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1 Introduction

The ever-increasing need for generic and accurate Monte-Carlo simulations for collider ex-
periments spurred the emergence of an entire subfield of the high energy physics community
whose research activities are to a large extent motivated by fulfilling this demand. Over
the last three decades, physicists pursued this goal by developing new computational tech-
niques and studying the mathematical structure of perturbative computations in Quantum
Field Theories (QFTs).

The 1990s saw the development of the first tools1 for the automatic evaluation of
tree-level scattering amplitudes. These efforts were naturally followed up by independent
groups working on the corresponding phase-space integration programs, also called event
generators, for automatically computing the associated differential cross-sections.2 The
following decade then witnessed the push for the automation of the computation of Next-
to-Leading-Order (NLO) corrections by many members of the aforecited groups. This
resulted in the so-called “NLO revolution” that cemented the arguably artificial divide
between the task of computing loop amplitudes3 and that of regulating the infrared (IR)
divergences of the phase-space integral by means of dedicated counterterms. Over the
years, various strategies have been elaborated to this end, first at NLO [19–21] and then at
Next-to-Next-to-Leading Order (NNLO) [22–33]. These efforts have been complemented
by advances in the analytic computation of (multi-)loop amplitudes that mostly follow
a pipeline of distinct processing steps. Amplitudes are first projected onto scalar form
factors that are reduced using integration-by-parts identities [34–55] so as to be expressed
in terms of a smaller set of master integrals. These irreducible loop integrals are then
computed by means of differential equations [56–58] which under certain conditions can be

1E.g. form [1, 2], grace [3, 4], FeynArts [5], MadGraph [6], CompHEP [7] and amegic [8].
2E.g. Whizhard [9], MadEvent [10], Sherpa [11] and CalcHEP [12].
3E.g. MadLoop [13, 14], OpenLoops [15], BlackHat [16], GoSam [17] and recola [18].
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solved numerically [59–61] or by leveraging a detailed understanding of the mathematical
structure of iterated integrals [62–70] yielding special functions with efficient numerical
representations.

The large body of work cited in this concise summary of the state-of-the-art for the
computation of higher-order corrections to differential cross-sections is a testament to its
many successes and importance for collider phenomenology. However, its more recent pro-
gression also signals that the traditional pipeline is arguably facing a complexity barrier
that is unlikely to be overcome by incremental progress. Instead, the situation calls for a
radical change in methodology for addressing the root cause of this complexity increase,
that is IR divergences, more efficiently than the canonical approach. One such alternative
is to part ways with the IR subtraction paradigm and aim at accommodating a more direct
cancellation of real and virtual degrees of freedom. A possible avenue in that regard is that
of the Reverse Unitarity [71–76] approach. This technique turns the phase-space integrals
of real-emission contributions into loop integrals so as to reduce the complete set of higher
order contributions down to a small set of master integrals and eventually combine their
divergences at the integrated level. This method produced milestone predictions for the
N3LO corrections to the Higgs hadro-production cross-section [77] as well as N4LO correc-
tions to inclusive two-body decays [78]. However, because of its reliance on a completely
analytical treatment of the loop integrals, reverse-unitarity cannot accommodate arbitrary
observable functions or complicated multi-scale processes.

Another possible direction is to turn all loop integrals into phase-space integrals that
can be performed numerically if the phase-space measure of resolved and unresolved degrees
of freedom can be aligned so as to guarantee a local cancellation of all infrared divergences.
This is the main goal of our paper and, perhaps contrary to the expectations of many,
we show that it is possible to write the differential cross-section for an arbitrary process
(without initial-state singularities) and at any perturbative order as an expression that
is locally free of any IR singularities. We refer to this rewriting of the differential cross-
section as its Local Unitarity (LU) representation. Its Local aspect stresses the applicability
to arbitrary (IR-safe) observables, whereas Unitarity highlights the direct combination of
real and virtual degrees of freedom, i.e. emission and no-emission evolutions, into finite
transition probabilities.

A first attempt at this programme at NLO accuracy goes back to 1999 with the avant-
gardist work of D. Soper [79–84] who demonstrated its practical viability by applying it
to a particular differential observable of the lepto-production of up to three partonic jets.
However, the success of the competing approaches discussed earlier in this introduction
diverted attention away from this limited form of Local Unitarity. More importantly, its
generalisation to arbitrary perturbative orders and processes as well as the computational
techniques and resources necessary for its practical implementation were not available at
the time. Our work aims at leveraging recent progresses in the generalisation of the multi-
Loop Tree Duality (LTD) relation [85–93], in order to provide solid theoretical foundations
to Local Unitarity and demonstrate its potential for numerical applications. In particular,
the alternative Manifestly Causal LTD (cLTD) representation recently presented in ref. [93]
plays a key role in our proof of local IR cancellations in Local Unitarity. In what follows,
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we will discuss how the radically different perspective adopted by Local Unitarity allows to
not solve but rather avoid altogether traditional core issues of perturbative computations,
of which the regularisation of infrared singularities is a prime example.

Since R. Feynman drew his first eponymous diagram in 1948, his graphical represen-
tations have been the cornerstone of perturbative computations. Even seventy years later,
the theoretical physics community still leans on Feynman diagrams to guide its intuition,
although modern techniques use them mostly as a starting point for building the ampli-
tude integrand which is then subject to heavy symbolic manipulations. Instead, our Local
Unitarity representation applies individually to each forward scattering diagram, called a
supergraph, which encompasses a particular subset of interferences of Feynman diagrams.
The LU representation enjoys a straightforward graphical interpretation as it is constructed
entirely from the identification and characterisation of the singular surfaces of each super-
graph. The type of post-processing and analytic transformations of the integrand of su-
pergraphs in LU implies that it retains a direct correspondence to the diagrammatic origin
of each contribution. For example, this helps identify contributions that are non-abelian,
nf -dependent, planar or of electroweak origin. Moreover, LU is formulated in momentum
space which facilitates the study of any particular kinematic regime. we apply LTD to
analytically integrate over all loop energies of the supergraph. We show that the resulting
expression for each supergraph can be made locally finite, even though it is not gauge
invariant nor does it satisfy any of the usual universal factorisation properties [94–107]
relating processes of different multiplicities close to infrared limits. By relying solely on
energy-momentum conservation, Local Unitarity exposes that the mechanism underlying
the cancellation of infrared divergences [108–110] in QFT is of purely kinematic origin.

The LU representation realises local IR cancellation by construction so that there is
no need for explicitly listing and regularising all singular limits and their overlaps, thereby
rendering it de facto valid for arbitrary perturbative orders, both conceptually and in the
practical context of numerical computations. We view this characteristic as unique to Local
Unitarity and it is directly responsible for LU’s universal applicability as the formalism does
not depend on the particular theory, scattering process or observables considered. Another
defining property of Local Unitarity is that it does not require dimensional regularisation
except for its unavoidable introduction when computing the integrated countertpart of the
local UV counterterms and imposing that they reproduce results in the commonly used
MS renormalisation scheme. Dimensional regularisation [111–113] is a fundamental devel-
opment from the 1970s which played an essential role in providing a convenient regulator
preserving most symmetries. While it allows one to consistently characterise the divergent
pieces entering perturbative computations, considering infinitesimal dimensions obfuscates
some core properties of amplitudes such as chiral symmetry and the definition of asymp-
totic states. It also significantly complicates intermediate results and it is not amenable to
numerical computations.

The unorthodox approach of Local Unitarity not only provides new theoretical insights
on many aspects of the perturbative expansion of scattering cross-sections but also offers
practical prospects for computing deeper perturbative corrections. For each relevant sec-
tion, we first provide a detailed account of the general concepts introduced for the specific
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illustrative example of the NLO correction to the scattering process e+e− → dd̄. In sec-
tion 2, we set our notation and introduce the core concept of organising the computation
in terms of supergraphs. We then present our main result in eq. (3.38) of section 3 together
with the proof of the cancellation of IR singularities that do not involve initial-state split-
tings. In section 4 we discuss the regularisation of the remaining UV singularities in the
Local Unitarity representation. Section 5 provides details about the future generalisation
and automated implementation of our method. In section 6, we give quantitative results
about the performance of our numerical implementation of LU for the computation of a
next-to-leading accurate differential cross-section. We also explicitly verify local IR can-
cellations beyond next-to-leading order by computing several scalar supergraphs featuring
up to five loops. Finally, we give our conclusion in section 7.

2 Foundations of the Local Unitarity representation

The fundamental object underlying any QFT observable calculated perturbatively is the
supergraph [79], an entity that generalizes interference diagrams used in scattering am-
plitudes. More specifically, the supergraph can be seen as the representative of a class of
interference diagrams which we will prove to be IR-finite when summed together.

In the following section we will show

• how to rewrite any differential cross-section as a sum over cuts of supergraphs, and
give a local representation of each individual supergraph that provides some first in-
sight on how an equivalent local and IR-finite object can be defined. In particular, we
will show how to accommodate a global routing common to all interference diagrams
referring to the same supergraph class.

• that there is a direct correspondence between connected subgraphs of a supergraph
and its threshold (pinched or non-pinched) singularities. This implies that the singu-
larities of an amplitude can be fully characterised by couplets of connected subgraphs
of a supergraph (loosely speaking, one subgraph identifies the Cutkosky cut and the
other one the actual singular surface).

• that it is possible to fully characterise the notion of pinching in the LTD formalism
by identifying singular surfaces for which no valid causal deformation of the loop
kinematics is possible because it would either violate the continuity constraints or
the singular surface has no well-defined oriented normal.

• that is it possible to accurately study the pattern of IR cancellations, described in
more detail in section 3, by considering a simple functional analogue of interference
diagrams. We will show that the sum of this analogue of each interference diagram
corresponding to the same supergraph is locally finite.

In each section of our paper, including this one, we choose to first address its content
by applying it to the explicit example of the NLO computation of the differential cross-
section of the scattering process e+e− → dd̄. We find that this approach facilitates the
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(a) (b)

Figure 1. The two supergraphs Self-Energy (SE, 1a) and Double-Triangle (DT, 1b) contributing
to the NLO QCD correction to the cross-section of the process e+e− → γ? → dd̄.

introduction of our notation and the more abstract concepts presented in later parts of each
section. This also provides the reader with some first intuition about the inner workings
of the method and of its graphical interpretation.

2.1 Illustrative example: NLO correction to e+e− → dd̄

Our example process only involves two supergraphs from which arise all interferences of
Feynman diagrams contributing to the amplitudes. We then analyse the threshold structure
of these two supergraphs in their LTD representation, and write a formula for cross-sections
using the LTD formalism. A locally regularised expression for the NLO correction to the
e+e− → dd̄ cross-section has been studied before in ref. [79] and in refs. [114–116].

2.1.1 The double-triangle and self-energy supergraphs

Our first task is to enumerate all supergraphs contributing to our process of interest.
Each supergraph encompasses a number of interference diagrams, and the collection of
all interference diagrams stemming from all supergraphs reproduces the complete set of
interference diagrams whose sum yields the scattering probability. In the specific case of
the NLO correction to the e+e− → γ? → dd̄ cross-section, we identify only two distinct
supergraphs, which we refer to as the nested Self-Energy (SE) supergraph and the Double-
Triangle (DT) supergraph , shown in figure 1. We note that the self-energy supergraph
has two isomorphic occurences which we combine into a single representative weighted by
a symmetry factor of two (see details in section 5.3).

The two supergraphs Γse and Γdt can be described formally by a couplet of a graph and
a set of incoming edges. More precisely, Γ ∈ {Γse,Γdt} can be rewritten as Γ = (GΓ,aΓ),
where GΓ = (vΓ, eΓ) is a graph and aΓ is a set of initial states. We encode the graph
as a couplet of a set of vertices and oriented edges connecting them. We then write
eΓ = eΓ

int ∪ eΓ
ext so as to distinguish between exterior edges that are connected to a degree-

1 exterior vertex and the other interior edges. Since degree-1 vertices are in one-to-one
correspondence with external edges, we will exclude them from vΓ. In summary, both
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(a) sv
2 = {5, 6, 7, 8} (b) sv

1 = {5, 6}

(c) sr = {5, 6, 7}

(d) sr
2 = {5, 6, 7} (e) sr

1 = {5, 6, 8}

(f) sv
2 = {5, 6, 7, 8} (g) sv

1 = {5, 6}

Figure 2. All three Cutkosky cuts of the self-energy supergraph (2a, 2b and 2c) and all four cuts
of the double-triangle supergraph (2d, 2e, 2f and 2g).

self-energy and double-triangle supergraphs can be characterised as follows:

aΓ = {(1, 5), (2, 5)}, vΓ = {5, 6, 7, 8, 9, 10}, eΓ
ext = {(1, 5), (2, 5), (10, 3), (10, 4)}, , (2.1)

eΓ
in =

{(5, 6), (6, 7), (7, 8), (8, 7), (8, 9), (9, 6), (9, 10)} if Γ = Γse

{(5, 6), (6, 7), (8, 7), (8, 6), (7, 9), (9, 8), (9, 10)} if Γ = Γdt
. (2.2)

Whereas edges in e can in principle be identified from the two vertex labels they connect,
we instead choose the more concise single label specified in figure 1.
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Each oriented edge ei is assigned a four-vector qei specifying the momentum it carries.
We also define the characteristic vector of a set of edges x as follows:

χx ∈ {0, 1}|eΓ| χx
e =

1 if e ∈ x
0 otherwise

, (2.3)

as well as the following sets of edges for a given set s of vertices:

δ+(s) =
{

(v, v′) ∈ eΓ
∣∣∣v ∈ s, v′ ∈ vΓ \ s

}
(2.4a)

δ−(s) =
{

(v, v′) ∈ eΓ
∣∣∣v′ ∈ s, v ∈ vΓ \ s

}
, (2.4b)

δ(s) = δ+(s) ∪ δ−(s), (2.4c)

δ◦(s) =
{

(v, v′) ∈ eΓ
∣∣∣v, v′ ∈ s

}
. (2.4d)

The set δ±(s) consists of all edges of the supergraph with only one of the two vertices it
connects being part of the set s. δ±(s) can loosely be defined as the list of edges “entering”
(resp. “exiting”) the set of edges s. δ◦(s) consists of all edges connecting two vertices in
s, or loosely speaking the “interior” of s. The momentum conservation condition reads as
follows for the explicit example of the subset of vertices s = {7, 8, 9} of the double-triangle
supergraph: ∑

e∈e
Xs
eqe :=

∑
e∈e

(χδ+(s)
e − χδ−(s)

e )qe = qe6 − qe8 − qe11 = 0, (2.5)

which simply expresses the constraint that the momenta of the edges in δ({7, 8, 9}) =
{e6, e8, e11} have to sum up to zero. More specifically, the momenta of the incoming edges
δ+({7, 8, 9}) = {e6} must sum up to the momenta of the outgoing edges δ−({7, 8, 9}) =
{e8, e11}.

As mentioned earlier, each supergraph is effectively the representative of a class of
interference diagrams, each associated to a particular Cutkosky cut of their reference su-
pergraph. Each Cutkosky cut of the supergraph Γ is then defined using a subset of vertices
s ⊂ vΓ that identifies two connected subgraphs δ◦(s) and δ◦(vΓ \ s), with the extra con-
straint that the initial states are contained in s, that is aΓ ∩ δ◦(s) = aΓ. Perhaps more
intuitively, the Cutkosky cut can equivalently be identified using the set of internal “cut”
edges cΓ

s = δ(s) \ aΓ whose removal divides the supergraph into two connected amplitude
graphs.

Let EΓ
s-ch be the set of all possible Cutkosky cuts of a given supergraph Γ. This set

reads as follows for the two distinct supergraphs of our example process:

EΓ
s-ch =

{sv
1 = {5, 6}, sv

2 = {5, 6, 7, 8}, sr
1 = {5, 6, 8}, sr

2 = {5, 6, 7}} if Γ = Γdt

{sv
1 = {5, 6}, sv

2 = {5, 6, 7, 8}, sr = {5, 6, 7}} if Γ = Γse.
(2.6)

Observe that we have intentionally left out the Cutkosky cuts {5} and v\{10} as these two
contributions are vanishing because, on top of having no phase-space support, they can be
thought of as being subject to an observable function that is in this case identically zero
on cuts containing γ. Using the definition of cΓ

s , graphically represented as a line crossing

– 7 –
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all the edges contained in it, we list in figure 2 the three (resp. four) Cutkosky cuts of the
self-energy (resp. double-triangle) supergraph.

In most sections featuring this illustrative example process, we focus on the double-
triangle supergraph only for simplicity in which case we suppress the upper index in Γdt

when not ambiguous.

2.1.2 LTD representation and thresholds of the double-triangle supergraph

Our goal is to demonstrate the local cancellation of the IR soft and collinear diver-
gences of the double-triangle supergraph. To this end, we first identify its IR limits by
re-expressing the double-triangle supergraph integral using its Loop-Tree Duality (LTD)
representation [86, 93], where the energy components of the loop momenta are integrated
out analytically using residue theorem:

M(pµ1 , p
µ
2 ) =

∑
b∈B

∫
d4~k′

(2π)3
d4~l′

(2π)3N

∏
e∈b δ

(σb
e )(q2

e −m2
e)∏

e∈e\b(q2
e −m2

e)
, (2.7)

where the set B enumerates all possible momentum bases (or equivalently spanning trees)
of the double-triangle supergraph:

B = {b1 = {e8, e7},b2 = {e6, e7},b3 = {e7, e9},b4 = {e7, e10},
b5 = {e6, e9},b6 = {e6, e10},b7 = {e8, e9},b8 = {e8, e10}}

(2.8)

and σbi are the cut-structure signs (see ref. [88]) assigned to each of the edges in bi. We
show in figure 3 all eight momenta bases b ∈ B of the double-triangle LTD representation
together with their corresponding cut structure σb.4 Each element in the basis corresponds
to a particle becoming on-shell, i.e. it is cut. The cut structure σb

e sign that appears as
superscript in the Dirac delta δ(σb

e ) determines on which sheet the on-shell particle resides
(the positive or negative energy solution), and is represented in figure 3 as a plus or minus
sign associated to each cut.

We note that we opted here to use the original LTD representation of ref. [88], and not
the Manifestly Causal (cLTD) variant of ref. [93]. While we will see that the latter plays an
important role both in the proof of local IR cancellations and for the numerical stability of
our implementation of LU, the former is better suited to highlight the connection of LTD
with Cutkosky cuts.

The LTD representation consists of a sum of tree-like graphs that is only singular on
bounded, convex (ellipsoid-like) surfaces called E-surfaces in ref. [88]. Even though each
individual summand (referred to as dual integrand) building this representation is also
singular on (hyperboloid-like) H-surfaces, their sum is regular on these surfaces in virtue
of a mechanism known as dual cancellations [85, 93, 117].

We can now relate the E-surfaces of the LTD representation of the double-triangle
supergraph with its Cutkosky cuts. To this end, we first recall what the elements of EΓDT

s-ch ,
4The specific cut structure reported in figure 3 is obtained by analytically integrating over l′0 and k′0

using the loop momentum routing of the double-triangle supergraph depicted in figure 2d and choosing to
close all energy integral contours in the upper half of complex plane.
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(a) b1 = {e−7 , e
−
8 } (b) b2 = {e−6 , e

−
7 } (c) b3 = {e+

7 , e
−
9 } (d) b4 = {e+

7 , e
−
10}

(e) b5 = {e−6 , e
−
9 } (f) b6 = {e−6 , e

−
10} (g) b7 = {e−8 , e

−
9 } (h) b8 = {e−8 , e

−
10}

Figure 3. The eight loop momentum bases (the inverse of spanning trees) resulting from applying
the LTD expression of ref. [88] to the double-triangle topology. The cut structure σbi is reported
both in the drawings as signs placed next to the LTD cuts as well in the captions as a superscript
of the edge labels.

i.e. the set of all Cutkosky cuts of the double-triangle topology (represented in figures 2d-
2g) are:

EΓDT
s-ch = {sv

1, sv
2, sr

1, sr
2}. (2.9)

We also introduce the following notation for the on-shell energy of edge e:

Ee =
√
‖~qe‖2 +m2

e, (2.10)

where for this particular double-triangle supergraph the propagator masses me are 0. An
element s ∈ Es-ch can be associated to a threshold which, in Minkowski space, corresponds
to a singularity of the integrand of the supergraph when energies of the corresponding cut
edges take the following on-shell values:

q0
e = Xs

eEe, ∀e ∈ cs, (2.11)

whereas in the LTD representation, the same singularity is characterised by the following
E-surface: ∑

i∈cs

Ei −
∑
j∈a

Ej =
∑
i∈cs

Ei −Q0 = 0. (2.12)

We can thus list the LTD representations of all thresholds of the double-triangle supergraph:

ηsr
2
(~k′, ~l′, Q0) = Ee9 + Ee7 + Ee8 −Q0, ηsr

1
(~k′, ~l′, Q0) = Ee6 + Ee7 + Ee10 −Q0

ηsv
1
(~k′, ~l′, Q0) = Ee6 + Ee8 −Q0, ηsv

2
(~k′, ~l′, Q0) = Ee9 + Ee10 −Q0.

(2.13)

As we shall see, the particular signs selected for the on-shell energies of the edges being cut
stems from the fact that these correspond to the only singular surfaces of the multi-loop
LTD representation of the double-triangle supergraph (other than soft configurations).
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The LTD expression of the double-triangle also involves two additional E-surfaces that
we refer to as internal as they do not involve Q0. Their implicit equation is:

Ee6 + Ee9 + Ee7 = 0
Ee8 + Ee10 + Ee7 = 0 ,

(2.14)

which corresponds to the two (non-Cutkosky) cuts identified from the subgraph with the
set of vertices {7} and {8} respectively. The defining equations (2.14) can only be satisfied
at soft points so that internal E-surfaces do not correspond to Cutkosky cuts since their
phase-space support has no volume. We define

Eint = {s◦1 = {7}, s◦2 = {8}}. (2.15)

In order to show more precisely how this correspondence between Cutkosky cuts and
thresholds naturally arises within the LTD formalism, we now consider the eight terms of
figure 3 whose sum M corresponds to the LTD expression of the double-triangle given in
eq. (2.8).

We remind the reader that in virtue of dual-cancellations, H-surfaces are not sin-
gularities of M , which thus consist of only the E-surfaces of the form given in eq. (2.13).
Graphically, we identify in figure 4 which LTD summands involve each of these four thresh-
olds by separately highlighting the on-shell cuts due to the LTD treatment and the cut
indicating a vanishing propagator. This clearly illustrates the correspondence between the
Cutkosky cuts and the terms of the LTD representation of the double-triangle supergraph.
We observe that the LTD terms containing the thresholds singularities corresponding to
the Cutkosky cuts csv

1
and csv

2
already express the remaining triangle loop as a one-loop

LTD expression, also including the correct energy sign for the cut e+
8,7 in the first term of

figure 4c.
We stress that the key fact underlying the supergraph expression of eq. (2.7) is that the

parametric equations of the four Cutkosky cuts, ηs = 0 with s ∈ Es-ch, given in eq. (2.13)
are the only (non-spurious) singular threshold surfaces of the 2-loop LTD representation
of the double-triangle, due to the aformentioned dual cancellations. The only other diver-
gences arise from internal propagators having a zero on-shell energy, typically leading to
an integrable singularity.

2.1.3 Construction of the cross-section

In this section, we will define the cross section of the process in relation to the singular
structure of the two supergraphs. Starting from the golden rule for cross-sections, we
collect all possible supergraphs {Γse,Γdt} and their s-channel thresholds EΓse

s-ch, EΓdt
s-ch. We

recall that s-channel thresholds of the supergraphs are in one-to-one correspondence with
Cutkosky cuts and thus with interference diagrams contributing to the NLO correction to
the cross-section of the process.

For every interference diagram, we express each of the two amplitudes (to the left
and right of the Cutkosky cut) in their LTD representation. Furthermore, we choose a
consistent loop momentum routing for all the interference diagrams corresponding to the
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(a) csr
2

= b1 ∪ {e+
9 } , (b) csr

1
= b4 ∪ {e+

6 }

(c) csv
2

= {e+
9 , e
−
10}

(d) csv
1

= {e+
6 , e
−
8 }

Figure 4. Explicit correspondence between the four Cutkosky cuts of the double-triangle super-
graph and the causal threshold surfaces of its 2-loop LTD representation. The loop momenta bases
bi that are absent from this figure correspond to summands of the LTD expression that contain
no E-surface. The propagators circled in red are the ones inducing the causal threshold singularity
when becoming on-shell (with a positive or negative on-shell energy depending on the sign above
the red circle).

same supergraph. As a consequence, all interference diagrams can be expressed using a
common integration measure. This procedure is carefully carried out in section 2.2. For
the moment, we state that after having performed these operations, the NLO correction
to the inclusive cross-section of the process e+e− → dd̄ can then be written as

σ
(1)
e+e−→dd̄ =

∑
a∈{se,dt}

∑
s∈EΓa

s-ch

σΓa,s (2.16)

with

σΓa,s =
∑

b∈Bs

∑
b′∈Bv\s

∫
d4k′

(2π)4
d4l′

(2π)4
NΓa

∏
i∈b∪b′∪cs δ

σsbb′
i (q2

i −m2
i )∏

i∈δ◦(s)\b(q2
i −m2

i + iε)∏i∈δ◦(v\s)\b′(q2
i −m2

i − iε) .

