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1 Introduction

Although the black hole no-hair conjecture has been proposed a long time ago [1], various
violations have been found in the systems like Einstein-Skyrme [2–5] and Einstein-Yang-
Mills-Higgs [6–12] (see [13] for a review). For instance, refs. [6, 7] have demonstrated that
the magnetically charged Reissner-Nordström (RN) black holes is classically unstable and
can evolve into a hairy magnetic black hole with a cloud of gauge and Higgs field configures.
The existence of a non-trivial hair for the black hole changes the black hole properties in
various ways including the faster and effectively two-dimensional Hawking radiation [14].
Given the discovery of the Higgs boson in 2012 [15, 16] and the completeness of the Standard
Model (SM), we study the properties of magnetic and dyonic black holes with electroweak
gauge and Higgs hair. In our study, we will consider the magnetic charge Q = 2 case with
a spherically symmetric configuration for the whole system. We want to emphasize that
the existence of hairy magnetic and dyonic black holes only depends on the known SM
and general relativity, although their abundance in the current Universe is subject to the
early-universe formation mechanism and various phenomenological constraints [17].

In the direction of searching for localized and magnetically charged object with finite
energy, there is no viable candidate just based on the SM interactions (see [18, 19] for studies
including physics beyond the SM). The existence of a black hole inside a magnetic monopole
can make the energy of the whole system finite, because the divergent behavior of the
monopole energy in the small radius region is regularized by the black hole event horizon.
So, the hairy magnetic black hole (hMBH) serves as a unique and justified magnetically
charged object based on experimentally established SM (on the purely theoretically side,
we may have the t ’hooft-Polyakov monopole [20, 21] in the grand unified theories [22]).
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This paper is organized as follows. We first derive the equations of motion for a
general hairy dyonic black hole (hDBH) in section 2. In section 3.1, we solve the equations
of motion with proper boundary conditions (BCs) and calculate the mass and the field
profiles for the hairy magnetic black hole case. We discuss the Hawking temperature and
evolution of non-extremal hairy magnetic black hole in section 3.2. In section 4.1, the
mass and field profiles for the hairy dyonic black holes will be calculated with some of
their properties discussed in section 4.2. We conclude our paper and discuss some future
directions in section 5.

2 Lagrangian and equations of motion

Starting with the Einstein-Hilbert action in general relativity and including the matter
Lagrangian in the SM of particle physics, one has the action

S =
∫
d4x
√
−g

[
− 1

16πG R+ LSM

]
. (2.1)

Here, G = 1/M2
pl withMpl = 1.22×1019 GeV is the Newton constant; R is the Ricci scalar;

g ≡ det(gµν) is the determinant of the metric tensor matrix; the metric gµν = (gµν)−1 has
the convention of (+1,−1,−1,−1) for a flat-space metric. For the matter Lagrangian, we
only include the known SM Lagrangian with focus on the electroweak SU(2)W × U(1)Y
gauge sector

LSM ⊃ LEW = −1
4 W

a
µνW

aµν − 1
4YµνY

µν + |DµH|2 −
λ

2

(
H†H − v2

2

)2

, (2.2)

with v = 246GeV and λ ≈ 0.26 to have the Higgs boson mass ofmh =
√
λ v ≈ 125GeV [23].

Here,W a
µ with a = 1, 2, 3 are SU(2)W gauge bosons and Yµ is the hypercharge gauge boson.

The gauge field tensors are W a
µν = ∂µW

a
ν − ∂νW a

µ − g εabcW b
µW

c
ν and Yµν = ∂µYν − ∂νYµ.

The covariant derivative of the Higgs doublet is

DµH =
(
∂µ − i

g

2 σ
aW a

µ − i
gY

2 Yµ

)
H , (2.3)

with σa as the Pauli matrices and the two gauge couplings g = e/ sin θW and gY = e/ cos θW
with e =

√
4π α and α ≈ 1/128 at the electroweak scale. Here, θW is the weak mixing

angle with sin θW ≈
√

0.23. The constant term for the Higgs potential is chosen to have a
zero value when the Higgs field sits at the potential minimum 〈H〉 = (0, v/

√
2)T .

For both magnetic and dyonic black holes, we will consider only the Q = 2 magnetic
charge in this paper (we will use Q to label the magnetic charge and q for the electric
charge). At a long distance, the magnetic field is B(r) = QeM r̂/(4πr2) with the magnetic
coupling eM = 2π/e following the Dirac quantization for the minimum charge Q = 1. For
Q = 2, we anticipate a spherically symmetric solution for both magnetic and dyonic black
holes. Therefore, we parametrize the metric as

ds2 = P 2(r)N(r) dt2 −N(r)−1 dr2 − r2 dθ2 − r2 sin2 θ dφ2 , (2.4)

– 2 –
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in the spherical coordinate. For the Einstein-Hilbert action and using integrating by parts
that does not change the later equations of motion, one has (see [24] for a different metric
convention)

SE = − 1
16πG

∫
d4x
√
−g R = − 1

2G

∫
dt dr r P ′(1−N) , (2.5)

with the prime denoting differentiation with respect to r.
For the matter part and following ref. [18], we use the following ansatz for a spherical

monopole (or dyon) configuration in the hedgehog gauge1

H = v√
2
ρ(r) ξ , ξ = i

(
sin ( θ2) e−i φ

− cos ( θ2)

)
, (2.6)

W a
i = εaij

rj

r2

(1− f(r)
g

)
, W a

0 = −v
g
w(r) r

a

r
, (2.7)

