The results of

noncausal and causal evaluations of the N3MLT configurations are displayed in figure 7
in the left and right plots, respectively. Similar findings were reported in ref. [50], where
explicit causal representations of up to N2MLT complexity were presented.

In return, the LTD representation in eq. (3.5) is universal and valid regardless of
the internal configuration, while the causal representation is specific to the details of the
configuration under consideration, e.g., the number of propagators in each loop set. The
number of terms for a given Nk−1MLT topology in eq. (3.5) scales with the number of
loops and linearly with the number of propagators per loop set, but the sum over residues,
equivalently over internal propagators, is implicitly accounted in this expression. By con-
trast, the number of terms for a given Nk−1MLT topology is independent of the number of
loops in the causal representation but requires to specify additional causal thresholds and
additional causal entanglements when more internal propagators are considered. In this
respect, external momenta attached to interaction vertices that connect different loop sets
do not alter the number of internal propagators and therefore the complexity of the causal
representation. We will exploit this feature in the following to simplify the discussion of
the causal representation of the N4MLT topology. The full causal expressions with external
momenta can be deduced from the causal representation of the vacuum configuration by
matching the momentum flows of the entangled thresholds.

Let us then consider the t-channel of the N4MLT universal topology

A(L)
N4MLT(1, . . . , L+ 4, 23) =

∫
`1,··· ,`L

N ({`s}L, {pj}N )GF (1, . . . , L+ 4, 23) , (4.11)

again with only one propagator per set, and six external particles. Its LTD representation
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Figure 6. Integrand-level behaviour of the noncausal LTD representation of a four-loop N3MLT
diagram. White lines indicate the position of noncausal thresholds.
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Figure 7. Numerical instabilities of the four-loop N3MLT integrand which arise due to noncausal
singularities (left), which are absent in the causal representations (right).

– 14 –



J
H
E
P
0
4
(
2
0
2
1
)
1
2
9

2 3

23

λ+
14

4

23

234

λ+
15

1 12323

λ+
16

1

3
12

23

λ+
17

1

4
5

23

λ+
18

2
12

12323

λ+
19

5

123

234

23

λ+
20

2

4

5

12

23

λ+
21

3

5

12

234

23

λ+
22

Figure 8. Extra causal configurations of the t-channel of the N4MLT topology.

is causal after all the nested residues are summed up together, i.e.

A(L)
N4MLT(1, . . . , L+ 4, 23) =

∫
~̀1,··· ,~̀L

NN4MLT({q(+)
s,0 , kj,0})

xt,L+5
(∏22

i=1 λ
+
i λ
−
i

) , (4.12)

where xt,L+5 = 2q(+)
23,0 xL+4. The LTD representation in eq. (4.12) depends on the causal

denominators already defined for the N3MLT configuration in eq. (4.5) in addition to nine
extra causal denominators that depend on q(+)

23,0 (the corresponding configurations are shown
in figure 8):

λ±14 = q
(+)
(2,3,23),0±k23,0 , λ±15 = q

(+)
(4,234,23),0±(k234−k23)0 ,

λ±16 = q
(+)
(1,123,23),0±(k123−k23)0 , λ±17 = q

(+)
(1,3,12,23),0±(k23−k12)0 ,

λ±18 = q
(+)
(1,4,...,L+1,23),0±(kL+1−k23)0 ,

λ±19 = q
(+)
(2,12,123,23),0±(k12 +k23−k123)0 ,

λ±20 = q
(+)
(123,234,5,...,L+1,23),0±(k123 +k234−kL+1−k23)0 ,

λ±21 = q
(+)
(2,4,...,L+1,12,23),0±(k12 +k23−kL+1)0 ,

λ±22 = q
(+)
(3,5,...,L+1,12,234,23),0±(k234 +k12−k23−kL+1)0 . (4.13)

The numerator in eq. (4.12) is now a polynomial of degree seventeen for the scalar integral.
We should consider then all the entangled configurations with five causal thresholds. For
the sake of simplicity, we will restrict the analysis to the vacuum configuration, which
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implies λ+
i = λ−i and is sufficient to have a clear overview of the causal structure, as

explained before. Applying the reconstruction algorithm defined in ref. [50], we obtain
again a very compact result, and an overall structure similar to eq. (4.8),

A(L)
N4MLT(1, . . . , L+ 4, 23) = −

∫
~̀1,··· ,~̀L

2
xt,L+5

[
F (L+5)

(1,5,6,7,10,11,12,13,14,15,18) (4.14)

+F (L+5)
(2,5,7,8,11,12,13,10,15,14,17) + F (L+5)

(3,5,8,9,12,13,10,11,15,14,19) + F (L+5)
(4,5,9,6,13,10,11,12,14,15,20)

+F (L+5)
(21,18,19,7,14,11,12,9,13,15,10) + F (L+5)

(22,17,20,7,15,12,11,9,10,14,13)

+G(L+5)
(10,14,6,13,11,12,15,8) + G(L+5)

(10,11,12,13,14,15,17,18) + G(L+5)
(12,13,10,11,15,14,20,19)

+
(
L(6,10,11) + L(17,10,14) + L(19,11,14)

) (
L(8,12,13) + L(18,13,15) + L(20,12,15)