(2.17)
where Bs is the collection of all the loop momentum basis of the subgraph (s, δ◦(s)) and NΓa

is the appropriately defined numerator, which may include non-trivial symmetry factors.
The vector σsbb′ fixes the energy flow of the on-shell particles consistently with figure 4,
by identifying δ(s)∪b∪b′ with the respective set of edges which are crossed by a cut or a
circle in one of the diagrams of figure 4, and the components σsbb′

i ∈ {±1} with the signs
associated to those circles or cuts.
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The identification between the terms summed in σΓa,s and the cut diagrams of figure 4
is now clear. More specifically, σΓdt,sr

1
corresponds to the sum of diagrams in figure 4a,

which involves one term only, since in this case the Cutkosky cut does not leave loops
on either side. Thus Bs = Bv\s = ∅. σΓdt,sv

1
is the sum of three terms, corresponding to

the three loop momentum basis of the remaining triangle loop, as depicted in figure 4d.
Note that in eq. (2.17), the propagator denominators in δ◦(v \ s) \ b′ take the causal
prescription −iε because of the complex conjugation applied to the amplitude to the right
of the Cutkosky cut.

We now generalise the concepts of supergraph and E-surface identification beyond this
example process.

2.2 Supergraphs

A Final-State Radiation (FSR) supergraph is a couplet Γ = (G, a), where G = (v =
vint ∪ vext, e = eint ∪ eext) is a directed and connected graph with a set eext as external
legs, with a ⊂ eext, |a| = |eext|/2 and δ(vint) = eext. Roughly speaking, the edges in a
correspond to the incoming particles of the process, and eext contains two copies of the
incoming particles of the process at hand. In the following, we will suppress the set vext
and just refer to vint as v.

It is convenient to describe features of the supergraph in terms of cuts, that is subsets
of the set of all vertices of the graph, their boundary, that is the collections of edges
connecting vertices in the cuts with vertices not in the cut and their interior, that is the
subgraphs identified by the edges whose vertices are contained in the cut. Given any subset
of vertices s ⊆ v, we define the following operators:

δ+(s) =
{

(v, v′) ∈ eΓ
∣∣∣v ∈ s, v′ ∈ vΓ \ s

}
,

δ−(s) =
{

(v, v′) ∈ eΓ
∣∣∣v′ ∈ s, v ∈ vΓ \ s

}
,

δ(s) = δ+(s) ∪ δ−(s),

δ◦(s) =
{

(v, v′) ∈ eΓ
∣∣∣v, v′ ∈ s

}
.

(2.18)

As for most of the notation introduced in this section, δ always implicitly carries a depen-
dency on the super graph Γ, which our notation will often omit for brevity. Furthermore,
each subset of the edges can be fully characterised by a binary vector whose entries are 1
if the corresponding edges are in the subset and 0 otherwise. Given any subset of edges
e′ ⊆ e, the characteristic vector of e′, is defined as χe′ ∈ {0, 1}|e| with

χe′
e =

1 if e ∈ e′

0 otherwise
. (2.19)

Characteristic vectors allow to compactly write momentum-conservation conditions, which
are interpreted as a conserving network flow. Each edge of the supergraph can be assigned
with a weight qe ∈ R4, e ∈ e that corresponds to the momentum carried by the edge, and
momentum conservation constraints can then be written as follows:∑

e∈e
Xs
eqe :=

∑
e∈e

(χδ+(s)
e − χδ−(s)

e )qe = 0 ∀s ⊆ v. (2.20)
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Most of the constraints of eq. (2.20) are linearly dependent. In order to eliminate re-
dundancies and obtain a minimal set of momentum-conservation constraints, it is possible
to reduce the system and obtain the set of minimal constraints that is in one-to-one corre-
spondence with the edges of a spanning tree. This fact alone is sufficient to show that the
kinematic space of the virtual momenta (the linear space where momentum conservation
constraints hold) is spanned by the momentum weights associated to the edges not con-
tained in a given spanning tree. The basis corresponding to a given spanning tree can be
mapped via a totally unimodular matrix to a basis corresponding to a different spanning
tree.

In this framework, a Cutkosky cut admits an especially simple representation as a con-
nected subset of the vertices, which thus allows to divide the supergraph in two connected
subgraphs of it (i.e. two interfering amplitudes). The energy flow across the Cutkosky cut
is enforced to be such that every edge in the boundary of the Cutkosky cut and not in eext
has an energy flow that is opposite to that of the edges in eext themselves. More precisely,
a Cutkosky cut on the FSR supergraph is a subset s ⊆ v with the following properties:

• the graphs G′ = (s, es) and G′ = (v \ s, ev\s), with es = ∑
v∈s δ(v) are connected,

• δ(s) ∩ eext = a.

The Cutkosky cut can be equivalently identified with the subset of edges cs = δ(s)\δ(vint),
and graphically represented as a line crossing all edges in cs. Removal of the edges in cs
from the graph G yields two connected components δ◦(s) ∪ a and δ◦(sc) ∪ (eext \ a) with
sc = v \ s containing the external edges a and eext \ a respectively. As already mentioned,
these correspond to the two interfering amplitudes that form the supergraph when stitched
back together. We observe that there is an apparent two-fold degeneracy since cs and cv\s
identify the same Cutkosky cut. Let Es-ch be the set of all Cutkosky cuts modulo this
two-fold symmetry (the name of this set will become clear later when we relate it to a
subset of the threshold singularities of the supergraph in its LTD representation).

The couplet formed by an FSR supergraph and one of its Cutkosky cut cs is an
interference diagram. In the perturbative formulation of relativistic quantum mechanics,
the all-order cross-section is obtained by summing all supergraphs for which one sums
over all possible interference diagrams arising from its Cutkosky cuts, each weighted by a
density of states (i.e. observable):

σO({qe}e∈a) =
∑
Γ∈G

∑
s∈Es-ch

(−i)|cs|σOΓ,s({qe}e∈a), (2.21)

with

σOΓ,s({qe}e∈a) =
∫ ( ∏

e∈cs

d4qe
(2π)3 δ

(σcs
e )(q2

e −m2
e)
)
δ

( ∑
e∈δ(s)

Xs
eqe

)
[AsA?sc ]Os, (2.22)

where Os : R4|cs| → R is the observable function, and

σcs
i = −Xs

i , i ∈ cs. (2.23)
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The formula for σO matches the usual formula for semi-differential cross-sections, rewrit-
ten in terms of supergraphs. The phase-space integration over the final state particles
is constrained by the on-shell conditions associated to them. The amplitudes, however,
in the Minkowski representation, feature unconstrained four-dimensional integrations for
each of the loops of the graph. This apparent asymmetry in the treatment of virtual and
real particles is partially lifted within the LTD representation, in which the amplitude is
re-expressed as follows:

A~µs ({qe}e∈a∪C) =
∑
b∈B

(−i)|b|
∫ ∏

i∈b∅

d4ki
(2π)3

∏
j∈b

δ(σb
j )(q2

j −m2
j )

∏
e∈δ◦(s)\b

N~µ
s

q2
e −m2

e + iε
. (2.24)

where σb ∈ {−1, 1}|b| is the cut structure for the basis b ∈ B (B is the set of all possible
loop momenta basis of the subgraph δ◦(s)) with respect to the reference basis b∅, and N~µ

s
is a tensor polynomial in the loop variables whose (colour, spinor and Lorentz) indices are
collected in the symbol ~µ.

When rewriting each amplitude using their LTD representations and factoring out the
common loop integration measures, we find that the virtual and real degrees of freedom now
appear undifferentiated. In particular, the procedure defines an extended Lorentz-invariant
measure that encompasses both loop and phase-space integration:

σOΓ,s({qe}e∈a) =
∑

b∈Bs

∑
b′∈Bsc

∫
[dΠs

b,b′ ]
( ∏
e∈δ◦(s)\b

Ns~µ
q2
e −m2

e + iε

∏
e∈δ◦(sc)\b′

N~µ
v\s

q2
e −m2

e − iε

)
Os ,

(2.25)
where the integration measure is the extended Lorentz invariant phase-space measure

[dΠs
b,b′ ] = δ(4)

( ∑
e∈δ(s)

Xs
eqe

) ∏
i∈cs

d4ki
(2π)3 δ

(σcs
i )(k2

i −m2
i )

∏
j∈b

d4kj
(2π)3 δ

(σb
j )(k2

j −m2
j )
∏
n∈b′

d4kn
(2π)3 δ

(σb′
n )(k2

n −m2
i ). (2.26)

This shows that quantum corrections are equivalent to performing phase-space integrals
of tree processes in which virtual particles are substituted by on-shell particles whose
momentum is allowed to range over all possible kinematic values (contrary to external
particles, whose momenta are naturally constrained by the collision energy). Energy-
momentum conservation conditions can be solved jointly for both graphs on the left and
right of the Cutkosky cut by directly considering one loop momentum basis b∅ of the
complete supergraph. This allows one to write each of the extended phase-space integration
measures, for varying s, b, b′, as arising naturally from the loop integration measure of the
supergraph, plus an extra energy conservation delta on the momenta crossing the Cutkosky
cuts. It is then possible to solve all but one of the Dirac deltas and adopt a common basis
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for all spatial degrees of freedom:

σOΓ,s({qe}e∈a) =
∫

[dΠs]
∑

b∈Bs

∑
b′∈Bsc

1∏
i∈cs∪b∪b′ 2Ei

×
( ∏
e∈δ◦(s)\b

Ns~µ
q2
e −m2

e + iε

∏
e∈δ◦(sc)\b′

N~µ
v\s

q2
e −m2

e − iε

)
Os

∣∣∣∣∣
Cs

b,b′

, (2.27)

with
Cs

b,b′ = {q0
i = σb

i Ei}i∈b ∪ {q0
i = σb′

i Ei}i∈b′ ∪ {q0
i = σcs

i Ei}i∈cs , (2.28)

and

[dΠs] = δ

(∑
i∈cs

Ei −
∑
j∈a

Ej

) ∏
i∈bΓ
∅

d3~ki
(2π)3 , (2.29)

given a reference momentum basis bΓ
∅ of the supergraph Γ. Recall that a is the set of

incoming particles, so that the delta in eq. (2.29) establishes the conservation of on-shell
energies of incoming and outgoing particles.

We have partially aligned the integration measures of all interference diagrams arising
from the same supergraph by rerouting each of them according to a fixed loop momentum
basis bΓ

∅ of the corresponding supergraph Γ, which is a first important step towards proving
local cancellation of IR singularities. We observe that, if a reference basis of the supergraph
is fixed, the only dependence on s left in the measure element is due to the Dirac delta
enforcing the conservation of on-shell energies across each Cutkosky cut. Aligning this last
element of the measures requires a more advanced mathematical construction, presented
in detail in section 3.2.4. In the rest of this section, we first discuss the singular structure
of amplitudes and derive a heuristic cancellation argument, as both of these aspects do not
strictly rely on the complete alignment of the measures [dΠs].

2.3 Identification of E-surfaces with cuts

The singular surfaces of interference diagrams are also singular surfaces of the supergraph.
More specifically, E-surfaces of amplitudes correspond to intersections of E-surfaces of the
supergraph, as one can think of E-surfaces of the amplitudes as E-surfaces of the supergraph
evaluated on the E-surface corresponding to the energy conservation delta. Indeed, we
observe that after solving the energy conservation Dirac delta in eq. (2.29), the integrand
is evaluated on the zeros of the following E-surface:

ηs =
∑
i∈cs

Ei −
∑
j∈a

Ej , (2.30)

which is itself an E-surface of the supergraph in its LTD representation.
Eq. (2.30) also suggests a useful identification of E-surfaces with connected subsets of

the vertices. This graphical representation of thresholds, and the notion of connectivity,
encodes the causal ordering of the scattering events (the vertices). The particles connecting
two vertices on different sides of the cut generate a singularity by simultaneously lying on
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their respective mass shell. Cutkosky cuts, in particular, correspond to thresholds in which
the incoming momenta enter the boundary of a subset of vertices and produce |cs| outgoing
(that is, with opposite energy flow) on-shell particles. More specifically, let

E = {τ ⊂ vint| δ◦(τ ), δ◦(vint \ τ ) are connected} . (2.31)

Then an E-surface of the supergraph can be represented as a tuple (τ , α), with τ ∈ E and
α ∈ {±1}. The parametric equation is

η(τ ,α) =
∑

j∈a∩δ(τ )
Ej −

∑
j∈(eext\a)∩δ(τ )

Ej +
∑

i∈δ(τ )\eext

α Ei = 0, (2.32)

which is a general equation establishing the generic form of a threshold singularity on
the supergraph, for an on-shell energy flow assigned to the external edges eext according
to its bipartition in a and eext \ a. The set E can be mapped surjectively to the set of
singularities of the supergraph. This is one of the results of the Manifestly Causal LTD
representation [91–93, 118].

According to our earlier definition of Cutkosky cuts, the E-surfaces of the supergraph
which correspond to interference diagrams are only those corresponding to cuts whose
boundary contains all incoming edges. It is useful to decompose the set E as the disjoint
union of the following four sets:

• Es-ch = {τ ∈ E | δ(τ ) ∩ eext = a or δ(τ ) ∩ eext = eext \ a}; an element τ ∈ Es-ch, is
said to be s-channel-like.

• Et-ch = {τ ∈ E | |a| > |δ(τ ) ∩ a| > 0, |eext \ a| > |δ(τ ) ∩ (eext \ a)| > 0}; an element
τ ∈ Et-ch is said to be t-channel-like.

• Eint = {τ ∈ E | |δ(τ ) ∩ eext| = 0 or |δ(τ ) ∩ eext| = |eext|}; an element τ ∈ Eint, is said
to be internal-like,

• Eisr = E \ (Es-ch ∪ Et-ch ∪ Eint); an element τ ∈ Eisr, is said to be Initial-State-
Radiation(ISR)-like.

so that E = Es-ch∪Et-ch∪Eisr∪Eint. We will consider all these sets to be modulo conjugation,
that is a cut s and a cut v \ s are equivalent. The E-surfaces in Es-ch are the only ones that
divide the supergraph into two graphs that have all incoming particles or none of them.

The singularities of the interference diagrams with Cutkosky cut cτ , can be described as
the intersection of two E-surfaces, one describing the on-shell energy conservation condition
associated with the Cutkosky cut, and the other being a singularity of an amplitude. More
specifically, the location of the singularities of the interference diagram is characterised by
the set of points which, when embedded in R3L, satisfies the following equations:

η(τ ,1) = 0, η(s,α) = 0, τ ∈ Es-ch, s ∈ E , with s ⊂ τ or τ ⊂ s. (2.33)

This follows from a repeated application of the principle identifying connected cuts and
E-surfaces to the amplitudes participating in the interference diagram. One interesting

– 16 –



J
H
E
P
0
4
(
2
0
2
1
)
1
0
4

consequence of this claim is that no t-channel can be a singularity of the interference
diagram. (2.33) plays a crucial role in the determination of the cancellation pattern of IR
singularities and precisely relates the singular structure of interference diagrams to those
of the corresponding supergraph. For two s-channel E-surfaces corresponding to the cuts
τ and s, one can also define

η(τ ,1)|s =
∑
i∈cτ

Ei −
∑
j∈cs

Ej . (2.34)

which is an alternative representation for the E-surface ητ when evaluated at the zeros of
ηs. In the following, if the index α is suppressed, it is assumed to take the value α = 1. As
we shall see in section 2.5, the property η(τ ,1)|s = −η(s,1)|τ plays a crucial role in the local
cancellation of pinched singularities in LU since both cs and cτ are valid Cutkosky cuts of
the supergraph.

2.4 Pinched E-surfaces and their properties

The notion of pinching has a direct physical interpretation as it is associated with the
degeneracy of massless particles in collinear or soft configurations. A general definition
of pinched E-surfaces characterises them as poles that cannot be deformed around via a
complex contour.

In order to study the conditions for which an E-surface becomes pinched, we provide
each integral σOs with its own deformation, constructed by analytically continuing the
spatial degrees of freedom of the loop variables forming the momentum basis of the left
and right subgraphs δ◦(s) and δ◦(v \ s). Given a basis b of the supergraph, we consider
the contour

~qe = p0 +
L∑
j=1

αej~kj → ~qe − i
L∑
j=1

αej~κj , e ∈ b, (2.35)

where
L∑
j=1

αe′j~κj = 0, ∀e′ ∈ δ(s), (2.36)

which establishes that the momenta of the particles in the Cutkosky cut is kept real as
they enter the observable function. It follows that understanding the pinching condition for
interference diagrams is equivalent to understanding it in the context of amplitudes. More
explicitly, we can analyze pinching within the object A~µs (~k − i~κ). Since the deformation
only affects the amplitudes, it must satisfy the four constraints laid out in ref. [89], where a
general deformation for amplitudes in the LTD representation is constructed: the continuity
constraint, the causal constraint, the expansion validity constraint, and the complex pole
constraint.

The continuity constraint imposes that any valid deformation must go to zero faster
than Ei on the zeros of Ei. We thus conclude that any surface in

Sx =
{
~k ∈ R3L

∣∣∣ ‖~qi(~k)‖2 +m2
i = 0, ∀i ∈ x

}
, x ⊂ e (2.37)
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is a pinched surface due to a soft configuration (when m2
i = 0). We now turn to the causal

constraint. An E-surface is pinched if it is impossible to satisfy the causal constraint for
points on it, that is

Im[η(~k − i~κ)] = O(‖~κ‖2), ∀~k with η(~k) = 0, ∀~κ , (2.38)

with the understanding that there exists no contour deformation winding around the
thresholds and that is compatible with the causal constraints.

An intuitive understanding of this condition (e.g. see figure 6 of ref. [89]) is obtained
by analysing the complex zeros of the E-surface. The real space is entirely sandwiched
between two complex surfaces denoting the zeros of η. The two surfaces become purely
real simultaneously at the location of the pinches, as established by the complex pole
constraint [119–121]. Any valid contour deformation is thus constrained to be identically
zero at the location of the pinches.

We now turn to the identification of the E-surfaces within the (loop) amplitude A~µs
on the left of a particular Cutkosky cut cs. In order to be able to characterise all possible
E-surfaces of such amplitudes, we identify them with ηcs

(τ ′,α), and τ ′ ⊂ s , which is part of
an interference diagram corresponding to the supergraph (G,a), that is

ηcs
(τ ′,α) =

∑
j∈a∩δ(τ ′)

Ej −
∑

j∈cs∩δ(τ ′)
Ej +

∑
i∈δ(τ ′)\δ(s)

α Ei = 0, (2.39)

with α = ±1. We choose, without loss of generality, that all the edges in δ(τ ′) have the
same orientation. The imaginary part of such E-surface can be written conveniently by
expanding to first order in the Taylor expansion. For any j ∈ δ(τ ′) \ δ(s) identifying the
dependent edge (for example, for the amplitude E-surface give in figure 5, one can choose
j = e2 and write q2 = q1 − q3 − q4), we can define bτ ′ = δ(τ ′) \ δ(s) \ {j} and:

Im[ηcs
(τ ′,α)] =

∑
i∈bτ ′

~Qi(~κ) ·
(
~qi
Ei

+
~pτ ′ +∑

m∈bτ ′
~qm

Ej

)
+O(‖κ‖3). (2.40)

where
~pτ ′ =

∑
m∈δ(τ ′)∩δ(s)

~qm. (2.41)

The condition of vanishing imaginary part of eq. (2.38) is trivially satisfied for E-surfaces
arising from real emissions only (e.g. ηs|τ of figure 5), as there are no loop variables that
can be contour deformed in this case. Applying the pinched condition in eq. (2.38) to
eq. (2.40), and using that the ~Qi’s are linearly independent by construction, we see that
the requirement that the imaginary part must be identically zero for every value of the
deformation field, implies that each of the vector that ~Qi multiplies must themselves be
identically zero. That is:

~qi
Ei

+ ~qj
Ej

= 0, ∀i ∈ bτ ′ (2.42)

which can only be satisfied when ~qi and ~qj are anticollinear. Observe that for massless
on-shell momenta, the two vectors are normalized to unity. On the other hand, in the
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Figure 5. Example of a supergraph E-surface
ητ |s (= −ηs|τ ) identified by the two sets of ver-
tices s = {2, 3, 4, 5, 6, 7} and τ = {4, 5, 6, 7}
defining the two Cutkosky cuts cs = {e1, e6}
and cτ = {e2, e3, e4, e6}. The two-loop ampli-
tude A~µs on the left of the Cutkosky cut cs has
an amplitude E-surface ηcs

(τ ′,1), with τ ′ = s \ τ =
{2, 3}, which is pinched for −~qi = xi~pτ ′ , ~qm =
−xm~pτ ′ , ~ql = −xl~pτ ′ , ∀i ∈ {e1}, ∀m ∈ ∅, ∀l ∈
{e2, e3, e4}, with ~pτ ′ = −q1. More concisely, for
xi > 0, the pinch happens for ~q1//~q2//~q3//~q4.
The complex-conjugate of the tree-level ampli-
tude A~µv\τ on the right of the Cutkosky cut cτ

has no amplitude E-surfaces, but instead features
the familiar real-emission triple-collinear phase-
space singularity which, within the LU frame-
work, cancels A~µs on the pinch of its amplitude
E-surface.

massive case the two vectors have varying norms that range between zero and one. This
prohibits pinching of E-surfaces with non-zero masses. We recall that soft emission of
massless particles from massive ones still lead to pinching in virtue of eq. (2.37).

Using eq. (2.42) and eq. (2.39) we provide a necessary and sufficient condition for ηcs
(τ ′,α)

to be pinched:

• mj = 0, ∀j ∈ δ(τ ′), that is, all particles participating in the threshold are massless,

• ~qi = xi~pτ ′ , ~qm = −xm~pτ ′ , ~ql = −αxl~pτ ′ , ∀i ∈ δ(τ ′) ∩ cs, ∀m ∈ δ(τ ′) ∩ a, ∀l ∈
δ(τ ′)\δ(s), with all the xi ≥ 0, ∀i ∈ δ(τ ′), that is, the external particles participating
in the threshold are all simultaneously collinear to a given direction and all the virtual
particles participating in the threshold are all simultaneously anti-collinear to that
direction (when assuming that all edges in δ(τ ) are either flowing inward or outward
of the set τ ).

These conditions allow to completely characterise pinched surfaces of amplitudes in their
LTD representation, on top of providing the precise locations of the singularities. We recall
that thresholds of interference diagrams can be seen as intersections of E-surfaces of the
supergraph. Analogously, pinched points of interference diagrams, are contained in (but
do not coincide with) such intersections. We show in figure 5 and explicit example of the
correspondence between the E-surface ητ |s of a supergraph and its counterpart ηcs

(τ ′,1) in the
amplitude obtained when imposing the Cutkosky cut cs. We stress that the set of vertices
τ ′ defining the amplitude E-surface ηcs

(τ ′,1) relates to the two sets τ and s identifying its
corresponding supergraph E-surface ητ |s with τ ′ = s \ τ (when τ ⊂ s).

The t-channel type of amplitude E-surfaces never induce divergences in LU as their
pinched configuration is either excluded by the observable [122] and/or regulated by the
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propagator width assigned to unstable particles. We are therefore interested in s-channel
type of supergraph E-surfaces and assume each particle to be massless, then the set of points
at which any E-surface of any interference diagram corresponding to a fixed supergraph Γ
is pinched can be written as

P = H ∩
( ⋃

τ∈Es-ch

δητ

)
with H =

⋃
s,τ∈Es-ch

τ⊂s

Hsτ , (2.43)

and

Hsτ =
{
~k ∈ R3L

∣∣∣~qi(~k) = xi~p, ~qj(~k) = −xj~p, ∀i ∈ cτ \ cs, ∀j ∈ cs \ cτ , ∀~p ∈ R3
}
. (2.44)

Adding masses to particles of the interference diagrams decreases the size of H and, conse-
quently, that of P.

This concludes the study of pinched E-surfaces in the LTD framework. It is worth
mentioning that a proper classification of the pinched E-surfaces requires studying their
intersections. However, this study is unnecessary to prove FSR cancellations and is outside
the scope of this work.

2.5 Local cancellations for final-state radiation within a toy model

In this section, we render the cancellation shown figure 5 more systematic by investigating it
within a toy model. Such local cancellation requires a specific alignment of the integration
measures in order to solve the Dirac deltas enforcing on-shell energy conservation. This
treatment is carried out in detail in section 3.2.1 and we first discuss here the cancellation
mechanism for a simplified model. In order to carry out the argument, we consider an
analogue for the integrand of interference diagrams which is constructed in the following
way: each interference diagram, identified by s ∈ Es-ch, shall be associated to a function
ωs : R3L → R which is the product of the LTD representations of the graphs δ◦(s) and
δ◦(v\s) times the product of the inverse energies of all the particles in the Cutkosky cut cs,

ωs({Ei}i∈e, ~k) = 1∏
i∈cs Ei

AsAv\s

∣∣∣∣∣
{q0
i=Xs

iEi}i∈cs

(2.45)

with

As =
∫ L∏

i=1

dk0
i

(2π)
N∏

j∈e(q2
j −m2

j )
, (2.46)

where we take the amplitude to have a scalar numerator, that is A~µs = As, for simplicity.
The singularities of ωs are the same as those of the two amplitudes integrands As, Av\s,
plus the integrable singularities due to the inverse energies of the particles in the Cutkosky
cut. More specifically, the E-surfaces of ωs correspond to the zeros of E-surfaces satis-
fying eq. (2.33); thus ωs is a valid analogue of the integrand of an interference diagram.
Furthermore, ωs exhibits an interesting local factorisation property in the neighbourhood
of such singularities: following the convention set in figure 6, in the limit ητ |s → 0, each
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As

Aτ\s

Av\τ

cs

ητ |s

e1 e2

e3

As

Aτ\s

Av\τ

cτ

ηs|τ

e1 e2

e3

Figure 6. Two different interference diagrams, corresponding to Cutkosky cuts cs and cτ . The
two Cutkosky cuts identify a singularity of the amplitudes, ητ |s = −ηs|τ . The direction of the edges
identify the on-shell energy flow necessary for the particles in δ(τ \ s) to participate in a physical
threshold.

amplitude integrand can be factorised as a product of inverse energies for each element of
cτ multiplied by the LTD representation of the two subgraphs δ◦(s) and δ◦(τ \ s). We
observe that such a local factorisation property relates to analogous ones holding at the
integrated level and also playing an important role in traditional computational methods.