Yi = − 1
gY

(1− cos θ) ∂iφ , Y0 = − v

gY

y(r) . (2.8)

Noting that ξ† ~σξ = −~r/r, so H†~σH has been treated as a triplet under SU(2)W as the
simple SU(2) monopole case [20, 21]. Here, the index “i” for W a

i and Yi is the Cartesian
coordinate index. There are totally four dimensionless functions ρ(r), f(r), w(r) and y(r)
to describe the Higgs and gauge field profiles. For the purely magnetic black hole case, one
simply sets w(r) = y(r) = 0. One can perform an SU(2)W gauge transformation to change
from the hedgehog gauge to the unitary gauge

ξ −→ Uξ =
(

0
1

)
with U = −i

(
cos ( θ2) sin ( θ2) e−iφ

sin ( θ2) eiφ − cos ( θ2)

)
. (2.9)

In the unitary gauge and after rotating the neutral gauge fields from the basis (Yµ,W 3
µ) to

the photon and Z boson basis (Aµ, Zµ), one has

Aµ = −e v
[

1
g2 w(r) + 1

g2
Y

y(r)
]
∂µt−

1
e

(1− cos θ) ∂µ φ , (2.10)

Zµ = e

g gY

v [y(r)− w(r)] ∂µt . (2.11)

Note that ∂0t = 1 and ∂it = 0. Again, for the purely magnetic black hole case with
w(r) = y(r) = 0, there is no Z boson profile.

Substituting the ansatz profiles into the matter action, one has

Smatter⊃
∫
d4x
√
−gLEW

=−4π
∫
dtdr r2

[
P (r)N(r)K+P (r)U−P (r)−1K0−P (r)−1N(r)−1U0

]
, (2.12)

1The topological argument for the existence of this configure is provided in ref. [18]: π2(CP1)=π2(S2)=Z.
For the Higgs doublet H = (H1, H2)T with H1H

∗
1 +H2H

∗
2 = v2/2, the vacuum manifold in the pure scalar

sector is S3 with π2(S3) = 0. However, given the U(1)Y gauge freedom, one could make a gauge rotation
to make one of the two complex fields H1,2 real. As a result, the manifold has a lower dimension and is
isomorphic to S2.
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with

K = v2 ρ′2

2 + f ′2

g2 r2 ,

U = v2 f2 ρ2

4 r2 + (1− f2)2

2 g2 r4 + λ

8 v
4 (ρ2 − 1)2 + 1

2 g2
Y
r4 ≡ U1 + 1

2 g2
Y
r4 ,

K0 = v2w′2

2 g2 + v2 y′2

2 g2
Y

,

U0 = v2w2 f2

g2 r2 + v4 (w − y)2 ρ2

8 . (2.13)

The above formulas agree with ref. [25] for the magnetic case with w = y = 0. Note that
the term 1/(2 g2

Y
r4) in U has infinite energy for the magnetic monopole without a black

hole in the core [18, 19, 25]. This is another manifestation that the SM electroweak sector
by itself does not admit a finite-energy magnetic monopole. Existence of a black hole event
horizon can make the energy of the total system finite [10, 12].

Variating the summed action SE + Smatter with respect to P (r) and N(r), the two
Einstein equations are given by

N ′ = 1−N
r
− 8πGr

(
U +N K + K0

P 2 + U0
P 2N

)
, (2.14)

P ′ = 8πGr
(
P K + U0

P N2

)
. (2.15)

Variating the action with respect to the matter fields f(r), ρ(r), w(r) and y(r), one has
the following four matter equations of motion

(
P N f ′

)′ = P

[
f(f2 − 1)

r2 + g2

4 v2 f ρ2
]
− v2 f w2

P N
, (2.16)

(
r2 P N ρ′

)′
= 1

2 P ρ f
2 + λ v2

2 r2 P ρ(ρ2 − 1)− v2

4P N r2 ρ (w − y)2 , (2.17)(
r2 P−1w′

)′
= 2
P N

f2w + g2 v2

4P N r2 ρ2 (w − y) , (2.18)(
r2 P−1 y′

)′
=

g2
Y
v2

4P N r2 ρ2 (y − w) . (2.19)

3 Hairy magnetic black holes

3.1 Masses and profiles

For the magnetic black holes, existing papers have mainly studied the SU(2)-gauge theory
case [6, 7, 9–12]. Here, we focus on the SM electroweak SU(2)W ×U(1)Y Lagrangian with
our knowledge of the SM Higgs boson mass or the quartic coupling λ [15, 16]. The equations
of motion can be obtained from eqs. (2.14)(2.15)(2.16)(2.17) by setting w(r) = y(r) = 0.
We are looking for solutions with the existence of a horizon rH . Defining

N(r) = 1− 2GF (r)
r

+ 4πG
g2

Y
r2 , (3.1)

– 4 –
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we have the asymptotic mass of the system to be M = F (∞). Substituting eq. (2.15) with
P ′/P = 8πGrK into eqs. (2.16)(2.17), we have three equations for three fields F (r) [or
N(r) via (3.1)], f(r), ρ(r)

F ′ = 4π r2 (U1 +N K) , (3.2)(
N f ′

)′ + 8πGrN f ′K = f(f2 − 1)
r2 + g2

4 v2 f ρ2 , (3.3)(
r2N ρ′

)′
+ 8πGr3N ρ′K = 1

2 ρ f
2 + λ v2

2 r2 ρ(ρ2 − 1) . (3.4)

Noting that the 1/r2 term introduced in (3.1) is to have the equation of motion for F (r)
contain U1 without the last 1/r4 term in U [see (2.13)].