)
L16

]
,

that is written in terms of permutations of the arguments of the two functions

F (L+5)
(1,...,11) = L1

(
L(2,9,10) + L(8,9,11) + L10 L11

) (
L(3,5,6) + L(4,6,7) + L5 L7

)
, (4.15)

and
G(L+5)

(1,...,8) = (L1 + L5) L(3,4,6) L(7,2,8) . (4.16)

Notice that, for example

F (L+5)
(1,5,6,7,10,11,12,13,14,15,18)

∣∣∣
L14→1,(L15,L18)→0

= F (L+4)
(1,5,6,7,10,11,12,13) , (4.17)

thus ensuring the consistency of eq. (4.14) with eq. (4.8).
The s-channel is obtained just by a clockwise rotation of the t-channel and therefore

by a permutation of the arguments of the causal denominators that are channel specific

λ±i (1, 2, 3, 4, 5 · · · (L+ 1), 12, 123, 234, 34)
= λ±i (5 · · · (L+ 1), 234, 2, 3, 123, 1, 12, 4, 23) , i ∈ [14, 22] . (4.18)

This means that in eq. (4.13) it is enough to make, for example, replacements similar to

λ±14 → q
(+)
(3,4,34),0 ± k34,0 ,

λ±18 → q
(+)
(1,12,234,34),0 ± (k234 − k12 − k34)0 , (4.19)

to obtain the corresponding causal representation.
For the u-channel, the causal denominators are obtained from the t-channel through

the substitution 23→ 24 and by the exchange 3↔ 4 or 2↔ 234 (123 remains invariant):

λ±i (1, . . . , L+ 1, 12, 123, 234, 24) = λ±i (3↔ 4, 23→ 24) , i ∈ [14, 15, 17, 18, 22] ,
λ±i (1, . . . , L+ 1, 12, 123, 234, 24) = λ±i (2↔ 234, 23→ 24) , i ∈ [19, 20, 21] . (4.20)

There are, however, three new configurations that arise because the u-channel is nonplanar.
These new configurations are shown in figure 9 and are described by the following causal

– 16 –



J
H
E
P
0
4
(
2
0
2
1
)
1
2
9

1

24

4 3

123

λ
(u)+
16

1

24

5

12

123

λ+
23

1

2

123

24

234

λ+
24

Figure 9. Extra causal configurations of the u-channel of the N4MLT topology due to nonplanarity.

denominators

λ
(u)±
16 = q

(+)
(1,...,4,123),0 ± k123,0 ,

λ±23 = q
(+)
(1,5,...,L+1,12,123,24),0 ± (kL+1 + k12 − k123 − k24)0 ,

λ±24 = q
(+)
(1,2,123,234,24),0 ± (k123 − k234 + k24)0 . (4.21)

The causal representation of the u-channel has a very similar structure to eq. (4.14)

A(L)
N4MLT(1, . . . , L+ 4, 24) = −

∫
~̀1,··· ,~̀L

2
xu,L+5

[
F (L+5)

(1,5,6,7,10,11,12,13,14,15,18)

+F (L+5)
(2,5,7,8,11,12,13,10,15,14,17) + F (L+5)

(3,5,8,9,12,13,10,11,14,15,19) + F (L+5)
(4,5,9,6,13,10,11,12,15,14,20)

+F (L+5)
(21,18,20,7,14,12,11,9,13,15,10) + F (L+5)

(22,17,19,7,15,11,12,9,10,14,13) + F (L+5)
(16,18,17,6,14,10,11,8,13,15,12)

+F (L+5)
(24,20,19,6,15,11,10,8,12,14,13) + F (L+5)

(23,19,20,17,12,14,10,18,15,11,13)

+L10 L12 L15 (L11 L13 + L11 L14 + L13 L14)
]
, (4.22)

where xu,L+5 = 2q(+)
24,0 xL+4.

5 Conclusions

We have analized the multiloop topologies that appear for the first time at four loops and
have found a general representation, the N4MLT universal topology, which describes their
opening to nondisjoint trees through the loop-tree duality. The opening to trees admits a
very structured and compact factorized interpretation in terms of convolutions of known
subtopologies, that finally determine the internal causal structure of the entire amplitude.
The LTD representation presented in this paper is valid in arbitrary coordinate systems
and space-time dimensions.

The N4MLT topology is called universal because it unifies in a single expression all the
necessary ingredients to open any scattering amplitude of up to four loops. Beyond four
loops, this topology will be embedded in more complex topologies, so that the methodology
presented here can be used as a guide to achieve a full description of higher orders.

We have verified that the LTD representation of N4MLT is manifestly causal, namely,
that the explicit LTD analytic expression is inherently free of noncausal singularities. On
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the one hand, this supports the applicability and generalization of four-dimensional unsub-
traction to higher orders. On the other hand, it allows a more efficient numerical evaluation
of multiloop scattering amplitudes than other integrand representations due to the absence
of noncausal singularities. These results extend by one perturbative order the causal anal-
ysis of ref. [50], and the interpretation of LTD in terms of entangled causal thresholds.
In addition, they confirm the all-order conjectures of ref. [24]. We expect similar conclu-
sions at higher orders, thus leading to a noticeable improvement in the available toolkit for
computing highly-precise theoretical predictions.
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