Let As be divergent at a location identified by the E-surface ητ . Then this local
factorisation property simply reads:

ωs({Ei}i∈e, ~k) = 1∏
i∈cs∪cτ

2Ei
AsAτ\sAv\τ

∣∣∣∣∣
Csτ

1
ητ |s

+O(1), ητ |s → 0 , (2.47)

with
Csτ = {q0

i = Xs
iEi}i∈cs ∪ {q0

i = Xτ
i Ei}i∈∪cτ . (2.48)

We can now show the explicit cancellation pattern. Let us consider the sum of the
functions ωs for all s ∈ Es-ch, which is the analogue of the sum of all interference diagrams
of a single supergraph. Such sum, if τ ∈ Es-ch, also contains the term ωτ . We observe that

ωs + ωτ = 1∏
i∈cs∪cτ

2Ei
AsAτ\sAv\τ

∣∣∣∣∣
Csτ

(
1
ητ |s

+ 1
ηs|τ

)
+O(1), ητ |s, ηs|τ → 0 . (2.49)

Since ηs|τ = −ητ |s, it follows that ωs +ωτ = O(1) when ητ , ηs → 0. Thus, the singularity
at ητ |s of an interference diagram whose Cutkosky is identified by s cancels pairwise with
the singularity at ηs|τ of an interference diagram whose Cutkosky is identified by τ . This
heuristic argument can easily be generalised to an arbitrary number of E-surfaces which
vanish simultaneously, by iterating the factorisation argument and using the fact that each
s-channel E-surface ηs|τ can be written as the difference of two variables, each being the
sum of energies in the Cutkosky cut cτ or cs. This mechanism will be studied in more
detail in section 3.2.4.

In the next section, we will show how the cancellations unfold when including ob-
servables and construct a proof. As already mentioned, this will require re-expressing the
integrand of interference diagrams in a different way by solving the energy conservation
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delta explicitly (or equivalently, by considering a contour integration of the LTD representa-
tion of the supergraph). After the integrands are rewritten in this fashion, the cancellations
will be realised algebraically, similarly as for dual cancellations.

3 Local cancellations of threshold (IR) singularities

In this section we present the major steps in defining a local representation of differential
cross-sections that is manifestly free of IR singularities. As the paper is focused on final-
state radiation, we will show that such a representation is integrable on the whole R3L

excluding the initial state radiation (ISR) contributions.
The conceptual unfolding of the proof is summarised by the following prescriptions

• Given a supergraph, construct a flow ~φ satisfying an ODE involving a reference vector
field κ satisfying the causal constraints laid out in ref. [89]. κ is then called the causal
vector field and ~φ is called the causal flow. Then change variables so as to make it
possible to perform a contour deformation in the flow parameter t, that is along the
flow, thus allowing the use of the ordinary one-dimensional residue theorem.

• Construct a local representation of differential cross-sections, that is a function σd :
R3L → R. Such a function is locally equivalent to summing over the discontinuities
of s-channel E-surfaces of the supergraph along a flow line.

• Show that σd allows for a cancellation mechanism analogous to the type described in
section 2.5, and that is mathematically summarised by the partial fractioning identity

N∑
j=1

N∏
i=1
i 6=j

1
ti − tj

= 0. (3.1)

• Use this cancellation pattern to derive analytic constraints on observables by requiring
that σd is finite on R3L excluding all the regions at which an initial-state E-surface
vanishes. Next, we show that they are satisfied by observables that cluster particles
with energy or relative direction under a mathematically well-defined scale δ. In
other words, these constraints match the usual requirement of IR-safety for collider
observables.

• Derive the scaling of σd near soft points, and show that it depends on the scaling of
the deformation field around soft points, thus relating the request of integrability of
σd with a constraint on the scaling of the causal flow.

• Perform power-counting and argue that soft points are always integrable in physical
theories.

Before detailing the proof in section 3.2, we construct the LU representation of the e+e− →
dd̄ example, which we use to unfold explicitly the steps presented above.
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3.1 Illustrative example: NLO correction to e+e− → dd̄

We start by recalling the LTD representation of the double-triangle supergraph, and rewrite
eq. (2.16) and eq. (2.17) directly in terms of the LTD representation of that supergraph.

Observe that in the rest frame of γ?, the two threshold E-surfaces ηsr
1
and ηsr

2
have

the same exact functional dependence in the loop variables. Accounting for this accidental
degeneracy, we can write eq. (2.7) as

M =
∫

d3~k′

(2π)3
d3~l′

(2π)3
f(~k′, ~l′)∏

j∈ein Ej
∏

τ∈{sv
1,s

v
2,s

r
1}
ητ
∏

τ∈{s◦1,s
◦
2}
ητ

(3.2)

with

f(~k′, ~l′) =

 ∏
j∈ein

Ej

 ∏
τ∈{sv

1,s
v
2,s

r
1,s
◦
1,s
◦
2}
ητ

∑
b∈B

∫
dk′

0
dl′

0
N

∏
e∈b δ

(σb
e )(q2

e −m2
e)∏

e∈e\b(q2
e −m2

e)
. (3.3)

where the Cutkosky cuts {sv
1, sv

2, sr
1} of the double-triangle are defined in eq. (2.9) and the

additional E-surfaces {s◦1, s◦2} in eq. (2.15). A study of the divergences of f reveals that f
is infinitely differentiable on R6.

We now extract the residue of the threshold singularities of the LTD representation of
the DT listed as s ∈ Es-ch by substituting η−1

s with δ(ηs)Os, which is what is commonly
referred to as the “application of the Cutkosky cuts. This yields a representation that is
trivially equivalent to that of eq. (2.16) and eq. (2.17), after all the Dirac deltas except
for the one imposing the conservation of on-shell energy flowing across the Cutkosky cut s
have been solved. We have∑

s∈EΓDT
s-ch

σOΓDT,s =
∑

s∈{sv
1,s

v
2,s

r
1}

∫
d3~k′d3~l′

(2π)6
Os ηs δ(ηs) f(~k′, ~l′)∏

j∈ein Ej
∏

τ∈{sv
1,s

v
2,s

r
1}
ητ
∏

τ∈{s◦1,s
◦
2}
ητ
, (3.4)

where the sum runs over all possible Cutkosky cuts, and Os is, for now, a non-specified
function whose functional form depends on the cut s. It is clear that eq. (3.4) can be ob-
tained from the usual form of dσdO by applying LTD to the energy integrals left after applying
the phase-space cuts. At the same time, eq. (3.4) also expresses the well-known fact that
Cutkosky cuts can be seen as the residues of the supergraph acquired by contour-deforming
around its thresholds, which is also the core of the original derivation by Cutkosky [123].

We would like to solve the Dirac deltas on the right-hand side of eq. (3.4) simultaneously
for all Cutkosky cuts of the double-triangle topology, in a way that allows to write

dσΓdt

dO
=

∑
s∈EΓDT

s-ch

σOΓDT,s =
∫
d3~k′d3~l′

(2π)6 σΓDT
d . (3.5)

where σd now contains no Dirac delta. In particular, the contribution from all interference
diagrams stemming from the double-triangle topology should be written as a single integral
over R3×R3 of a particular integrand. In following three sections we will discuss a general
method to solve the remaining delta function encoding energy conservation. We denote
with dσΓ/dO the sum of all the interference diagrams arising from Cutkosky cuts of the
supergraph Γ and we suppress the Γ superscript henceforth.
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3.1.1 Soper’s rescaling for solving conservation of on-shell energies

For 1 → N processes, such as (effectively) e+e− → dd̄, final-state singularities can be
aligned at any perturbative order in QCD using Soper’s δ solving strategy [79] which offers
an easy way to rewrite the phase-space measure in a form where there is no Dirac delta
anymore. It was presented for the first time for integrands with conformal symmetries.
In the following we will generalise it to multi-scale integrands, for arbitrary masses, loop
momentum routings and Lorentz frames.

Consider the integral (3.4), and multiply it by the integral in t of a normalized function
h(t):

dσΓDT

dO
=

∑
s∈{sv

1,s
v
2,s

r
1}

∫
d3~k′d3~l′

(2π)6

∫ ∞
0

dt h(t) Os ηs δ(ηs) f(~k′, ~l′)∏
j∈ein Ej

∏
τ∈{sv

1,s
v
2,s

r
1}
ητ
∏

τ∈{s◦1,s
◦
2}
ητ

(3.6)

We can now change variables from (~k′,~l′) to ~φ(t;~k′,~l′). We call ~φ the causal flow, because
for any fixed ~k′ and ~l′, ~φ denotes a curve which always flows outwards with respect to the
Cutkosky cut E-surfaces. This new object will be described in more detail in section 3.2.1.
In the case of the example process considered in this section, we can choose5 ~φ(t;~k′,~l′) =
t(~k′,~l′). An illustration of this causal flow is given in figure 9. This change of variables
then yields:

dσΓDT

dO
=

∑
s∈{sv

1,s
v
2,s

r
1}

∫
d3~k′d3~l′

(2π)6 ds
Os ηs f(t(~k′, ~l′)) h(t) t6∏
j∈ein Ej

∏
τ∈{sv

1,s
v
2,s

r
1,s
◦
1,s
◦
2}
ητ
δ

(∑
i∈cs

Ei(t(~k′, ~l′))−Q0
)

(3.7)
and by solving Dirac’s delta explicitly, we find

dσΓDT

dO
=

∑
s∈{sv

1,s
v
2,s

r
1}

∫
d3~k′d3~l′

(2π)6
Os ηs f(t(~k′, ~l′)) h(t) t6

|∂tηs|
∏
j∈ein Ej

∏
τ∈{sv

1,s
v
2,s

r
1,s
◦
1,s
◦
2}
ητ

∣∣∣∣∣
t=t?s (~k)

, (3.8)

where t?s, is the unique (as we shall argue in section 3.2.1) value of t such that the E-surface
identified by the energy conservation delta vanishes.

From that point onward, we will abbreviate our notation by defining ~k := (~k′,~l′). For
a given ~k, t?s is a function satisfying

ηs(t?s~k) =
∑
i∈cs

Ei(t?s~k)−Q0 = 0. (3.9)

Observe that for every ~k, t?s is the factor with which to rescale the loop momenta in order for
t?s
~k to lie on an E-surface. Alternatively, one can think of fixing a point in loop momentum

space and dilate or contract the E-surface by a quantity 1/t?s so that the point ~k lies on
it. If the E-surface contains the origin, then for every ~k there is only one positive value
of t?s such that t?s~k lies on the E-surface. This is a consequence of the convexity of η as a

5In this section, contrary to section 3, we choose the argument of the causal flow to be log(t) and not t
for simplicity.
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function of t. Knowing that there is at most two solutions if t is allowed to take positive
and negative values, and since a solution t?s satisfies

|t?s| <
∑
j∈a Ej∑

i∈cs‖ ~Qi(~k)‖
+
∑
i∈cs

∣∣∣∣∣ ~Qi(~k)
‖ ~Qi(~k)‖2

· ~pi

∣∣∣∣∣, (3.10)

we conclude that the equation in t can be solved numerically by using Newton’s method
with seeds provided by the bounds of the inequality in (3.10). Since there are at most
two solutions, Newton’s method is guaranteed to converge. Thus, it follows that Soper’s δ
solving strategy is numerically straightforward to implement.

3.1.2 LU representation of double-triangle interferences

The next step is to relate the expression of the double-triangle supergraph given in eq. (2.7)
to that of the traditional expression dσ

dO of the NLO QCD accurate differential cross-section
of the scattering process e+e− → dd̄. The correspondence between the contributing thresh-
old singularities of the LTD expression of the double-triangle supergraph and its Cutkosky
cuts (figure 4) shows that dσ

dO can be obtained by computing the residues associated with
each of the causal surfaces for which we must however make sure to assign the observ-
able function with the appropriate dependence. The fact that each Cutkosky cut involves
the observable function with a different functional dependence on the kinematics is the
very reason why the residues from each of the singular surfaces of the supergraph must be
computed separately. Indeed, when only interested in the fully inclusive cross-section of
1 → 2 processes, one can instead consider directly computing the imaginary part of the
supergraphs and extract from it the inclusive cross-section via the optical theorem (see,
e.g. ref. [78]).

Eq. (3.8) can then be written as

dσΓ
dO

=
∫
d3~k′d3~l′

(2π)6 σd(~k) (3.11)

where we recall that we define ~k := (~k′, ~l′) and

σd(~k) =
∑

s∈E~k,~φ

Inds lim
t→t?s

(t− t?s)
[

f(t~k) h(t) |detJ~φ| Os∏
j∈ein Ej

∏
τ∈{sv

1,s
v
2,s

r
1,s
◦
1,s
◦
2}
ητ

]
, (3.12)

where we used the formal definition of the residue of a single pole located at t?s, and
Inds = +sign[∂tηs(t?s)]. The symbol E~k,~φ describes the ensemble of all threshold surfaces,
i.e. Cutkosky cuts, which have a solution in t given the change of variables induced by
the causal field ~φ(t;~k) and for the particular sampling point ~k = (~k′,~l′) considered. Due
to convexity, the number of solutions in t of the E-surface equation is limited to one or
potentially zero. However, in our simple 1→ N case, this change of variable amounts to a
trivial rescaling which always offers exactly one solution for each threshold, so that we can
effectively consider a summation over the complete set {sv

1, sv
2, sr

1}.
We choose the normalised function h(t) to be

h(t) = 1
2K1(2σ)e

−σ t
2+1
t , (3.13)
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where K1 is the Bessel function of the second kind. This particular choice of a normalised
function h(t) is motivated by the fact that it vanishes exponentially fast at zero and infinity
while being maximal at t = 1. We fix the tunable parameter σ to 1. These features
naturally drive the integrator to probe points in space that are close to at least one Cutkosky
surface (see section 5.4.1 for more details regarding integration efficiency) and also avoids
spurious integrable singularities at t = 0. This also implies that the norms of the loop
momenta before and after the rescaling treatment are of similar order of magnitude, thereby
maintaining the direct interpretation of the location of the IR and UV domain. We are now
equipped to delve into the details of the cancellation of IR singularities and the numerical
implementation of the double-triangle and self-energy supergraphs within the formalism of
Local Unitarity.

3.1.3 E-surface cancellations for the double-triangle supergraph

In general, the direct evaluation of eq. (3.12) reads:

σd =
∑

s∈{sv
1,s

v
2,s

r
1}

(t?s)6 f(t?s~k) h(t?s) Os({~qe(t?s~k)}e∈cs)∣∣∣∂tηs(t?s~k)
∣∣∣ ∏
i∈ein

Ei
∏

τ∈{sv
1,s

v
2,s

r
1}\{s}

∑
j>0

(t?s − t?τ )j
j! ∂jt ητ (t?τ~k)

 ∏
τ∈{s◦1,s

◦
2}
ητ

,

(3.14)
where we substituted each Cutkosky cut threshold surface ητ , τ ∈ Es-ch in the denominator
by its Taylor expansion around its on-shell solution t?τ (so that the zeroth-order term of this
expansion is necessarily zero). We use the short-hand notation ∂tηs(t?s~k) := ∂tηs(t)|

t=t?s~k
.

Thanks to the simple functional form of the rescaling change of variable as well as the
fact that all propagators of the double-triangle supergraph are massless and that we are
considering an incoming momentum configuration at rest, i.e. Qµ = (Q0,~0), we can give a
simple expression for the rescaling solution t?s as well as the derivative function ∂jt ητ (t~k) of
the Cutkosky surfaces:

t?s = Q0

ηs(~k, 0)
(3.15)

∂jt ητ (t~k,Q0) =

ητ (~k, 0) if j = 1
0 if j > 1

, (3.16)

so that: ∑
j>0

(t?s − t?τ )j
j! ∂jt ητ (t?s) =

(
Q0

ηs(~k, 0)
− Q0

ητ (~k, 0)

)
ητ (~k, 0), (3.17)

In our case, this expression of course reproduces the exact expression of ητ (t?s~k,Q0) since
the Taylor expansion terminates, but this is in general not the case for more complicated
causal flows or when in presence of massive propagators.

Proving the local cancellation of IR singularities amounts to demonstrating that the
expression of the differential cross section σd in eq. (3.14) is integrable except for remaining
UV divergences. From our earlier discussion, we can already argue that f is free of any
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singularity. The causal nature of the field ~φ inducing our change of variable also insures
that |∂tηs(t?s)| 6= 0 (see section 3.2.1). In our case, we have:

|∂tηs(t?s)| = ηs(~k, 0) (3.18)

Finally the product of on-shell energies ∏i∈ein Ei and the product of inverse internal E-
surfaces ∏τ∈{s◦1,s

◦
2}
ητ can be rewritten using the relation

Ei(t?s~k) = Q0Ei(~k)
ηs(~k, 0)

, (3.19)

ητ (t?s~k) = Q0ητ (~k)
ηs(~k, 0)

. (3.20)

In conclusion, we can rewrite σd by underlining that the denominator can be written as a
polynomial in the energies and in the ηs, s ∈ Es-ch:

σd = 1
(Q0)3∏

e∈eint Ee(~k)∏τ∈{s◦1,s
◦
2}
ητ (~k)

∑
s∈{sv

1,s
v
2,s

r
1}

ηs(~k, 0)2f(t?s~k)h(t?s)Os(t?s~k)∏
τ∈{sv

1,s
v
2,s

r
1}\s

(ητ (~k, 0)− ηs(~k, 0))
.

(3.21)
We can now rewrite σd and show that the cancellations can be made explicit alge-

braically in the denominators (ητ (~k, 0) − ηs(~k, 0)), thereby sidestepping their complicated
kinematic dependence. One peculiar implication of this proof is then that it can be made
for any parametric kinematic point ~k, that is without taking any limit. This is particu-
larly convenient given that enumerating all possible IR divergent kinematic limits becomes
cumbersome at high perturbative orders.

The summand of σd corresponding to s, as given in eq. (3.21), is clearly singular at the
locations ητ |s = ητ (~k, 0) − ηs(~k, 0) = 0 and at soft points. That is, regions of kinematics
space at which any energy vanishes. In order to make the notation less heavy, let us call
xs = ηs(~k, 0) and suppress the dependence of functions unless their dependence is itself
dependent on s, which is an index that is summed over.

In the absence of numerators, we could immediately show that the sum in eq. (3.21)
is identically zero thanks to the general partial fractioning identity given in eq. (3.1). If
observables are non-trivial, instead, we have to expand the numerator in the variable t.
Let us assume, in the following, that

Os(~k) = Oτ (~k), ∀(~k) s.t. xτ = xs + ε, (3.22)

for fixed ε > 0. This condition, which will be discussed in detail later, allows to state that
in a neighbourhood of problematic points [f h Os](Q0/xs) = g(xs), ∀s ∈ Es-ch, where g
is a continuous function on R \ {0} in virtue of the continuity of the observable, of the
numerator and of the normalising function. Its singularity at the origin is not problematic
if we use that the integrand must initially be UV convergent, either on itself or with the
aid of counterterms. With this in mind, we can write

σd = 1
Q3

0
∏
e∈eint Ee

∏
τ∈{s◦1,s

◦
2}
ητ

∑
s∈{sv

1,s
v
2,s

r
1}

x2
sg(xs)∏

τ∈{sv
1,s

v
2,s

r
1}\s

(xτ − xs) , ∀
~k s.t. xτ = xs + ε

(3.23)
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We will now rearrange the sum in a way that makes cancellations manifest.

σd = 1
Q3

0
∏
e∈eint Ee

∏
τ∈{s◦1,s

◦
2}
ητ

x2
sv
1
g(xsv

1
)−x2

sr
1
g(xsr

1
)

xsv
1
−xsr

1
−

x2
sv
2
g(xsv

2
)−x2

sr
1
g(xsr

1
)

xsv
2
−xsr

1

xsv
1
− xsv

2

(3.24)

Written in this form, it is clear that away from soft points, when xs − xτ → 0, for τ , s ∈
{sv

1, sv
2, sr

1}, σd is finite. A power-counting procedure can be set up to show that this
integrand has at most integrable singularities at soft points. Such an analysis, however,
requires studying the structure of g and is performed rigorously in section 3.2.7. The
straightforward cancellation structure that manifests itself in eq. (3.24) already alludes to
its generalisation. Also, except for considerations regarding the observable dependence,
this cancellation pattern does not discriminate between types of singularities (pinched or
non-pinched) and holds on intersection of singular surfaces.

Finally, we go back to the condition shown in eq. (3.22), which enforces the IR safety
of the observable. We will assume that the observables only depend on the size of the cut
and the masses of the particles belonging to the Cutkosky cut, other than their momentum,
that is:

Os({~qe(t?s~k)}e∈cs) = O|cs|({~qe(t?s~k),me}e∈cs) . (3.25)

When rewriting (3.22) explicitly for a pinched singularity and the momentum routing shown
in figure 2d, with Qµ = (Q0,~0), we find:

lim
(~l′−~k′)·~k′ → 0

O3
(
~pg = ~k′ −~l′ ; ~pd̄ = −~k′ ; ~pd = ~l′

)
= lim

(~l′−~k′)·~k′ → 0
O2
(
~pd̄ = ~k′ −~l′ + (−~k′) = −~l′ ; ~pd = ~l′

)
, (3.26)

which is the familiar IR-safety condition that relates observable functions On acting on
kinematic configurations of different multiplicities n in the soft and/or collinear limits of
its massless constituents. Thus the constraint on observables implies by the request of
finiteness of σd on pinched singularities can be satisfied in the usual way of constructing
observables.

We can also consider the potential singularity at xsv
1
− xsv

2
= 0, identifying the phase-

space points satisfying |~k′| = |~l′|, (see eq. (2.13)). This corresponds to a configuration on
the non-pinched E-surface of the one-loop triangle on the left (right) of the Cutkosky cut
csv

1
(csv

2
). The study of the regularity of the differential cross-section at these threshold

singularities seems at first glance to follow completely analogously to that of the IR pinched
singularities. Perhaps surprisingly, this implies that we also expect cancellation between
the two threshold singularities of the Cutkosky virtual contributions illustrated in figure 7.
We can follow the exact same study of cancellation between the IR pinched surfaces in
the sum of terms in the r.h.s. of eq. (3.21), with the only qualitative difference being the
resulting condition on the observable function:

lim
|~l′| → |~k′|

O2
(
~pd = ~l′ ; ~pd̄ = −~l′

)
= lim
|~l′| → |~k′|

O2
(
~pd = ~k′ ; ~pd̄ = −~k′

)
. (3.27)
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(a) Threshold of the csv
2
cut at |~k′| = Q0

2 (b) Threshold of the csv
1
cut at |~l′| = Q0

2

Figure 7. Pair of cancelling contributions from the E-surfaces (dashed green line) |~k′|+ |~k′− ~Q| −
Q0 = 0 and |~l′| + |~l′ − ~Q| − Q0 = 0 of the Cutkosky cuts (solid red line) csv

2
and csv

1
respectively.

When considering ~Q = ~0, these two singularities are reached when xsv
2
− xsv

1
= 0, that is whenever

|~k′| = |~l′| because of the rescaling change of variables with t = t?sv
1
(or t = t?sv

2
) which will map any

such point to t|~k′| = t|~l′| = Q0

2 .

It is clear that this condition is of a completely different nature than the IR safety condi-
tion obtained in (3.26). Indeed, the limit lim|~l′| → |~k′| does not imply any degeneracy in the
experimental signature since one can obviously resolve the directional information of the
quark and anti-quark in the final state. Consequently, one should in general expect observ-
able functions not to satisfy eq. (3.27), implying that for non-trivial observable functions,
considering the contour deformation discussed in section 5.3.4 is necessary. A couple of
key additional points are in order:

• When considering fully inclusive cross-sections, observable conditions similar to
eq. (3.27) are always satisfied, so that the computation can be performed without
considering a deformation. Note however that omitting altogether certain Cutkosky
cut contributions effectively amounts to setting the observable to exactly zero for
them. This implies that even for the computation of the inclusive NLO cross-section
of the scattering process e+e− → γ? → Htt̄, a deformation would be warranted since
all Cutkosky cuts involving only the two top quarks are not considered given that
the observable demands a final-state Higgs.