At the event horizon with N(rH) = 0, one has

F (rH) = rH
2G + 2π

g2
Y
rH
≥
√

4π√
GgY

= cW

√
4π√
Ge
≡ cW MRN

eBH , (3.5)

with cW ≡ cos θW and the extremal RN black hole mass MRN
eBH ≡

√
4πMpl/e. Us-

ing (3.1)(3.2), we obtain a boundary condition

N ′ = 1
r
− 8πGr U , at r = rH . (3.6)

From (3.3)(3.4), one has two more mixed BC’s that are

N ′ f ′ = f(f2 − 1)
r2 + g2

4 v2 f ρ2 , at r = rH , (3.7)

N ′ ρ′ = 1
2
f2 ρ

r2 + λ v2

2 ρ(ρ2 − 1) , at r = rH . (3.8)

Together with the two BC’s at infinity, f(∞) = 0 and ρ(∞) = 1, there are totally five BC’s
that are required for the equations in (3.2)(3.3)(3.4).

Before we solve these equations, we first discuss the ordinary RN black hole solution,
for which f(r) = 0 and ρ(r) = 1. Solving (3.2), one has a simple solution for F (r) as

F (r) = M − 2π
g2 r

. (3.9)

With the solution of P (r) = 1 to have an asymptotically flat metric, this matches the RN
metric

P 2(r)N(r) = N(r) = 1− 2GM
r

+ 4πG
g2 r2 + 4πG

g2
Y
r2 = 1− 2GM

r
+ 4πG
e2 r2 . (3.10)

The outer horizon is at

rH ≡ r+ = M G+
√
M2G2 − 4πG/e2 , (3.11)

provided that M ≥MRN
eBH =

√
4πMpl/e. Inverting the above relation, one has

MRN
BH = rH

2G + 2π
e2 rH

. (3.12)

For the extremal case, one has rmin
H = rmin

+ =
√

4π/(eMpl).

– 5 –
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Coming back to the hairy magnetic black holes, there exist constraints on the horizon
rH if one makes a few plausible assumptions: N ′(rH) ≥ 0, f(r) is a monotonically decreas-
ing function outside the horizon, while ρ(r) is a monotonically increasing function. The
requirement of N ′(rH) ≥ 0 means 1/rH > 8πGrH U(rH) from (3.6). For small rH , one
has U(rH) ≈ 1/(2g2

Y
r4
H), so the lower bound on rH is

rH ≥ rmin
H ≡

√
4πG
gY

= cW

√
4π

eMpl
, (3.13)

which is smaller than the extremal RN black hole horizon radius by a factor of cW . Applying
those assumptions to the BC’s in (3.7)(3.8), one has

λ v2 r2
H

[
1− ρ2(rH)

]
< f2(rH) < 1− g2 v2 r2

H

4 ρ2(rH) , (3.14)

1− f2(rH)
λ v2 r2

H

< ρ2(rH) < 4
g2 v2 r2

H

[
1− f2(rH)

]
. (3.15)

For the SM with g = e/sW ≈ 0.65 and λ = 0.26 such that g2 < 4λ and using the fact that
both f(rH) and g(rH) are within zero and one, the upper bound on rH is

rH ≤
2
g v

= 1
mW

≈ 2.5× 10−3 fm , (3.16)

which is the characteristic radius of the monopole.
To calculate the mass of the hairy black holes, we integrate (3.2) to obtain

F (r) =
∫ r

rH

dr′ e−K(r′,r) 4π r′2
[
K(r′) + U1(r′) + 4πG

g2
Y
r′2
K(r′)

]
+ e−K(rH ,r) F (rH) , (3.17)

where the new function is defined as

K(r′, r) ≡ 8πG
∫ r

r′
dr′′K(r′′) r′′ . (3.18)

Given that Gv2 � 1, the exponential, e−K(r′,r) = 1 +O(Gv2). Ignoring the terms equal to
or higher than O(Gv2), the mass of a hairy magnetic black hole has a simple formula

MhMBH = F (∞) =
∫ ∞
rH

dr′4π r′2
[
K(r′) + U1(r′)

]
+ F (rH) (3.19)

=
∫ ∞
rH

dr′4π r′2
[
K(r′) + U1(r′)

]
+ rH

2G + 2π
g2

Y
rH

. (3.20)

The first integration term can be thought as the outside hair contribution to the total
system mass. In the limit of rH � 1/mW , the integration is dominated by the region
with r′ ∼ 1/mW . One can then obtain the leading contribution by using a flat metric with
N(r) = 1. Ignoring terms proportional to G, the equations of motion for f(r) and ρ(r)
are simply

f ′′ = f(f2 − 1)
r2 + g2

4 v2 f ρ2 , (3.21)(
r2 ρ′

)′
= 1

2 ρ f
2 + λ v2

2 r2 ρ(ρ2 − 1) , (3.22)

– 6 –
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Figure 1. Profiles as a function of r for the SM hairy magnetic black holes. Left: the horizon
rH = cW

√
4π/(eMpl) for an extremal black hole. Right: a larger horizon with rH = 0.15/mW

with the Higgs vacuum expectation value (VEV) profile ρ(r) to be half-restored at the horizon.
Not shown here is the profile for P (r), which is approximately one because of P ′/P = O(Gv2)
and P (∞) = 1.

which are similar to the t ’hooft-Polyakov SU(2)/U(1) magnetic monopole case with a
different W mass in terms of v. Numerically solving the differential equations and then
calculating the first integration term in (3.19), the hairy magnetic black hole with Q = 2
for rH � 1/mW has a mass