• Because the two observable functions on each side of the condition eq. (3.27) do not
share any loop momentum dependency, it is clear that in the case of the double-
triangle supergraph, only a constant observable function can satisfy it (i.e. inclusive
measurement).

• Observable functions often consists of only products of Heaviside functions (e.g. im-
plementing phase-space cuts and/or binning into histograms), in which case this
opens the possibility of investigating dynamically at run time and for each integra-
tion sampling point what are the E-surfaces whose pair of canceling Cutkosky cuts
are not either both selected or both removed by the observable definition. Then, the
contour deformation for this point only needs to consider those surviving E-surfaces.

– 29 –



J
H
E
P
0
4
(
2
0
2
1
)
1
0
4

3.2 Proof of local cancellations of threshold (IR) singularities

In the following sections we will construct the LU representation for a generic differential
cross-section and require it to be free of non-integrable singularities. We show that the
resulting constraint on observable functions is satisfied by IR-safe observables. This results
in a systematic proof of local IR cancellations within the LU representation of differential
cross-sections.

3.2.1 Causal flows

In section 2 we introduced cross-sections by referring to them as weighted sums of interfer-
ence diagrams, each of which is associated to a well-defined Cutkosky cut, which in turn
corresponds to a Dirac delta imposing the conservation of on-shell energies. For a fixed and
positive center of mass energy, the equation imposing conservation of the on-shell energies
is the equation of an E-surface. These deltas, in Cutkosky’s original derivation [123], arise
from contour deforming the energy around thresholds of the diagrams. However, such a
derivation obscures the important subtlety that the energy variables of the particles in the
Cutkosky cut are linearly dependent and thus cannot be used as independent integration
variables. In the following, we will provide an alternative derivation of Cutkosky cuts, by
reducing the integration along thresholds to a one-dimensional problem.

This derivation of Cutkosky cuts will expose the local structure of the integrands
and the location of their singularities. It is formulated such that the cancellations of all
divergences related to E-surfaces are local, thus allowing one to construct an integrand
which is locally free of divergences by aligning the integration measures supported by the
different Cutkosky cuts. Furthermore, it shows how considering transition probabilities,
rather than amplitudes, is required for the infrared structure of observables to be completely
understood.

Let

MΓ =
∫ ( L∏

i=1

d3ki
(2π)3

)
f(~k)∏

j∈eEj
∏

τ∈E ητ
, (3.28)

be the LTD representation of a supergraph Γ, with

f(~k) =
∏
τ∈E

ητ

∑
b∈B

N(~k)∏j∈e\bEj∏
i∈e\b(q2

i −m2
i )

∣∣∣∣∣
{q0
j=σb

j Ej}j∈b

. (3.29)

The discontinuities of MΓ across its s-channel thresholds represent distinct summands that
contribute to define the total probability of the process whose initial states are fixed to be
the particles in a and whose final states are, for now, unspecified. The function f , which is
the LTD representation of the supergraph multiplied by the product of all energies and all
E-surfaces appearing in the representation itself, is finite for any value of the loop momenta.

We introduce a dummy integration variable t by introducing unity as the integral of a
normalized function

MΓ =
∫ ( L∏

i=1

d3~ki
(2π)3

)
dt

f(~k)h(t)∏
j∈e 2Ej

∏
τ∈E ητ

. (3.30)
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and then introduce the change of variables ~k = ~φ(t,~k′), with ~φ being the solution to the
following first-order system of differential equations:∂t~φ(t,~k) = κ(~φ(t,~k))

~φ(0,~k) = ~k
, (3.31)

where we introduce the vector field κ : R3L → R3L which we require to be Lipschitz-
continuous. We will use the map ~φt : ~k → ~φ(t,~k) to change the parametrisation of the
phase space integral. If the zeros of κ form a zero-measured subset of R3L with respect to
the Lebesgue measure in R3L, then the change of variables is well-defined. Thus, we can
exclude all the sinks, sources and ridges that the flow ~φt may have from the integration.
Therefore, we can write

MΓ =
∫ ( L∏

i=1

d3k′i
(2π)3

)
dt|det[J~k′~φ]| f(~φ(t,~k′))h(t)∏

j∈eEj
∏

τ∈E ητ
. (3.32)

We are now interested in performing contour integration in the variable t. In order to do
this, observe that for each ~k, the curve ~φ(t,~k) crosses a number of E-surfaces. However this
alone does not allow to determine how many times a specific E-surface is intersected by
a curve in the flow, and if approaching an E-surface along a curve yields a simple pole in
the integrand. If the pole is simple, then there is a well-defined principal value procedure
associated with it, and the sign of the imaginary part acquired in the contour integration
is fixed by the sign of the Feynman prescription.

It is possible, however, to construct a flow whose properties make the answer to these
two questions manifest. Specifically, consider solutions to flow ODEs where the vector field
κ is chosen to be causal, that is

κ · ∇~kηs > 0, ∀s ∈ Es-ch, ∀~k s.t. ηs = 0. (3.33)

If that is the case, then the flow will consequently have three properties:

• ∀~k, there exists at most one value t?s s.t. ηs(~φ(t?s,~k)) = 0, which follows from the fact
that the curve ~φ(t,~k) cannot flow outward and inward of the E-surface ηs without
violating the causal prescription of eq. (3.33).

• ∂tηs(~φ(t?s,~k)) 6= 0, since ∂tηs(~φ(t?s,~k)) = ∇~kηs · ∂t~φ|t=t?s = ∇~kηs · κ|t=t?s , which is
guaranteed to be non zero by eq. (3.33) for any ηs with s ∈ Es-ch.

• sign[∂tηs] = sign[∂tητ ], ∀~φ(t,~k) ∈ δηs ∩ δητ , also trivially guaranteed by eq. (3.33),

where we define δηs :=
{
~k ∈ R3L

∣∣∣ηs(~k) = 0
}
. With a slight abuse of notation, we write

∂tηs(~φ(t?s, ~k)) = ∂tηs(~φ(t,~k))|t=t?s .
The first property determines the number of intersections a curve has with a determined

E-surface. The second determines that all poles appearing on the real t axis for fixed ~k
are simple. The last one, although momentarily obscure, will be fundamental in order to
realize local cancellations of pinch singularities. We stress that the first two conditions are
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not strictly necessary in order to build a valid contour integration in t. Indeed, regarding
the first condition, there is nothing in the principal value procedure that forbids us to
contour integrate around two distinct poles. Regarding the second condition, one could
think of excluding from integration the regions of space at which ∂tη(~φ(t,~k)) = 0, which
lie on a zero-measured set, and then establish if the integration is finite.

Given the first property, for every ~k one can define the set

E~k,~φ :=
{

s ∈ Es-ch
∣∣∣∃t ∈ R with ηs(~φ(t,~k)) = 0

}
, (3.34)

which contains all the E-surfaces which are intersected once by the curve ~φ(t,~k). Thus, for
each s ∈ E~k,~φ, we can write the expansion of ηs around its unique zero, t?s:

ηs(~φ(t,~k)) = (t− t?s)∂tηs(~φ(t,~k))|t=t?s +O
(
(t− t?s)2

)
. (3.35)

and the first order in the expansion is ensured to be non-zero by the second property. In
conclusion, we observe that the existence of a causal vector field κ being causal on all the
E-surfaces of the supergraph Γ is guaranteed by the work carried out in ref. [89]. Since the
causal vector field, as constructed therein, is infinitely differentiable, Sard’s theorem also
ensures that its zeros lie on a zero-measured surface. For future convenience, given a set
of points V ⊂ R3L, we define a set containing all the points that can be mapped into V by
the causal flow

~φ−1[V ] =
{
~k ∈ R3L

∣∣∣∃t ∈ R with ~φ(t,~k) ∈ V
}
. (3.36)

The inverse image of the causal flow is fundamental in determining the analytic properties
of the supergraph and how they relate to those of residues in t of the supergraph as
parametrised along the flow.

3.2.2 Visualisation of the causal flow

In figures 8a, 8b and 8c the causal flow of a particular one-loop example, called Box_4E
in ref. [89], is shown. Since the origin is not in the interior of all E-surfaces, the rescaling
strategy defined in section 3.1.1 cannot be applied. For all 1 → N processes the simple
rescaling flow is applicable, and we show the causal flow of Box_4E only for the purpose of
illustrating the complications arising for a non-trivial overlap structure of E-surfaces, such
as the one that can appear for challenging supergraph topologies of 2 → N processes. In
that case, it is likely that the system of ODE defining the causal flow requires a numerical
solution, but all properties of the LU representation discussed in this paper would still
hold. In particular, we observe that each sampling point (circled in red) of the LU inte-
grand still yields exactly one or zero projection onto the contributing E-surfaces. This is
thanks to the presence of sinks and sources in the causal flow that its parameterisation can
only asymptotically approach, but never reach. Moreover, it is clear that since the same
causal flow is used to project sampling points onto all reachable E-surfaces, then E-surface
intersections are reached simultaneously by the corresponding projections, which is key
for the local cancellation of the corresponding singularities. Finally, the orientation of the
deformation vector field on these intersections makes it clear why the conditions discussed
below eq. (3.33) on the derivative ∂t of the flow induced are fulfilled.
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(a) Causal flow for the Box_4E example of section 3.1 of ref. [89].

(b) Close-up on the central region of figure 8a. (c) Rescaling flow for Box_4E with ~pi = ~0.

Figure 8. Causal flow for the complicated maximal overlap structure of the Box_4E one-loop
example of section 3.1 of ref. [89] (figures 8a and 8b) and its much simpler pure rescaling counterpart
when setting all spatial parts of the external momenta of Box_4E to zero (figure 8c). The x and
y axes indicate the kx and ky component of the Box_4E loop momentum. The circled red point
indicates possible input sampling points that the LU representation depends on and the non-circled
red points depict the various projections induced by the causal flow on the contributing E-surfaces.
The green lines represent ~φ−1[V ] with V being the circled dots. The vector field depicts the
orientation of the contour deformation vector constructed according to ref. [89] (using the four
deformation sources indicated with blue dots), and its colour pertains to its relative magnitude.
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Figure 9. Causal flow of the DT
supergraph with Qµ = (2, 0, 0, 0)
in the phase-space plane (~k′,~l′) =
1
2 ((0, 0, λk), (0, λl, λl)). Drawing
conventions follow those of figure 8
and the points labeled “i)” are inte-
grable singularities while the ones
analoguous to “e)” correspond to
the intersection of the two non-
pinched E-surfaces of the double-
triangle supergraph.

The causal flow of the double-triangle supergraph is more delicate to represent than
that of Box_4E, since there are two loop momenta in that case. We choose to project
the six-dimensional input space (~k′,~l′) of the DT topology with Qµ = (2, 0, 0, 0) onto the
parametric plane λkêk+λlêl with êk = ((0, 0, 1

2), (0, 0, 0)) and êl = ((0, 0, 0), (0, 1
2 ,

1
2)). This

section involving a non-constant momentum component is convenient since it necessarily
contains the image of a rescaling flow, thus allowing to render the flow within this same
plane, like it was the case in figure 9. An important remark is that the E-surfaces ηsv

1

and ηsv
2
are unbounded. This is a result of their independence of λk (resp. λl) which

only controls the one-loop integration volume of the triangle loop remaining on the left
(resp. right) of the Cutkosky cuts ηsv

1
and ηsv

2
. This is what allows the LU representation

of the DT supergraph to probe the UV regime with a rescaling parameter of O(1). In
contrast, the volume described by the E-surface ηsr

1
results from an equation involving

the sum of three square roots and is therefore quite complicated but still bounded since
it corresponds to a particular hyper-plane of the three-body decay phase-space volume
Qµ → (k′µ, k′µ − l′µ, l′µ −Qµ), which we know to be necessarily contained within a sphere
of radius

√
Q2. Notice however, that even for a sampling point (~k′,~l′) with arbitrary large

moduli |~k′| and |~l′|, the global rescaling flow will always yield a contribution for the real-
emission ηsr

1
and ηsr

2
Cutkosky cuts. However these will be associated with very small

values of the parameter t?sr
1
and t?sr

2
yielding a contribution exponentially suppressed for

our choice of normalised function h(t) of eq. (3.6). For the particular projection chosen
for figure 9, the integrable singularities at ~k′ = ~0 and ~l′ = ~0 also correspond to vanishing
values of the corresponding rescaling solution and will thus also be suppressed. These
observations underline the appealing feature of LU that the change of variable ~k → ~φ(t,~k)
does not affect the interpretation of what kinematic region of the cross-section is probed
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since contributions from t?i solutions far from one are exponentially suppressed. Moreover,
in the particular case of a global rescaling causal flow, we even observe that the change of
variable retains the collinear and soft properties of the momenta of the (pairs of) partons in
the input configuration. This allows one to easily probe potentially singular regions, which
we investigate in section 6.1.2 by choosing a different projection of the double-triangle
sampling space.

3.2.3 The Local Unitarity representation of differential cross-sections

In his original 1960 paper [123], Cutkosky recognised that interference diagrams can be
seen as the imaginary part acquired by contour deforming around specific thresholds of
supergraphs. The equation of the threshold appears in the energy conserving delta as a
result of the principal value identity that establishes the functional form of the imaginary
part acquired by contour deforming around a pole on the real axis. Moreover, every su-
pergraph Γ gives rise to a number of squared amplitudes obtained by summing over the
imaginary parts acquired by contour integrating along all of its thresholds corresponding
to cuts s ∈ Es-ch. Such a derivation does not detail the subtleties of setting up a contour
deformation programme for the supergraph. For example, it does not specify what con-
straints the chosen contour needs to satisfy and what integration variables can easily be
chosen to transform the real integration into a contour integration.

We will now show that is possible to see Cutkosky cuts as the discontinuities of the
LTD representation of the supergraph along the one-dimensional flow line of a causal
flow. This allows us to explicitly construct a local representation of differential cross
section from which the second golden rule arises naturally as a consequence of identifying
picking up the residues of the LTD representation of the supergraph along the flow with
explicitly solving the Dirac delta associated to Cutkosky cuts. Thus the work in this section
should be considered to be equivalent to that of aligning the integration measures dΠs and,
specifically, resolving Dirac deltas expressing energy conservation across on-shell physical
particles.

In the following, we will assume that we have a causal flow ~φ(t,~k). For every fixed ~k,
the unique curve ~φ(t,~k) passing through it will intersect a subset of all E-surfaces. Recall
that we defined E~k,~φ to be the set of such E-surfaces in eq. (3.34), which can be expanded as
shown in eq. (3.35). For all s-channel E-surfaces not in E~k,~φ, that is for every τ ∈ Es-ch\E~k,~φ,
we have that ητ (~φ(t,~k)) 6= 0 for every t. Thus, every E-surface not contained in E~k,~φ never
has a vanishing zeroth order in the expansion on the flow line. Thus, given a supergraph

MΓ =
∫ ( L∏

i=1

d3ki
(2π)3

)
f(~k)∏

j∈e 2Ej
∏

τ∈E ητ
, (3.37)

one can define a locally finite volume form as

σΓ
d [~φ] =

∑
s∈E~k,~φ

Inds lim
t→t?s

(t− t?s)
f(~φ(t,~k))|det[J~k′~φ]|

ηs
∏
i∈e 2Ei

∏
τ∈ELs ητ

∏
τ∈ERs η̄τ

h(t)Os[∏
τ∈E∅s ητ

]
ε=0

. (3.38)

– 35 –



J
H
E
P
0
4
(
2
0
2
1
)
1
0
4

where

ELs = {τ ∈ E|τ ⊂ s}
ERs = {τ ∈ E|s ⊂ τ}

E∅s = E \ (ELs ∪ ERs ) \ {s}
(3.39)

and Os defines the observable and is a function of ~k through the dependence on cut edge
momenta, that is

Os(~k) = O|s|
(
{(me, ~qe)}e∈cs

)
. (3.40)

At the integrand level, σΓ
d reproduces what we obtained in section 2 through LTD and the

golden rule for differential cross-sections in eq. (2.25). The index associated to the residue
is fixed by the convention Inds = +sign[∂tηs(~φ(t?s, ~k))]. Fixing this choice is equivalent to
choosing a Feynman prescription for the s-channel thresholds which are included in the
definition of σΓ

d ; this arbitrary choice was already discussed in ref. [123]. The relation

dσ

dO
=
∑
Γ∈G

∫ L∏
i=1

d3~ki
(2π)3σ

Γ
d , (3.41)

defines the Local Unitarity (LU) representation of the differential cross-section dσ/dO. In
the following, we will sometimes refer to σΓ

d as σd, without the explicit reference to the
supergraph Γ.

Yet another feature of eq. (3.38) is the presence of unregulated E-surfaces, that is
E-surfaces for which the prescription can be set to zero. This is a consequence of σd not
being divergent at the location of these singularities, that is:

lim
t?s→t?τ

(t?s − t?τ ) lim
t→t?s

(t− t?s) f(~φ(t,~k))
ηs
∏
i∈eEi

∏
τ∈ELs ητ

∏
τ∈ERs η̄τ

h(t)Os[∏
τ∈E∅s ητ

]
ε=0

= 0, ∀τ ∈ E∅s .

(3.42)
This is related to the property of f that establishes a necessary condition for the multiple
limits of the LTD expression when approaching the intersection of many E-surfaces to be
zero. More specifically, given a set of E-surfaces E ′ ⊆ E intersecting on a surface, one
can ask how f(~k) behaves in a neighbourhood of any point on the intersection surface.
We will show that approaching the intersection δηs ∩ δητ , f does not vanish if and only
if s ∩ τ ∈ {s, τ , ∅}, that is if one of the corresponding set of vertices defining the cuts
is contained within the other, or their intersection is the empty set. This property was
assumed in the usual construction of Cutkosky cuts, and was used extensively in section 2.

In order to generalise and properly describe this property we define cross-free families
of subsets. A cross-free family is a laminar family of subsets of the vertices such that no
subset in it can be written as the union of two or more sets in the family itself. A laminar
family is a family of sets such that for any two sets, the intersection is either one of the
two sets or the empty set. These two definitions imply that a cross-free family is a set of
|v| − 1 subsets of the vertices. Let us define the set of all cross-free families of connected
cuts of the graph:

F = {F ⊆ E|F is a cross-free family}. (3.43)
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Figure 10. A cross-free family of connected subsets of the vertices, shown as blue circles, which
contain the corresponding vertices. The cross-free family of subsets is associated to a unique (if
existing) spanning tree (solid line). Observe that by construction, the family allows at least one
choice of orientations of the edges (interpreted as energy flow) such that each cut has either only
an incoming energy flow or only an outgoing energy flow.

An example of a cross-free family is illustrated in figure 10. We then write

MΓ =
∫ ( L∏

i=1

d3ki
(2π)3

)
1∏

i∈e 2Ei
∑
F∈F

∑
~α∈{±1}|F |

cF~α(~k)∏
s∈F η(s,αs)

, (3.44)

where cF is a polynomial in the energies and the spatial loop momenta. Observe that
we do not claim cF to be non-zero; instead, should be considered as a constraint on the
functional form of MΓ which guarantees that eq. (3.42) holds. Determining the coefficients
cF is a non-trivial task which can be carried out with the treatment of ref. [93], and is not
strictly necessary for the proof.

Finally, we observe that it is also arbitrary that only a subset of thresholds of the
supergraph should be selected to contribute with their discontinuities to σd. In the current
way of defining differential cross-sections, all the residues associated to thresholds with
δ(s) ∩ a 6= a are completely ignored: the sum in eq. (3.38) runs over elements which also
are in Es-ch, and thus all the thresholds in Eisr are left out of the definition.

The price to pay for this choice is the appearance of Initial-State Radiation (ISR) singu-
larities in observables, which are commonly treated within the collinear mass factorisation
paradigm.

For now, as anticipated, we show that σd is bounded on R3L \Bisr,ε where

Bisr,ε = Bε(~φ−1[Sisr]), Sisr =
( ⋃

τ∈Es-ch

δητ

)
∩
( ⋃

s∈Eisr

δηs

)
, (3.45)

with
Bε(V ) =

{
~k ∈ R3L

∣∣∣‖~k − ~v‖ < ε, ∀~v ∈ V
}
. (3.46)
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An important subtlety in the definition of σd, in eq. (3.38), is the possibility of taking the
limit for (t− t?s)→ 0 of a quantity that has raised propagators, that is higher powers of the
propagators: this makes σd ill-defined as the limit would yield infinity. Raised propagators
and their treatment varies according to their origin, following a general principle: that the
degenerate case is obtained as the limit of the non-degenerate case. More specifically:

• Raised propagators that are due to external self-energy insertions can be dealt with
by showing that after mass renormalisation in the on-shell scheme, the contribution
of a self-energy diagram equates that of terms of order one or higher in a Taylor
expansion around the on-shell condition. This realisation allows us to effectively
lower the raised propagator by one power, thus solving the problem. An extensive
analysis of this method is performed in section 4. Raised propagators that are due
to internal energy insertions can be dealt with by adding a different fictitious shift
in each of the raised propagators, calculating σd with this configuration, and then
taking the limit in which all the fictitious shits vanish.

• Two or more distinct E-surfaces intersecting in a non-empty region can give rise
to a locally raised propagator (the first-order expansion of the E-surfaces in the
flow variables t is proportional to (t − t?) for all the E-surfaces which vanish at the
intersection, with t? being the flow location of the intersection point). In this case we
impose the behaviour of σd to be the continuation of the non-intersecting case. More
specifically, since the deformation field κ, related to the causal flow by eq. (3.31), is
non-zero on any point lying on a non-pinched E-surface, we are ensured that the set
of curves passing through an intersection point is zero-measured. If we define

I = ~φ−1[Ss-ch], Ss-ch =
⋃

s,τ∈Es-ch s 6=τ

(
δηs ∩ δητ

)
(3.47)

then I is zero-measured with respect to R3L, as argued before, and thus proving that
σd is integrable on R3L \Bisr,ε \ I itself proves that the integral of σd on R3L \Bisr,ε
is finite.

• For a particular choice of the collision reference frame there can be E-surfaces corre-
sponding to different Cutkosky cuts but which take the same functional form (e.g. see
ηsr

1
and ηsr

2
in the example process discussed in section 3.1). These raised poles are

spurious and can be eliminated by taking advantage of Lorentz invariance to change
the frame.

Finally, we observe that σd is continuous on R3L \Bisr,ε only if soft configurations are also
excluded, since at these locations the inverse energies (other than, possibly, elements of
Eint) of massless particles diverge. We define

W = ~φ−1[Ssoft], Ssoft =
( ⋃

τ∈Es-ch

δητ

)
∩
⋃

x⊆e
Sx , (3.48)

where Sx is defined as in eq. (2.37). The definition of W is manifestly a zero-measured
set with respect to R3L. We then consider σd to be defined on R3L \ Bisr,ε \ (I ∪W). We
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will always make a distinction between the sets I and W, as it makes the unfolding of the
proof easier to understand.

We shall now show that σd is integrable on the R3L \ Bisr,ε \ (I ∪ W) space, which
implies that σd has a finite integral on the whole R3L \Bisr,ε space.

3.2.4 Cancellation of pinched surfaces

We now investigate the mechanism that leads to the cancellation of pinched E-surfaces (and
E-surfaces in general, in the fully inclusive case). As anticipated previously, the mechanism
relies on the generalisation of the straightforward algebraic relation in eq. (3.1):

lim
t1→tN

. . . lim
tN−1→tN

N∑
i=1

f(ti)∏
j 6=i(tj − ti)

= 1
(N − 1)!∂

N−1
t f . (3.49)

Cancellations are explicitly shown by expanding all the summands in σd in the proximity
parameters t?s − t?τ . This leads to large expressions, with multiple sums and apparently
complicated coefficients; however, these expressions allow to factorise sums in the form of
eq. (3.49), and thus to immediately prove cancellations. This proof thus has the remarkable
advantage of applying to any type of singularity. Differentiating pinched and non-pinched
thresholds is the only important distinction and is only instrumental for characterising
what are the IR-safety constraints imposed on the observable definition.

We stress that cancellation of pinched E-surfaces, by itself, does not guarantee that σd
is integrable on R3L \ (I ∪W) \Bisr,ε, and specifically at the locations of soft singularities.
However, it shows that purely collinear singularities (that is, excluding the boundaries of
a pinched singularity, the soft points) of the summands of σd are subject to cancellations,
and that at soft locations, the resulting power-counting is less severe. The proof is thus
concluded only after a power-counting analysis of soft singularities (which is carried in
subsection 3.2.7).

Another important feature of σd is that the E-surfaces are associated to Feynman
prescriptions which could complicate the proof for complex kinematics, e.g., in the presence
of a deformation. In the following we will drop the prescription and discuss the case of a
non-zero deformation in section 5.3.4.

The limits in the definition of σd, for ~k ∈ R3L \ (I ∪ W) \ Bisr,ε, can be performed
explicitly and yield

σd =
∑

s∈E~k,~φ

[
g(~φ(t?s,~k))|det[J~k′~φ]|∏

τ∈E~k,~φ\{s}
[∑

j>0(t?s − t?τ )j∂jt ητ (~φ(t?τ , ~k))/j!
]] h(t?s)Os

|∂tηs(~φ(t?s, ~k))|
, (3.50)

where
g = f∏

i∈e 2Ei
∏

τ∈E\E~k,~φ
ητ
. (3.51)

We remind the reader that the explicit unfolding of the dense eq. (3.50) for the double-
triangle supergraph of our example process is given in eq. (3.14). We will now rewrite σd
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in a more convenient form, in which the divided differences (3.49) are manifest:

σd = 1∏
s∈E~k,~φ

|∂tηs(~φ(t?s, ~k))|
∑

s∈E~k,~φ

[
g(t?s, ~k)w(t?s,~k)Os∏
τ∈E~k,~φ\{s}

(t?s − t?τ )

]
, (3.52)

where

w(t′,~k) = lim
t→t′

h(t)| det
[
J~k′~φ

]
|∏

τ∈E~k,~φ

ητ (~φ(t,~k))
(t− t?τ )∂tητ (~φ(t?τ ,~k))

. (3.53)

We observe that, under appropriate conditions on h, w(t?s, ~k) is bounded for every ~k.
Furthermore, observe that we have factored out the product of the absolute value of the
first order derivative of the E-surfaces in E~k~φ, which can only be done when the following
condition is satisfied:

sign
[
∂tητ1(~φ(t?τ1 ,

~k))
]

= sign
[
∂tητ2(~φ(t?τ2 ,

~k))
]
, ∀τ 1, τ 2 ∈ E~k,~φ , (3.54)

which is guaranteed by the choice of a causal flow. Specifically, the causal flow is constructed
from a deformation which is explicitly constructed to satisfy the causal prescription on all
E-surfaces and on their intersections. In this approach, we see how the realisation of IR
cancellations is interlocked with causality, enforced through the definition of the Feynman
prescription.

Eq. (3.52) is exactly in the form needed to apply divided differences. We will now set
the stage to derive the conditions under which the observable function Os preserves the
IR cancellations established by the divided differences, and thus can be considered IR-safe.
At first, let Os = 1, ∀s ∈ Es-ch, so that cancellations are trivially realised, since we can
immediately apply the divided difference relation of eq. (3.49) to

σd = 1∏
s∈E~k,~φ

|∂tηs(~φ(t?s,~k))|
∑

s∈E~k,~φ

[
g(t?s, ~k)w(t?s, ~k)∏

τ∈E~k,~φ\{s}
(t?s − t?τ )

]
(3.55)

and argue that all the multiple singular limits other than soft limits yield a finite result.
Thus, in the fully inclusive case, σd is integrable on R3L \ Bisr,ε \ (I ∪ Bε(W)), that is
on R3L \ Bisr,ε \ Bε(W). The simple pattern of cancellations in eq. (3.49) immediately
applies for an arbitrary perturbative order and in the case of fully inclusive observables.
For non-trivial observables, the situation is more complicated. In particular, we observe
that observables carry an explicit dependence on s, and not just indirectly through their
dependence on t?s: the functional form of the observables is dependent on the Cutkosky
cut. Thus for arbitrary observables, the pattern of cancellations in eq. (3.49) does not
necessarily hold. Instead, the request of IR-finiteness implies constraints on observables.

3.2.5 IR-safe observables and infrared scales

In this section we investigate the role that non-trivial observables play in the mechanism
of cancelling divergences discussed in the previous section. Since observables discriminate
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Cutkosky cuts and are intrinsically local objects, proving that the sum is finite for non-
trivial observables is not a purely algebraic matter like in the fully inclusive case, but can
only be done in a neighbourhood of the problematic points. In principle, for what concerns
the proof, an observable can depend on the supergraph Γ, the Cutkosky cut s it corresponds
to, the whole set of loop variables of the supergraph ~k, and the kinematic configuration
of the initial states. In practice however, we defined observables as having a dependence
on the momentum, mass and quantum numbers of only the particles in the Cutkosky cut.
Thus, we will first work out a general sufficient condition for the cancellation pattern to be
realised, and then enquire if and how observables satisfying eq. (3.40) satisfy these general
constraints. We will impose these constraints to be flow-independent, since the choice of a
causal vector field should not affect the physical properties of observables.

We start by observing that σd is bounded on R3L \Bisr,ε \ (I ∪Bε(W)) if

∂nt Oτ1(~φ(tτ1 ,
~k)) = ∂nt Oτ2(~φ(tτ2 ,

~k)), ∀~k ∈ ~φ−1[δητ1 ∩ δητ2 ], ∀τ 1, τ 2 ∈ E~k,~φ \ I, ∀n ∈ N .
(3.56)

This is required for the divided differences in eq. (3.49) to be applicable. This condition
is manifestly dependent on the flow. We will use the following relation: if a function f

satisfies a property on an open set V , then the function f ◦ ~φ satisfies it on ~φ−1[V ]. Indeed
the flow projects a set Bε(I) on a neighbourhood of an intersection δητ1 ∩ δητ2 , and we
conclude that a sufficient condition for eq. (3.56) to hold is that

Oτ1(~k) = Oτ2(~k), ∀~k ∈ Bε(δητ1 ∩ δητ2) , (3.57)

where Bε(δητ1 ∩ δητ2) is a toroidal neighbourhood of the intersection between the two E-
surfaces, and ε is a quantity dependent on the experimental setup. The interpretation of ε
is that of a natural resolution below which the experimental setup is unable to distinguish
degenerate kinematic configurations of final states, identified by τ 1 and τ 2. In conclusion,
the notion of degeneracy and its relation with experimental resolution is derived here as a
result of the analytic properties of the local representation of differential cross-sections.

We explicitly verified that constant observables of the form of eq. (3.40) can retain local
cancellation of non-pinched E-surface in the entirety of the integration volume. Instead of
performing the same analysis for pinched E-surfaces and showing that IR-safe observables
can always be defined, we will limit ourselves to stating how the condition relates to the
common definitions of IR-safe collider observables.

It may now seem that for non-trivial observables it is not possible to make σd inte-
grable on the whole R3L \Bisr,ε, as non-pinched threshold are not subject to cancellations.
However, non-pinched E-surfaces can be integrated using an ad hoc contour deformation,
which cannot be done for pinched E-surfaces (for which the cancellation pattern must still
hold, because of IR-safety). The deformation of amplitudes was discussed in ref. [89] and
we discuss how to extend it to cross sections in section 5.3.4. In the following, we will
assume that such a contour deformation can be constructed and that proving σd to be
integrable on Bε(H) implies that σd can be analytically continued and its non-pinched
thresholds contour integrated so that it is regular on the entirety of R3L \Bisr,ε \Bε(W).
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We observe that in order to preserve the cancellations at the pinched points, it is
sufficient to require that

∃ε > 0 s.t. Oτ (~k) = Os(~k), ∀~k ∈ Bε(Hτs) . (3.58)

If we use the constraint in eq. (3.40), this equation takes a more illuminating form:

Oτ ({αi~p+ εi}i∈cτ \cs ; {~qj}j∈cτ∩cs) = Os({−βi~p+ εi}i∈cs\cτ
; {~qj}j∈cτ∩cs), ∀εi, ‖εi‖ < ε ,

(3.59)
with αi, βj , εi subject to momentum conservation. Eq. (3.59) makes manifest that the abil-
ity of observables to satisfy IR-safety constraints is necessarily associated with momentum-
conservation laws on the graph; it can only be satisfied if the observables themselves cluster
together all the particles of their defining Cutkosky cut that are collinear or soft, identify-
ing them with one object which has the sum of the momenta of the constituent particles.
The dependence of the observable on each of the momenta of particles in the Cutkosky
cut individually morphs into a unique dependence on the sum of the momenta of collinear
or soft particles in the neighbourhood of a pinched point and the usual independence on
individual momenta of the particles that are not collinear or soft:

Oτ ({αi~p+εi}i∈cτ \cs ; {~qj}j∈cτ∩cs) = Oτ

( ∑
i∈cτ \cs

αi~p+εi; {~qj}j∈cτ∩cs

)
, ∀‖εi‖ < ε. (3.60)

Ultimately, eq. (3.60) establishes whether an observable preserves the necessary conditions
and can be used in defining a locally finite differential cross-section. The volume form σd,
with observables satisfying eq. (3.60) is thus locally finite on R3L \Bisr,ε \Bε(W). In order
to conclude the proof, we study the soft scaling of σd and determine under which conditions
it has at most integrable singularities.

3.2.6 Soft scaling from the causal flow

We now study the integrability of σd in a neighbourhood Bε(W). Since soft points are
at the extrema of pinched singularities, the IR-safety of observables allows to write σd as
eq. (3.49) in a neighbourhood of the soft points. Furthermore, we see that in the limit of
eq. (3.49) the remaining function has a scaling which, at worst, is the scaling of g or any
of its derivatives in t, assuming h and Os are well behaved.

Thus, in order to analyse the scaling of the integrand in the neighbourhood of soft
singularities, we have to understand the scaling of g and its derivatives in t. We now
identify extra constraints on the causal flow such that derivatives of g have the same scaling
as g, assuming the observables and the h function are bounded on such neighbourhood.

We recall that g can be defined in terms of the manifestly causal (cLTD) representation,
and particularly in terms of the simplified constrained form of eq. (3.55), such that

g =
∏

τ∈E~k,~φ
ητ∏

i∈e 2Ei
∑
F∈F

∑
~α∈{±1}|F |

cF~α(~k)∏
s∈F η(s,αs)

. (3.61)

Let us start by observing that, by definition, g cannot be singular on any s-channel E-
surface, as g is bounded on R3L \ Bisr,ε \ I \ Bε(W) (and excluding the UV region too).
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Near soft points the scaling of g is entirely determined by the inverse E-surfaces in Eint and
by the inverse energies (since g is not singular on any s-channel E-surface and since ISR
singularities are excluded, thus leaving internal E-surfaces only).

We can now state a sufficient condition on the causal flow ~φ and the causal vector field
~κ for derivatives of g with respect to t to have the same (or less singular) scaling as g:

lim
~k→~k?

∣∣∣∣∣∂nt g(t?s,~k)
g(t?s,~k)

∣∣∣∣∣ ∈ R+, ∀~k? ∈ Bε(W) (3.62)

if the deformation field satisfies the continuity constraint of eq. (3.37) of ref. [93]:

~qj(~k)2 +m2
j − ~Qj(κ)2 ≥ 0 ∀j ∈ e , (3.63)

This condition is obtained by iteratively applying Leibniz’s rule on the n-th derivative of
g, thus isolating products of multiple derivatives of inverse energies, of inverse internal E-
surfaces and the numerator. Then, we require derivatives of inverse energies and of inverse
internal E-surfaces to have the same or better soft scaling than inverse energies and inverse
E-surfaces themselves. Observe that

∂

∂t

1
Ei(~φ(t,~k))

= −
~Qi(κ) · ~qi
E3
i

,

∂

∂t

1
ητ (~φ(t,~k))

= − 1
η2

τ

∑
i∈δ(τ )

~Qi(κ) · ~qi
Ei

.

(3.64)

If the derivative of the inverse energy and the inverse energy itself are required to have the
same soft scaling, ~Qi(~κ) is required to vanish as fast or faster than the on-shell energy Ei.
The same holds for the inverse E-surface. In the construction of the deformation field of
ref. [89] this constraint already appears and is called the continuity constraint. The role of
this constraint in that work was to make sure that the deformation is continuous and does
not cross a branch cut.

Since it is shown in ref. [89] that such causal vector field can be constructed, we conclude
that thanks to eq. (3.62) the scaling of σd is the same as the worst scaling between g and
its derivatives. We are now able to show that σd is integrable on a neighbourhood of
soft points Bε(W). Because of the previous work, this is equivalent to showing that the
scaling of g(~k) at soft points only leads to integrable singularities. These findings can be
summarised in the following claim:

lim
~k′→~k?

σd(~k′)
maxs∈E~k,~φ{g(t?s, ~k′)}

∈ R \ {0}, ∀~k? ∈ Bε(W). (3.65)

The scaling of g, on the other hand, follows from its explicit expression in eq. (3.61)
and from the property in eq. (3.55). In order to establish that the LU representation is
integrable on soft singularities, one must still show that the soft scaling of g, and therefore
of σd as well in virtue of eq. (3.65), is sufficiently tame for physical theories. This is the
object of the next section.
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3.2.7 Power-counting of soft singularities
In the following, we will analyse the scaling of σd close to points at which connected
clusters of particles simultaneously become soft (any configuration that is not the union of
disconnected clusters can easily be shown to have a better scaling). Consider a connected
subgraph of Γ, (s, es = δ◦(s)∪ δ(s)) closed under momentum-conservation conditions (that
is, if the momenta of edges in the subgraph uniquely determine any other edge’s momentum,
then that edge is also in the subgraph).

Using eq. (3.61) and eq. (3.65), we can conclude that the worst possible scaling of σd
near a soft singularity can be at most σd ∼ g ∼ δ−(|s|+|es|+N), since each inverse energy
corresponding to an edge in es contributes one power, the numerator contributes with N
powers and, in the worst-case scenario, there exists a term in the sum of eq. (3.55) which
has |s| E-surfaces of Eint vanishing (such a case would correspond to a term of eq. (3.55)
whose respective cross-free family contains a cross-free family of subsets of (s, es)).

Since the actual soft scaling of the numerator is theory-dependent, we expect integra-
bility at soft points to be conditional on the specific theory one is considering. We will
now simplify the discussion by proving integrability for the physical theory of Yang-Mills
coupled with massless fermions theories. Since the Higgs boson is massive, including it does
not change the reasoning, along with any type of massive particles. We can distinguish
between fermion edges and vector boson edges by writing es = ef ∪ eb. Furthermore, we
write s(3)

fb for 3-vertices at which two fermions and a vector boson meet, s(3)
b for vertices at

which three vector bosons meet, s(4)
b for vertices at which four vector bosons meet, so that

s = s(3)
b ∪ s(3)

fb ∪ s(4)
b . Finally, if all momenta in the subgraph are set to zero, the degree of

divergence associated to this subgraph is

d = 3Ls − |es| − |s|+ |s(3)
b |+ |ef | = 2|es| − 3|s|+ |s(3)

b |+ |ef | − |s| . (3.66)

We substitute the following relations between the number of vertices, their degree and the
edges of a graph, |e| = 3/2|s(3)

b | + 2|s(4)
b | + 3/2|s(3)

fb | + |δ(s)|/2 and |ef | = |s(3)
fb |, such that

we obtain:
d = |s(4)

b |+ |s
(3)
b |+ |s

(3)
fb |+ |δ(s)| − |s| = |δ(s)|, (3.67)

which confirms the inexistence of non-physical soft singularities, and confirms that the
power-counting at soft points, in the absence of pinched E-surfaces (which are subject
to cancellation), yields integrable singularities. However, for a cubic scalar theory, the
power-counting formula for soft clusters reads

d = |δ(s)| − |s| (3.68)

which can become negative. This reproduces the known fact [124] that the IR region of
super-renormalisable theories such as cubic scalar theory exhibits soft divergences that do
not cancel. As an example of a graph that is still divergent within LU, we give an example
of a supergraph in cubic scalar theory that features a quadratic soft divergence (d = −2)
on the grey lines:

d = |δ(s)| − |s| = −2
.
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This concludes the proof, as we have now shown that σd is integrable on R3L \ Bisr,ε
for a physical theory.

4 Self-energies and IR cancellations in non-abelian gauge theories

External self-energy corrections, and specifically one particle irreducible insertions on edges
that belong to a Cutkosky cut lead to the presence of spurious divergences that can be
eliminated through careful on-shell renormalisation of the propagators. Furthermore, the
nature of the IR cancellation pattern requires that the computation be done with non-
truncated amplitudes.

The problem of self-energy corrections also makes very clear another issue in preserving
IR cancellations: external physical boson propagators correspond to a different Feynman
rule than internal boson propagators. The difference in tensor structure also leads to
miscancellations. In order to address this issue, we allow for ghosts and unphysical bosons
to be external particles.

4.1 Propagator renormalisation and IR cancellations

When a supergraph features raised propagators, which in physical theories appear as a
result of a self-energy insertion, the naive substitution of propagators with Dirac deltas
leads to manifestly ill-defined interference diagrams, as performing the substitution for one
of the raised propagators exactly evaluates the remaining repeated propagators on their
mass shell.

The first possible solution to this problem relies on recognising the origin of the
Cutkosky rule as an analogue for performing contour integration. This suggests that one
should use the residue formula for higher-order poles, and modify the Cutkosky rule ac-
cordingly so that each propagator, raised to the power n, is substituted by an appropriately
normalised (n−1)-th derivative of Dirac’s delta function. However, considering this higher-
order residue formula would require taking derivatives of the observable function, which
is not always possible. As we discuss in this section, it is instead possible to apply the
derivative to the self-energy subgraph only.

In ref. [79], D. Soper circumvents the problem of taking derivatives for addressing
raised propagators by engineering an alternative representation of self-energy correction.
Through the use of a dispersion relation and algebraic manipulation of the numerator, he
was able to show that the raised propagators can be re-absorbed into a propagator with
power one. However, the extension of this procedure to more complicated topologies is
challenging, especially when the self-energy diagram features UV divergences, since the
alternate representation does not allow to construct UV counterterms in four dimensions,
but requires to derive them directly from the three-dimensional representation.

In this section we derive a novel treatment of self-energy diagrams that operates in
Minkowsi space and does not require taking derivatives of observables. As the raised
propagator issue arises when one of the propagators adjacent to a self-energy corrections
is cut (that is, it is set to be an external particle), it is clear that any solution should bear
some relation to the LSZ formalism, Dyson resummation and propagator renormalization.
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We will show that raised propagators disappear after mass renormalization in the on-shell
scheme.

Let us start by defining the renormalized 1PI graph as

ΣR(p2) = Σ(p2)− δZm − (p2 −m2)δZψ . (4.1)

In the following, we consider Σ to be derived from a scalar theory. The extension to
physical theories requires extra attention and is left for future work. The extra issues due
to considering physical theories are however related to the role of numerator algebra and
gauge invariance in the IR cancellation mechanism and do not directly affect the general
treatment of raised propagators hereby presented.

Consider now the Taylor expansion of the renormalized one-particle irreducible func-
tion

ΣR(p2)
(p2 −m2)2 = ΣR(m2)

(p2 −m2)2 + 1
2p0(p2 −m2)

dΣR

dp0

∣∣∣∣∣
p2=m2

+O
(
(p2 −m2)0

)
. (4.2)

The zero-th order of the expansion contains the raised propagator. By imposing the first
renormalization condition of the on-shell scheme, ΣR(m2) = 0, we obtain that

ΣR(p2)
(p2 −m2)2 = 1

2p0(p2 −m2)
dΣR

dp0

∣∣∣∣∣
p2=m2

+O
(
(p2 −m2)0

)
. (4.3)

Thus, each self-energy correction of the graph only brings one power of the external par-
ticle propagator. In practice, this allows us to perform Cutkosky cuts by using the rule
associated to simple poles. We observe that all terms O

(
(p2 −m2)0) are not singular at

p2 = m2, and therefore their associated residue is zero.
The modified Cutkosky rule, when applied to a propagator that has a self-energy

insertion then reads:
Σ(p2)

(p2 −m2)2 →
1

2p0

dΣR

dp0
δ(p2 −m2) . (4.4)

It is important to observe that performing renormalization selectively for the external self-
energy corrections does not break the pattern of IR cancellations, since

∆Σ = 1
4(‖~p‖2 +m2)

dΣ
dp0

∣∣∣∣∣
p0=
√
‖~p‖2+m2

−
∑

s∈vΣ

ηsΣ
(p2 −m2)2

∣∣∣∣∣
p0=ηs−p0

(4.5)

is free of IR singularities. This statement implies that the IR singularities of two-point
functions are fully contained in its derivative when evaluated on the on-shell hyperboloid,
and that its singular structure is equal to that of the sum over all possible Cutkosky cuts
of the two-point function. One can also think of eq. (4.5) as establishing a counterterm for
the self-energy correction. However, in doing so, the relation with on-shell renormalization
is lost.

Finally, we can discuss how field renormalization participates in the clear separation of
UV and IR divergences. The poles obtained through the dimensional regularization of the
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G1
dΣ
dp0

G3G1 Σs
L Σs

R G3

Figure 11. On the left, the derivative of the two point function with cuts on both of the propagators
adjacent to it, obtained from the modified Cutkosky rule (4.4). It has the same IR structure as the
sum of contributions which can be written as the diagram on the right.

self-energy insertions are usually renormalized, indifferently of their origin (UV or IR), and
reabsorbed in the coupling constant. Considering truncated amplitudes and renormalizing
away IR singularities of external self-energies obscures the presence of a deeper cancellation
mechanism for IR divergences. In the on-shell scheme, required for eq. (4.3) to hold,
the two-point function is substituted with a local representation of its pure IR pole that
eventually cancels with its real-emission counterpart, while the finite part is set to zero, as
prescribed by the renormalization condition. We start with the on-shell scheme constraint
on the finite part of the energy derivative:

finite
[
dΣR

dp0

]
= 0 . (4.6)

Eq. (4.6) implies that dΣR
dp0

must be a local representation of the pure IR pole (in dimensional
regularisation). This leads to the following formula:

dΣR

dp0 =
[
dΣ
dp0 − CTuv

[
dΣ
dp0

]]
d=4

−
[
finite

(
dΣ
dp0

)
− finite

(
CTuv

[
dΣ
dp0

])]
d

. (4.7)

dΣR/dp
0 is finite in the UV region. It is divergent in the IR region, so that its expression

in dimensional regularization features IR poles. Finally, it has zero finite part. Because of
eq. (4.5), its IR poles locally cancel with the real counterparts.

5 Generalisations

In this section, we discuss future directions for extending the scope of Local Unitarity
and we detail the path towards its fully automated implementation for the numerical
computation of higher fixed-order corrections to generic differential cross sections.

5.1 First steps towards Local Unitarity applicable to initial-state singularities

The general route for extending the mechanism of FSR cancellations to ISR involves gener-
alising eq. (3.38) so that it includes Cutkosky cuts corresponding to initial-state thresholds.
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The guiding principle is that any extension of σd should still be written as a weighted sum
over the discontinuities of the supergraph, in such a way that it is made locally IR-finite.

A natural way of approaching this problem is to consider extending the sum of eq. (3.38)
so as to include initial-state thresholds as well. In doing so, we can keep our representation
of supergraphs involving a fixed set of initial states, but then consider all possible thresh-
olds, including those in Eisr. Although this may provide a valid cancellation mechanism,
it imposes a fixed initial-state multiplicity which is at odds with the notion of backward
evolution of initial-state partons.

One can then instead tentatively consider a paradigm in which degenerate initial state
configurations are accounted for by kinematic configurations featuring multiple incoming
asymptotic states. This would corresponds to thresholds of vacuum graphs with altered iε
prescriptions and identified with Nin (resp. Nout) incoming (resp. outgoing) momenta.

In both cases, the extra diagrams can be effectively considered as natural counter-
terms. We leave a thorough investigation of this potential cancellation mechanism for
initial-state singularities to future publications.

5.2 UV counterterms and renormalisation

The regularisation of the UV behaviour of the LU representation, together with the intro-
duction of renormalisation contributions, lead to the following schematic modification of
eq. (2.21) for the differential cross section:

σ =
∑
Γ∈G

∑
s∈EΓ

s-ch

IΓ,s −
∑

u∈S(left)
Γ,s

(
I(UV)

Γ,s,u − I
(UV)
Γ,s,u

)
−

∑
u∈S(right)

Γ,s

(
I(UV)

Γ,s,u − I
(UV)
Γ,s,u

)
+

∑
ΓR∈R(G)

∑
s∈EΓR

s-ch

δZΓRIΓR,s , (5.1)

where we intentionally left implicit the precise definition of each integral I, including its
integration measure. The quantity S(left)

Γ,s (resp. S(right)
Γ,s ) denotes a set of sets of loop

edges in the subgraph to the left (resp. right) of the Cutkosky cut cs with a combined
superficial degree of UV divergence equal to or greater than zero. The terms I(UV)

Γ,s,u are local
counterterms and I(UV)

Γ,s,u are their counterparts integrated analytically using dimensional
regularisation. Finally, the operator R applies to the selected set of higher-order correction
supergraphs G and generates the set of all corresponding renormalisation supergraphs. For
each of them, we can identify a renormalisation counterterm δZΓR factorising the LU
representation of a lower-order supergraph. In this section, we discuss the construction of
each ingredient of eq. (5.1) qualitatively.

By construction, interference diagrams in physical theories must have a UV singular
structure that corresponds to the combined UV singularities of the two subgraph ampli-
tudes to the left and right of the Cutkosky cut. We choose to construct the local UV coun-
terterms I(UV) in Minkowski space, and then convert them to the (c)LTD representation.
This allows for the use of traditional analytic techniques and dimensional regularisation
when computing their integrated counterpart I(UV).
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Beyond NLO, the local UV regularisation must be performed carefully so that the
remaining UV divergences in one-loop UV counterterms locally cancel against the two-
loop UV counterterms. In other words, the overlapping UV divergences in ∑u∈S(x)

Γ,s
I(UV)

Γ,s,u

must cancel locally amongst the terms in this sum. We achieve this by implementing S(x)
Γ,s

and I(UV)
Γ,s,u according to the BPHZ forest formula treatment [125–127]. This procedure

involves identifying all possible UV singular subgraphs and constructing an appropriate
approximant of the integrand on UV limits. Proper subtraction of the original integrand
and, specifically, the treatment of overlapping subdivergences is guaranteed by the forest
formula. In particular, the study of overlapping subdivergences requires defining spinneys,
which are collections of disjoint UV divergent subgraphs. We stress that this entire pro-
cedure must be repeated iteratively when constructing the terms I(UV)

Γ,s,u and IΓR,s so as to
also locally subtract their remaining UV divergences (beyond one-loop).