MhMBH ≈
rH
2G + 2π

g2
Y
rH

+ 0.75× 4π v
g

= rH
2G + 2π c2

W

e2 rH
+ 0.75× 2π v2

mW
(3.23)

≥ cW
√

4πMpl
e

+ 0.75× 2π v2

mW
= (1.2× 1020 + 3.6× 103) GeV . (3.24)

Obviously, the hair part of the system contributes negligibly to the total mass. The upper
mass of a Q = 2 hairy magnetic black hole is

MhMBH ≤Mmax
hMBH = 1

2GmW
+O(mW ) ≈ 9.3× 1035 GeV . (3.25)

Here, mW = gv/2 ≈ 80.4GeV is W gauge boson mass in the normal EW-broken vacuum.
Numerically solving the equations of motion with the BC’s, we show two representative

profiles in figure 1. In the left panel with rH = rmin
H corresponding to the extremal case,

the black hole sits well inside the hairy cloud. Around the event horizon, the Higgs VEV
is very close to zero and the electroweak symmetry is almost completely restored.2 For
potentially phenomenological applications, we also provide numerically fitted functions for
both f(r) and ρ(r), that are good approximation for r > 0.1m−1

W ,

f(r) ≈ 0.495mW r

sinh (1.1mW r) + 1.265mW r

sinh (2.3mW r) , (3.26)

ρ(r) ≈
(

coth
[
86 (mW r)1.2

]
− 1

86 (mW r)1.2

)(
1− 0.51 e−1.82mW r

)
. (3.27)

2This is subject to corrections from the QCD condensation induced electroweak symmetry breaking.
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Figure 2. The black hole masses as functions of horizon radii for both the hairy and RN magnetic
black holes. The left endpoints of the two curves correspond to the extremal black hole cases.

In the right panel of figure 1, we show an example of the non-extremal case with rH =
0.15m−1

W and the Higgs VEV half-restored at the event horizon. The total mass of system
is well approximated by the term rH/(2G) in eq. (3.19). The hair mass is 3.4TeV and
smaller than the extremal case in (3.24). In figure 2, we show black hole masses as a
function of horizon radii. For the same mass, the hairy magnetic black hole has a larger
horizon radius, hence more entropy, than the RN magnetic black hole.

3.2 Hawking temperature and black hole evaporation

A non-extremal black hole evaporates via the Hawking radiation process.3 Based on the
black hole thermodynamics, the black hole temperature is proportional to the surface grav-
ity κ at the horizon. For a Killing vector ξa, the surface gravity is κ2 = −(∇aξb)(∇aξb)/2
evaluated at the horizon [26]. Using the metric in (2.4), we have

T = κ

2π = P (rH)N ′(rH)
4π . (3.28)

The factor P (rH) = exp[−
∫∞
rH
dr 8πGrK(r)] = 1 + O(Gv2). The other factor N ′(rH)

can be obtained using (3.6): N ′(rH) = 1/rH − 8πGrH U(rH) = 1/rH − 4πG/(g2
Y
r3
H) +

O(Gv2/rH). So, we have

T = 1
4π rH

(
1− 4πG

g2
Y r

2
H

)
=
M2

pl
2π

√
M2 −M2

eBH(
M +

√
M2 −M2

eBH

)2 , (3.29)

where the extremal hairy black hole mass isMeBH ≡ cW
√

4πMpl/e. The above temperature
formula is similar to the RN black hole case, except that the extremal mass is smaller by a
factor of cW . This factor can be thought as the electroweak symmetry restoration near the
event horizon, so the black hole carries magnetic hypercharge 2πQ/gY = cW 2πQ/e with
Q = 2. Note that T is not a monotonic function ofM . For a very heavy massM �MeBH, it

3If there exist monopoles in grand unified theories, the Schwinger discharge effect will evaporate away
the magnetic charge of an hMBH. Based on SM interactions alone, there are no finite-energy monopoles,
so the possibility of the Schwinger discharge effect is ruled out.
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is suppressed by 1/M like the Schwarzschild case. For the opposite limit with M →MeBH,
T ∝

√
M −MeBH and also suppressed. The maximal Hawking temperature has

Tmax = eMpl

12
√

3π3/2 cW
≈ 3.8× 1016 GeV , (3.30)

when M = 2MeBH/
√

3.
Depending on the early universe production mechanism, the initial state could be either

a RN magnetic black hole or a hairy one. For the former case, the Hawking radiation leads
to shrinking of rH . When rH < 1/mW or M < Mmax

hMBH in (3.25), the RN black hole is
not classically stable and quickly converts to the hairy magnetic black hole [6]. At this
moment, the temperature is around 6.4GeV. The black hole horizon continues shrinking
and T keeps increasing. During this period, the Hawking radiation is dominated by the
2d one (the ground state of charged fermions in the monopole background behaves as 2d
modes) with the radiated power as [14, 17]

P2 = −dM
dt

= π g∗
24 T 2(M,MeBH) , (3.31)

with g∗ counts the number of left- and right-handed 2d modes using the hypercharges of
chiral fermions: g∗ = |Q| for qL, `L, dR, eR and g∗ = 2|Q| for uR. Before the black hole
mass becomes close to the extremal mass or in the limit of M �MeBH, it evaporates with
a time scale of

τI ≈
512πM3

g∗M4
pl

= (1.0× 109 s)× (M/Mmax
hMBH)3 , (3.32)

for g∗ = 36. So, for M & 10−3Mmax
hMBH ≈ 1033 GeV, this period of evaporation is longer

than the Big Bang nucleosynthesis (BBN) time O(1 s). The black hole evaporation could
leave observational imprints on the light-element abundance [27].

As the black hole approaches the extremal state, the Hawking temperature is approx-
imately T ' M2

pl
√
M −MeBH/(

√
2πM3/2

eBH). For T & me [M − MeBH & 16π7/2c3
W m2

e/

(e3Mpl) ≈ 4.1× 10−22 GeV] or the lightest electrically-charged particle mass, 2d radiation
is still the dominant one. The evaporation time scale from some initial mass M ' MeBH
to the mass with T ' me is estimated to be

τII = 384π5/2 c3
W

e3 g∗Mpl
ln
[
M4

pl (M −MeBH)
2π2m2

eM
3
eBH

]
≈ 3.7× 10−37 s , (3.33)

for M = 1.1MeBH and g∗ = 2. This period of 2d evaporation is very short.
As the black hole temperature continues to decrease till T . me, the 2d evaporation

is not active any more. The ordinary 4d blackbody radiation has

P4 = −dM
dt
≈ π2 g∗

120 4πR2
mono T

4(M,MeBH) . (3.34)

Here, g∗ = 2 for photon and g∗ = 21/4 for three chiral neutrinos; Rmono ≈ 1/mW is the
monopole hair size, within which both photons and neutrinos are stored assuming that the
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hairy part is heated up to the Hawking temperature of the black hole. Solving the above
equation, we have the black hole mass approaching the extremal state as

M ≈MeBH + 120πM6
eBHm

2
W

g∗M8
pl

1
t
. (3.35)

During this long process, the Hawking temperature is

T ≈
√

60
π g∗

mW M
3/2
eBH

M2
pl

t−1/2 ≈ 2.7× 10−27 GeV×
(
tuniv
t

)1/2
, (3.36)

with g∗ = 2 and the age of the Universe tuniv ≈ 4.35 × 1017 s. After the initial evapora-
tion time tI in (3.32), the Hawking temperature is already suppressed to be smaller than
∼ 10−23 GeV, which is tiny.

4 Hairy dyonic black holes

4.1 Masses and profiles

For the dyonic black hole case, we have six equations of motion in eqs. (2.14)–(2.19)
with four second-order-differential and two first-order-differential equations. We need
2× 4 + 2 = 10 BC’s to solve the system. Four BC’s are the mixed boundary conditions
and can be obtained by simply evaluating (2.16)–(2.19) at r = rH . Noting that N(rH) = 0
and to have a non-divergent BC’s, two of these four BC’s become simple conditions for
w(r) and y(r) as [28, 29]

w(rH) = 0 , y(rH) = 0 . (4.1)

Two more BC’s are the existence of the event horizon and the asymptotically flat spacetime
at infinity and four more BC’s are the profiles at infinity

N(rH) = 0 , P (∞) = 1 , f(∞) = 0 , ρ(∞) = 1 , w(∞) = y(∞) = w∞ . (4.2)

Noting from (2.10)(2.11), w(∞) = y(∞) can assure vanishing Z profile at infinity, but not
the photon profile.

Similar to the magnetic case, we define the function F (r) via (3.1), and (2.14) can be
replaced by

F ′ = 4π r2
(
U1 +N K + K0

P 2 + U0
P 2N

)
. (4.3)

The boundary condition N(rH) = 0 can be converted to

F (rH) = rH
2G + 2π

g2
Y
rH

, (4.4)

which is similar to the magnetic case. At r = rH , the derivative N ′(rH) is given by

N ′(rH) = 1
rH
− 8πGrH

(
U + K0

P 2 + U0
P 2N

)∣∣∣∣
rH

. (4.5)
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The EOMs admit the ordinary RN dyonic black hole solutions with f(r) = 0, ρ(r) = 1,
P (r) = 1 and ω(r) = y(r). For this solution, one has (r2 y′)′ = 0. Subject to the two BC’s,
y(rH) = 0 and y(∞) = y∞, the solution is

w(r) = y(r) = y∞

(
1− rH

r

)
. (4.6)

From (2.10), the zeroth component of the photon field in the unitary gauge is

A0 = −e v
(

1
g2 + 1

g2
Y

)
y(r) = −v

e
y(r) . (4.7)

The asymptotic radial electric field is

Er = F0r = −∂rA0 = v

e
y′(r) = v rH y∞

e r2 ≡ q e

4π r2 , (4.8)

from which, one can identify y∞ = q e2/(4π v rH). The equation of motion for F (r) becomes

F ′ = 2π
g2 r2

(
1 + g2

e2 y
2
∞ v

2 r2
H

)
= 2π
g2 r2

[
1 + q2 g2 e2

(4π)2

]
. (4.9)

The solution to the above equation is

F (r) = M − 2π
g2 r

[
1 + q2 g2 e2

(4π)2

]
. (4.10)

Substituting this into (3.1), we have the RN metric

P 2(r)N(r) =N(r) = 1− 2GM
r

+ 4πG
e2 r2 +Gq2 e2

4πr2 = 1− 2GM
r

+GQ2 e2
M+q2 e2

4πr2 , (4.11)

which matches the RN black hole with the magnetic and electric charge of (Q = 2, q) and
the magnetic coupling of eM = 2π/e. The extremal dyonic RN black hole mass and horizon
radius are

MRN
eBH =

√
4πMpl
e

[
1 + q2 e4

(4π)2

]1/2

, rmin
H = rmin

+ =
√

4π
eMpl

[
1 + q2 e4

(4π)2

]1/2

. (4.12)

Coming back to the hairy dyonic black holes, we first work out the constraints on
rH . The lower limit can be obtained by requiring N ′(rH)≥ 0 from (2.14). In the limit of
Gv2� 1, P (r)≈ 1 and N(r)≈ (1−rH/r)2 for the extremal case. In the limit of r→ rH ,
one has y(r)∝ r−1

H (r−rH), w(r)∝mW r−1
H (r−rH)2, f(r)≈ 1 and ρ(r)∝ (1−rH/r)(

√
3−1)/2.