The BPHZ forest formula is independent on the chosen renormalization scheme and
only prescribes a Taylor expansion of the denominators of UV subgraphs in their external
momenta. Whereas one traditionally also considers expanding the numerator around the
UV point, we find it more convenient to expand propagator denominators only. This
operation is local, since it relies on a Taylor expansion of the four-dimensional integrand
of the amplitude. It follows that the integrand can also be subtracted locally.

We identify the UV subgraphs with scalar graphs and assign them their superficial
degree of divergence. After Taylor expanding in its external momenta, the scalar graph
can be represented as a power series in scalar vacuum diagrams. We assign to each vacuum
diagram propagator a UV mass mUV. This UV counterterm is added to the integration
and subtracts correctly the UV singularity represented by the subgraph. The analytically
integrated counterpart I(UV)

Γ,s,u is computed as the integral of the four-dimensional Minkowsi
representation of I(UV)

Γ,s,u , which always corresponds the a massive vacuum diagram integral
that can easily be computed using integration-by-parts identities and a finite set of known
master integrals. In order to obtain a scalar expression, we tensor reduce the UV subgraph
so that it completely factorises. Finally, we multiply the finite part of the integrated UV
counterterm into the remaining diagram.

Ultimately, the integrated counterterm will be a Laurent series in ε = 4−d. These UV
poles are cancelled by the renormalization supergraphs ΓR listed in R(G) and constructed
by contracting the disjoint UV subgraphs in the spinneys to vertices. This forms separate
renormalisation supergraphs with lower loop counts, and we assign to each vertex obtained
in this fashion their respective renormalization constant. We stress that, beyond NLO, it
is important that the poles in the dimensional regulator ε = (d− 4)/2 of the renormaliza-
tion components δZΓR multiply the O(ε) parts of IΓR,s computed in d-dimensions. This
dynamic generation R(G) from the list of selected supergraphs considered G ensures the
consistency of the renormalization procedure. We can numerically test if the UV poles
of the renormalisation graphs cancel with the ones from the integrated counterterm by
numerically integrating the numerator dimensional regulator pole coefficients instead of
its finite part. We stress that this pole cancellation check can in principle also be made
local by consistently rerouting the momenta of all supergraphs in {Γ ∈ G | ΓR ∈ R({Γ})
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contributing to a particular renormalisation supergraph ΓR. In the example of the UV
regularisation of the double-triangle supergraph that will be investigated in section 6.1.1,
we find a one-to-one correspondence between the supergraph and its renormalisation con-
tribution, leading to a direct cancellation of the UV poles (see eq. (6.11)). Because this
is in general not the case, we opt to account separately for higher order supergraphs and
their renormalisation terms.

Often, an approach similar to the one by D. Soper [79] is chosen in order to construct a
modified local counterterm Ĩ(UV)

Γ,s,u = I(UV)
Γ,s,u−I

(UV)
Γ,s,u which combines both local and integrated

UV counterterms under the same integral measure. This can be done by adjusting the
higher-order terms of the original local UV counterterm of eq. (6.5) obtained from the
strict UV limit. In this way, Ĩ(UV)

Γ,s,u directly integrates into a finite part that is zero and
automatically reproduces MS results, or alternatively allows one to add whichever finite
part from the renormalisation constant of the preferred scheme without having to worry
about the impact of the UV regularisation in Local Unitarity. Such an adjustment of the
numerator is however typically not systematic and therefore not practical for automation.
Instead, we multiply the integrated counterterm I(UV)

Γ,s,u with a rational polynomial in the
loop degrees of freedom that are analytically integrated over (e.g. a simple product of
massive one-loop tadpoles) so that it can be systematically combined with I(UV)

Γ,s,u .
Since we separately account for the contribution of the integrated UV counterterms and

renormalisation constants, we must pay particular attention to the particular dimensional
regularisation scheme considered when computing both terms. We identify four different
parts in the expression of the integrated UV counterterms: the numerator NUV stemming
from the edges part of the UV subdiagram, the external factorised ones NE and similarly
for the denominators, DUV and DE. As is well-known in the literature [111, 128–131],
different choices regarding the dimensionality adopted for each of these pieces are possible
and ultimately equivalent as long as they are performed consistently across terms whose
poles cancel. We find it most convenient to build an automated procedure by treating the
combination of NUV, NE and DUV in d-dimension and DE in four dimensions. This choice
also implies that no particular attention needs to be paid to the rational parts [132–136]
of the integral as they will then automatically be accounted for in this manner.

5.3 Automation and numerical efficiency

The relevance of the LU representation for collider phenomenology crucially depends on
the performance of its implementation.
Our implementation leverages the framework of MadGraph5_aMC@NLO [14] (MG5aMC
henceforth) for the abstract representation of the user inputs such as the observable defini-
tion, process generation syntax and physics model considered. In particular, the Feynman
rules are provided through a model file following the Universal Feynrules Output (UFO)
conventions [137]. This choice is motivated by our longer-term goal of offering the user
an automated environment similar to MG5aMC for steering its simulations. However, the
very different nature of LU requires an independent program. We therefore decomposed
the implementation of the LU representation into individual fundamental tasks that are
efficiently carried out by the development of dedicated codes that we discuss in this section.
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5.3.1 Process generation

Given the specification of a scattering process and UFO model using MG5aMC syntax, we
steer QGRAF [138] to generate all contributing supergraphs and output them in a Python-
readable format. Next, all isomorphic supergraphs are combined and for each resulting
supergraph we enumerate all Cutkosky cuts whose final state particles are compatible with
the process definition. We stress that it is important to also weight each supergraph with its
symmetry factor provided by QGRAF as it corrects for the over-counting due to identical
particles (i.e. it plays a similar role as the customary normalisation of amplitudes by the
symmetry factor stemming from identical particles in their final states). We then identify
external one-particle irreducible diagrams in the supergraphs (that is, all the 1PIs that are
adjacent to a Cutkosky cut), and apply the propagator treatment of section 4.1. We also
detect all UV divergent subgraphs and construct local and integrated UV counterterms for
them, together with renormalisation contributions, by following the procedure laid out in
section 5.2. Finally, we collect all information on the supergraph that must be computed
into input files ready to be processed and optimised by FORM into C compiled libraries.

5.3.2 Graph evaluation

The treatment of the numerator is often the bottleneck for both generation and run-time
efficiency when considering higher-loop Feynman diagrams. An efficient implementation in
FORM [139] is therefore crucial. Our FORM code first substitutes the Feynman rules for
each supergraph, contracts all indices, and applies polarisation sum rules. After simplifying
all Dirac traces and colour algebra, the output of this procedure is a sum of scalar products
of loop momenta and external momenta.

Next, a Python code constructs the general Loop-Tree Duality expression derived in
ref. [88] and the Manifestly Causal LTD (cLTD) expression derived in ref. [93] in a FORM-
readable format. This expression is added to the expression of the numerator. At this stage,
the entire integrand per Cutskosky cut is represented in a FORM expression. Next, FORM
performs all derivatives necessary for the propagator treatment of section 4.1 as well as for
the UV counterterms. This integrand can be viewed as a polynomial in the scalar products
and linear propagators. We use FORM’s optimisation [140, 141] algorithms to generate
highly efficient C code that can evaluate the entire integrand per Cutkosky cut by finding an
optimal Horner scheme for the resulting polynomial and grouping common subexpressions.
This optimisation step typically reduces the number of arithmetic operations by several
orders of magnitude. Additionally, the C compiler further improves the implementation by
vectorising (parts of) the resulting C code. This finally results in evaluation times typically
below 100 µs, even for complicated processes. For example, one particular supergraph with
11 Cutkosky cuts contributing to the NNLO correction to the process H → tt̄gg can be
evaluated for one sample point in only 25 µs (without multi-channeling). This means that
the evaluation time of the integrand is not a limiting factor.

5.3.3 Numerical stability

The LU integrand consists of terms that can feature large numerical cancellations, leading
to instabilities when considering finite-size arithmetic. Such unstable points can be large
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in magnitude (see, e.g. figure 2 of ref. [93] for numerical stabilities in the UV) and spoil the
central value estimator of the Monte-Carlo integration. It is therefore necessary to monitor
the numerical stability of the integrand evaluation for each sample point and properly
address cases that are insufficiently precise. In order to estimate the numerical accuracy
of the integrand for one particular sample point, we repeat its evaluation with all spatial
directions subject to arbitrary rotations and compare the results obtained in this way, as
they are analytically identical in virtue of the symmetries of the integrand. The original
sample point is then deemed unstable if its rotated evaluations differ by more than a certain
threshold. Since the LTD integrands may exhibit instabilities in the UV that are removed
by cLTD (see ref. [93]), we perform the same procedure using cLTD instead of LTD. If
the point is still considered unstable, we repeat this procedure using quadruple-precision
arithmetic which is about 100 times slower but rescues the majority of unstable points.
Exceptional sample points that are still deemed unstable at this stage are typically very
close to infrared singularities or cancelling E-surfaces and we override the evaluation to
zero. By varying the numerical stability requirements, we can verify that our procedure
does not alter the result of the Monte-Carlo integration.

5.3.4 Contour deformation

When considering non-trivial observables or scattering process definitions that exclude
certain Cutkosky cuts, the LU integrand may still be singular at the location of non-pinched
thresholds. For these cases a complex contour deformation that follows the construction of
ref. [89] is required. In the context of the LU representation, we deform the loop variables
of the amplitude on the left and right side of the Cutkosky cut independently, to ensure
that the observable function is evaluated with real-valued kinematics (see section 2.4). On
pinched surfaces the deformation must be zero in order not to disrupt the cancellation of
real and virtual Cutkosky cuts. We further dampen the deformation magnitude on pinched
E-surfaces by multiplying the deformation field with the following dampening factor dIR:

dIR = T (ηIR,M), T (ηIR,M) = η2
IR

η2
IR +M2 , (5.2)

for each pinched E-surface with implicit equation ηIR, in addition to the dampening en-
forced by the complex pole constraint (see section 3.3.2 of ref. [89]).

The construction of ref. [89] requires a set of valid deformation sources to be con-
structed. This problem is NP-hard and requires finding points in the internal region of
overlapping E-surfaces. The difference between determining the overlap structure for an
amplitude with fixed external momenta and determining it for the amplitudes participat-
ing in a supergraph is that in the latter case, the external momenta of the loop subgraphs
change with every Monte Carlo sample point. Consequently, the overlap structure of the
E-surfaces must be recomputed at run-time for each sample point and Cutkosky cut. Thus,
it is important that the overlap structure can be determined efficiently. Testing for overlap
of E-surfaces in a set E can be achieved by finding a point in the interior of all E-surfaces
in E . Such problems are known as a second-order cone program in the field of convex
optimisation. We use the ECOS solver [142] to determine such points. ECOS takes about
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0.5 ms for a test, and in the worst case 2|E| tests are required. In order to reduce the
number of necessary overlap tests, we only test groups of E-surfaces if each pair in the
group pairwise overlaps, which can be determined using fast heuristics. After these op-
timisations, even for complicated cases such as the two-loop amplitude 2L6P.e K1 from
ref. [89], which features 21 E-surfaces and 34 unique sources, the construction time is only
about 18 milliseconds. We stress that the loop topologies most relevant to LU often involve
many on-shell massless external momenta, for which the number of non-pinched E-surfaces
is generally small since many E-surfaces are pinched in this case. Additionally, we only
have to contour deform around E-surfaces whose pair-wise cancellation is spoiled by either
the observable or process definition. We thus find that for cases of phenomenological rele-
vance the determination of the overlap structure, and therefore the complete deformation,
typically requires about one millisecond per sample point.

5.4 Phase space sampling and variance reduction

Even once a local representation of a differential cross section free of both IR and UV
singularities is established, it remains to be shown that its numerical integration is feasible
in practice. In this subsection, we discuss the main improvements that can help reduce the
variance of the integrand.

5.4.1 Multi-channelling

Our computation of the differential cross section in Local Unitarity is organised in three
nested levels, as made clear by eq. (2.21) which we rewrite here with a notation appropriate
to this section:

σO =
∑
Γ∈G

∑
sΓ∈EΓ

s-ch

∫ ( L∏
i=1

d3~ki

)
IsΓ(~k), (5.3)

which features:

• A discrete sum over each supergraph Γ ∈ G of the scattering process of interest.

• A discrete sum over each Cutkosky cut sΓ ∈ EΓ
s-ch appearing in supergraph Γ ∈ G.

• An integral over the spatial loop degrees of freedom of the integrand IsΓ(~k), which
contains all elements of the LU representation, in particular the observable function
O and the solution t?sΓ(~k) of the causal flow enforcing the conservation of on-shell
energies involved in the Cutkosky cut csΓ .

In order to improve the Monte-Carlo accuracy, one must reduce the variance of the estima-
tor for σO. This is achieved by using a discrete importance sampling technique for the sum
of contributions and an educated choice for the parameterisation of the continuous degrees
of freedom, whose Jacobian should approximate the (inverse of) integrand as closely as
possible. We discuss both aspects in turn.

Optimising the sampling of the sum over supergraphs is straightforward, since each
contribution can in principle be integrated completely separately. This aspect is unique to
the LU representation, and so are the benefits discussed below stemming from a discrete
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(a) Distribution of supergraph contributions
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(b) Distribution of integration channel contributions

Figure 12. To the left, we show the distribution of the contributions to the LO cross section for the
104 distinct non-zero supergraphs for the processes e+e− → γ? → tt̄ggg and e+e− → γ? → tt̄ghḡhg.
Their sum, indicated by a red horizontal line, reproduces the total cross section of 1.071 · 10−5 [pb]
obtained from MadGraph5_aMC@NLO with

√
s = 1TeV, pt(ji=1,2,3) > 100GeV and ∆R = 0.4.

To the right, we show the distribution of the negative of the contributions of each of the 16 inte-
gration channels for the 3-loop scalar supergraph a.3) of table 2, summing up to the forcer result
of −5.754 · 10−6 [GeV2].

importance sampling over supergraphs. The optimal discrete probability distribution of
sample points over supergraphs is obtained by following the inverse of their relative contri-
bution to the total cross section. One typically starts with a uniform discrete grid that is
progressively updated according to the new estimates of the relative cross sections for each
supergraph. While simple to implement, this sampling optimisation can be very powerful
if the supergraph contributions are unevenly distributed. In figure 12a, we show their dis-
tribution for the LO cross section from the scattering processes e+e− → γ? → tt̄ggg and
e+e− → γ? → tt̄ghḡhg where gh denotes a QCD ghost. We find that the relative contribu-
tions from supergraphs spans more than four orders of magnitude. While this observation
depends on the scattering process, observable and gauge considered, we expect this un-
even distribution to be quite generic and thus adaptive sampling can significantly help to
counterbalance the increase in computation time resulting from the growth in the num-
ber of distinct supergraphs for more complicated processes. Figure 12a shows no apparent
large (gauge) cancellations between supergraphs, showing that the supergraphs can be inte-
grated independently. While there may still be benefits from integrating all supergraphs in
a correlated manner, identifying a common parameterisation [143] that leverages potential
(gauge) cancellations is difficult and unlikely to outweigh the gain from discrete adaptive
sampling over supergraphs. One exception being supergraphs involving QCD ghosts. These
supergraphs always share the same topology as that of their gluonic counterpart, and can
thus be integrated together with a common loop momentum basis. However, in all LO
cross sections we investigated thus far, we have never found large cancellations within such
groups of supergraphs.

The large spread in the distribution of supergraph contributions is perhaps less sur-
prising when placed in the context of more general computations of mixed QCD and EW
corrections in the presence of resonant intermediate unstable particles. In that case, one
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expects supergraphs encoding pure QCD corrections to dominate those corresponding to
pure EW corrections. Similarly, supergraphs involving Breit-Wigner enhancements are
relevant for kinematic regions where the unstable particle is close to its mass shell but
typically contribute less than non-resonant topologies to the inclusive cross section. The
separation of these various regimes within traditional methods is complicated, since only
subsets of terms that are gauge invariant and that can be rendered finite within their
computational paradigm can be used. Instead, LU offers the perspective of systematically
generating all contributions and efficiently and dynamically home in onto the relevant ones
for a particular observable of interest. This procedure is appealing both from a numerical
and phenomenological perspective as it helps the identification of the underlying dynamics
at play for any collider signature.

Once a particular supergraph Γ is selected, we must establish a strategy for sampling its
Cutkosky cut contributions sΓ and continuous degrees of freedom. The LU representation
relies on pairwise cancellations between the terms IsΓ so that they must be integrated
together with a common loop momentum basis and parameterisation. At the same time,
the LU representation still features integrable singularities on soft kinematic configurations
and when internal propagators become on-shell, which we must render bounded with the
Jacobian of an appropriate parameterisation so as to make the variance of the LU integrand
finite. Multi-channeling is a common technique (see, e.g. refs. [10, 80, 89, 144, 145] for
examples in a similar context) offering a solution to this problem by combining multiple
parameterisations each designed to address the integrable singularities and enhancements
of a single Cutkosky cut at a time. In its most generic form, the multi-channeling approach
applied to eq. (5.3) for a L-loop supergraph yields:

σO =
∑
Γ∈G

∑
a∈ΩΓ

∫
[0,1]3L

d~x |Ja(~x)|−1 ξa
(
~φa~x

)
∑
b∈ΩΓ

ξa
(
~φa~x

) ∑
sΓ∈EΓ

s-ch

IsΓ

(
~φa~x

)
, (5.4)

where ~x is the vector of integration variables defined in the unit hypercube, ΩΓ is the set of
all integration channels chosen for the supergraph Γ, ~φa~x := ~ka(~x) is the parameterisation
chosen for channel a, and Ja := det

[
∂~x

∂~φa

]
is the Jacobian of said parameterisation. The

scalar functions ξa can be arbitrarily chosen.6 We also define the inverse mapping ~Ψa
~k

:=[
~φa
]−1

(~k). The rewriting in eq. (5.4) shows that if one chooses the parameterisations ~φi

and the functions ξi such that:

|Ja| ∼ ξa (5.5)∑
b∈ΩΓ

ξb ∼
∑

sΓ∈EΓ
s-ch

IsΓ , (5.6)

all integrable singularities are removed and the variance of the overall resulting integrand
is minimised.

6The functions ξa must however be holomorphic if they are to be also analytically continued together
with IsΓ when considering a contour deformation.
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In ref. [89], the authors chose to have one channel per loop momentum basis of the
graph Γ, so that ΩΓ ≡ BΓ and the integration channels are then labelled with a basis bi
which map to the scalar index i. Then, in order to accommodate eq. (5.6), ξi was built
from the product of all (complex) on-shell energies of the edges in bi whereas the spherical
parameterisation adopted for the momenta in bi yielded a Jacobian

∣∣J i∣∣ that dampens all
integrable singularities in ξi. In this work and for all the numerical results presented in
section 6, we adopted a different strategy. We also consider spherical parameterisations for
each of the integration channel associated to one loop momentum basis of the supergraph
Γ, but we choose ξi ≡ J i

(
~Ψi
~k

)
which dampens all integrable singularities as per eq. (5.6)

but also exactly fulfils eq. (5.5). We note that we combine integration channels from loop
momenta bases that are degenerate due to our particular choice of Lorentz frame, for which
~Q = ~0.

Our particular realisation of the generic multi-channeling strategy of eq. (5.3) then
reads:

σO =
∑
Γ∈G

∑
ba∈BΓ

∫
[0,1]3L

d~x IaΓ(~x), IaΓ(~x) :=
∑

sΓ∈EΓ
s-ch

IsΓ

(
~φa~x

)
∑

bb∈BΓ
Jb
(
~Ψb
~φa
~x

) . (5.7)

The effect of this multi-channeling on the integrand IMC
Σ is visualised in section 6.1.2.

One can consider a discrete adaptive importance sampling similar to the one already
discussed for the sum over supergraphs. However, we see in figure 12b that the distribution
of the cross section stemming from each of the 16 multi-channel integrands IaΓ of the 3-loop
scalar supergraph a.3) of figure 2 is very even. Even though the gain in variance reduction
is more moderate in this case, sampling the integration channels instead of taking their sum
yields a faster evaluation of each sample point and therefore a Monte-Carlo error reduction
by a factor of up to

√
|BΓ| for a fixed run-time. Furthermore, performing a separate adaptive

sampling for the kinematic dependency of each integration channel allows the integrator to
better adapt to their individual shape as opposed to when training directly on their sum.

The distribution of the cross section from each channel and the resulting variance of
IaΓ heavily depends on the particular choice of parameterisations ~φa. It is clear that the
spherical parameterisations considered in this work are far from the optimal choice and
prior work from D. Soper [80] showcases the benefits of adopting more elaborate parame-
terisations. More specifically, our choice does not account for the details of the particular
topology of the subgraphs on each side of a particular Cutkosky cut. It also ignores the
sharp shape of the term h

(
t?sΓ(~k)

)
, part of IsΓ , which strongly enhances kinematic config-

urations ~k close to the Cutkosky cut surface ηsΓ . We now discuss a future enhancement
that improves on these aspects. We start by factorising the dimensions sampled into three
subsets of variables:∫

[0,1]3L
d~x→

∫
[0,1]3L

 ∏
i=1,3Lleft

dxleft,i

dxt ∏
k=1,(3|csΓ |−4)

dxext,k

 ∏
j=1,3Lright

dxright,j

 ,
(5.8)

where Lleft (resp. Lright) is the loop count of the subgraphs Γleft (resp. Γright) to the
left (resp. right) of the Cutkosky cut csΓ , whose number of edges is equal to |csΓ | =
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L − Lleft − Lright + 1. The complete parameterisation ~φa can then be constructed in the
following three successive steps:

• First, the external momenta ~q sΓ := {~ke|e ∈ csΓ} with ~k ∈ δηsΓ is generated so as to
directly lie on the Cutkosky surface ηsΓ . To this end, we take advantage of the tradi-
tional phase-space factorisation already used by most event generators. This iterative
construction of the phase-space parameterisation is organised such that the invariant
mass of repeated propagators that appear7 in both Γleft and Γright is directly aligned
to one variable xext,k which is sampled with a probability density flattening the cor-
responding resonant enhancement (see e.g. ref. [144]). For “interfering” propagators,
there is instead no good ansatz for the density with which they should be sampled
(and those topologies are often suppressed), so that we can consider sampling them
uniformly instead (see e.g. ref. [146]).

• Second, the configuration ~q sΓ must be “upscaled” so as to cover the entire volume
R3(|csΓ |−1). This aspect is crucial to the LU construction as the causal flow induces a
mapping onto the Cutkosky surface of each contribution and is key to obtaining local
IR cancellations between them. The most natural choice for achieving this upscaling
is to use the causal flow of the supergraph Γ itself, with boundary conditions given by
~q sΓ and a value of tsΓ derived from the input variable xt and sampled with a density
of dtsΓ/dxt = 1/h(1/t) = h(t). This ensures that the chosen parametrisation renders
the integrand IsΓ(~φsΓ

~x ) independent of the choice of normalising function h(t). The
choice of the σ-tunable function h(t) = 2σ

π cos
(
π
2σ
)

tσ

1+t2σ is particularly convenient so
as to be able to analytically solve for the cumulative distribution function H(t) =∫ t

0 dt
′h(t′) = 2σ

π(1+σ) cos
(
π
2σ
)

2F1
(
1, σ+1

2σ ,
1
2

(
3 + 1

σ

)
,−t2σ

)
, which can then easily be

inverted numerically.
The other Cutkosky cut integrands Is′Γ(~φsΓ

~x ), with s′Γ 6= sΓ, still retain their de-
pendence on h(t) and will be conveniently suppressed away from the intersection
δηsΓ ∩ δηs′Γ where pairwise E-surface cancellations occur. The spread of the function
h(t) must then be adjusted so as to find the optimal balance between making it nar-
row enough so as to efficiently focus each channel onto its defining Cutkosky surface
and wide enough so as to maintain a good cancellation of threshold singularities in
the neighbourhood of their intersection.

• Last, the loop spatial degrees of freedom must be assigned using the variables ~xleft
and ~xright. Note that the external kinematics of these loop subgraphs are now entirely
determined from the quantities ~q sΓ and tsΓ built in the previous two steps. The situ-
ation is thus completely analogous to the sampling problem of normal loop integrals
in their LTD representation already studied in ref. [89]. A minimal solution is then
to consider a separate channel for each loop momentum basis of the reduced sub-
graphs Γleft and Γright which can be sampled with spherical parameterisations. This

7We must only consider propagators that are not part of any loop of Γleft or Γright. In case of competing
Breit-Wigner resonances (e.g. hadroproduction of a Higgs decaying onto four leptons), one may consider
assigning more than one integration channel to such topologies.
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is sufficient to dampen all integrable singularities, though it may be beneficial to
construct additional channels using elliptical parameterisations whose Jacobians can
flatten possible enhancements in the vicinity of non-pinched threshold singularities
(E-surfaces) which may not always cancel when considering differential observables.