The leading contribution to K0≈ v2 [y′(rH)]2/(2g2
Y

) is O(1/r2
H) instead of O(1/r4

H) for the
RN black hole case. Therefore, keeping the dominant 1/(r4

H) term in U for (4.5) and in
the limit of Gv2� 1, we have

N ′(rH) ≈ 1
rH
− 8πGrH

(
1

2 g2
Y
r4
H

)
≥ 0 . (4.13)
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From the above condition, one has the hairy black hole horizon above the extremal one

rH ≥ rmin
H =

√
4πG
gY

= cW

√
4π

eMpl
, (4.14)

which is the same as the hairy magnetic black hole case. One may wonder why there is
not any additional q-dependent correction, which is present for the extremal RN dyonic
black hole case in (4.12). This can be understood by looking at the behaviors of (2.19)
in r, since r2 y′ is effectively the amount of hypercharge as a function of r. At large r,
one has y(r) ≈ w(r), r2 y′ stays constant and the effective charge does not change much.
For a smaller r close to the scale of rH and because of the double zero in N(r), the
positive slope of the effective charge in r becomes very large. As a result, the effective
charge decreases dramatically as r decreases. As r is very close to rH , the effective charge
becomes approximately zero. So, the extremal hairy dyonic black hole has a magnetic
black hole in the core and dyonic hair outside.

For the upper bound on rH , noting that both w(r) ∝ (r − rH) and y(r) ∝ (r − rH)
and N ∝ (r − rH) when r → rH for a non-extremal black hole, so the last terms in (2.16)
and (2.17) can be ignored. Requiring f ′(rH) ≤ 0 and ρ′(rH) ≥ 0, one can derive the same
upper limit rH ≤ 1/mW as in (3.16) for the hairy magnetic black hole case. Hence, one has
a similar upper mass limit for hairy dyonic black holesMmax

hDBH ≈ 9.3×1035 GeV as in (3.25).
Based on (2.16) and requiring an exponentially decreasing behavior for f(r) at large

r, the electric charge is bounded from above [30]. The constraint on the large-r value y∞
of y(r) to be y∞ ≤ g/2, which could be converted to an upper bound on the electric charge
q. Although an analytic result can not be obtained, one could make some approximation
to estimate the magnitude of the upper bound on q. To proceed, we make a step-function
assumption for f(r) such that f(r) = 1(0) for r ≤ (>)m−1

W . In the large r limit and
from (2.19) and (2.18), one has y(r) = y∞ − b1/r and w(r) = y∞ − b2/r. Matching the
electric charge, one has b1 ∼ b2 ∼ b = q e2/(4π v). In the small r limit and noting that
N(r) ≈ (1−rH/r) for non-extremal cases, one has y(r) ∝ r−1

H (r−rH) and w(r) = c2(r−rH).
Requiring both w(r) and w′(r) to be continuous at r = m−1

W , one has b ≈ m−1
W y∞/2. The

condition of y∞ ≤ g/2 becomes q . 2π/e2, which says that the electric charge times the
electric coupling can not be larger than the magnetic charge times the magnetic coupling
to have a hairy dyonic black hole. There is no such requirement for the ordinary RN dyonic
black holes.

In the limit of Gv2 � 1 and integrating (4.3), we have the mass of a hairy dyonic black
hole as

MhDBH = F (∞) =
∫ ∞
rH

dr′4π r′2
[
U1(r′) +N K(r′) + K0(r′)

P 2 + U0(r′)
P 2N

]
+ F (rH)

≈
∫ ∞
∼10 rH

dr′4π r′2
[
U1(r′) +K(r′) +K0(r′) + U0(r′)

]
+ rH

2G + 2π
g2

Y
rH

, (4.15)

where in the second line the hair mass can be calculated by treating the spacetime as a
flat one. In the limit of rH � m−1

W , the equations of motion for f(r), ρ(r), w(r) and y(r)
can be solved with N(r) ≈ 1 and P (r) ≈ 1. For a small electric charge with q � 2π/e2,
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Figure 3. The mass difference between extremal hairy dyonic and magnetic black holes for different
electric charge q. The upper charge limit qmax ' 72 or O(2π/e2) is obtained by requiring an
exponentially decreasing behavior for f(r) at large r.

one can first ignore the last terms in (2.16) and (2.17) and obtain the solution for f(r) and
ρ(r). Substituting them into (2.18) and (2.19), one can solve just two coupled differential
equations to obtain w(r) and y(r). We have also solved the full-coupled equations to check
that this approximation is good. For q � 2π/e2, a simple formula for the mass in terms of
q is given by

MhDBH(q) ≈ rH
2G + 2π c2

W

e2 rH
+ (0.75 + 0.00034 q2)× 2π v2

mW

≈MhMBH + q2 × 1.6 GeV . (4.16)

At the order-of-magnitude level, the mass difference between the dyonic and magnetic
hairy parts is MhDBH −MhMBH = O(q2 × αmW ) with α as the fine-structure constant.
Solving the fully coupled equations, in figure 3 we show the mass difference as a function of
charges for the extremal black hole case. As discussed before, there exists an upper limit
on the charge qmax ' 72 (up to some numeric uncertainties) for the extremal case to have
w∞ = y∞ < g/2 or to have an exponentially decreasing behavior for f(r) at large r. As
one can see from this plot, the q2 behavior matches very well the numerically calculated
results for small q.