The procedure described above yields complicated parameterisations ~φi~x that are nonethe-
less invertible and whose overall multi-channeling factor ∑bb∈BΓ

Jb
(
~Ψb
~φa
~x

)
better approx-

imates the shape of the overall integrand ∑
sΓ∈EΓ

s-ch
IsΓ

(
~φa~x

)
. This improvement is also

a necessity when considering processes featuring narrow Breit-Wigner resonances. At
LO, one could recover the same performance as that of traditional integration techniques
since the h(t) normalising function no longer impacts the variance of the integrands. Fi-
nally, notice that the number of integration channels are no longer |BΓ|, but instead
|EΓ

s-ch| × |BΓleft | × |BΓright | (when ignoring the possibility of additional E-surface parame-
terisations for the sampling of Γleft and Γright), such that the sampling is automatically
simplified for observables selecting only a subset of the possible Cutkosky cuts.

5.4.2 Advanced adaptive sampling

The techniques discussed in section 5.4.1 aim at leveraging our prior knowledge about the
structure of the LU representation and the location of its enhancement so as to construct
an integrand with the smallest possible variance. However, once we start sampling the
integrand, we gain additional knowledge about its more detailed structure for the particular
process and observable at hand. It is then possible to take advantage of this newly gained
information to further reduce the integrand variance at run-time using machine-learning
techniques implementing some form of iterative adaptive sampling which we discuss here.

The most straightforward way of improving on the parameterisation of the spatial
loop degrees of freedom is to further refine it with a trainable integration grid assum-
ing a factorised ansatz for the functional form of the integrand [147, 148], which can be
complemented with the use of coarse hypercells [149]. Our use case of LU requires consid-
ering an individual continuous grid for each possible choice of supergraph and integration
channel, which are moreover subject to discrete importance sampling. We developed a
new integrator for this purpose, dubbed Havana, that implements this hybrid adaptive
sampling through a system of continuous grids nested within multiple layers of discrete
ones. This will serve as a basis to accommodate further refinements and help to design
custom parallelisation strategies in order to facilitate deployment on various computing
architectures.

Discrete importance sampling over integration channels can also be used to improve
upon the quality of the integrand approximation obtained from the multi-channeling factor
of eq. (5.6). The a priori unknown relative magnitudes of the particular enhancements
captured by the channel factors ξi may significantly vary. One way to adjust for this is to
consider weighted channels αiξi, with weights αi that can be trained [144, 150] at run-time
so as to minimise the resulting variance of the multi-channeled integrand IΓ.

More recently, the development of advanced machine learning frameworks such as Ten-
sorFlow and pyTorch facilitated the exploration of sampling methods based on various
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neural networks architectures [151–154]. In particular, the use of Normalizing Flows mod-
els, originally introduced in ref. [155] in the context of ray tracing and later refined in
refs. [156, 157], offers a promising novel approach [158–161] for improving adaptive sam-
pling for Monte-Carlo integration beyond the factorised paradigm. The investigation of
the potential of these recent developments in the context of Local Unitarity can ideally be
carried out in conjunction with the vectorisation of our implementation so as to render it
suitable for accelerated hardware, such as graphics and tensor processing units (see e.g.
ref. [162]).

6 Numerical results

In these sections we showcase the performance of our implementation of the Local Unitarity
representation in two different setups:

• The computation of the NLO correction to the differential cross section of the scat-
tering process e+e− → γ? → dd̄.

• The computation of subsets of IR finite interference diagrams (i.e. supergraphs) con-
tributing to the N4LO accurate cross-section of a 1→ 2+X scalar scattering process.

All results reported in this section are obtained from our own implementation in a program
called αLoop for the computation of differential cross-sections within the Local Unitarity
framework.

6.1 NLO correction to e+e− → dd̄

In this section we present results for the NLO correction to e+e− → dd̄. In section 2.1 we
have studied the two supergraphs of this process, namely the double-triangle supergraph
and self-energy supergraph, and have shown local IR cancellations for the double-triangle
supergraph in section 3.1. Contrary to those sections, we label here the loop momenta of
these supergraphs (~k,~l) and not (~k′,~l′).

In section 6.1.1 we study the numerator and the renormalisation of the double-triangle,
and visualise the integrand in section 6.1.2. In section 6.1.3 the self-energy treatment is
applied to the self-energy supergraph. Finally, we present results for the differential cross-
section in section 6.1.4.

6.1.1 The double-triangle supergraph
We write out the Feynman rules for the double-triangle supergraph and obtain the following
numerator (common to all its Cutkosky cut contributions) in d = 4:

N(kµ, lµ; pµ1 , p
µ
2 ) = −64(N2

c − 1)TF
2Q0

g4
EWg

2
sQ

2
dQ

2
e

2× 2
[

k2l2Q2 + l · p2
(
k · p2

(
l · p1 − 2Q2

)
− 2k2l · p1

)
+k · p1

(
k · p2

(
−2l2 + l · p1 + l · p2

)
+ l · p1

(
l · p2 − 2Q2

)
− (l · p2)2

)
+k · l

(
k · p2

(
2l · p1 +Q2

)
+ k · p1

(
2l · p2 +Q2

)
+Q2(l · p1 + l · p2)

)
−k · p2 l · p1(k · p2 + l · p1)− (k · p1)2l · p2 − 2Q2(k · l)2

]
, (6.1)
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where we included the averaging factor over incoming lepton helicity configurations as well
as the flux factor. The additional factors of i and −i arising from the complex-conjugation
of propagator numerators and vertices on the right of the Cutkosky cut always come in
pairs so that we can ignore them for now.8 The expression of the numerator of supergraphs
such the one above will need to be computed repeatedly during the Monte-Carlo integration
and are optimised using the procedure described in section 5.3.2.

Given that the LU representation realises the local cancellations of all infrared diver-
gences of the integrand, we only need to consider counterterms for the regularisation of
its UV behaviour. As is laid out in section 5.2, this is achieved by implementing a local
UV subtraction procedure. The local UV counterterms are built from the original (unex-
panded) numerator in (4-2ε)-dimensions and from denominators expanded around the UV
point. This expansion is made systematic by scaling all external momenta involved by a
parameter λ and expanding around λ = 0. This procedure is well suited for automation,
but to demonstrate the interplay between renormalisation and integrated UV countert-
erms, we factorise the triangle loop correction and apply the UV regularisation procedure
to it only. We therefore rewrite the integrand stemming from the numerator of eq. (6.1)
for the Cutkosky cut csv

1
as follows (the case of csv

2
is fully analogous):

Isv
1

= K
(sv

1,left)
µ Γµij K

(sv
1,right)

ij , (6.2)

where K(sv
1,left) and K(sv

1,right) are the factorised pieces that are irrelevant for this discus-
sion, while the one-loop corrected γdd̄-vertex Γµij reads:

Γµij = g2
sCF

[
(−i)gγdd̄

]
Iµij(k, l, Q) (6.3)

Iµ(k, l, Q) = γρ(/k − /Q)γµ/kγρ
k2(k − l)2(k −Q)2

= (d− 2)
(
k2γµ − 2kµ/k

)
+ 2/kγµ /Q+ (d− 4)/Qγµ/k

k2(k − l)2(k −Q)2 . (6.4)

Given that the superficial degree of UV divergence of the one-loop vertex correction is
zero, the local UV counterterm denoted by I

µ can be constructed by setting d = 4 in
eq. (6.4) and expanding the denominators around their UV limit to first order. We must
also assign a mass M2

UV to the resulting denominators in order to prevent introducing new
IR divergences in the UV counterterm:

I
µ(k,Q) = 2

(
k2γµ − 2kµ/k

)
+ 2/kγµ /Q

(k2 −M2
UV)3 . (6.5)

The denominator structure (k2 − M2
UV) is now guaranteed to never yield a pole in its

(c)LTD representation since the absences of any shift in the denominator implies that
the existence conditions of the UV counterterm E-surfaces can never be fulfilled. This is

8When considering a renormalisation scheme introducing complex-valued renormalised masses and cou-
plings, such as the complex-mass scheme [163–165], the situation may be more involved. We however leave
this aspect to a future investigation.
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different from similar UV local counterterms in four-dimensional Minkowski space where
the squared mass term in (k2−M2

UV) needs to be set negative or imaginary (see, e.g. [166])
in order to avoid complications.

The integrated counterpart of eq. (6.5), denoted by ∆Isv
1
is straightforward and is

derived in appendix. A.1 for completeness. We obtain:

∆Isv
1

= K
(sv

1,left)
µ g2

sCF
[
(−i)gγdd̄

]
K

(sv
1,right)

ij

∫
d̃k

(2π)4 I
µ(k,Q)

= αs
π
I(LO)

[1
4CF

(1
ε
− 2 + logMUV

)]
, (6.6)

where we defined logMUV := log µ2

−M2
UV

and the d-dimensional measure
∫
d̃k :=(

µ2

4πe−γ
)ε ∫ d4−2εk

(2π)−2ε , with the additional factor
(

1
4πe−γ

)ε
designed so as to automatically

reabsorb all the terms normally removed by the finite part of the renormalisation coun-
terterms in the MS scheme into a redefinition of the renormalisation scale. This integrated
UV counterterm then needs to be combined with the MS vertex renormalisation constant
δZ

(MS)
Γγdd̄

:

δZΓγdd̄ = ZαQED

(
Z(MS)
q

) 1
2
(
Z

(MS)
q̄

) 1
2
− 1 = δαQED + 1

2δZ
(MS)
q + 1

2δZ
(MS)
q̄ + o(α2

s) . (6.7)

Traditionally, the wavefunction counterterms are provided in the on-shell scheme (see, e.g.
eq. (6.8) of ref. [131]) and the renormalisation of the strong coupling in the mixed scheme
where massless quarks are renormalised in MS and massive ones at zero momentum (see,
e.g. ref. [167] or eq. B.5 of [13]). The renormalisation constant δαQED of the QED charge
from QCD correction is of course zero. In order to convert the massless quark renormali-
sation constant from the on-shell scheme to the MS one, it is important to separately keep
track of the dimensional regularisation pole of UV and IR origin in order obtain:

δZ(OS)
q =

(
αs
4π

)
CF

[ 1
εIR
− 1
εUV

]
→ δZ(MS)

q = − 1
εUV

(
αs
4π

)
CF (6.8)

δαQED = 0 (6.9)

→ δZΓγdd̄ = − 1
εUV

(
αs
4π

)
CF . (6.10)

We then find that the combination of the integrated local UV counterterm ∆Isv
1
in eq. (6.6)

and of the renormalisation contribution δI(γdd̄)(left) is finite, as expected:

∆Isv
1

+ δI(γdd̄)(left) = αs
π
I(LO) 1

4CF
(
logMUV −2

)
. (6.11)

6.1.2 Double-triangle supergraph integrand visualisation

In order to visualise the important features of the double-triangle supergraph integrands,
we must choose a different projection than that of section 3.2.2 so as to allow the approach
of the soft and collinear configurations of the gluon. We choose here again Qµ = pµ1 + pµ2 =
(1, 0, 0, 1) + (1, 0, 0,−1) with the momentum routing of figure 3 and set

(~k,~l ) =
((

0, ky,
1√
2

)
,

(
0, 1√

2
, lz

))
. (6.12)
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Moreover, we consider the integrand for the semi-inclusive cross-section defined by the
following phase-space cut:

0.4 < pt,j1 < 0.8 (6.13)
applied to the pt-leading jet reconstructed according to the anti-kt algorithm [168, 169]
with cone radius parameter ∆R set to 0.4. It is clear that this observable is not phe-
nomenologically relevant for lepton collider experiments but it serves as case-study of a
non-trivial observables. We start by showing in figures 13 various combinations of the
integrands of the interference diagrams produced by αLoop when turning off the complex
contour deformation. Except when showing results for multi-channelling, the Jacobians
from the loop momentum parameterisations is not included.

The first figure 13a shows the contribution stemming solely from the Cutkosky cut csv
1
.

A first observation is the linear bands that correspond to the selection cuts of eq. (6.13). The
observable function for this cut reads O(~l,~l− ~Q) so that the jet pt is dependent on lz only for
our projection and the selection bands appear vertical. It may appear counter-intuitive at
first that the transverse momentum depends on the z-component of the ~l loop momentum.
This is however expected because the space presented in the figures corresponds to the
dependency of the Local Unitarity integrand before the change of variables of eq. (3.7)
(i.e. the sampling space probed by the Monte-Carlo integration). This change of variables
results in a lz-dependent rescaling of the fixed component ly = 1√

2 which in turn induces
an indirect dependence of pt,j1 on lz. The situation is opposite for the contribution of
the cut csv

2
, shown in figure 13b, since in that case the observable reads O(~k,~k − ~Q) so

that the jet pt depends only ky, thus yielding an horizontal band. The boundaries of the
phase-space cuts are more complicated for the real-emission contribution, as expected from
its complicated three-body observable dependence O(~l,~l − ~k,~k − ~Q). It is interesting to
note however that the central region is only populated by the real-emission kinematics,
making it effectively LO accurate. This feature bears resemblance with that of other more
common differential quantities in lepton collisions, such as for example the C jet-shape
parameter [170, 171] which only receives contributions at C = 0 from e+e− → jj and for
C < 3

4 from e+e− → jjj.
Another important feature from the set of figures 13 is the behaviour of the integrands

around the non-pinched E-surface located at ky = lz, since Soper’s rescaling will simulta-
neously bring both norms |~k| and |~l| to Q0/2 = 1, thus placing the configuration on both
the E-surface of the triangle loop and the Cutkosky cut csv

1
or csv

2
(see figure 7). In the

absence of a deformation, the singularity along the E-surface is left unregulated and this
is reflected by the bright diagonal lines in figures 13a and 13b. The local cancellation of
these non-pinched E-surfaces is then made apparent in figure 13c where the areas accessible
to both Cutkosky cuts csv

1
and csv

2
is devoid of any particular features along the diagonal

(point labelled “B”). However, the E-surface cancellation breaks down on points labelled
“A” and “D” where the observable function (i.e. phase-space cut in our present case) re-
tains only one of the two cancelling terms. This shows that fully9 inclusive cross-sections
can be computed without a contour deformation.

9“Fully” in this context implies that all possible Cutkosky cuts of each contributing supergraph is
considered in the entirety of the phase-space available to it. By definition, this therefore excludes any
1→ N, N > 2 process in the Standard Model.
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We now consider the soft and collinear gluon kinematic configuration. Due to Soper’s
rescaling, the collinear subspace does not only lie at the soft end-point ky = lz but instead
lies along an arc denoted by “Coll” in the upper-left portion of figures 13. Each of the two
virtual Cuktkosky cuts covers only “half” of the collinear space since our particular choice
of signs for the fixed spatial components of ~k and ~l only allows one of the two pinched E-
surfaces of the loop triangle to be reached (either the qg or the q̄g collinear one). Together
however, the virtual contributions of figure 13c reproduce the complete collinear singularity
to be locally cancelled by the sum of real-emission contributions shown in figure 13d. The
overall sum in figure 13e presents no particular feature close to collinear regions any longer.

The soft singularity in figure 13e appears dampened but is still unbounded, as expected
from the power counting arguments of section 3.2.7. This integrable singularity is particu-
larly harmful for a numerical implementation since for the choice of momentum routing of
figure 2, the soft singularity lies at ~k−~l = ~0 which spans a full three-dimensional volume of
the phase-space parameterised with (~k,~l). In our particular example, this can be remedied
simply by adopting a different loop momentum basis containing the gluon propagator as a
defining edge. This solution is not generic, since for a triple gluon vertex it is not possible
to consider all three connected gluons to have an independent momentum. The gen-
eral solution then involves combining multiple parameterisations using a multi-channeling
technique discussed in section 5.4.1 and analogous to the one we already presented in
section 5.2 of ref. [89]. Figure 13f showcases the suppression of the soft-singularity from
multi-channeling. Notice that in all figures not involving multi-channeling, the integrand
weight considered did not include the parameterisation Jacobian, since the objective was to
focus on the behaviour of the integrand only. For our default choice of momentum routing,
the Jacobian is anyway relatively shallow within our chosen sampling space projection.
For multi-channeling, the combination of the three non-degenerate loop momentum bases
of the supergraph results in a parameterisation Jacobian which is precisely the quantity
responsible for achieving the dampening of the integrable singularities and it is therefore
crucial that it be included in the weights displayed by the multi-channeling density plot.
Furthermore, the multi-channelling figures are generated using the exact αLoop integrand
function exposed to the integrator, which implies that it includes the numerical stability
estimate and rescue system described in section 5.3.3 which exclaims the sparse spots in
the density plot where the integrand is sent to zero as it failed the numerical stability
requirement threshold. We find the expected suppression of the soft integrable singularity
in figure 13f, but also see a complicated mangling resulting from the combined contribu-
tions of our input ~k and ~l re-interpreted for all three relevant loop momentum bases of the
double-triangle supergraph. We stress that the visual complexity of the integrand can be
deceptive since in practice highly discontinuous bounded functions with a lot of structures
often converge significantly faster than smoother integrands that have integrable singular-
ities, especially when considering adaptive Monte-Carlo sampling. We note however that,
as shown in figure 16c, the multi-channeling strategy renders the integrand bounded only in
the absence of a deformation. When a deformation is enabled, there remains an integrable
singularity along the non-pinched E-surface cancelation diagonal line, which is however
much less severe. The local UV counterterm discussed in section 6.1.1 is active as part of
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the integrands shown, but has no visible impact for our chosen value of M2
UV = 2Q2 and

kinematic range (ky, lz) considered.
In figures 14 we visualise the double-triangle integrands with the dynamic deformation

of section 5.3.4 enabled. The integrand visualised corresponds to the integrand IΓ(~k) intro-
duced in eq. (5.3). When multi-channeling is considered, the resulting integrand I(MC)

Γ (~k)
is defined to be ∑ba∈BΓ

I
(a)
Γ (~Ψ(b)

~k
) (see eq. (5.7)), with bb being the loop momentum basis

shown in figure 2d. We remind the reader that the contour deformation is not the one
constructed for the entire double-triangle supergraph (see vector field of figure 9), but it is
constructed independently for each loop integral remaining in each Cutkosky cut contribu-
tion, so as to have real-valued momenta in the observable function and allow to separately
accommodate the complex-conjugated causal prescription applying to loops appearing on
the right-hand side of the Cutkosky cut. This implies that in the case of the cuts sv

1 and
sv

2 the remaining loops are triangles and their contour deformation must be constructed
dynamically for each three-point external kinematics induced by the particular sampling
point considered. The general solution for this problem discussed in section 5.3.4 is greatly
simplified in the case of the double-triangle supergraph as one can show that the maximal
overlap structure (see ref. [89]) contains only a single E-surface (the only one present) which
moreover always admits the origin in its interior. Thus a radial deformation field with the
origin as a source is a valid deformation. The integrands of figures 14 share most of the fea-
tures already seen in figures 13 with the main difference being the expected regularisation
of the E-surfaces, for example at the points labelled “A” and “D”.

When following the collinear arc, we find blue regions (i.e. values approaching zero)
in the density plots of Im[Isv

1
] (figure 14d) and Im[Isv

2
] (figure 14e) resulting from our

dampening of the deformation on infrared singularities so as to retain the cancellation with
their real-emission counterpart. This results in a non-trivial structure of the complex phase
of the complete integrand (figure 14g) close to the integrable soft singularity. The multi-
channeling procedure successfully dampens that soft singularity and yields an integrand
whose real part (figure 14i) is now bounded and suitable for numerical integration. Note
that the many discontinuities of the integrand are now not only related to the phase-space
cuts but also stem from the Jacobian of our contour deformation, which is discontinuous
due to the presence of a min function in the functional form of the dynamic normalisation
of our deformation (see eq. 3.33 of ref. [89]).

Despite the introduction of a contour deformation, the differential cross-section is
guaranteed to be real-valued as it eventually corresponds to the norm of an overall complex-
valued amplitude. In the particular case of LU, this reality condition is realised through
the existence of a complex-conjugated partner of each loop present in each Cutkosky cut
contribution of each supergraph. The cancellation of the imaginary component of the
cross-section only holds at the integrated level since in general it even involves terms
belonging to different supergraphs (contrary to the accidentally symmetric double-triangle
case where the two complex-conjugated triangle-loop partners happen to belong to the same
supergraph). We use this fact to our advantage as a strong cross-check of the correctness
of the LU implementation in αLoop as well as an independent assessment of the reliability
of the numerical accuracy reported by the Monte-Carlo integrator.
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The series of figures 14 capture the core features of the LU integrand that we want to
highlight, but it does not reveal more detailed aspects such as the complex phase of the
argument since we always considered absolute value of its real and imaginary component.
We therefore complement our visualisation with figures 15, where the colouring reveals the
phase of the integrand and its shading marks isolines reveals the logarithmic progression
of its magnitude across the plane. We find the expected phase-shift of π/2 of the virtual
integrands when crossing the soft singularity along the collinear line as the deformation
infrared dampening kicks in. When comparing the phase of Isv

2
in figure 15a and Isv

1
in

figure 13b on their respective side of the collinear singularity where their deformation is
active, we find a phase-shift of π stemming from the complex-conjugation of the causal
prescription of the triangle loop placed on the left-hand side of the Cutkosky cut, which
flips the sign of the deformation vector ~κ. The combination of the virtual contribution
shown in figure 15c has a constant phase along the collinear singularity since the real
part is divergent and negative. Once the positive divergent real-emission contribution of
figure 15d is added, we find in figure 15e that the cancellation of this large negative real part
leaves off a remnant with a complicated phase structure. We observe in figure 15f that the
multi-channeling procedure dampens the integrable singularity without disrupting much
of the phase-structure of the overall integrand IΣ around that region, as one expects since
the multi-channeling Jacobian responsible for the dampening is purely real.

Finally, the interesting detailed structure around the soft configuration is hard to re-
solve within the selected range. For this reason, we also present alternative visualisations
homing in on the region of interest in figs 16. This reveals many discontinuity lines that
result from the interplay of the various competing constraints on the deformation normal-
isation realised through the different functional forms of the scaling factors λi of eq. 3.33
of ref. [89] which eventually send the deformation to zero on the soft point. The clipped
regions of the 3D visualisation stem from discontinuities of IΣ while the few “spots” on the
multi-channeling plots come from evaluations deemed unstable by our strict precision re-
quirements and consequently sent to zero. Comparing the normalisation of the z-axis scale
between figures 16b and 16c highlights the impact of the multi-channeling on the integrable
soft singularity. We note however that when a deformation is enabled (and only then), the
multi-channeling treatment still leaves the integrand unbounded when approaching the
soft singularity from the diagonal E-surface cancelling direction. This remaining integrable
singularity does not severely increase the variance of the integrand for the double-triangle
supergraph.
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(a) Isv
2

(b) Isv
1

0.01

1.00

100.00

10000.00

(c) Isv
1

+ Isv
2

(d) 2Isr
1

= Isr
1

+ Isr
2

0.01

1.00

100.00

10000.00

(e) IΣ (sll Cutkosky cut contributions) (f) I
(MC)
Σ (multi-channeling and incl.

param. jac.)

0.01

1.00

100.00

10000.00

Figure 13. Absolute value of the Local Unitarity integrand from αLoop evaluated at (~k,~l) =
((0, ky, 1√

2 ), (0, 1√
2 , lz)) for the semi-inclusive cross-section of the DT supergraph and various com-

bination of Cutkoksy cuts and with no contour deformation. The log scale has been capped within
the range [10−3, 105].
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(a) Re[Isv
1
] (b) Re[Isv

2
] (c) Re[Isv

1
+ Isv

2
]

(d) Im[Isv
1
] (e) Im[Isv

2
] (f) Im[Isv

1
+ Isv

2
]

(g) Re[IΣ] (all integrands) (h) Im[I(MC)
Σ ] (multi-channeling) (i) Re[I(MC)

Σ ] (multi-channeling)

Figure 14. Similar visualisations as in figures 13 but for the absolute value of the real and
imaginary parts of the Local Unitarity integrands of the double-triangle supergraph when enabling
the contour deformation discussed in section 5.3.4. The contribution from the real-emission 2Isr

1
is

not shown since it is not subject to a contour deformation and it is therefore identical to that of
figure 13d. For the same reason, we have that Im[IΣ] is not shown since it is equal to Im[Isv

1
+ Isv

2
]

of figure 14f.
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param. jac.)

-π

-π /2

0

π /2

π

0.1

1

10

100

Figure 15. Complex 2D plots of the Local Unitarity double-triangle supergraph integrand from
αLoop evaluated at (~k,~l) = ((0, ky, 1√

2 ), (0, 1√
2 , lz)) with a contour deformation enabled. The

colour shading denotes logarithmic isolines of the norm of the integrand while the colour indicate
the value of its complex phase.
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6.1.3 The self-energy supergraph

We now consider the self-energy supergraph. The main novelty for the self-energy super-
graph compared to the double-triangle supergraph is the presence of a repeated propagator,
which requires special treatment since both of them are put on-shell by the Cutkosky cut.
We describe our general treatment of the self-energy renormalisation in section 4.1 which
addresses this problem by considering a combination of the on-shell scheme renormalisation
conditions together with a Taylor expansion of the self-energy around its on-shell point.
We observe that the self-energy insertion does not require a complex contour deformation,
since the pairwise cancellation of all E-surfaces of the self-energy corrections present on
either side of the Cutkosky cut in csv

1
(figure 2a) and csv

2
(figure 2b) can never be spoiled by

the observable function since it has the same kinematic dependence for both cuts. That is:

Osv
1

(
{qe}e∈csv

1

)
= Osv

2

(
{qe}e∈csv

2

)
∀(~k,~l). (6.14)

This property holds for all self-energy corrections at any order whose external propagators
are cut by a Cutskosky cut.