In the left panel of figure 4, we show the profiles y(r) and w(r) for the extremal hairy
dyonic black hole with q = 1 and q = 2. For y(r), it increases very fast from zero at r = rH
to a plateau at r ∼ 10 rH . At r ∼ m−1

W , it continuously increases by a small amount into
an asymptotic value y∞ at r � m−1

W . For w(r), it stays almost zero until r ∼ m−1
W , where

it starts to increase to its asymptotic value ω∞ = y∞. For r � m−1
W and for q � 2π/e2,

one has the following asymptotic behaviors

w(r) = q
e2mW

4π v

(
5.2− 1

mW r
− 6.7 c2

W ×
e−mZ r

mW r

)
, (4.17)

y(r) = q
e2mW

4π v

(
5.2− 1

mW r
+ 6.7 s2

W ×
e−mZ r

mW r

)
. (4.18)
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Figure 4. Left: y(r) and w(r) as a function of r for the SM hairy dyonic black holes with an extremal
black hole horizon rH = cW

√
4π/(eMpl). The profiles for other functions are approximately the

same as in the left panel of figure 1. Right: the effective charges related to the two neutral gauge
fields as a function of r.

Using (2.10) and (2.11), one can also obtain the asymptotic behaviors of the time compo-
nents of photon and Z-boson fields and again in the small q limit

A0(r) r→∞−−−→ −q emW

4π

(
5.2− 1

mW r

)
, (4.19)

Z0(r) r→∞−−−→ 0.07× q e
−mZ r

r
. (4.20)

Because of the exponentially decreasing dependence for the time component of the Z-boson
field, the hairy dyonic black hole has only a long-range electric field outside the hair radius
of ∼ m−1

Z ∼ m
−1
W .

4.2 Some properties of hairy dyonic black holes

Since the core region of a hairy dyonic black hole is only a magnetic black hole with
electroweak symmetry restoration just outside the horizon. The black hole mass evolution
as a function of time is the same as discussed in section 3.2. On the other hand, the existence
of an electric charge for a dyonic black hole makes the hairy dyonic black holes different
from the magnetic one. Here, we will focus on the extremal case with rH = rmin

H in (4.14).
From figure 3, the mass difference between two hairy dyonic black holes with ∆q = 1

grows as q increases. The largest difference is MhDBH(72)−MhDBH(71) ≈ 79.5GeV, which
is close to but below the free W -gauge boson mass. So, a charge-q hDBH can not decay
into a charge-q-1 hDBH plus an on-shell W -gauge boson. On the other hand, it can be
discharged by generating light charged fermions based on the charged current in the SM.
Such processes have been studied and calculated based on the Julia-Zee dyons in the large
charge limit [31–33]. For the q = 1 case, it will decay into a hairy magnetic black hole plus
kinematically-accessible charged particles in the SM

hDBH− → hMBH + {π− , π− π0 , π−π−π+ , µ− ν̄µ , e
− ν̄e , · · · } , (4.21)

which is similar to the τ -lepton decays since the mass difference is around 1.6GeV and close
to the τ -lepton mass. Different from the τ lepton, the dyon decay width is not suppressed
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by two powers of the Fermi constant. Based on a classical field theory calculation, its decay
width is estimated to be [34]

Γ(hDBH−) ∼ α

4π mW . (4.22)

So, an hDBH decays very fast into an hMBH state on the time scale of 10−23 s.
For a non-integer-charged hDBH, the discharge processes can reduce its electric charge

to be below one. After that, the hDBH with q < 1 is also a cosmologically stable state.
However, just based on the SM with all color-singlet states having integer charges, it is
unlikely to form a non-integer-charged hDBH. One exception is from a non-zero CP-
violating θ-term, θ α/(8π)FµνF̃µν , in the SM Lagrangian. There is no zero-charged hMBH
because of the θ-dependent quantization condition [35]. The electric charge of hDBH is
n − θ/(2π) with n as an integer. For n = 0, the irrational-charged hDBH could be a
cosmologically stable object. For |θ| > 8π2m2

e/(e2m2
W ) ≈ 3.2 × 10−8, the electric field

at the monopole radius ∼ m−1
W is above m2

e/e, so additional electron and positron clouds
should also exist as additional hair for the black hole [33].

5 Discussion and conclusions

In this paper, we have performed a detailed calculation for the magnetic and dyonic black
holes with electroweak hair based on the known SM interactions and general relativity. Only
spherically symmetric black holes with a magnetic charge Q = 2 have been considered in
this paper. One could extend our calculation to non-spherical larger-Q black holes (for
the magnetic monopole states with a large Q, see [36, 37] for instance). A magnetic RN
black hole will evolve into an hMBH if its horizon size rH < m−1

W , which sets an upper
bound on the hMBH mass around 9.3 × 1035 GeV. After subsequent Hawking radiation,
it evolves into a (nearly) extremal hMBH. The total mass of an extremal hMBH with
Q = 2 is dominated by its core black hole mass 1.2× 1020 GeV, while its hair mass is only
3.6× 103 GeV. The mass ratio (∼ 10−17) of the black hole hair over the total mass is much
smaller than the ratio of a single strand of human hair weight over the total body weight
(∼ 10−12) (this ratio is close to the ratio of a single red-blood cell over the total body
weight). Although the black hole hair weight is small, it extends to a much larger region
than the core black hole horizon size. Because of the electroweak symmetry restoration
and effective 2d massless modes for charged fermions, the 2d Hawking radiation is much
faster than the ordinary 4d case.

We have only considered the tree-level Higgs potential with the value of λ(µ) ≈ 0.26
that gives mh ≈ 125GeV in the EW broken vacuum and should be treated as a coupling
evaluated at around the Higgs boson mass or µ = mh. The renormalization-group (RG)
running effect of λ(µ) can be taken into account by considering λ(µ = 1/r). First, the
running of λ is very slow until r reaches a location very close to the event horizon rH .
When r → rH , λ could be very small and even become negative (assuming only SM
physics). As can be seen from eq. (2.17), the term containing the quartic coupling λ is
suppressed at small r. So, the uncertainty from RG running effects are very suppressed.
We have also neglected the RG running of the gauge couplings because their RG running
is much slower.
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Here, we have only considered the electroweak sector of the SM to determine the
properties of hMBH and hDBH, and neglected the QCD sector of SM. We expect a QCD
corona with a radius of RQCD ∼ 1/ΛQCD. Since in this region eB > Λ2

QCD, QCD is in a
different phase from the normal vacuum phase without a magnetic field [38, 39]. The QCD
hair has a much smaller mass (∼ ΛQCD) compared to the EW hair (∼ 4πv/g). So the effects
of QCD hair on the black hole mass and Hawking temperature can be neglected. On the
other hand, the QCD hair can modify the scattering cross sections of neutral hadrons off
the magnetic black Hole. For charged particles, the long-range electromagnetic interaction
provides the dominant scattering process [40].

We have only considered spherically symmetric metric and ansatz for Higgs and gauge
fields. One could extend our study to a rotating hMBH. In this case, the starting point of
this calculation is to employ Newman-Janis algorithm [41] for our spherically symmetric
metric in eq. (2.4), in addition to that one also needs to consider axi-symmetric ansatz [42]
for Higgs and gauge fields. One would obtain a system of coupled partial differential
equations which would need to be solved to obtain field profiles. During its primordial
evolution such a BH will spin down due to the Hawking radiation [43] and/or Schwinger
pair production of electrically-charged particles. The latter one is in analogy with Kerr-
Newman BH where a magnetically-charged BH with a non-zero angular momentum gives
rise to an electric field [44]. If the induced electric field is larger than m2

e at the event
horizon, charged particles can then be Schwinger pair produced and reduce the angular
momentum of BH. This effect can impose a bound on the angular momentum a ≡ J/M ,
where J is the angular momentum and M is the total mass, with a < m2

eM
−3
pl . With this

bound on a, the modification on the extremal BH horizon radius and mass is at the order
of m4

e/M
4
pl and thus negligible.

Hairy magnetic black holes can be probed using a variety of astrophysical or direct-
detection methods. Motion of hMBHs in the galactic magnetic fields lead to the Parker
bound on abundance of MBHs: f∗ < 4 × 10−4, where f∗ is the MBH abundance as the
total fraction of dark matter abudance [17, 45]. Similar to the magnetic monopole, MBHs
can also be probed by direct-detection searches through MACRO and ancient Mica [17].
If one considers MBHs with higher magnetic charges with higher mass and larger event
horizon radius, such objects could be probed by their annihilation signatures after they
are captured by astrophysical objects [17], and binary mergers giving rise to gravitational
waves along with the electromagnetic counterpart [45]. Also, the shadow of MBHs can be
used to measure the value of the magnetic charge [46].

For an extremal hairy dyonic black hole, we have found that its core black hole is just
a magnetic one without an electric charge, at least at the leading order in Gv2. Although
this is different from the ordinary RN black hole case, it can be understood as the large
cost of electrostatic energy at the limit of r → rH . An integer-charged hDBH can decay
very quickly into a lower-charged hDBH and eventually into an hMBH. Therefore, we
don’t anticipate a stable hDBH existing in the current universe. For a small electric charge
q � 2π/e2, the dyonic hair mass is approximately q2 × 1.6GeV on top of 3.6× 103 GeV for
the magnetic hair mass. So, a charge-one hDBH could be produced by cosmic rays hitting

– 16 –



J
H
E
P
0
4
(
2
0
2
1
)
1
1
9

a stable hMBH via the processes like

e− + hMBH→ hDBH− + νe , (5.1)
p+ hMBH→ hDBH+ + n , (5.2)

with the threshold energy of around 1.6GeV and the subsequent decays of an hDBH into
other cosmic rays. The strength of the signature depends on the populations of hMBHs in
the Universe.

Another interesting avenue beyond our paper is to study the early-universe productions
of hairy magnetic black holes. The formation mechanism could be similar to ref. [27] with
additional ingredients to form the monopole configuration based on the SM electroweak
sector. As discussed around (3.32), if the initial hMBH is formed as a heavy non-extremal
state with a mass above ∼ 1033 GeV, its early-stage evaporation time is long enough to
leave imprints in the BBN. As also discussed in refs. [27, 45, 47, 48], a binary system
with opposite-charged hMBHs could also be formed during the primordial formation or
later structure formation periods. During the merging phase, the hairy dyonic black holes
could be generated and its subsequent decays could provide temporal signatures. The final
product contains a non-extremal black hole with bright Hawking radiation products that
could be searched for by various telescopes.

It is entertaining to observe that the SM plus general relativity provides us exotic
and cosmologically stable states. Along this general direction, one could also study the
possibilities of gravitating states without a black hole, like the non-topological soliton stars
by ref. [49], but with the known SM interactions.
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