In this section, we explicitly derive the local and integrated UV counterterm of the self-
energy routed as in figure 2a together with the corresponding renormalisation contribution.
Similarly to our treatment of the triangle loop of the double-triangle supergraph in 6.2,
we start by writing the factorising of the bare self-energy contribution from the rest of the
self-energy supergraph as follows:

I
(bare)
sv
1

= K
(sv

1,left)
i

i/kix
k2 Σxj K

(sv
1,right)

j (6.15)

Σ(k, l) = (−igs)(i)(−igs)(−i)CFγµ
[

/l

l2(l − k)2

]
γµ. (6.16)

The propagator /kix
k2 is put exactly on-shell by the Cutkosky cut csv

1
and we show in sec-

tion 4.1 that as a result the treatment of the bare self-energy I(bare)
sv
1

and its corresponding
mass renormalisation counterterm I

(δm)
sv
1

, we obtain the following integrand:

Isv
1

:= I
(bare)
sv
1

+ I
(δm)
sv
1

Isv
1

= K(sv
1,left) i/k

k0 + ‖~k‖

[
∂

∂k0 Σ(k, l)
]
K(sv

1,right) (6.17)

∂

∂k0 Σ(k, l) = (−i)g2
sCFγ

µIseγµ

I(se) = ∂

∂k0
/l

l2(l − k)2 = 2/l(l0 − k0)
l2 [(l − k)2]2

, (6.18)

which completes the description of the integrand Isv
1
of the Local Unitarity representation

for the cut sv
1 of the SE supergraph. A key aspect of our construction is to perform the

on-shell expansion around k0 − ‖~k‖ in eq. (6.17) of only the factorised self-energy energy
Σij(k, l) and not the complete integrand, as it would then include the observable function
which depends on the external momentum of the self-energy.
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The expression derived here is different from the one considered in ref. [79] where the
dispersive representation of the self-energy was used in order to locally extract its k2 de-
pendence necessary for regulating the on-shell propagator. We find the Taylor expansion
approach preferable as it is better suited to manifestly accommodate on-shell renormalisa-
tion conditions while at the same time being systematic and suitable for automation.

The local UV counterterm is easily obtained from eq. (6.18), since its superficial degree
of divergence of zero implies that only the leading term of the UV expansion needs to be
retained while keeping the original numerator unexpanded:

I
(se) = 2/l(l0 − k0)

(l2 −M2
UV)3 . (6.19)

It is important to build the UV counterterm only after the on-shell Taylor expansion has
been constructed, since it does not commute with the UV expansion.

In appendix A.2 we provide the details of the computation of the integrated counter-
part of the local UV counterterm of eq. (6.19). In order to write the result with the LO
contribution factorised, we sum the two integrated UV counterterms contributions arising
from both self-energy loops to the left (cs1) and right (cs2) of the Cutkosky cuts:

∆I(se)
sv
1

+ ∆I(se)
sv
2

= αs
π

(
CF
4
[
− 1
ε

+ 1− logMUV +o(ε)
])
I(LO) . (6.20)

We then add the renormalisation contribution δI(se)
q stemming from the same wavefunction

renormalisation constant Z(MS)
q already given in (6.8):

∆I(se)
sv
1

+ ∆I(se)
sv
2

+ δI
(se)
q = αs

π

(
CF
4

[
−1
ε

+ 1− logMUV

]
− δZ(MS)

q

)
I(LO)

= I(LO)αs
π
CF

(1
4

[
−1
ε

+ 1− logMUV

]
+ 1

4

[1
ε

])
= αs

π
I(LO) 1

4CF
(
− logMUV +1

)
. (6.21)

We stress that we must consider the wavefunction renormalisation in the MS scheme and
not in the on-shell scheme. Our procedure still realises renormalisation in the on-shell
scheme, in virtue of our particular choice for the self-energy on-shell expansion given in
eq. (4.7).

When combining the integrated UV counterterms and renormalisation of eq. (6.11) for
the triangle loop appearing in each of the two virtual Cutkosky cuts of the double-triangle
supergraph as well as eq. (6.21) for both isomorphic self-energy supergraphs, we find the
overall contribution from the UV regularisation to be

(
−1

2

)
CF

αs
π I

(LO).
The cancellation of the logarithmic contributions logMUV results directly from the

gauge cancellation between the vertex and quark wavefunction corrections. It also implies
that the corresponding NLO QCD correction to e+e− → dd̄ has no residual dependency
in the renormalisation scale as expected, since its Born contribution does not depend on
αs(µ2

r).

6.1.4 Results for the differential cross-section

For all numerical results and visualisations presented in this section, we choose Qµ =
pµ1 + pµ2 = (1, 0, 0, 1) + (1, 0, 0,−1), Qd = −1

3 , Qe = −1, gEW = 0.307954 and gs = 1.21772.
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Contrib. C.D. Np [106]
t/p [µs]

MG5aMC [pb] αLoop [pb] ∆ [σ] ∆ [%]
min avg

Inclusive cross-section
LO No 1035 0.06 6 7741.102(5) 7741.133(32) 1.0 0.04
SE No 2485 34 240 N/A -91.7966(95) N/A 0.01
DT Yes 780 72 658 N/A 474.34(11) N/A 0.02
DT No 780 37 202 N/A 474.303(30) N/A 0.006
2×SE+DT No 1035 108 752 290.768(6) 290.732(28) 1.3 0.01
2×SE+DT Yes 1035 124 1290 290.768(6) 290.78(11) 0.1 0.04

0.4 < pt(j1) < 0.8

LO No 1035 0.06 20 2909.53(14) 2909.520(30) 0.07 0.005
SE No 780 25 304 N/A 3.624(11) N/A 0.3
DT Yes 300 19 632 N/A 552.25(18) N/A 0.03
2×SE+DT Yes 1035 48 830 559.41(72) 559.38(21) 0.04 0.13

Table 1. Numerical results for the NLOQCD accurate (semi-)inclusive cross-section for the process
e+e− → γ? → dd̄. The second column entitled “C.D.” stands for “Contour Deformation”.

The choice of the renormalisation scale is irrelevant for the process e−e+ → γ? → dd̄

studied in this section, but matters for the contribution of the individual self-energy and
double-triangle supergraph which we report here as well. We therefore specify that we set
µr equal to our choice of MUV = Q0

2 = 1, such that the integrated UV counterterms in
eq. (6.11) and eq. (6.21) feature no logarithmic terms.

We present our results in table 1 for the inclusive and semi-inclusive cross-section within
the acceptance cuts of eq. (6.13). When a deformation is enabled, we keep the defaults
for the deformation of ref. [89] with an overall maximal deformation magnitude scaling
λmax = 1, together with its dampening on infrared singularities described in section 5.3.4.

The timing indicated by t/p min corresponds to the single-core time spent in the C
routine for the double-precision evaluation of each numerator involved per sampling point.
In this sense, this is the minimal time that one evaluation could possibly take. The timing
indicated by avg corresponds to the effective actual timing per sampling point, including
the overhead from the integrator, observable functions, the deformation construction, and
most importantly additional processing in αLoop such as the stability tests that necessi-
tate additional evaluations in double and sometimes quadruple precision arithmetic (see
sect 5.3.3). At LO, the timing is dominated by the overhead in αLoop, which explains
the significant increase when enabling the phase-space cut selection code. Both timings
reported are for one sampling point including the multi-channeling treatment, which in
the case of the process e+e− → γ? → dd̄g implies three independent evaluation of the
integrands for each of its three channels integrated together. The imaginary part of the
integrated cross-section is not reported but was found to always be compatible with zero
given the Monte-Carlo uncertainty. The comparison of the result with and without a con-
tour deformation enabled (only when the latter is possible) shows a moderate impact of
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a factor of about three in the variance of the integrand. The increase in the runtime per
sample when enabling the deformation is mostly due to the increase in fraction of unstable
point that require a quadruple precision rescue. Note that since the heuristics described in
section 5.3.4 for the computation of the deformation centres always apply for this simple
process, there is no need for numerically solving a second-order cone program at run-time
and therefore not a lot of time is spent in constructing the deformation. As can be seen in
table 1, the infamous NLO K-factor of αs/π (for entry 2×SE+DT) is very well reproduced
by our implementation of numerical Local Unitarity.

We complement the (semi-)inclusive results of table 1 with the binned distribution of
the transverse momentum of the leading reconstructed jet in figure 17. This observable is of
little interest in the case of lepton collisions but was chosen to demonstrate the applicability
of Local Unitarity to arbitrary observables. To the best of our knowledge, this result of
humble appearance stands as the first NLOQCD accurate differential binned distribution
ever computed without relying on IR counterterm and/or dimensional regulator.

Overall, we find excellent agreement between αLoop and MadGraph5_aMC@NLO
in both table 1 and figure 17. In particular, discrepancies are always within a couple of
Monte Carlo standard deviations, with a relative accuracy of the NLO correction always
below the percent mark, except for the region 0.2 < pt(j1) < 0.4 where the distribution
changes sign and therefore neighbours zero. These results and especially the reliability of
the Monte Carlo accuracy reported, are indicative of the predictive power of our numerical
implementation of Local Unitarity.

6.2 Individual scalar supergraphs

An important verification of the local properties of the LU representation is by testing
whether the IR cancellation pattern is realised in practice in a Monte Carlo integration.The
most direct test consists of integrating the overall contributions obtained by summing to-
gether all the interference diagrams corresponding to a fixed, higher-loop scalar supergraph
Γ in the LU representation, σΓ = dσΓ/dO with constant observable. Scalar graphs do not
have a numerator that could improve the IR behaviour and are not helped by gauge in-
variance or any property specific to physical theories in order to realise IR cancellations.

In table 2, we enumerate the massless scalar supergraphs whose LU representation
can be numerically integrated using a Monte Carlo procedure. We divide these scalar
supergraphs in three series: the diagrams labelled by a correspond to all of the three-loop
supergraphs whose σΓ is non-zero and has no self-energy insertions; the diagrams labelled
by b correspond to all of the four-loop supergraphs whose σΓ is finite, non-zero and has no
self-energy insertions; and we selected three five-loop supergraphs, labelled by c.

The integration results, obtained via our implementation named αLoop, are exhibited
in table 3, along with the analytic result obtained through forcer [48]. We also report
the total number of sample points used for the integration, Np, the minimum evaluation
time per sample and per core (that is, the time for one single evaluation of the integrand
in double precision on one Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GH core) and the
average evaluation time per sample, which includes the sum over all integration channels,
the numerical stability checks and the dynamic stability rescue mechanisms. We also report
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Figure 17. Comparison of the differential prediction for NLOQCD correction to the observable
pt(j1) for the process e+e− → γ? → dd̄ as obtained from MadGraph5_aMC@NLO and αLoop .
The Monte-Carlo sampling for this run with αLoop is 5 · 109 points. The dashed pattern indicates
when a contribution is negative.
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a.1) a.2) a.3) b.1) b.2)

b.3) b.4) b.5) b.6) b.7)

b.8) b.9) b.10) b.11) b.12)

b.13) b.14) b.15) b.16) c.1)

c.2) c.3)

Table 2. List of scalar supergraphs whose corresponding cross-section contribution is computed
in 3. They are divided in three series: a) 3-loop supergraphs, b) 4-loop supergraphs, c) 5-loop
supergraphs. Grey edges and black edges do not intersect each other, but overlap due to the planar
embedding.

the number of integration channels Nch and the ratio ∆ [σ] of the discrepancy w.r.t. the exact
result with the Monte Carlo error, and the relative size ∆ [%] of this discrepancy.

We find that all numerical integrations yield results that are within three sigma of the
analytic result with Monte Carlo errors at the percent level or better. Overall, the results
undoubtedly confirm that the integrands are stable and well-behaved. We observe that the
b.16 supergraph requires double the sampling points to achieve a relative error below 2%.

The differences in the evaluation time across the topologies considered, both minimal
and average, is related to a variety of factors, including the number of interference diagrams
arising from the supergraph and the number of integration channels. Another determining
factor is the overall numerical stability of the integrand: indeed, a worse stability implies
that a larger fraction of sampling points trigger the numerical stability rescue mechanism,
which significantly slows does the evaluation of the integrand which is then performed using
quadruple precision arithmetics.

7 Conclusion

In this paper, we have presented a general and systematic way to construct a representation
of differential cross-sections that is locally free of IR divergences. Given an observable and
scattering process, the procedure yields an integrand free of (non-integrable) singularities
and whose integral reproduces physical differential cross-sections. We call the new expres-
sion of the differential cross-section its Local Unitarity (LU) representation. Our framework
ultimately achieves two objectives: first, it shows that the appearance of infrared singu-
larities is a feature of traditional calculation methods and not a fundamental attribute
of physical theories (a statement already implicitly contained in the KLN theorem) and
second, it provides a concrete method well-suited for an automated and fully numerical
computation of physical observables.
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Γ Np [106]
t/p [µs]

Nch forcer [GeV2] αLoop [GeV2] exp. ∆ [σ] ∆ [%]
min avg

Inclusive cross-section per supergraph
a.1 1 5 450 16 5.75396 5.7530(46) -6 0.21 0.00017
a.2 1 10 690 16 -5.75396 -5.763(11) -6 0.82 0.0016
a.3 1 25 1400 16 -5.75396 -5.771(23) -6 0.74 0.0039
b.1 1 150 6600 45 -1.04773 -1.0459(23) -7 0.79 0.0017
b.2 1 270 39000 45 -1.04773 -1.0457(21) -7 0.97 0.0029
b.3 1 320 52000 81 -1.04773 -1.0448(21) -7 1.4 0.0028
b.4 1 740 96000 75 -1.04773 -1.0455(22) -7 1.0 0.0021
b.5 1 340 20000 45 -1.04773 -1.0441(23) -7 1.6 0.0035
b.6 1 350 12000 45 -1.04773 -1.0434(26) -7 1.7 0.0042
b.7 1 1800 180000 81 -1.04773 -1.0563(51) -7 1.7 0.0081
b.8 1 1400 120000 75 -1.04773 -1.0526(42) -7 1.2 0.0046
b.9 1 1200 36000 45 -1.04773 -1.0439(27) -7 1.4 0.0037
b.10 1 1100 32000 45 -1.04773 -1.0488(29) -7 0.37 0.0010
b.11 1 1100 54000 45 -1.04773 -1.0516(35) -7 1.1 0.0037
b.12 1 1100 30000 45 -1.04773 -1.0473(30) -7 0.14 0.00041
b.13 1 2700 83000 45 -1.04773 -1.040(15) -7 0.51 0.0074
b.14 1 3100 110000 75 -2.09546 -2.123(12) -7 2.3 0.0130
b.15 1 3100 210000 81 -2.09546 -2.1045(67) -7 1.3 0.0043
b.16 2 1800 120000 75 -5.23865 -5.312(65) -8 1.1 0.014
c.1 1 1100 49000 128 1.66419 1.6691(79) -9 0.62 0.0029
c.2 1 900 46000 130 1.77832 1.7752(71) -9 0.44 0.0018
c.3 1 1600 69000 130 1.77832 1.7797(33) -9 0.42 0.00077

Table 3. Values of σΓ (that is, the integrated sum of all interference diagrams arising from Γ,
or inclusive cross-section per supergraph) for the supergraphs listed in 2 computed with αLoop
for Qµ = (1,~0) and compared with benchmark results from forcer [48]. The table includes the
total number of samples used for each integration, Np, the number of integration channels Nch (see
section 5.4.1), the minimum and average per sample evaluation time of the integrand t/p, and the
relative discrepancy with respect to the standard deviation ∆ [σ] and numerical result ∆ [%].

Achieving both of these objectives inherently requires an in-depth study of the singular
structure of Feynman integrals, of phase space integrals and their relationship. We use the
Loop-Tree Duality (LTD framework) to express loop integration on the same footing as
phase space integration. Once amplitudes are re-expressed using their LTD representa-
tion, a clear picture emerges: all the interference diagrams that correspond to a particular
Cutkosky cut of the same forward scattering topology (i.e. supergraph) can be collected
under the same integral sign, and their sum is finite. This principle effectively establishes
how to collect and group interference diagrams into classes that are infrared finite. We
even identify that cancellations between IR singularities happens pairwise. More specifi-
cally, if an interference diagram has an IR singularity, there exists a unique distinct other
interference diagram which exhibits the exact same IR singularity so that they sum up to
an integrable quantity on the location of said singularity.
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One of the core issues in constructing an integrand that realises IR cancellation locally
while simultaneously yielding differential cross-sections once integrated, is that of aligning
the phase space measures. Part of this task is performed through the LTD formalism,
along with the choice of a consistent loop momentum across all interference diagrams
corresponding to the same supergraph. The other fundamental component allows one to
solve simultaneously all of the Dirac delta functions imposing the energy conservation of
on-shell external particles: the causal flow. The simplest form of this flow amounts to a
trivial rescaling of all loop variables, but its most generic solution naturally follows from the
general solution to a contour deformation encoding the Feynman prescription associated
to each propagator. The causal flow is an essential ingredient to the construction of the
function whose integral yields the physical cross-section, and is used for the all-order proof
of local cancellations of final-state IR divergences in the LU representation.

Aligning the integration measures also provides a solution to the problem of automating
the calculation of differential cross-sections, as it allows for the systematic construction of
an integrand especially well-suited for Monte Carlo integration. In order to corroborate
and demonstrate the workings of the LU representation in practical cases, we provided the
results of the numerical integration of the LU representation for a variety of example scalar
supergraphs. Furthermore, we explicitly unfolded our theoretical construction for the NLO
correction to the differential cross-section of the physical process e+e− → dd̄.

This paper opens up new horizons both in the understanding of the analytical proper-
ties of observable quantities calculated perturbatively in QFTs and in the ambitious goal of
achieving the complete automation of the calculation of physical cross-sections for collider
experiments beyond NLO accuracy. It goes without saying that, ultimately, these two goals
are inextricable, and can potentially lead to a radically different understanding of QFTs as
we know them.

We expect the foundational work laid out in this paper to serve as a stepping stone
for its many implications, both regarding the theoretical understanding of initial and final
state infrared singularities and its concrete applications to the computation of higher-order
perturbative corrections for collider phenomenology.
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A Integrated UV counterterms for the NLO correction to e+e− → dd̄

A.1 Double-triangle supergraph

In this section, we explicitly derive the result given in (6.6). We first drop the term linear
in k that integrates to zero and arrive at:

∆Īµ =
∫

d̃k

(2π)4
(d− 2)

(
k2γµ − 2kµ/k

)(
k2 −M2

UV
)3

= [2γµgρ1ρ2 − 4γρ2gµρ1 ] (d− 2)
∫

d̃k

(2π)4
kρ1kρ2(

k2 −M2
UV
)3 . (A.1)

The tadpole tensor integral in (A.1) can be evaluated using the usual decomposition in the
only manifestly Lorentz invariant structure gρ1ρ2 :∫

d̃k

(2π)4
kρ1kρ2(

k2 −M2
UV
)3 = Agρ1ρ2 , A = 1

d

∫
d̃k

(2π)4
k2(

k2 −M2
UV
)3 , (A.2)

followed by an elementary reduction step:

A = 1
d

∫
d̃k

(2π)4
k2[

k2 −M2
UV
]3

= 1
d

[∫
d̃k

(2π)4
1[

k2 −M2
UV
]2 − (−M2

UV)
∫

d̃k

(2π)4
1[

k2 −M2
UV
]3
]
, (A.3)

together with the general expression for a scalar tadpole integral (see for instance eq. (3)
of ref. [172]):

V (d)
a :=

∫
ddk

(2π)d
1

[k2 +M2]a = (M2) d2−a

(4π) d2
Γ(a− d

2)
Γ(a) , (A.4)

eventually yielding:

A = 1
4− 2ε

(
µ2

4πe−γ

)ε (−M2
UV) 4−2ε

2 −2

(4π) d2

[
Γ(2− 4−2ε

2 )
Γ(2) −

Γ(3− 4−2ε
2 )

Γ(3)

]

= 1
4− 2ε

1
(4π)2

(
µ2

−M2
UVe

−γ

)ε [Γ(ε)
Γ(2) −

Γ(1 + ε)
Γ(3)

]
(A.5)

which we can expand to order o(ε), arriving at:

A = 1
64π2

[1
ε

+ log µ2

−M2
UV︸ ︷︷ ︸

:=logMUV

+o(ε)
]
, (A.6)

where we introduced the shorthand notation logMUV for the omnipresent logarithm involv-
ing the UV mass regulator M2

UV since the tadpole nature of all integrated counterterms is
such that it will always appear together with µ2

r and never any other scale.
The presence of the negative sign in −M2

UV calls for a regulator in order to set the
sign of the imaginary part of the logarithm. The local UV counterterm of (6.5) will be
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cast into its (c)LTD representation while assuming a causal Feynman prescription +iδ in
the denominator of the UV propagator. This choice dictates what is the correct branch to
select for the evaluation of logMUV . For this process at NLO we note that the particular sign
of this imaginary part is irrelevant as it would always cancel between the two integrated
counterterms arising from the loop integrals sitting to the left and right of the Cutkosky
cut, since in the latter case the complex conjugation flips the sign of the causal prescription.

Substituting (A.6) in (A.2) gives:

∆Īµ(l, Q) = [γµgρ1ρ2 − 2γρ2gµρ1 ] gρ1ρ2(d− 2)
[ 1

64π2

(1
ε

+ logMUV +O (ε)
)]

= γµ
1

64π2

(1
ε

+ logMUV

)
(d− 2)2 +O (ε) = γµ

1
16π2

(1
ε
− 2 + logMUV +O (ε)

)
.

(A.7)

We can then insert (A.7) in (6.3) and (6.2) in order to obtain the final expression of the
integrated UV counterterm ∆Isv

1
of the complete DT supergraph:

∆Isv
1

= K
(sv

1,left)
µ

(
g2

sCF
[
(−i)gγdd̄

]
γµij

1
16π2

(1
ε
− 2 + logMUV

))
K

(sv
1,right)

ij

= αs
π︸︷︷︸

K-factor

K(sv
1,left)

µ (−i)gγdd̄γ
µ︸ ︷︷ ︸

LO form-factor

K(sv
1,right)

 1
4CF

(1
ε
− 2 + logMUV

)

= αs
π
I(LO)

[1
4CF

(1
ε
− 2 + logMUV

)]
. (A.8)

A.2 Self-energy supergraph

We provide here a detailed computation of the integrated counterpart of the local UV
counterterms given in (6.19) for the self-energy supergraph appearing in the NLO QCD
correction of the process e+e− → dd̄. To this end, it is useful to write it in a manifesly
Lorentz invariant fashion by introducing the reference vector ηµ = (1, 0, 0, 0, . . . ), where
the dots denote the (d− 4)-dimensional orthogonal subspace. We find

∆I(se) =
∫

d̃k

(2π)4
2/l l · η

(l2 −M2
UV)3 = γµην

∫
d̃k

(2π)4
2lµlν

(l2 −M2
UV)3 = /η

1
32π2

[1
ε

+ logMUV +o(ε)
]
,

(A.9)

where we have immediately removed the linear contribution from the numerator since it
integrates to zero and recycled the expression for the tensor integral found in A.2. In order
to obtain the complete integrated UV counterterm, we must re-insert ∆I(se) into (6.18)
and (6.17):

∆I(se)
sv
1

= K(sv
1,left) i/k

k0 + ‖~k‖

[
(−i)g2

sCFγ
µ

(
/η

1
32π2

[1
ε

+ logMUV +o(ε)
])

γµ
]
K(sv

1,right)

= K(sv
1,left) /k/η

k0 + ‖~k‖

(
(2− d)g2

sCF
32π2

[1
ε

+ logMUV +o(ε)
])

K(sv
1,right)

= K
(sv

1,left)
i

/k/η

k0 + ‖~k‖
αs
π

(
CF
4

[
− 1
ε

+ 1− logMUV +o(ε)
])

K(sv
1,right) (A.10)
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where we used the identity γµγνγµ = (2− d)γν . In order to demonstrate the factorisation
of the LO supergraph, we must consider the sum of the contributions from both Cutkosky
cuts csv

1
and csv

2
. The cut csv

1
yields a derivation fully analogous to the one carried out in

this section, with the exception that the on-shell propagator being regulated is sitting to
the right of self-energy, so that one naturally arrives at the same expression as (A.10) but
with the Lorentz structure /η/k in place of /k/η. We then observe that:

/k/η + /η/k

k0 + ‖~k‖
= 2k · η
k0 + ‖~k‖

= 2k0

k0 + ‖~k‖
= 1, (A.11)

where we used the fact that both Cutkosky cuts of the SE supergraph force the on-shell
condition k0 = ‖~k‖. Using the factt hat that K(sv

1,left)
i K

(sv
1,right)

i = K
(sv

2,left)
i K

(sv
2,right)

i =
I(LO), we can finally rewrite ∆I(se)

sv
1

+ ∆I(se)
sv
2

as follows:

∆I(se)
sv
1

+ ∆I(se)
sv
2

= αs
π

(
CF
4

[
− 1
ε

+ 1− logMUV +o(ε)
])

I(LO). (A.12)
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